JP6096135B2 - White polyester film and method for producing the same, solar cell module and method for producing the same - Google Patents

White polyester film and method for producing the same, solar cell module and method for producing the same Download PDF

Info

Publication number
JP6096135B2
JP6096135B2 JP2014020801A JP2014020801A JP6096135B2 JP 6096135 B2 JP6096135 B2 JP 6096135B2 JP 2014020801 A JP2014020801 A JP 2014020801A JP 2014020801 A JP2014020801 A JP 2014020801A JP 6096135 B2 JP6096135 B2 JP 6096135B2
Authority
JP
Japan
Prior art keywords
polyester film
layer
fine particles
easy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014020801A
Other languages
Japanese (ja)
Other versions
JP2015147334A (en
Inventor
橋本 斉和
斉和 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014020801A priority Critical patent/JP6096135B2/en
Priority to CN201580006444.9A priority patent/CN105939851B/en
Priority to PCT/JP2015/053130 priority patent/WO2015119164A1/en
Priority to KR1020167019568A priority patent/KR101869179B1/en
Publication of JP2015147334A publication Critical patent/JP2015147334A/en
Application granted granted Critical
Publication of JP6096135B2 publication Critical patent/JP6096135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/146Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly transversely to the direction of feed and then parallel thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、白色ポリエステルフィルム及びその製造方法、並びに太陽電池モジュール及びその製造方法に関する。   The present invention relates to a white polyester film and a manufacturing method thereof, and a solar cell module and a manufacturing method thereof.

ポリエステルは、電気絶縁用途や光学用途などの種々の用途に利用されている。電気絶縁用途としては、近年、太陽電池用バックシート等の太陽電池用途が注目されている。
太陽電池は、エチレン−酢酸ビニル共重合体(EVA)等の封止材を用いて封止された発電素子をガラス板に貼り付けた構造を有しているが、太陽光が入射する側の面とは反対側の裏面には、風雨などによる劣化を防ぐため、裏面保護用のシート材(いわゆるバックシート(裏面保護部材))が配設されている。
Polyester is used for various applications such as electrical insulation and optical applications. In recent years, solar cell applications such as solar cell backsheets have attracted attention as electrical insulation applications.
The solar cell has a structure in which a power generating element sealed with a sealing material such as ethylene-vinyl acetate copolymer (EVA) is attached to a glass plate. A sheet material for protecting the back surface (so-called back sheet (back surface protection member)) is disposed on the back surface opposite to the surface in order to prevent deterioration due to wind and rain.

このような太陽電池用バックシートには、近年、樹脂材料が使用されるに至っており、樹脂材料の一例として、ポリエステルフィルムが用いられつつある。バックシートを構成するポリエステルフィルムとしては、光の反射率を高めて発電効率を向上させる観点から、微粒子を含めて白色化されたポリエステルフィルムが知られている。ところが、微粒子が添加されるとポリエステルの脆化を招き、耐候性に劣る傾向があった。このような耐候性の低下を改善する技術として、多層構造を有するポリエステルフィルムが提案されている(例えば、特許文献1〜2参照)。   In recent years, resin materials have been used for such solar cell backsheets, and polyester films are being used as an example of resin materials. As a polyester film constituting the back sheet, a whitened polyester film including fine particles is known from the viewpoint of increasing light reflectivity and improving power generation efficiency. However, when fine particles are added, the polyester is embrittled and tends to be inferior in weather resistance. As a technique for improving such a decrease in weather resistance, a polyester film having a multilayer structure has been proposed (see, for example, Patent Documents 1 and 2).

また、バックシートは、一般に発電素子を封止する封止材と密着させて用いられることが多い。そのため、バックシートを構成するポリエステルフィルムには、通常、EVAと密着させるための易接着層が設けられている。
封止材に対して良好な接着性を示すポリエステルフィルムとして、脂肪族系の構成成分を有するウレタン樹脂を用いた太陽電池用易接着性ポリエステルフィルムが提案されている(例えば、特許文献3〜4参照)。
In general, the back sheet is often used in close contact with a sealing material for sealing the power generating element. Therefore, the polyester film which comprises a back sheet is normally provided with the easily bonding layer for making it closely_contact | adhere with EVA.
As a polyester film showing good adhesion to a sealing material, an easily adhesive polyester film for a solar cell using a urethane resin having an aliphatic constituent component has been proposed (for example, Patent Documents 3 to 4). reference).

特許第5288068号公報Japanese Patent No. 5288068 特許第5102392号公報Japanese Patent No. 5102392 国際公開第2011/068132号パンフレットInternational Publication No. 2011/068132 Pamphlet 特開2011−142128号公報JP 2011-142128 A

しかしながら、従来から提案されている易接着性のポリエステルフィルムは、長期での耐候性に劣り、特に光や熱に長期にわたり曝されたときの密着性の低下が著しいとの課題がある。バックシートのポリエステルフィルムと封止材との間の密着が低下したり、バックシート内でポリエステルフィルムと隣接層との間の密着が低下すると、太陽電池の耐久性能の低下が顕著に現れる一因となる。   However, the easily-adhesive polyester film proposed heretofore has a problem that it is inferior in weather resistance in the long term, and particularly the adhesion is greatly lowered when exposed to light or heat for a long time. If the adhesion between the polyester film of the back sheet and the sealing material is reduced, or if the adhesion between the polyester film and the adjacent layer is reduced in the back sheet, a decrease in the durability performance of the solar cell is noticeable. It becomes.

本発明は、上記のような事情に鑑みなされたものであり、長期間に亘り熱や光に曝される環境下でも優れた密着性を示す白色ポリエステルフィルム及びその製造方法、長期間に亘り熱や光に曝される環境下での耐久性に優れた太陽電池モジュール及びその製造方法を提供することを目的とし、この目的を達成することを課題とする。   The present invention has been made in view of the above circumstances, a white polyester film exhibiting excellent adhesion even under an environment exposed to heat and light for a long period of time, a method for producing the same, and heat for a long period of time. It aims at providing the solar cell module excellent in the durability in the environment exposed to a light, and its manufacturing method, and makes it a subject to achieve this objective.

