JP2010158828A - Polyester film for solar cell back protecting film - Google Patents

Polyester film for solar cell back protecting film Download PDF

Info

Publication number
JP2010158828A
JP2010158828A JP2009002369A JP2009002369A JP2010158828A JP 2010158828 A JP2010158828 A JP 2010158828A JP 2009002369 A JP2009002369 A JP 2009002369A JP 2009002369 A JP2009002369 A JP 2009002369A JP 2010158828 A JP2010158828 A JP 2010158828A
Authority
JP
Japan
Prior art keywords
film
polyester
solar cell
resin
ton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009002369A
Other languages
Japanese (ja)
Other versions
JP5572949B2 (en
Inventor
Katsuya Ito
勝也 伊藤
Jun Inagaki
潤 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009002369A priority Critical patent/JP5572949B2/en
Priority to PCT/JP2010/050084 priority patent/WO2010079798A1/en
Publication of JP2010158828A publication Critical patent/JP2010158828A/en
Application granted granted Critical
Publication of JP5572949B2 publication Critical patent/JP5572949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester film for a solar cell back protecting film which is excellent in durability and adhesive properties at a high temperature and in high humidity in a thin film silicon solar cell. <P>SOLUTION: The polyester film for the solar cell back protecting film has a covering layer which has a whiteness degree of at least 50, contains 3-50 mass% of fine particles 0.1-3 μm in average particle size, has a film acid value of 1-30 (eq/ton), and contains at least one of a polyester resin, a polyurethane resin, or a polyacrylic resin as a main component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は太陽電池裏面保護膜用ポリエステルフィルムに関する。   The present invention relates to a polyester film for a solar cell back surface protective film.

石油燃料に由来しないエネルギーを利用して電力を得ることのできる太陽電池は、環境保護の面からその要求が高まっている。太陽電池モジュールは、例えば実開平6−38264号公報に記載があるように、一般的には、受光側のガラス基板と、裏面保護膜との間に、複数の板状太陽電池素子を挟み、内部の隙間にエチレン−酢酸ビニル共重合体(以下、EVA樹脂)などの封止樹脂を充填した構造をとる。   The demand for solar cells capable of obtaining electric power by using energy not derived from petroleum fuel is increasing from the viewpoint of environmental protection. As described in, for example, Japanese Utility Model Publication No. Hei 6-38264, a solar cell module generally sandwiches a plurality of plate-like solar cell elements between a glass substrate on the light receiving side and a back surface protective film, A structure in which an internal gap is filled with a sealing resin such as an ethylene-vinyl acetate copolymer (hereinafter referred to as EVA resin) is employed.

裏面保護膜には、優れた機械的性質、耐熱性、耐湿性を有するプラスチックフィルムが用いられる。例えば、特開2002−26354号公報や特開2003−60218号公報には、ポリエチレンテレフタレートフィルムを用いた裏面保護膜が提案されている。そして、太陽電池の発電効率を高める目的で、白色の裏面保護膜を用いることがある。   A plastic film having excellent mechanical properties, heat resistance, and moisture resistance is used for the back surface protective film. For example, Japanese Patent Application Laid-Open Nos. 2002-26354 and 2003-60218 propose a back surface protective film using a polyethylene terephthalate film. And a white back surface protective film may be used for the purpose of improving the power generation efficiency of a solar cell.

特開2002−26354号公報JP 2002-26354 A 特開2003−60218号公報JP 2003-60218 A 特開昭60−250946号公報JP-A-60-250946 特開2004−247390号公報JP 2004-247390 A 特開2002−134771号公報JP 2002-134771 A 特開2007−208179号公報JP 2007-208179 A 特開2008−85270号公報JP 2008-85270 A

白色ポリエステルフィルムを用いることにより、太陽光を反射させ、発電効率を上げることが可能である。白色ポリエステルフィルムはポリエステル基材に対し、粒子を多量に添加する必要がある。そのため、それらの分散性や混合状態を良好にするため、2種類以上の材料を予備混合した原料を作製することや、通常の押出工程でも溶融時間を長くとることなどが行われるため樹脂が劣化しやすくなりやすい。よって、高温高湿度下において太陽電池として使用する場合に、耐久性に乏しいことが問題であった。さらに、それらを太陽電池モジュールとする場合には、EVA樹脂との接着性を併せてもつことが必要となる。   By using a white polyester film, it is possible to reflect sunlight and increase power generation efficiency. A white polyester film needs to add a large amount of particles to a polyester substrate. Therefore, in order to improve their dispersibility and mixing state, the raw material is preliminarily mixed with two or more kinds of materials, and the resin is deteriorated because the melting time is increased even in a normal extrusion process. Easy to do. Therefore, when used as a solar cell under high temperature and high humidity, it has been a problem that durability is poor. Furthermore, when using them as a solar cell module, it is necessary to have adhesiveness with EVA resin.

本発明は、前記課題、すなわち高温高湿度下における耐久性、EVA樹脂との接着性が良好な太陽電池裏面保護膜用ポリエステルフィルムに関する。   The present invention relates to the above-mentioned problem, that is, a polyester film for a solar cell back surface protective film having good durability under high temperature and high humidity and good adhesion to EVA resin.

本発明は、白色度が50以上で、平均粒径が0.1〜3μmの微粒子を3〜50質量%含有し、フィルムの酸価が1(eq/ton)以上30(eq/ton)以下であり、ポリエステル樹脂、ポリウレタン樹脂またはポリアクリル樹脂の少なくとも1種類を主成分とする被覆層を有することを特徴とする太陽電池裏面保護膜用ポリエステルフィルムである。   The present invention contains 3 to 50% by weight of fine particles having a whiteness of 50 or more and an average particle diameter of 0.1 to 3 μm, and the acid value of the film is 1 (eq / ton) to 30 (eq / ton). It is a polyester film for solar cell back surface protective films characterized by having a coating layer which has at least one kind of polyester resin, polyurethane resin or polyacrylic resin as a main component.

本願発明は、光反射効率および高温高湿度下での優れた耐久性、EVA樹脂との良好な接着性を有する。よって、太陽電池、特に薄膜シリコン太陽電池において有用である。   The present invention has light reflection efficiency, excellent durability under high temperature and high humidity, and good adhesiveness with EVA resin. Therefore, it is useful in solar cells, particularly thin film silicon solar cells.