課題を達成するための具体的手段は、以下の通りである。
<1> 微粒子を含有するポリエステルフィルムと、ポリエステルフィルムの少なくとも一方面に有し、厚みが0.01μm以上1μm以下であり、厚み分布が1%以上30%以下である易接着層と、を有し、微粒子を含有するポリエステルフィルムは、ポリエステルの質量に対して5質量%以上30質量%以下の微粒子を含み、かつ微粒子の分散度が10%以上100%以下である第1の層を含み、易接着層は、表面ヘイズが0.01%以上3%以下であり、表面ヘイズの面内分布が0.1%以上30%以下である白色ポリエステルフィルムである。
<2> 製膜途中のポリエステルフィルムの少なくとも一方面に塗布により易接着層を形成し、下記の(1)及び(2)の少なくとも一方の工程を施して製膜された<1>に記載の白色ポリエステルフィルムである。
(1)形成された易接着層を、易接着層の面内に0.5℃以上10℃以下の温度差を付与して乾燥させる乾燥工程
(2)易接着層が形成されたポリエステルフィルムを、ポリエステルフィルムの面内に0.5℃以上10℃以下の温度差を付与して、延伸する延伸工
<3> 微粒子を含有するポリエステルフィルムは、更に、ポリエステルの質量に対して0.06質量%以上10質量%以下の微粒子を含み、かつ微粒子の分散度が10%以上100%以下である第2の層の少なくとも1層を含む<1>又は<2>に記載の白色ポリエステルフィルムである。
> 第1の層は、厚みが5μm以上80μm以下であり、かつ厚み分布が1%以上20%以下であって、微粒子を含有するポリエステルフィルムの総厚が40μm以上350μm以下である<1>〜<>のいずれか1つに記載の白色ポリエステルフィルムである。
> 微粒子を含有するポリエステルフィルムとして、第1の層及び第2の層が積層され、かつ第1の層及び第2の層の少なくとも一方の表面に易接着層が積層された構造を有する<>又は<>に記載の白色ポリエステルフィルムである。
> 微粒子を含有するポリエステルフィルムとして、第1の層及び第2の層を含み、第1の層と、第2の層と、易接着層と、がこの順に積層された構造を有する<>〜<>のいずれか1つに記載の白色ポリエステルフィルムである。
> 温度120℃、湿度100%RHの環境条件下に60時間曝された際の破断伸度半減時間が70時間以上200時間以下である<1>〜<>のいずれか1つに記載の白色ポリエステルフィルムである。
Specific means for achieving the object are as follows.
<1> A polyester film containing fine particles, and an easy-adhesion layer having at least one surface of the polyester film, having a thickness of 0.01 μm to 1 μm, and a thickness distribution of 1% to 30%. and, a polyester film containing fine particles contain 5% by weight to 30% by weight of particles relative to the weight of the polyester, and saw including a first layer dispersion degree is less than 100% to 10% of the fine particles The easy-adhesion layer is a white polyester film having a surface haze of 0.01% to 3% and an in-plane distribution of the surface haze of 0.1% to 30% .
<2> The film according to <1>, wherein an easy-adhesion layer is formed on at least one surface of the polyester film during film formation, and the film is formed by performing at least one of the following steps (1) and (2): It is a white polyester film.
(1) A drying step in which the formed easy-adhesion layer is dried by applying a temperature difference of 0.5 ° C. or more and 10 ° C. or less in the plane of the easy-adhesion layer. (2) A polyester film on which the easy-adhesion layer is formed. , by applying a temperature difference 0.5 ℃ above 10 ° C. or less in the plane of the polyester film, as stretching Engineering stretching
<3 > The polyester film containing fine particles further includes 0.06% by mass to 10% by mass of fine particles with respect to the mass of the polyester, and the degree of dispersion of the fine particles is 10% to 100%. It is a white polyester film as described in <1> or <2> containing at least 1 layer of these layers.
< 4 > The first layer has a thickness of 5 μm or more and 80 μm or less and a thickness distribution of 1% or more and 20% or less, and the total thickness of the polyester film containing fine particles is 40 μm or more and 350 μm or less <1 It is a white polyester film as described in any one of>-< 3 >.
< 5 > As a polyester film containing fine particles, the first layer and the second layer are laminated, and an easy adhesion layer is laminated on at least one surface of the first layer and the second layer. It is a white polyester film as described in < 3 > or < 4 >.
< 6 > As a polyester film containing fine particles, it includes a first layer and a second layer, and has a structure in which a first layer, a second layer, and an easy-adhesion layer are laminated in this order < It is a white polyester film as described in any one of 3 >-< 5 >.
< 7 > Any one of <1> to < 6 >, wherein the half elongation at break when exposed to an environmental condition of a temperature of 120 ° C. and a humidity of 100% RH for 60 hours is 70 hours to 200 hours It is a white polyester film of description.

> 熱寸法変化分布が1%以上40%以下のエチレン−酢酸ビニル樹脂と、<1>〜<>のいずれか1つに記載の白色ポリエステルフィルムと、を貼り合わせる貼合工程を含む太陽電池モジュールの製造方法である。
> 貼合工程は、貼り合わせる前に、エチレン−酢酸ビニル樹脂を、平均温度が40℃以上70℃以下であり、温度分布が0.5℃以上8℃以下であるヒーターを用いて1分以上10分以下の範囲で加熱処理する工程を含む、<>に記載の太陽電池モジュールの製造方法である。
< 8 > A bonding step of bonding an ethylene-vinyl acetate resin having a thermal dimensional change distribution of 1% to 40% and the white polyester film according to any one of <1> to < 7 >. It is a manufacturing method of a solar cell module.
< 9 > The bonding step is performed by using a heater having an average temperature of 40 ° C. or higher and 70 ° C. or lower and a temperature distribution of 0.5 ° C. or higher and 8 ° C. or lower before bonding the ethylene-vinyl acetate resin. It is a manufacturing method of the solar cell module as described in < 8 > including the process of heat-processing in the range for more than 10 minutes.