本発明におけるポリエステルとは、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸のごとき芳香族ジカルボン酸又はそのエステルとエチレングリコール、ジエチレングリコール、1、4−ブタンジオール、ネオペンチルグリコールのごときグリコールとを重縮合させて製造されるポリエステルである。これらのポリエステルは芳香族ジカルボン酸とグリコールとを直接反応させる方法のほか、芳香族ジカルボン酸のアルキルエステルとグリコールとをエステル交換反応させた後重縮合させるか、あるいは芳香族ジカルボン酸のジグリコールエステルを重縮合させるなどの方法によって製造することができる。かかるポリエステルの代表例としてはポリエチレンテレフタレート、ポリエチレンブチレンテレフタレートあるいはポリエチレン−2、6−ナフタレートなどが挙げられる。このポリエステルはホモポリマーであってもよく、第三成分を共重合したものであっても良い。いずれにしても本発明においては、エチレンテレフタレート単位、ブチレンテレフタレート単位あるいはエチレン−2、6−ナフタレート単位が70モル%以上、好ましくは80モル%以上、更に好ましくは90モル%以上であるポリエステルが好ましい。   The polyester in the present invention is a polycondensation of an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid or naphthalenedicarboxylic acid or an ester thereof with a glycol such as ethylene glycol, diethylene glycol, 1,4-butanediol or neopentyl glycol. Polyester produced. In addition to the method of directly reacting aromatic dicarboxylic acid and glycol, these polyesters can be polycondensed by transesterification of alkyl ester of aromatic dicarboxylic acid and glycol, or diglycol ester of aromatic dicarboxylic acid. Can be produced by a method such as polycondensation. Typical examples of such polyester include polyethylene terephthalate, polyethylene butylene terephthalate, polyethylene-2, 6-naphthalate and the like. This polyester may be a homopolymer or a copolymer of a third component. In any case, in the present invention, a polyester having an ethylene terephthalate unit, a butylene terephthalate unit or an ethylene-2,6-naphthalate unit of 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more is preferable. .

これらのフィルム原料となるポリエステルは酸価が1(eq/ton)以上30(eq/ton)以下であることが好ましく、より好ましくは2(eq/ton)以上20(eq/ton)以下、さらに好ましくは2(eq/ton)以上16(eq/ton)以下である。30(eq/ton)を超えると、耐加水分解性の良好なフィルムが得られない。1(eq/ton)未満のポリエステルは、工業的には作製が難しい。   The polyester used as the film raw material preferably has an acid value of 1 (eq / ton) to 30 (eq / ton), more preferably 2 (eq / ton) to 20 (eq / ton), Preferably they are 2 (eq / ton) or more and 16 (eq / ton) or less. If it exceeds 30 (eq / ton), a film having good hydrolysis resistance cannot be obtained. Polyesters of less than 1 (eq / ton) are difficult to produce industrially.

本発明のフィルムには、平均粒径は0.1〜3μmの微粒子がフィルム全質量に対して、3〜50質量%、好ましくは4〜25質量%含まれる。0.1μm以下または3μmを超えると、添加量を上げていってもフィルムの白色度を50以上とすることが困難となる。また、3質量%未満では、白色度を50以上とすることが困難となる。50質量%を超えるとフィルム重量が大きくなり、加工などでの取り扱いが困難になる。   The film of the present invention contains fine particles having an average particle size of 0.1 to 3 μm in an amount of 3 to 50% by mass, preferably 4 to 25% by mass, based on the total mass of the film. If it is 0.1 μm or less or exceeds 3 μm, it is difficult to make the whiteness of the film 50 or more even if the addition amount is increased. Moreover, if it is less than 3 mass%, it will become difficult to make whiteness into 50 or more. If it exceeds 50% by mass, the film weight increases, making it difficult to handle it during processing.

なお、本発明の平均粒径は電顕法により求める。具体的には、以下の方法による。
微粒子を走査型電子顕微鏡で観察し、粒子の大きさに応じて適宜倍率を変え、写真撮影したものを拡大コピーする。次いで、ランダムに選んだ少なくとも200個以上の微粒子について、各粒子の外周をトレースする。画像解析装置にてこれらのトレース像から粒子の円相当径を測定し、それらの平均値を平均粒径とする。
In addition, the average particle diameter of this invention is calculated | required by the electron microscope method. Specifically, the following method is used.
The fine particles are observed with a scanning electron microscope, the magnification is appropriately changed according to the size of the particles, and the photographed image is enlarged and copied. Next, the outer circumference of each particle is traced for at least 200 fine particles selected at random. The equivalent circle diameter of the particles is measured from these trace images with an image analysis apparatus, and the average value of these is taken as the average particle diameter.

本発明の微粒子としては、無機または有機の粒子を用いることができる。これら微粒子としては、シリカ、カオリナイト、タルク、炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸価亜鉛、酸化チタン、硫化亜鉛、有機白色顔料等が例示されるが特に限定されるものではない。白色度の向上の点と生産性の点から、好ましくは酸化チタンまたは硫酸バリウム、より好ましくは酸化チタンである。なお、酸化チタンはアナターゼ型、ルチル型の何れでもよい。また、微粒子表面にアルミナやシリカ等の無機処理を施してもよいし、シリコン系あるいはアルコール系等の有機処理を施してもよい。   As the fine particles of the present invention, inorganic or organic particles can be used. Examples of these fine particles include silica, kaolinite, talc, calcium carbonate, zeolite, alumina, barium sulfate, carbon black, acid value zinc, titanium oxide, zinc sulfide, and organic white pigment, but are not particularly limited. Absent. From the viewpoint of improving whiteness and productivity, titanium oxide or barium sulfate is preferable, and titanium oxide is more preferable. The titanium oxide may be either anatase type or rutile type. Further, the surface of the fine particles may be subjected to an inorganic treatment such as alumina or silica, or may be subjected to an organic treatment such as silicon or alcohol.

フィルム中への微粒子の添加は公知の方法を用いることで可能であるが、事前にポリエステル樹脂と微粒子を押出機で混合しておくマスターバッチ法(MB法)が好ましい。また、事前に乾燥させていないポリエステル樹脂と微粒子を押出機に投入し、水分や空気などを脱気しながらMBを作製する方法を採用することもできる。さらに、好ましくは、事前に少しでも乾燥したポリエステル樹脂を用いてMBを作製する方が、ポリエステルの酸価上昇を抑えられる。この場合、脱気しながら押出する方法や、十分乾燥したポリエステル樹脂により脱気をせずに押出する方法などがあげられる。   Fine particles can be added to the film by using a known method, but a master batch method (MB method) in which a polyester resin and fine particles are mixed in an extruder in advance is preferable. Further, it is possible to adopt a method in which a polyester resin and fine particles which have not been dried in advance are put into an extruder and MB is produced while moisture and air are deaerated. Furthermore, it is preferable to prepare an MB using a polyester resin that has been slightly dried in advance to suppress an increase in the acid value of the polyester. In this case, a method of extruding while degassing, a method of extruding without deaeration with a sufficiently dried polyester resin, and the like can be mentioned.

本発明のフィルムは、内部に微細な空洞を多数含有してもよい。その場合の見かけ比重は0.7以上1.3以下、好ましくは0.9以上1.3以下、より好ましくは1.05以上1.2以下である。0.7未満では、フィルムに腰がなく太陽電池モジュール作製時の加工が困難になる。1.3を越えるフィルムであっても本発明のフィルムの範囲であるが、好ましくは1.3を越えた場合にフィルム重量が大きいため太陽電池の軽量化を検討する場合の障害となる可能性がある。   The film of the present invention may contain many fine cavities inside. In that case, the apparent specific gravity is 0.7 or more and 1.3 or less, preferably 0.9 or more and 1.3 or less, more preferably 1.05 or more and 1.2 or less. If it is less than 0.7, the film is not elastic and processing at the time of producing the solar cell module becomes difficult. Even if the film exceeds 1.3, it is within the range of the film of the present invention. However, if the film exceeds 1.3, the film weight is so large that it may become an obstacle when considering the reduction in weight of solar cells. There is.

上記の微細な空洞は、前記微粒子および/もしくは後述のポリエステルに非相溶の熱可塑性樹脂に由来して形成することができる。なお、微粒子もしくはポリエステルに非相溶の熱可塑性樹脂に由来する空洞とは前記微粒子もしくは前記熱可塑性樹脂のまわりに空洞が存在することを言い、例えばフィルムの電子顕微鏡による断面写真などで確認することができる。   The fine cavities can be formed from a thermoplastic resin that is incompatible with the fine particles and / or polyester described below. The term “cavity derived from a thermoplastic resin that is incompatible with fine particles or polyester” means that there are voids around the fine particles or the thermoplastic resin. For example, confirm with a cross-sectional photograph of the film by an electron microscope. Can do.

本発明に用いられるポリエステルには、非相溶の熱可塑性樹脂の添加が任意であり、ポリエステルに非相溶性のものであれば特に制限されるものではない。具体的には、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリアクリル系樹脂、ポリカーボネート樹脂、ポリスルホン系樹脂、セルロース系樹脂などがあげられる。特にポリスチレン系樹脂あるいはポリメチルペンテン、ポリプロピレンなどのポリオレフィン系樹脂が好んで用いられる。   The polyester used in the present invention may be optionally added with an incompatible thermoplastic resin, and is not particularly limited as long as it is incompatible with the polyester. Specific examples include polystyrene resins, polyolefin resins, polyacrylic resins, polycarbonate resins, polysulfone resins, and cellulose resins. In particular, polystyrene resins or polyolefin resins such as polymethylpentene and polypropylene are preferably used.

これらの空洞形成剤すなわちポリエステルに非相溶な熱可塑性樹脂のポリエステルに対する混合量は、目的とする空洞の量によって異なってくるが、フィルム全体に対して3〜20質量%の範囲とすることが好ましく、更には5〜18質量%が好ましい。そして、3質量%未満では、空洞の生成量を多くすることに限界がある。逆に、20質量%以上では、フィルムの延伸性が著しく損なわれ、また耐熱性や強度、腰の強さが損なわれるため好ましくない。   The mixing amount of these void forming agents, that is, the thermoplastic resin incompatible with the polyester, with respect to the polyester varies depending on the amount of the target void, but may be in the range of 3 to 20% by mass with respect to the entire film. More preferably, it is 5 to 18% by mass. And if it is less than 3 mass%, there exists a limit in increasing the production amount of a cavity. On the other hand, if it is 20% by mass or more, the stretchability of the film is remarkably impaired, and the heat resistance, strength, and waist strength are impaired.

本発明の太陽電池裏面保護膜用ポリエステルフィルムは、空洞含有ポリエステル系フィルムとすることも可能である。本発明のポリエステルフィルムは、単層または2層以上の多層からなる積層構成であっても構わない。積層構成としては、平均粒径が0.1〜3μmの微粒子に由来する空洞を多数含有するポリエステル層からなるスキン層と、ポリエステルに非相溶の熱可塑性樹脂に由来する空洞を多数含有するポリエステル層からなるコア層とを有することも本発明の好ましい態様である。その製造方法は任意であり、特に制限されるものではないが、例えば以下のようにして製造することが出来る。まず、スキン層をフィルム表面に接合する方法としては、微粒子を含有するスキン層のポリエステル樹脂と、非相溶の熱可塑性樹脂を含有するコア層のポリエステル樹脂を別々の押出機に供給した後、溶融状態で積層して同一のダイから押し出す共押出法を採用することが最も好ましい。   The polyester film for solar cell back surface protective film of the present invention can be a void-containing polyester film. The polyester film of the present invention may have a single layer or a laminated structure composed of two or more layers. The laminated structure includes a skin layer comprising a polyester layer containing many cavities derived from fine particles having an average particle size of 0.1 to 3 μm, and a polyester containing many cavities derived from a thermoplastic resin incompatible with polyester. It is also a preferred embodiment of the present invention to have a core layer composed of layers. Although the manufacturing method is arbitrary and is not particularly limited, for example, it can be manufactured as follows. First, as a method for joining the skin layer to the film surface, after supplying the polyester resin of the skin layer containing fine particles and the polyester resin of the core layer containing an incompatible thermoplastic resin to separate extruders, It is most preferable to employ a coextrusion method in which layers are laminated in a molten state and extruded from the same die.

それぞれの原料を混合し押出機に投入し、溶融し、T−ダイより押し出しし、冷却ロールに密着することで未延伸シートが得られる。未延伸シートは、更に速度差をもったロール間での延伸(ロール延伸)やクリップに把持して拡げていくことによる延伸(テンター延伸)や空気圧によって拡げることによる延伸(インフレーション延伸)などによって2軸配向処理される。配向処理することにより、ポリエステル/非相溶性熱可塑性樹脂間およびポリエステル/微粒子間で界面剥離を生じ、微細空洞が多数発現する。従って、未延伸シートを延伸・配向処理する条件は、空洞の生成と密接に関係する。   Each raw material is mixed, put into an extruder, melted, extruded from a T-die, and adhered to a cooling roll to obtain an unstretched sheet. The unstretched sheet is further expanded by stretching between rolls having a speed difference (roll stretching), stretching by gripping and expanding by a clip (tenter stretching), stretching by expanding with air pressure (inflation stretching), and the like. Axial orientation treatment. By performing the orientation treatment, interfacial peeling occurs between the polyester / incompatible thermoplastic resin and between the polyester / fine particles, and many fine cavities appear. Therefore, the conditions for stretching / orienting the unstretched sheet are closely related to the formation of cavities.

まず、第1段の縦延伸工程は、フィルム内部に微細な空洞を多数形成するために最も重要なプロセスである。縦延伸は、周速が異なる2本あるいは多数本のロール間で延伸する。このときの加熱手段としては、加熱ロールを用いる方法でも非接触の加熱方法を用いる方法でもよく、それらを併用してもよい。この中で最も好ましい延伸方法としては、ロール加熱と非接触加熱を併用する方法があげられる。この場合、まず加熱ロールを用いてフィルムを50℃〜ポリエステルのガラス転移点以下の温度に予備加熱した後、赤外線ヒータで加熱する。   First, the first-stage longitudinal stretching process is the most important process for forming many fine cavities in the film. In the longitudinal stretching, stretching is performed between two or many rolls having different peripheral speeds. As a heating means at this time, a method using a heating roll or a method using a non-contact heating method may be used, or they may be used in combination. Among these, the most preferable stretching method is a method using both roll heating and non-contact heating. In this case, first, the film is preheated to a temperature not higher than 50 ° C. to a glass transition point of polyester using a heating roll, and then heated with an infrared heater.