10> 微粒子を含む製膜途中のポリエステルフィルムの少なくとも一方面に、塗布により易接着層を形成する工程と、下記の(1)及び(2)の少なくとも一方の工程と、樹脂材料及び微粒子、又は微粒子が分散された樹脂材料を溶融押出機に投入し、溶融押出機のスクリュのトルクに0.5%以上20%以下の変動を付与して溶融押出することで、全質量に対して5質量%以上30質量%以下の微粒子を含み、かつ微粒子の分散度が10%以上100%以下である第1の層を製膜する工程と、を有し、ポリエステルフィルムは少なくとも第1の層を含む白色ポリエステルフィルムの製造方法である。
(1)形成された易接着層を、易接着層の面内に0.5℃以上10℃以下の温度差を付与して乾燥させる乾燥工程と、乾燥工程後、乾燥された易接着層を有するポリエステルフィルムを、ポリエステルフィルムの一方面と他方面との間に0.1℃以上10℃以下の温度差を付与して冷却する工程と、を有する工程
(2)易接着層が形成されたポリエステルフィルムを、ポリエステルフィルムの面内に0.5℃以上10℃以下の温度差を付与して、延伸する延伸工
<11(1)の工程を有するときには、乾燥工程後、乾燥された易接着層を有するポリエステルフィルムを、ポリエステルフィルムの面内に0.1℃以上10℃以下の温度差を付与して冷却する工程を、更に有する<10>に記載の白色ポリエステルフィルムの製造方法である。
12> 樹脂材料及び微粒子、又は微粒子が分散された樹脂材料を溶融押出機に投入し、溶融押出機のスクリュのトルクに0.5%以上20%以下の変動を付与して溶融押出することで、更に、全質量に対して0.06質量%以上10質量%以下の微粒子を含み、かつ微粒子の分散度が10%以上100%以下である第2の層を製膜する工程を更に有し、ポリエステルフィルムは少なくとも第1の層及び第2の層を含む<10又は<11>に記載の白色ポリエステルフィルムの製造方法である。
13> 溶融押出機で溶融混練された溶融樹脂をダイから溶融押出して第1の層を製膜する際、ダイに0.5℃以上10℃以下の温度変動を付与する<10>〜<12>のいずれか1つに記載の白色ポリエステルフィルムの製造方法である。
14> 上記した(1)の工程を有するときには、未延伸のポリエステルフィルムを縦延伸する工程と、縦延伸されたポリエステルフィルムを横延伸する工程と、縦延伸する工程と横延伸する工程との間に、縦延伸後のポリエステルフィルムを5℃/秒以上100℃/秒以下の冷却速度で冷却する工程と、を更に有する<10>〜<13>のいずれか1つに記載の白色ポリエステルフィルムの製造方法である。
15> 上記した(2)の工程を有するときには、延伸工程は、未延伸のポリエステルフィルムを縦延伸する工程と、縦延伸されたポリエステルフィルムを横延伸する工程と、を含み、縦延伸する工程と横延伸する工程との間に、縦延伸後のポリエステルフィルムを5℃/秒以上100℃/秒以下の冷却速度で冷却する工程を更に有する、<10>〜<14>のいずれか1つに記載の白色ポリエステルフィルムの製造方法である。
16> 太陽光が入射する透明性の基材と、基材上に設けられ、太陽電池素子及び太陽電池素子を封止する封止材を有する素子構造部分と、素子構造部分の基材が位置する側と反対側に配置された<1>〜<>のいずれか1つに記載の白色ポリエステルフィルムと、を備えた太陽電池モジュールである。
< 10 > A step of forming an easy-adhesion layer by coating on at least one surface of a polyester film in the course of film formation containing fine particles, at least one of the following steps (1) and (2), a resin material and fine particles, Alternatively, a resin material in which fine particles are dispersed is charged into a melt extruder, melt-extruded with a fluctuation of 0.5% or more and 20% or less applied to the torque of the screw of the melt extruder, so that the total mass is 5 Forming a first layer containing fine particles of not less than 30% by weight and not more than 30% by weight and having a fine particle dispersity of not less than 10% and not more than 100%, and the polyester film comprises at least the first layer It is a manufacturing method of the white polyester film containing.
(1) A drying step in which the formed easy-adhesion layer is dried by applying a temperature difference of 0.5 ° C. or more and 10 ° C. or less in the plane of the easy-adhesion layer, and a dried easy-adhesion layer after the drying step. And a step of cooling the polyester film having a temperature difference of 0.1 ° C. or more and 10 ° C. or less between the one side and the other side of the polyester film . a polyester film, by applying a temperature difference 0.5 ℃ above 10 ° C. or less in the plane of the polyester film, as stretching Engineering stretching
<11 > When the step (1) is included, after the drying step, the polyester film having the dried easy-adhesion layer is cooled by providing a temperature difference of 0.1 ° C. or more and 10 ° C. or less in the plane of the polyester film. It is a manufacturing method of the white polyester film as described in < 10> which further has a process to do.
< 12 > A resin material and fine particles, or a resin material in which fine particles are dispersed, are charged into a melt extruder, and melt extrusion is performed by imparting a variation of 0.5% to 20% to the screw torque of the melt extruder. The method further comprises the step of forming a second layer containing 0.06% by mass or more and 10% by mass or less of fine particles with respect to the total mass and having a fine particle dispersity of 10% or more and 100% or less. And a polyester film is a manufacturing method of the white polyester film as described in < 10 > or <11> containing a 1st layer and a 2nd layer at least.
< 13 > When the molten resin melt-kneaded by a melt extruder is melt-extruded from a die to form the first layer, a temperature variation of 0.5 ° C. or more and 10 ° C. or less is imparted to the die < 10 > to < 12 > The method for producing a white polyester film according to any one of 12 >.
< 14 > When the step (1) described above is included, the step of longitudinally stretching an unstretched polyester film, the step of laterally stretching the longitudinally stretched polyester film, the step of longitudinally stretching, and the step of laterally stretching The white polyester film according to any one of < 10 > to < 13 >, further comprising a step of cooling the polyester film after longitudinal stretching at a cooling rate of 5 ° C / second or more and 100 ° C / second or less. It is a manufacturing method.
< 15 > When the step (2) is included, the stretching step includes a step of longitudinally stretching an unstretched polyester film and a step of laterally stretching the longitudinally stretched polyester film, and a step of longitudinally stretching. < 10 > to < 14 >, further comprising a step of cooling the polyester film after longitudinal stretching at a cooling rate of 5 ° C./second or more and 100 ° C./second or less between the step of stretching and the step of transverse stretching. Is a method for producing a white polyester film.
< 16 > A transparent base material on which sunlight enters, an element structure portion provided on the base material and having a solar cell element and a sealing material for sealing the solar cell element, and a base material for the element structure portion. It is a solar cell module provided with the white polyester film as described in any one of <1>-< 7 > arrange | positioned on the opposite side to the located side.