次いで、このようにして得られた1軸延伸フィルムをテンターに導入し、幅方向に2.5〜5倍に延伸する。このときの好ましい延伸温度は、100℃〜200℃である。このようにして得られた2軸延伸フィルムに対し、必要に応じて熱処理を施す。熱処理はテンター中で行うのが好ましく、ポリエステルの融点Tm−50℃〜Tmの範囲で行うのが好ましい。   Next, the uniaxially stretched film thus obtained is introduced into a tenter and stretched 2.5 to 5 times in the width direction. A preferable stretching temperature at this time is 100 ° C to 200 ° C. The biaxially stretched film thus obtained is subjected to heat treatment as necessary. The heat treatment is preferably performed in a tenter, and is preferably performed in the range of the melting point Tm-50 ° C. to Tm of the polyester.

本発明においては、EVA樹脂との接着性を改良のために、ポリエステルフィルムの少なくとも片面に、ポリエステル樹脂、ポリウレタン樹脂またはポリアクリル樹脂の少なくとも1種類を主成分とする被覆層を有する。ここで、「主成分」とは被覆層を構成する固形成分のうち50質量%以上である成分をいう。本発明の被覆層の形成に用いる塗布液は、水溶性又は水分散性の共重合ポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂の内、少なくとも1種を含む水性塗布液が好ましい。これらの塗布液としては、例えば、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報等に開示された水溶性又は水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、ポリウレタン樹脂溶液等が挙げられる。   In this invention, in order to improve adhesiveness with EVA resin, it has a coating layer which has at least 1 type of a polyester resin, a polyurethane resin, or a polyacryl resin as a main component on the at least single side | surface of a polyester film. Here, the “main component” refers to a component that is 50% by mass or more of the solid components constituting the coating layer. The coating solution used for forming the coating layer of the present invention is preferably an aqueous coating solution containing at least one of water-soluble or water-dispersible copolymerized polyester resin, acrylic resin and polyurethane resin. Examples of these coating solutions include water-soluble or water-dispersible copolymerized polyester resin solutions, acrylic resin solutions, polyurethane resin solutions disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, and the like. Etc.

被覆層は、前記塗布液を縦方向の1軸延伸フィルムの片面または両面に塗布した後、100〜150℃で乾燥し、さらに横方向に延伸して得ることができる。最終的な被覆層の塗布量は、0.05〜0.20g/mに管理することが好ましい。塗布量が0.05g/m未満であると、得られるEVA樹脂との接着性が不十分となる場合がある。一方、塗布量が0.20g/mを超えると、耐ブロッキング性が低下する場合がある。ポリエステルフィルムの両面に被覆層を設ける場合は、両面の被覆層の塗布量は、同じであっても異なっていてもよく、それぞれ独立して上記範囲内で設定することができる。 The coating layer can be obtained by applying the coating liquid on one or both sides of a uniaxially stretched film in the longitudinal direction, drying at 100 to 150 ° C., and further stretching in the transverse direction. The final coating amount of the coating layer is preferably controlled to 0.05 to 0.20 g / m 2 . If the coating amount is less than 0.05 g / m 2 , adhesion with the resulting EVA resin may be insufficient. On the other hand, when the coating amount exceeds 0.20 g / m 2 , blocking resistance may be lowered. When coating layers are provided on both sides of the polyester film, the coating amounts of the coating layers on both sides may be the same or different, and can be independently set within the above range.

被覆層には易滑性を付与するために粒子を添加することが好ましい。粒子の平均粒径は2μm以下の粒子を用いることが好ましい。粒子の平均粒径が2μmを超えると、粒子が被覆層から脱落しやすくなる。被覆層に含有させる粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカ−アルミナ複合酸化物、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカなどの無機粒子、架橋ポリスチレン粒子、架橋アクリル系樹脂粒子、架橋メタクリル酸メチル系樹脂粒子、ベンゾグアナミン・ホルムアルデヒド縮合物粒子、メラミン・ホルムアルデヒド縮合物粒子、ポリテトラフルオロエチレン粒子などの耐熱性高分子粒子が挙げられる。これらの粒子の中でも、被覆層の樹脂成分と屈折率が比較的近いシリカ粒子が好適である。   It is preferable to add particles to the coating layer in order to provide easy slipping. It is preferable to use particles having an average particle size of 2 μm or less. When the average particle diameter of the particles exceeds 2 μm, the particles easily fall off from the coating layer. The particles to be included in the coating layer include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide, barium sulfate, calcium fluoride, and fluoride. Inorganic particles such as lithium, zeolite, molybdenum sulfide and mica, crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate resin particles, benzoguanamine / formaldehyde condensate particles, melamine / formaldehyde condensate particles, polytetrafluoroethylene particles And heat resistant polymer particles. Among these particles, silica particles having a relatively close refractive index to the resin component of the coating layer are preferable.

また、塗布液を塗布する方法としては、公知の方法を用いることができる。例えば、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、などが挙げられ、これらの方法を単独であるいは組み合わせて行うことができる。   Moreover, a well-known method can be used as a method of apply | coating a coating liquid. For example, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, etc. can be mentioned. Or it can carry out in combination.

こうして、得られたフィルムは白色度が50以上、好ましくは60以上である。50未満では太陽電池モジュール加工時に目視でのフィルム確認が困難となり、加工効率が下がる。   Thus, the obtained film has a whiteness of 50 or more, preferably 60 or more. If it is less than 50, it is difficult to visually check the film when processing the solar cell module, and the processing efficiency is lowered.

本発明のフィルムは酸価が1(eq/ton)以上30(eq/ton)以下であること、好ましくは2(eq/ton)以上20(eq/ton)以下、より好ましくは2(eq/ton)以上16(eq/ton)以下である。30(eq/ton)を超えると、耐加水分解性の良好なフィルムが得られない。1(eq/ton)未満のフィルムは、工業的には作製が難しい。   The film of the present invention has an acid value of 1 (eq / ton) to 30 (eq / ton), preferably 2 (eq / ton) to 20 (eq / ton), more preferably 2 (eq / ton). ton) to 16 (eq / ton). If it exceeds 30 (eq / ton), a film having good hydrolysis resistance cannot be obtained. A film of less than 1 (eq / ton) is difficult to produce industrially.

本発明のフィルムは、耐加水分解性の評価である破断伸び保持率が60%以上、好ましくは70%以上、より好ましくは80%以上である。60%未満では太陽電池裏面保護膜としての耐久性が低く使用できない。   The film of the present invention has a breaking elongation retention ratio of 60% or more, preferably 70% or more, more preferably 80% or more, which is an evaluation of hydrolysis resistance. If it is less than 60%, the durability as a solar cell back surface protective film is low and cannot be used.

次に本発明の実施例および比較例を示す。本発明に用いる測定・評価方法を以下に示す。
1)見かけ比重
フィルムを10cm×10cmの正方形に正確に切り出し、その厚みを50点測定して平均厚みt(単位μm)を求める。次にサンプルの質量を0.1mgまで測定し、w(単位g)とする。そして、下式によって見かけ比重を計算した。
見かけ比重(−)=(w/t)×10000
Next, examples and comparative examples of the present invention will be shown. The measurement / evaluation method used in the present invention is shown below.
1) Apparent specific gravity A film is accurately cut into a 10 cm × 10 cm square, and its thickness is measured at 50 points to obtain an average thickness t (unit: μm). Next, the mass of the sample is measured to 0.1 mg and is set to w (unit: g). And the apparent specific gravity was calculated by the following formula.
Apparent specific gravity (−) = (w / t) × 10000

2)白色度
白色度JIS−L1015−1981−B法により、日本電色工業(株)Z−1001DPを用いて行った
2) Whiteness Whiteness was carried out by using Nippon Denshoku Industries Co., Ltd. Z-1001DP according to the JIS-L1015-1981-B method.

3)酸価
フィルムおよび原料ポリエステル樹脂につき、下記の方法で測定した。
3) Acid value It measured with the following method about the film and raw material polyester resin.

(1)試料の調製
フィルムまたは原料ポリエステル樹脂を粉砕し、70℃で24時間真空乾燥を行った後、天秤を用いて0.20±0.0005gの範囲に秤量する。そのときの質量をW(g)とする。試験管にベンジルアルコール10mlと秤量した試料を加え、試験管を205℃に加熱したベンジルアルコール浴に浸し、ガラス棒で攪拌しながら試料を溶解する。溶解時間を3分間、5分間、7分間としたときのサンプルをそれぞれA,B,Cとする。次いで、新たに試験管を用意し、ベンジルアルコールのみ入れ、同様の手順で処理し、溶解時間を3分間、5分間、7分間としたときのサンプルをそれぞれa,b,cとする。
(2)滴定
予めファクターの分かっている0.04mol/l水酸化カリウム溶液(エタノール溶液)を用いて滴定する。指示薬はフェノールレッドを用い、黄緑色から淡紅色に変化したところを終点とし、水酸化カリウム溶液の滴定量(ml)を求める。サンプルA,B,Cの滴定量をXA,XB,XC(ml)とする。サンプルa,b,cの滴定量をXa,Xb,Xc(ml)とする。
(3)酸価の算出
各溶解時間に対しての滴定量XA,XB,XCを用いて、最小2乗法により、溶解時間0分での滴定量V(ml)を求める。同様にXa,Xb,Xcを用いて、滴定量V0(ml)を求める。次いで、次式に従い酸価を求める。
(1) Preparation of sample A film or a raw material polyester resin is pulverized and vacuum-dried at 70 ° C. for 24 hours, and then weighed in a range of 0.20 ± 0.0005 g using a balance. The mass at that time is defined as W (g). A sample weighed with 10 ml of benzyl alcohol is added to a test tube, the test tube is immersed in a benzyl alcohol bath heated to 205 ° C., and the sample is dissolved while stirring with a glass rod. Samples with dissolution times of 3 minutes, 5 minutes, and 7 minutes are designated as A, B, and C, respectively. Next, a new test tube is prepared, and only benzyl alcohol is added and processed in the same procedure, and the samples when the dissolution time is 3 minutes, 5 minutes, and 7 minutes are designated as a, b, and c, respectively.
(2) Titration Titration is performed using a 0.04 mol / l potassium hydroxide solution (ethanol solution) whose factor is known in advance. Phenol red is used as the indicator, and the titration (ml) of the potassium hydroxide solution is determined with the end point being changed from yellowish green to light red. The titration amounts of samples A, B, and C are XA, XB, and XC (ml). The titration amounts of samples a, b, and c are Xa, Xb, and Xc (ml).
(3) Calculation of acid value Using the titration amounts XA, XB, and XC for each dissolution time, the titration amount V (ml) at a dissolution time of 0 minutes is determined by the least square method. Similarly, titration volume V0 (ml) is obtained using Xa, Xb, and Xc. Subsequently, an acid value is calculated | required according to following Formula.

式1Formula 1


Figure 2010158828
W:試料質量(g)
Figure 2010158828
W: Mass of sample (g)

4)耐加水分解性
JIS−60068−2−66で規格化されているHAST(Highly Accelerated temperature and humidity Stress Test)を行った。機器はエスペック社製EHS−221を用い、105℃、100%Rh、0.03MPa下の条件で行った。
フィルムを70mm×190mmにカットし、治具を用いてフィルムを設置した。各フィルムは各々が接触しない距離を保ち設置した。105℃、100%Rh、0.03MPaの条件下で200時間処理を行った。処理前、処理後の破断伸びをJIS C 2318−1997 5.3.31(引張強さ及び伸び率)に準拠して測定し、下記式に従い破断伸び保持率を算出した。
4) Hydrolysis resistance HAST (Highly Accelerated Temperature and Humidity Stress Test) standardized in JIS-60068-2-66 was performed. The equipment was EHS-221 manufactured by ESPEC CORP. Under the conditions of 105 ° C., 100% Rh, 0.03 MPa.
The film was cut into 70 mm × 190 mm, and the film was placed using a jig. Each film was placed at a distance where it did not touch. The treatment was performed for 200 hours under the conditions of 105 ° C., 100% Rh, 0.03 MPa. Before and after the treatment, the elongation at break was measured according to JIS C 2318-1997 5.3.31 (tensile strength and elongation), and the elongation at break was calculated according to the following formula.

式2Formula 2


Figure 2010158828

Figure 2010158828

5)EVA樹脂との接着性
フィルムを20mm幅×100mm長にカットしたものを2枚、EVA樹脂シート(ハイシート工業(株)製 SOLAR EVA(R)SC4)を20mm幅×50mm長にカットしたものを1枚、それぞれ準備した。EVA樹脂シートがフィルムのほぼ中央に位置するよう、またフィルムの易接性を評価したい面がEVA側になるよう、フィルム/EVA樹脂シート/フィルムの順に重ねて、ヒートシーラーにてプレスを行った。圧着条件は、120℃・0.02MPaにて5分圧着後、150℃に昇温し、プレス圧を0.1MPaに上げて25分圧着する。熱圧着した試料を、23℃、50%RH雰囲気下において、JIS−Z0237に準じて、上下のクリップに未接着部のフィルムを挟み、剥離角180°、引張速度100mm/分で接着力を測定した。なお、EVAは、エチレン−酢酸ビニル共重合体の略称である。
◎:20N/20mm以上 ・・・接着性非常に良好
○:10N/20mm以上、20N/20mm未満・・・接着性良好
△:5N/20mm以上〜10N/20mm未満 ・・・接着性やや良好
×:5N/20mm未満 ・・・接着性不良
5) Two sheets of adhesive film with EVA resin cut to 20 mm width × 100 mm length, EVA resin sheet (SOLAR EVA (R) SC4 manufactured by High Sheet Industry Co., Ltd.) was cut to 20 mm width × 50 mm length I prepared one piece of each. The film was placed in the order of film / EVA resin sheet / film and pressed with a heat sealer so that the EVA resin sheet was positioned almost at the center of the film, and the surface to be evaluated for easy contact of the film was on the EVA side. . The pressure bonding conditions are 120 ° C. and 0.02 MPa for 5 minutes, then heated to 150 ° C., the press pressure is increased to 0.1 MPa, and the pressure is bonded for 25 minutes. Measure the adhesive strength of the thermocompression-bonded sample at 23 ° C and 50% RH in accordance with JIS-Z0237 with the unattached film sandwiched between the upper and lower clips at a peel angle of 180 ° and a tensile speed of 100 mm / min. did. EVA is an abbreviation for ethylene-vinyl acetate copolymer.
◎: 20 N / 20 mm or more: Very good adhesion ○: 10 N / 20 mm or more, less than 20 N / 20 mm ... Good adhesion Δ: 5 N / 20 mm or more and less than 10 N / 20 mm ... Adhesion slightly good × : Less than 5N / 20mm ... poor adhesion