本発明によれば、長期間に亘り熱や光に曝される環境下でも優れた密着性を示す白色ポリエステルフィルム及びその製造方法が提供される。また、
本発明によれば、長期間に亘り熱や光に曝される環境下での耐久性に優れた太陽電池モジュール及びその製造方法が提供される。
ADVANTAGE OF THE INVENTION According to this invention, the white polyester film which shows the outstanding adhesiveness in the environment exposed to a heat | fever and light over a long period of time, and its manufacturing method are provided. Also,
ADVANTAGE OF THE INVENTION According to this invention, the solar cell module excellent in the durability in the environment exposed to heat and light over a long period of time and its manufacturing method are provided.

以下、本発明の白色ポリエステルフィルム及びその製造方法、並びにこれを用いた太陽電池モジュール及びその製造方法について、詳細に説明する。   Hereinafter, the white polyester film of the present invention and the production method thereof, the solar cell module using the same, and the production method thereof will be described in detail.

<白色ポリエステルフィルム>
本発明の白色ポリエステルフィルムは、白色顔料を含有するポリエステル樹脂膜と、ポリエステル樹脂膜の少なくとも一方面に有し、厚みが0.01μm以上1μm以下であり、厚み分布が1%以上30%以下である易接着層と、を設けて構成されている。
<White polyester film>
The white polyester film of the present invention has a polyester resin film containing a white pigment and at least one surface of the polyester resin film, has a thickness of 0.01 μm to 1 μm, and a thickness distribution of 1% to 30%. And an easy-adhesion layer.

本明細書において、数値範囲を「〜」の表記を用いて示すことがあるが、「〜」を用いて示される数値範囲は、「〜」の前後に記載されている数値をそれぞれ最小値及び最大値として含む範囲を表す。   In the present specification, a numerical range may be indicated by using a notation of “to”, but a numerical range indicated by using “to” indicates a numerical value described before and after “to” as a minimum value and a numerical value range, respectively. Indicates the range to include as the maximum value.

本発明においては、白色に着色されたポリエステル樹脂膜の上に易接着性層を設けるにあたり、易接着性層を0.01μm以上1μm以下の範囲の薄厚に構成し、薄厚にしながらも敢えて厚み分布を1%以上と比較的大きい範囲に調節する。これにより、易接着層の面内に厚みの厚い箇所と薄い箇所とが存在することになり、易接着性層と接する隣接層との間の密着力を向上させることができる。つまり、面内に厚みの厚い部分と薄い部分との両者を混在させて、周期の比較的大きい波形の厚みムラを設けることで、互いに接する層との密着力が向上するのである。
易接着層の厚い箇所は、密着界面での剥離応力により変形し、剥離エネルギーを吸収することで、ポリエステル内の凝集破壊やポリエステルと易接着層との界面剥離を抑制する作用があるものと推測される。また、易接着層の薄い箇所は、薄膜なためにポリエステルフィルムの表面と密着しやすく、密着力の確保に有利に働いているものと推定される。
このような厚みムラは、後述するように、(1)塗布形成された易接着層を所定の温度差を与えて乾燥させたり、(2)易接着層の形成後のポリエステル樹脂膜を所定の温度差を与えて延伸する等によって、好適に付与されるものである。
In the present invention, when an easy-adhesion layer is provided on a polyester resin film colored in white, the easy-adhesion layer is configured to have a thin thickness in the range of 0.01 μm to 1 μm, and the thickness distribution is deliberately made thin. Is adjusted to a relatively large range of 1% or more. Thereby, the thick part and the thin part will exist in the surface of an easily bonding layer, and the adhesive force between the adjacent layers which contact | connect an easily bonding layer can be improved. That is, by providing both thick and thin portions in the surface and providing uneven thickness of a waveform having a relatively large period, the adhesion with the layers in contact with each other is improved.
Presumed that the thick part of the easy-adhesion layer is deformed by the peeling stress at the adhesion interface and absorbs the peeling energy, thereby suppressing cohesive failure in the polyester and interfacial peeling between the polyester and the easy-adhesion layer. Is done. Moreover, since the thin part of an easily bonding layer is a thin film, it is easy to contact | adhere with the surface of a polyester film, and it is estimated that it is working advantageously in ensuring adhesive force.
As described later, such thickness unevenness can be caused by (1) drying the applied easy-adhesion layer by applying a predetermined temperature difference, or (2) applying a predetermined polyester resin film to the predetermined adhesive layer. It is preferably applied by stretching by giving a temperature difference.

−易接着層−
本発明の白色ポリエステルフィルムは、ポリエステルフィルムの一方面、又は両方の面に、厚みが0.01μm以上1μm以下であり、厚み分布が1%以上30%以下である易接着層を有している。易接着層は、封止材との間の密着性を高める機能を有し、本発明における易接着層によると、熱や光に長期間曝される環境下でも、長期に亘り優れた密着性を示す。したがって、太陽電池における剥離による劣化の促進が抑えられ、長期耐久性に優れたものとなる。
-Easy adhesion layer-
The white polyester film of the present invention has an easy-adhesion layer having a thickness of 0.01 μm or more and 1 μm or less and a thickness distribution of 1% or more and 30% or less on one surface or both surfaces of the polyester film. . The easy-adhesion layer has a function of improving the adhesion between the sealing material, and according to the easy-adhesion layer in the present invention, excellent adhesion over a long period of time even in an environment exposed to heat or light for a long period of time. Indicates. Therefore, the promotion of deterioration due to peeling in the solar cell is suppressed, and the long-term durability is excellent.

(厚み)
易接着層の厚みとしては、0.01μm以上1μm以下である。易接着層の厚みが0.01μm未満であると、薄い箇所で易接着層が形成されない領域が発生し、密着力が低下する。また、易接着層の厚みが1μmを超えると、厚い箇所において剥離応力による易接着層内の破壊が発生し、密着力が低下する。
易接着層の厚みとしては、好ましくは0.02μm以上0.5μm以下であり、より好ましくは0.04μm以上0.2μm以下である。
易接着層の厚みは、後述するポリエステルフィルムを構成する第2の層の厚みが16μm〜332.5μm(総厚(40μm〜350μm)の40%以上95%以下)であるのに比べて極めて薄く、別の機能層として区別されるものである。
(Thickness)
The thickness of the easy adhesion layer is 0.01 μm or more and 1 μm or less. When the thickness of the easy-adhesion layer is less than 0.01 μm, a region where the easy-adhesion layer is not formed occurs in a thin portion, and the adhesion is reduced. Moreover, when the thickness of an easily bonding layer exceeds 1 micrometer, destruction in the easily bonding layer by peeling stress will generate | occur | produce in a thick location, and adhesive force will fall.
The thickness of the easy adhesion layer is preferably 0.02 μm or more and 0.5 μm or less, and more preferably 0.04 μm or more and 0.2 μm or less.
The thickness of the easy-adhesion layer is extremely thin compared to the thickness of the second layer constituting the polyester film described later being 16 μm to 332.5 μm (40% to 95% of the total thickness (40 μm to 350 μm)). Are distinguished as separate functional layers.

易接着層の厚みは、後述する「易接着層の厚み分布」を測定する際の、MDに沿った厚み20点と、TDに沿った厚み20点と、を含む合計40点の厚みの平均値として求められる値である。   The thickness of the easy adhesion layer is an average of a total of 40 points including a thickness of 20 points along the MD and a thickness of 20 points along the TD when measuring the “thickness distribution of the easy adhesion layer” described later. This is a value obtained as a value.

易接着層は、WET法(塗布法)、DRY法(共押出法)のいずれで形成されたものでもよいが、WET法によることが、易接着層を薄くし易く、厚み分布を付与しやすい点で好ましい。易接着層の形成(例えば易接着層用塗布液の塗布)は、ポリエステルフィルムの製膜完了後(すなわち縦延伸及び横延伸の終了後)に実施してもよいし、ポリエステルフィルムの製膜中、例えば製膜中のポリエステルフィルムの縦延伸と横延伸のいずれか一方の後(かつ他方の前)、あるいは多段延伸の場合はその途中において実施してもよい。
本発明においては、後述するように厚み分布をより付与しやすいという点から、溶融樹脂を押出成形してポリエステルフィルムを製膜し、縦延伸した後、易接着層用塗布液をポリエステルフィルム上に塗布し、乾燥させて易接着層を形成した状態でさらに横延伸する態様が好ましい。
The easy-adhesion layer may be formed by either the WET method (coating method) or the DRY method (coextrusion method). However, the easy-adhesion layer can be easily made thin and impart a thickness distribution by the WET method. This is preferable. Formation of the easy-adhesion layer (for example, application of the coating solution for the easy-adhesion layer) may be carried out after completion of the polyester film formation (that is, after the end of longitudinal stretching and transverse stretching), or during the formation of the polyester film For example, after one of the longitudinal stretching and the lateral stretching of the polyester film during film formation (and before the other), or in the case of multi-stage stretching, it may be performed in the middle.
In the present invention, as will be described later, from the viewpoint of easily imparting a thickness distribution, a molten resin is extruded to form a polyester film, and the film is longitudinally stretched. A mode in which the film is further stretched in the transverse direction in a state where an easy-adhesion layer is formed by coating and drying is preferred.

易接着層は、製膜途中のポリエステルフィルム上に形成された後、ポリエステルフィルムを延伸することで薄くされることが好ましい。これにより、易接着層とポリエステルフィルムとの間に界面混合が生じ、密着力をより向上させることができる。
ここで、製膜途中のポリエステルフィルムを延伸する場合の延伸倍率は、2倍〜5倍が好ましい。延伸温度としては、「ポリエステルのガラス転移温度(Tg)−10℃」以上であって、「Tg+50℃」以下の範囲であるのが好ましい。
易接着層を設けた後の延伸は、縦方向、横方向のいずれ方向の延伸を行ってもよく、両方向に延伸させてもよい。本発明においては、製膜途中のポリエステルフィルムを予め縦延伸した後、易接着層を形成し、易接着層が形成された状態で横延伸することがより好ましい。これは、横延伸がテンターを用いてなされることが多く、非接触で搬送されるため、延伸中の熱で柔らかくなった易接着層がロール等に粘着することがないためである。
The easy-adhesion layer is preferably thinned by stretching the polyester film after it is formed on the polyester film during film formation. Thereby, interface mixing arises between an easily bonding layer and a polyester film, and adhesive force can be improved more.
Here, the stretching ratio when stretching the polyester film in the middle of film formation is preferably 2 to 5 times. The stretching temperature is preferably “polyester glass transition temperature (Tg) −10 ° C.” or higher and “Tg + 50 ° C.” or lower.
The stretching after providing the easy-adhesion layer may be performed in either the longitudinal direction or the transverse direction, or may be performed in both directions. In the present invention, it is more preferable to stretch the polyester film in the middle of film formation in advance in the longitudinal direction, then form an easy-adhesion layer, and laterally stretch in a state where the easy-adhesion layer is formed. This is because the transverse stretching is often performed using a tenter and is transported in a non-contact manner, so that the easy-adhesion layer softened by the heat during stretching does not stick to a roll or the like.