実施例1
(微粒子含有マスターバッチの作製)
原料として事前に120℃、8時間ほど10−3torr下で乾燥した極限粘度0.64、酸価8.0(eq/ton)のポリエチレンテレフタレート樹脂(PET−I)50質量%に、平均粒径0.3μm(電顕法)のルチル型二酸化チタン50質量%を混合したものをベント式2軸押し出し機に供給して、混練りして脱気しながら275℃で押出し、微粒子(酸化チタン)含有マスターバッチ(MB−I)ペレットを調製した。このペレットの酸価は、8.6(eq/ton)であった。
Example 1
(Preparation of fine particle-containing masterbatch)
The average particle size was 50% by mass of polyethylene terephthalate resin (PET-I) having an intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton), which was previously dried at 120 ° C. and 10 −3 torr for about 8 hours as a raw material. A mixture of 50% by mass of rutile titanium dioxide with a diameter of 0.3μm (electron microscopic method) is supplied to a vent type twin screw extruder, kneaded and extruded at 275 ° C while degassing to produce fine particles (titanium oxide) Containing masterbatch (MB-I) pellets were prepared. The acid value of this pellet was 8.6 (eq / ton).

(塗布液の調製)
常法によりエステル交換反応および重縮合反応を行って、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%および5−スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%およびネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n−ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に達したら、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、塗布液を得た。
(Preparation of coating solution)
A transesterification reaction and a polycondensation reaction are carried out by a conventional method, and as a dicarboxylic acid component (based on the whole dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal base-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as a glycol component (based on the entire glycol component) was prepared. Next, 51.4 parts by mass of water, 38 parts by mass of isopropyl alcohol, 5 parts by mass of n-butyl cellosolve, 0.06 parts by mass of nonionic surfactant were mixed and then heated and stirred. After adding 5 parts by mass of a water-dispersible sulfonic acid metal base-containing copolymer polyester resin and continuing to stir until the resin is no longer agglomerated, the resin water dispersion is cooled to room temperature to obtain a solid content concentration of 5.0% by mass. A uniform water-dispersible copolymerized polyester resin liquid was obtained. Furthermore, after dispersing 3 parts by mass of aggregated silica particles (Silicia 310, manufactured by Fuji Silysia Co., Ltd.) in 50 parts by mass of water, 99.46 parts by mass of the water-dispersible copolyester resin liquid was mixed with 0.54 parts by mass of the aqueous dispersion was added, and 20 parts by mass of water was added with stirring to obtain a coating solution.

(フィルムの作製)
次いで、ポリエチレンテレフタレート樹脂(PET−I)50質量%と、先に作製したMB−Iを50質量%とを混合した(A)層の原料と、PET−Iを90質量%とMB−Iを10質量%とを(B)層の原料とし、それぞれ別々の押出機に投入し、280℃で混合、溶融し、続いてフィードブロックを用い、A層の片面にB層を溶融状態で接合した。このとき、A層とB層の吐出量比率は、ギアポンプを用いて制御した。次いでT−ダイを用いて30℃に調節された冷却ドラム上に押し出し、A/B/A層となるように未延伸シートを作成した。
(Production of film)
Next, 50% by mass of polyethylene terephthalate resin (PET-I) and the raw material of the layer (A) in which 50% by mass of the previously prepared MB-I were mixed, 90% by mass of PET-I and MB-I 10% by mass is used as a raw material for the layer (B), put into separate extruders, mixed and melted at 280 ° C., and then, using a feed block, the layer B is joined to one side of the layer A in a molten state. . At this time, the discharge rate ratio of the A layer and the B layer was controlled using a gear pump. Subsequently, it was extruded onto a cooling drum adjusted to 30 ° C. using a T-die, and an unstretched sheet was prepared so as to be an A / B / A layer.

(2軸延伸フィルムの作製)
得られた未延伸シートを、加熱ロールを用いて70℃に均一加熱し、90℃で3.3倍ロール延伸を行い、一軸延伸ポリエステルフィルムを得た。得られた一軸延伸ポリエステルフィルムの片面に前記塗布液を最終被覆層膜厚が0.08g/mとなるように塗布した後、135℃で乾燥させた。
(Production of biaxially stretched film)
The obtained unstretched sheet was uniformly heated to 70 ° C. using a heating roll, and 3.3-fold roll stretching was performed at 90 ° C. to obtain a uniaxially stretched polyester film. The coating solution was applied to one side of the obtained uniaxially stretched polyester film so that the final coating layer thickness was 0.08 g / m 2, and then dried at 135 ° C.

塗布したフィルムをテンターに導き、140℃に加熱して3.7倍に横延伸し、幅固定して220℃で5秒間の熱処理を施し、更に220℃で幅方向に4%緩和させることにより、厚み188μm(19/150/19)の太陽電池裏面保護膜用プラスチックフィルムを得た。   By guiding the coated film to a tenter, heating it to 140 ° C. and transversely stretching it 3.7 times, fixing the width, applying heat treatment at 220 ° C. for 5 seconds, and further relaxing by 4% in the width direction at 220 ° C. A plastic film for a solar cell back surface protective film having a thickness of 188 μm (19/150/19) was obtained.

実施例2
(空洞形成剤の調製)
原料として、メルトフローレート1.5のポリスチレン(日本ポリスチ社製、G797N)20質量%、メルトフローレート3.0の気相法重合ポリプロピレン(出光石油化学製、F300SP)20質量%、及びメルトフローレート180のポリメチルペンテン(三井化学製:TPX DX−820)60質量%ペレット混合し、2軸押し出し機に供給して十分に混練りし、空洞形成剤を調製した(MB−II)。
B層の原料として、PET−I:MB−I:MB−IIを82:10:8(質量%)とした以外は、実施例1と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 2
(Preparation of cavity forming agent)
As raw materials, 20% by mass of polystyrene having a melt flow rate of 1.5 (manufactured by Nippon Polyste Co., Ltd., G797N), 20% by mass of vapor phase polymerization polypropylene having a melt flow rate of 3.0 (F300SP, manufactured by Idemitsu Petrochemical), and melt flow Rate 180 polymethylpentene (manufactured by Mitsui Chemicals: TPX DX-820) 60% by mass pellets were mixed, supplied to a twin screw extruder and kneaded sufficiently to prepare a cavity forming agent (MB-II).
A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 1 except that PET-I: MB-I: MB-II was changed to 82: 10: 8 (mass%) as a raw material for the B layer. It was.

実施例3、実施例4、比較例1
フィルム原料としてのポリエチレンテレフタレート樹脂の酸価を10.1、19.5、30.2(それぞれPET−II、PET−III、PET−IV)とした以外は、実施例2と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 3, Example 4, Comparative Example 1
In the same manner as in Example 2 except that the acid value of polyethylene terephthalate resin as a film raw material was 10.1, 19.5, 30.2 (respectively PET-II, PET-III, PET-IV). A plastic film for the battery back surface protective film was obtained.