(厚み分布)
本発明の白色ポリエステルフィルムにおける易接着層の厚み分布は、1%以上30%以下の範囲とする。
本発明においては、易接着層の薄い箇所は、薄膜なためにポリエステル中に拡散しやすくポリエステルフィルムの表面の隙間に入り込み、ポリエステルフィルムとの間で界面混合を起こし、結果として密着力自体の向上に有利に働くものと推定される。このような界面混合は、ポリエステルフィルム上に易接着層を設けた後、延伸することで一層促進される。これは、延伸によりポリエステルフィルムに新たな表面が形成されるが、このときにフィルム中に易接着分子が拡散すると考えられる。
したがって、厚み分布が1%未満であると、厚い箇所と薄い箇所とを設けることによる相乗効果が得られず、密着力の向上効果が乏しい。また、厚み分布が30%を超えると、極めて厚い箇所と薄い箇所とができ、結果として密着が低下する。これは、厚みの厚い箇所と薄い箇所との境界で剥離応力が集中し、易接着層が破壊して密着不良が生じ易くなるためである。
(Thickness distribution)
The thickness distribution of the easy-adhesion layer in the white polyester film of the present invention is in the range of 1% to 30%.
In the present invention, the thin portion of the easy-adhesion layer easily diffuses into the polyester because it is a thin film, enters the gap in the surface of the polyester film, causes interfacial mixing with the polyester film, and as a result, improves the adhesion itself It is presumed that it works favorably. Such interfacial mixing is further promoted by stretching after providing an easy-adhesion layer on the polyester film. This is because a new surface is formed on the polyester film by stretching, and at this time, it is considered that the easy adhesion molecules diffuse into the film.
Therefore, if the thickness distribution is less than 1%, a synergistic effect due to the provision of the thick portion and the thin portion cannot be obtained, and the effect of improving the adhesion is poor. If the thickness distribution exceeds 30%, extremely thick portions and thin portions are formed, and as a result, the adhesion is lowered. This is because the peeling stress is concentrated at the boundary between the thick part and the thin part, and the easy-adhesion layer is easily broken to cause adhesion failure.

易接着層の厚み分布は、以下のようにして求められる。
20cm角のポリエステルフィルムを用意し、この中から任意の10点を選び、MD、TDに平行な辺を持つ1cm角のサンプルを10枚切り出す。そして、各サンプルのMDに沿った2辺、TDに沿った2辺、の各2辺ずつの中央部の断面を顕微鏡で観察し、MD、TDにおける易接着層の厚みを求める。同じ作業を10枚のサンプルに対して実施し、MD、TDの各々において合計20点の易接着層の厚みを求める。得られた厚みから、MDの20点の測定値の最大値と最小値の差を、20点の平均値で除算し、百分率で示した値をMDの易接着層の厚み分布とする。また、TDについても、TDの20点の測定値の最大値と最小値の差を、20点の平均値で除算し、百分率で示した値をTDの易接着層の厚み分布とする。易接着層における、MDでの厚み分布と、TDでの厚み分布と、の平均値を、易接着層の厚み分布とする。
The thickness distribution of the easy-adhesion layer is determined as follows.
A 20 cm square polyester film is prepared, and any 10 points are selected from them, and 10 1 cm square samples having sides parallel to MD and TD are cut out. And the cross section of the center part of each 2 sides of 2 sides along MD of each sample and 2 sides along TD is observed with a microscope, and the thickness of the easily bonding layer in MD and TD is calculated | required. The same operation is performed on 10 samples, and the thickness of the easy-adhesion layer of 20 points in total in each of MD and TD is obtained. From the obtained thickness, the difference between the maximum value and the minimum value of the measured values at 20 points of MD is divided by the average value of 20 points, and the value expressed as a percentage is taken as the thickness distribution of the easily adhesive layer of MD. Also for TD, the difference between the maximum value and the minimum value of the 20 measured values of TD is divided by the average value of 20 points, and the value expressed as a percentage is used as the thickness distribution of the TD easy-adhesion layer. The average value of the thickness distribution in MD and the thickness distribution in TD in the easy adhesion layer is defined as the thickness distribution of the easy adhesion layer.

易接着層の厚み分布は、製膜途中のポリエステルフィルムの少なくとも一方面に塗布により易接着層を形成し、以下に示す(1)及び(2)の少なくとも一方を施して製膜することで付与することができる。
(1)易接着層を塗設した後の乾燥時間分布
具体的には、易接着層の厚み分布は、塗布形成された易接着層を、製膜途中のポリエステルフィルムの面内に0.5℃以上10℃以下の温度差を付与した状態で乾燥させる乾燥工程を設けることで調節することができる。
高温部では乾燥が速く、低温では塗布液が高温部に流入しやすいため、高温部が厚くなる傾向がある。そのため、塗布後の乾燥時間に分布を付与することで易接着層に厚み分布を与えることができる。例えば、熱風等の乾燥風を吹き出すノズルのスリット部に吹き出し量の分布を持たせて、易接着層にあたる乾燥風の量に分布ができるようにすることで易接着層に厚み分布を与えることができる。また、乾燥ゾーンに設置したヒーターを分割し、各ヒーターの出力に分布を持たせてもよい。
The thickness distribution of the easy-adhesion layer is imparted by forming an easy-adhesion layer on at least one surface of the polyester film in the middle of film formation, and applying at least one of the following (1) and (2) to form a film. can do.
(1) Drying time distribution after coating the easy-adhesion layer Specifically, the thickness distribution of the easy-adhesion layer is 0.5% within the plane of the polyester film in the middle of film formation. It can adjust by providing the drying process dried in the state which provided the temperature difference (degreeC or more and 10 degrees C or less).
Drying is fast at the high temperature part, and the coating liquid tends to flow into the high temperature part at a low temperature, so the high temperature part tends to be thick. Therefore, thickness distribution can be given to an easily bonding layer by providing distribution to the drying time after application | coating. For example, it is possible to give a thickness distribution to the easy-adhesion layer by giving a distribution of the amount of blown air to the slit part of the nozzle that blows dry air such as hot air, so that the amount of dry air corresponding to the easy-adhesion layer can be distributed. it can. Moreover, the heater installed in the drying zone may be divided so that the output of each heater has a distribution.