比較例2
微粒子含有マスターバッチの作製において、原料として紙袋に入れ温湿度の管理されていない場所で保管してあった未乾燥の極限粘度0.64、酸価8.0(eq/ton)のポリエチレンテレフタレート樹脂(PET−I)50質量%に、平均粒径0.3μm(電顕法)のルチル型二酸化チタン 50質量%を混合したものをベント式2軸押し出し機に供給して、混練りして305℃で脱気しながら微粒子(酸化チタン)含有マスターバッチ(MB−III)ペレットを調製した。このペレットの酸価は、38.4(eq/ton)であった。
それ以外は、実施例2と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Comparative Example 2
In the preparation of a master batch containing fine particles, a polyethylene terephthalate resin having an undried intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton) stored in a paper bag as a raw material in a place where temperature and humidity are not controlled (PET-I) 50 mass% mixed with 50 mass% of rutile titanium dioxide having an average particle size of 0.3 μm (electron microscopic method) is supplied to a vent type twin screw extruder, kneaded and 305 ° C. A masterbatch (MB-III) pellet containing fine particles (titanium oxide) was prepared while degassing with a. The acid value of this pellet was 38.4 (eq / ton).
Other than that obtained the plastic film for solar cell back surface protective films by the method similar to Example 2. FIG.

実施例5
微粒子含有マスターバッチの作製において、ルチル型二酸化チタンの代わりに平均粒径が0.6μmの硫酸バリウムとし(MB−IV)、それをA層の原料としてMB−Iの代わりに用いた以外は、実施例2と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 5
In the preparation of the fine particle-containing master batch, barium sulfate having an average particle size of 0.6 μm was used instead of rutile titanium dioxide (MB-IV), and it was used instead of MB-I as a raw material for the A layer. A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 2.

比較例3
被覆層を設けなかった以外は、実施例2と同様の方法で太陽電池裏面保護膜用ポリエステルフィルムを得た。
Comparative Example 3
A polyester film for a solar cell back surface protective film was obtained in the same manner as in Example 2 except that the coating layer was not provided.

Figure 2010158828
Figure 2010158828

本発明の太陽電池裏面保護膜用ポリエステルフィルムは、高温高湿度下での耐久性、EVA樹脂との接着性、および光反射効率に優れており、太陽電池裏面保護膜を構成する素材として有用である。   The polyester film for the solar cell back surface protective film of the present invention is excellent in durability under high temperature and high humidity, adhesiveness with EVA resin, and light reflection efficiency, and is useful as a material constituting the solar cell back surface protective film. is there.

Claims (4)

白色度が50以上で、平均粒径が0.1〜3μmの微粒子を3〜50質量%含有し、フィルムの酸価が1(eq/ton)以上30(eq/ton)以下であり、ポリエステル樹脂、ポリウレタン樹脂またはポリアクリル樹脂の少なくとも1種類を主成分とする被覆層を有することを特徴とする太陽電池裏面保護膜用ポリエステルフィルム。   3 to 50% by weight of fine particles having a whiteness of 50 or more and an average particle size of 0.1 to 3 μm, an acid value of the film of 1 (eq / ton) to 30 (eq / ton), polyester A polyester film for a solar cell back surface protective film, comprising a coating layer containing at least one of resin, polyurethane resin, or polyacrylic resin as a main component. フィルム内部に微細な空洞を多数有することにより、フィルムの見かけ比重が0.7以上1.3以下であることを特徴とする請求項1に記載の太陽電池裏面保護膜用ポリエステルフィルム。   The apparent specific gravity of a film is 0.7 or more and 1.3 or less by having many fine cavities inside a film, The polyester film for solar cell back surface protective films of Claim 1 characterized by the above-mentioned. 平均粒径が0.1〜3μmの微粒子に由来する空洞を多数含有するポリエステル層(スキン層)と、ポリエステルに非相溶の熱可塑性樹脂に由来する空洞を多数含有するポリエステル層(コア層)が積層されてなることを特徴とする請求項1または2に記載の太陽電池裏面保護膜用ポリエステルフィルム。   Polyester layer (skin layer) containing many cavities derived from fine particles having an average particle size of 0.1 to 3 μm, and polyester layer (core layer) containing many cavities derived from a thermoplastic resin incompatible with polyester The polyester film for a solar cell back surface protective film according to claim 1 or 2, wherein the film is laminated. フィルム原料となるポリエステルの酸価が1(eq/ton)以上30(eq/ton)以下であることを特徴とする請求項1から3のいずれかに記載の太陽電池裏面保護膜用ポリエステルフィルム。   The polyester film for a solar cell back surface protective film according to any one of claims 1 to 3, wherein an acid value of a polyester as a film raw material is 1 (eq / ton) or more and 30 (eq / ton) or less.
JP2009002369A 2009-01-07 2009-01-08 Method for producing polyester film for solar cell back surface protective film Active JP5572949B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009002369A JP5572949B2 (en) 2009-01-08 2009-01-08 Method for producing polyester film for solar cell back surface protective film
PCT/JP2010/050084 WO2010079798A1 (en) 2009-01-07 2010-01-07 Polyester film for solar cell back surface protection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002369A JP5572949B2 (en) 2009-01-08 2009-01-08 Method for producing polyester film for solar cell back surface protective film

Publications (2)

Publication Number Publication Date
JP2010158828A true JP2010158828A (en) 2010-07-22
JP5572949B2 JP5572949B2 (en) 2014-08-20

Family

ID=42576370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002369A Active JP5572949B2 (en) 2009-01-07 2009-01-08 Method for producing polyester film for solar cell back surface protective film

Country Status (1)

Country Link
JP (1) JP5572949B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120094299A (en) * 2011-02-16 2012-08-24 엘지전자 주식회사 Solar cell and manufacuring method thereof
JP2012186247A (en) * 2011-03-04 2012-09-27 Bridgestone Corp Sealing film for solar cell, and solar cell using the same
JP2014506842A (en) * 2011-01-31 2014-03-20 トーレ・フィルムズ・ユアロップ MULTILAYER WHITE POLYESTER FILM, METHOD FOR PRODUCING FILM, AND USE OF FILM AS PART OF SOLAR CELL BACK SHEET
JP2015032750A (en) * 2013-08-05 2015-02-16 大日本印刷株式会社 Rear surface protective sheet for solar cell module
JP2015032751A (en) * 2013-08-05 2015-02-16 大日本印刷株式会社 Rear surface protective sheet for solar cell module
US9224897B2 (en) 2010-11-12 2015-12-29 Fujifilm Corporation Back sheet for solar cell, and solar cell module
JP2016046512A (en) * 2014-08-19 2016-04-04 東レ株式会社 Back sheet for solar battery module and solar battery module
US10439086B2 (en) 2014-07-08 2019-10-08 Dupont Teijin Films U.S. Limited Partnership Polyester film comprising amorphous polyester

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026354A (en) * 2000-07-11 2002-01-25 Toray Ind Inc Film for sealing rear surface of solar cell and solar cell using the same
JP2005322687A (en) * 2004-05-06 2005-11-17 Keiwa Inc Backsheet for solar cell module and solar cell module using the same
JP2006152013A (en) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd Easily adhesive polyester film for solar cell back surface-protecting film and solar cell back surface-protecting film obtained using the same
JP2007118267A (en) * 2005-10-26 2007-05-17 Toray Ind Inc Thermoplastic polyester sheet for solar cell
JP2007136911A (en) * 2005-11-21 2007-06-07 Toray Ind Inc Sheet for sealing rear face of solar cell
WO2007063860A1 (en) * 2005-11-29 2007-06-07 Dai Nippon Printing Co., Ltd. Back-protective sheet for solar cell module, back laminate for solar cell module, and solar cell module
JP2007177136A (en) * 2005-12-28 2007-07-12 Asahi Kasei Chemicals Corp Back surface-protecting sheet for solar cell
WO2007105306A1 (en) * 2006-03-14 2007-09-20 Toray Industries, Inc. Polyester resin sheet for solar cell, laminate thereof, solar cell backside protection sheet, and module
JP2007320218A (en) * 2006-06-02 2007-12-13 Toppan Printing Co Ltd Sheet for sealing back side of solar cell
JP2008004839A (en) * 2006-06-23 2008-01-10 Dainippon Printing Co Ltd Back protection sheet film of solar cell, and back protection sheet of solar cell module using it
JP2008218856A (en) * 2007-03-07 2008-09-18 Toray Advanced Film Co Ltd Solar-cell backside sealing film
JP2009188345A (en) * 2008-02-08 2009-08-20 Fujifilm Corp Solar cell sealant and method for manufacturing the same
WO2009125701A1 (en) * 2008-04-08 2009-10-15 東レ株式会社 Thermoplastic resin sheet for solar battery, method for manufacturing thermoplastic resin sheet, and solar battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026354A (en) * 2000-07-11 2002-01-25 Toray Ind Inc Film for sealing rear surface of solar cell and solar cell using the same
JP2005322687A (en) * 2004-05-06 2005-11-17 Keiwa Inc Backsheet for solar cell module and solar cell module using the same
JP2006152013A (en) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd Easily adhesive polyester film for solar cell back surface-protecting film and solar cell back surface-protecting film obtained using the same
JP2007118267A (en) * 2005-10-26 2007-05-17 Toray Ind Inc Thermoplastic polyester sheet for solar cell
JP2007136911A (en) * 2005-11-21 2007-06-07 Toray Ind Inc Sheet for sealing rear face of solar cell
WO2007063860A1 (en) * 2005-11-29 2007-06-07 Dai Nippon Printing Co., Ltd. Back-protective sheet for solar cell module, back laminate for solar cell module, and solar cell module
JP2007177136A (en) * 2005-12-28 2007-07-12 Asahi Kasei Chemicals Corp Back surface-protecting sheet for solar cell
WO2007105306A1 (en) * 2006-03-14 2007-09-20 Toray Industries, Inc. Polyester resin sheet for solar cell, laminate thereof, solar cell backside protection sheet, and module
JP2007320218A (en) * 2006-06-02 2007-12-13 Toppan Printing Co Ltd Sheet for sealing back side of solar cell
JP2008004839A (en) * 2006-06-23 2008-01-10 Dainippon Printing Co Ltd Back protection sheet film of solar cell, and back protection sheet of solar cell module using it
JP2008218856A (en) * 2007-03-07 2008-09-18 Toray Advanced Film Co Ltd Solar-cell backside sealing film
JP2009188345A (en) * 2008-02-08 2009-08-20 Fujifilm Corp Solar cell sealant and method for manufacturing the same
WO2009125701A1 (en) * 2008-04-08 2009-10-15 東レ株式会社 Thermoplastic resin sheet for solar battery, method for manufacturing thermoplastic resin sheet, and solar battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9224897B2 (en) 2010-11-12 2015-12-29 Fujifilm Corporation Back sheet for solar cell, and solar cell module
JP2014506842A (en) * 2011-01-31 2014-03-20 トーレ・フィルムズ・ユアロップ MULTILAYER WHITE POLYESTER FILM, METHOD FOR PRODUCING FILM, AND USE OF FILM AS PART OF SOLAR CELL BACK SHEET
KR20120094299A (en) * 2011-02-16 2012-08-24 엘지전자 주식회사 Solar cell and manufacuring method thereof
KR101715386B1 (en) 2011-02-16 2017-03-27 엘지전자 주식회사 Solar cell and manufacuring method thereof
JP2012186247A (en) * 2011-03-04 2012-09-27 Bridgestone Corp Sealing film for solar cell, and solar cell using the same
JP2015032750A (en) * 2013-08-05 2015-02-16 大日本印刷株式会社 Rear surface protective sheet for solar cell module
JP2015032751A (en) * 2013-08-05 2015-02-16 大日本印刷株式会社 Rear surface protective sheet for solar cell module
US10439086B2 (en) 2014-07-08 2019-10-08 Dupont Teijin Films U.S. Limited Partnership Polyester film comprising amorphous polyester
JP2016046512A (en) * 2014-08-19 2016-04-04 東レ株式会社 Back sheet for solar battery module and solar battery module

Also Published As

Publication number Publication date
JP5572949B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5572949B2 (en) Method for producing polyester film for solar cell back surface protective film
WO2010079798A1 (en) Polyester film for solar cell back surface protection film
EP2657003B1 (en) Polyester film and laminate using same
KR102322398B1 (en) Mold release film and production method for same
JP6260314B2 (en) Biaxially oriented polyester film
EP2573824A1 (en) Backside protective sheet for solar cell module
JP5494269B2 (en) Polyester film for solar cell back surface protective film
JP2011146658A (en) Back sheet for solar cell, method of manufacturing the same, and solar cell module
KR102232971B1 (en) Mold release film and production method for same
JP4896558B2 (en) Polyester film for solar cell back surface protective film and solar cell back surface protective film using the same
WO2009104366A1 (en) Film for production of strong acid polymer sheet
JP5114681B2 (en) Polyester film for solar cell back surface protective film
JP5232944B1 (en) Solar cell back surface protection sheet and solar cell module.
JP5521806B2 (en) Polyester film for solar cell back surface protective film
JP5562889B2 (en) LAMINATED FILM, SOLAR CELL BACK SHEET, AND METHOD FOR PRODUCING LAMINATED FILM
JP6096135B2 (en) White polyester film and method for producing the same, solar cell module and method for producing the same
JP2014229526A (en) Laminate film for battery outer packaging
WO2016031340A1 (en) Solar cell rear surface protection sheet and solar cell module
JP5995769B2 (en) Laminated film, back sheet for solar cell module, and solar cell module
JP6589359B2 (en) Colored polyester film for adhesive tape substrate and adhesive tape
JP2012199592A (en) Polyester film for solar-cell backside protection film
JP7352153B2 (en) Manufacturing method of heat seal film
JP2013201155A (en) Rear surface protection sheet for solar cell module
JP2004331729A (en) Biaxially oriented laminated polyester film
JP2004330476A (en) Biaxially stretched laminated polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R151 Written notification of patent or utility model registration

Ref document number: 5572949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350