(2)延伸での温度分布
具体的には、易接着層の厚み分布は、易接着層が形成されたポリエステルフィルムを、ポリエステルフィルムの面内に0.5℃以上10℃以下の温度差を付与して、延伸する延伸工程を設けることで調節することができる。
(2) Temperature distribution in stretching Specifically, the thickness distribution of the easy-adhesion layer is such that the polyester film on which the easy-adhesion layer is formed has a temperature difference of 0.5 ° C. or more and 10 ° C. or less in the plane of the polyester film. It can adjust by providing the extending | stretching process which provides and extends | stretches.

塗布後に延伸する場合、延伸中のフィルムに温度分布を付与することで、局所的に延伸倍率を変えることができる。すなわち、高温ほど延伸倍率が高く、低温ほど延伸倍率が低くなる。したがって、高温部では易接着層が薄くなり、低温部では易接着層が厚くなることで、易接着層に厚み分布が付与できる。
この場合、好ましい温度分布は、0.5℃以上10℃以下であり、より好ましくは1℃以上8℃以下であり、さらに好ましくは1.5℃以上6℃以下である。
When extending | stretching after application | coating, a draw ratio can be locally changed by providing temperature distribution to the film in extending | stretching. That is, the higher the temperature, the higher the draw ratio, and the lower the temperature, the lower the draw ratio. Therefore, the easy-adhesion layer becomes thin in the high-temperature part, and the easy-adhesion layer becomes thick in the low-temperature part, whereby a thickness distribution can be imparted to the easy-adhesion layer.
In this case, a preferable temperature distribution is 0.5 ° C. or higher and 10 ° C. or lower, more preferably 1 ° C. or higher and 8 ° C. or lower, and further preferably 1.5 ° C. or higher and 6 ° C. or lower.

易接着層の厚み分布としては、2%以上25%以下の範囲が好ましく、より好ましくは3%以上20%以下の範囲である。   The thickness distribution of the easy adhesion layer is preferably in the range of 2% to 25%, more preferably in the range of 3% to 20%.

(表面ヘイズ)
ポリエステルフィルムに形成された易接着層は、表面ヘイズが0.01%以上3%以下であることが好ましい。ここでの表面ヘイズは、全ヘイズ(空気中で測定したフィルムのヘイズ値)から内部ヘイズ(フィルムの両面にシリコーンオイルを塗り表面凹凸を消して測定したヘイズ値)を差し引いたヘイズ値であり、表面凹凸由来のヘイズ値をさす。
太陽電池と白色ポリエステルフィルムとを貼り合せる際、易接着層を付与することでより密着力を向上させることができるが、易接着層の表面を粗らして表面に凹凸を付与することで、密着力をより向上させることができる。これは、EVAとの接触面積が増加したこと、易接着層の凹部の中までEVAが侵入して投錨効果が発現するためと推定される。このような表面凹凸の指標として、「表面ヘイズ」は有効である。
(Surface haze)
The easy-adhesion layer formed on the polyester film preferably has a surface haze of 0.01% to 3%. The surface haze here is the haze value obtained by subtracting the internal haze (the haze value measured by applying silicone oil on both sides of the film and removing the surface irregularities) from the total haze (the haze value of the film measured in the air), Haze value derived from surface irregularities.
When laminating a solar cell and a white polyester film, it is possible to improve the adhesion by providing an easy adhesion layer, but by roughening the surface of the easy adhesion layer and providing irregularities on the surface, the adhesion is improved. The power can be further improved. This is presumably because the contact area with EVA increased, and EVA entered into the recesses of the easy-adhesion layer and the anchoring effect appeared. “Surface haze” is effective as an index of such surface irregularities.

そのため、表面ヘイズが0.01%以上であると、投錨効果を得やすく、密着性向上に有利である。また、表面ヘイズが3%以下であると、凹凸が大きくなりすぎず、界面における易接着層に応力集中を招くような例えば細い箇所等が形成され難く、剥離応力による凝集破壊を防いで優れた密着性を実現するのに有利である。
中でも、易接着層の表面ヘイズとしては、0.03%以上2.5%以下がより好ましく、さらに好ましくは0.05%以上2%以下である。
Therefore, when the surface haze is 0.01% or more, it is easy to obtain a throwing effect, which is advantageous for improving the adhesion. In addition, when the surface haze is 3% or less, the unevenness does not become excessively large, and it is difficult to form, for example, a thin portion that causes stress concentration on the easy-adhesion layer at the interface, and is excellent in preventing cohesive failure due to peeling stress. This is advantageous for achieving adhesion.
Especially, as surface haze of an easily bonding layer, 0.03% or more and 2.5% or less are more preferable, More preferably, they are 0.05% or more and 2% or less.

表面ヘイズは、内部ヘイズ及び全ヘイズを測定し、下記式から求められる値である。
表面ヘイズ=(全ヘイズ)−(内部へイズ)
ここで、内部ヘイズは、ポリエステルフィルムのオモテ面及びウラ面にシリコーンオイルを数滴滴下し、厚さ1mmの2枚のガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)を用いてポリエステルフィルムを裏表から挟み、2枚のガラス板とポリエステルフィルムとを光学的に密着させて、表面ヘイズを除去した状態で測定した値をいう。この内部ヘイズは、JIS K−7136に準拠してヘイズメーターNDH2000(日本電色工業(株))を用いて測定される。
また、全ヘイズは、ポリエステルフィルムを2枚のガラス板のみで挟んで測定した値をいい、JIS K−7136に準拠してヘイズメーターNDH2000(日本電色工業(株))を用いて測定される。
The surface haze is a value obtained by measuring internal haze and total haze and calculating from the following formula.
Surface haze = (all haze)-(inside haze)
Here, the internal haze is obtained by dropping several drops of silicone oil on the front and back surfaces of the polyester film, and using two glass plates (micro slide glass product number S 9111, manufactured by MATSUNAMI) with a thickness of 1 mm. A value measured in a state where two glass plates and a polyester film are optically brought into close contact with each other and the surface haze is removed. This internal haze is measured using a haze meter NDH2000 (Nippon Denshoku Industries Co., Ltd.) in accordance with JIS K-7136.
The total haze is a value measured by sandwiching a polyester film between only two glass plates, and is measured using a haze meter NDH2000 (Nippon Denshoku Industries Co., Ltd.) in accordance with JIS K-7136. .

本発明における易接着層の表面に凹凸をつけて表面ヘイズを上記範囲に調節する方法としては、下記の方法が例示できる。
(イ)易接着層を塗布法により形成する場合
−a)冷却による形成−
ポリエステルフィルムに塗布形成された易接着層を乾燥する乾燥工程後、乾燥された易接着層を有するポリエステルフィルムを、ポリエステルフィルムの一方面と他方面との間に0.1℃以上10℃以下の温度差を付与して冷却する工程を設けることで、表面ヘイズを上記範囲に調節することができる。
塗布、乾燥後に冷却する際、塗布面側と塗布面側とは反対面側とに温度差を付与することで、表面粗さ、すなわち表面ヘイズを上記範囲に調節することができる。塗布後に延伸、熱固定を組み合わせる場合、これらの後にこのような表裏温度差を付与すればよい。これは、以下の機構によるものと推察される
つまり、塗布面側が高温になると、塗布面が伸張して塗布層である易接着層が伸ばされる。その後、室温まで冷却されて両面の温度が同じになった際、伸ばされた易接着層は弛み、微小な凹凸が形成され表面粗さ(表面ヘイズ)が発現する。逆に、塗布面側が低温になると、塗布面が収縮しようとし、塗布層である易接着層が引っ張られて微小なクラックが発生する。微小なクラックの発生により、微小な凹凸が形成され表面粗さ(表面ヘイズ)が発現する
このようなフィルム表裏への温度付与は、ポリエステルフィルムの両面にそれぞれ吹き出しノズルを配置し、各々のノズルから吹き出される乾燥風の温度を変えることで行える。ポリエステルフィルムの一方面と他方面との間の好ましい温度差は、0.3℃以上8℃以下がより好ましく、さらに好ましくは0.5℃以上6℃以下である。
Examples of the method for adjusting the surface haze to the above range by making irregularities on the surface of the easy-adhesion layer in the present invention include the following methods.
(A) When forming an easy-adhesion layer by a coating method -a) Formation by cooling-
After the drying step of drying the easy-adhesion layer formed on the polyester film, the polyester film having the dried easy-adhesion layer is 0.1 ° C. or more and 10 ° C. or less between the one side and the other side of the polyester film. Surface haze can be adjusted to the said range by providing the process of providing a temperature difference and cooling.
When cooling after coating and drying, the surface roughness, that is, the surface haze can be adjusted to the above range by giving a temperature difference between the coated surface side and the surface opposite to the coated surface side. When extending | stretching and heat setting are combined after application | coating, what is necessary is just to provide such a front-back temperature difference after these. This is presumed to be due to the following mechanism. That is, when the coating surface side becomes high temperature, the coating surface is stretched and the easy adhesion layer as the coating layer is stretched. Then, when it cools to room temperature and the temperature of both surfaces becomes the same, the extended easily bonding layer loosens, a micro unevenness | corrugation is formed, and surface roughness (surface haze) expresses. On the other hand, when the temperature of the coated surface becomes low, the coated surface tends to shrink, and the easy-adhesion layer that is the coated layer is pulled to generate minute cracks. Due to the occurrence of minute cracks, minute irregularities are formed and surface roughness (surface haze) is manifested. Temperature application to the front and back of such a film is done by arranging blowing nozzles on both sides of the polyester film. This can be done by changing the temperature of the blown drying air. The preferable temperature difference between the one surface and the other surface of the polyester film is more preferably 0.3 ° C. or more and 8 ° C. or less, and further preferably 0.5 ° C. or more and 6 ° C. or less.

(ロ)易接着層を溶融ラミネートにより形成する場合
溶融押出した樹脂をポリエステルフィルム上に積層(ラミネート)した後、例えば下記のような方法を用いることができる。
−b)冷却による形成−
ラミネート後、急冷する際、上記「a)冷却による形成」と同様にフィルム表裏に温度差を付与することで、表面ヘイズを上記範囲に調節することができる。
−c)エンボスによる形成−
表面を粗らしたロール(エンボスロール)を易接着層に接触させ、易接着層に凹凸を転写することで、表面ヘイズを上記範囲に調節することができる。
このとき、易接着層の温度は、100℃以上300℃以下が好ましく、より好ましくは120℃以上280℃以下であり、さらに好ましくは150℃以上250℃以下である。
(B) When forming an easy-adhesion layer by melt lamination After laminating (laminating) a melt-extruded resin on a polyester film, for example, the following method can be used.
-B) Formation by cooling-
When rapidly cooling after laminating, the surface haze can be adjusted to the above range by imparting a temperature difference between the front and back of the film in the same manner as in “a) Formation by cooling”.
-C) Formation by embossing-
A surface haze can be adjusted to the said range by making the roll (embossing roll) which roughened the surface contact an easily bonding layer, and transferring an unevenness | corrugation to an easily bonding layer.
At this time, the temperature of the easy adhesion layer is preferably 100 ° C. or higher and 300 ° C. or lower, more preferably 120 ° C. or higher and 280 ° C. or lower, and further preferably 150 ° C. or higher and 250 ° C. or lower.

(表面ヘイズの面内分布)
易接着層の表面ヘイズの面内分布は、0.1%以上30%以下の範囲であることが好ましい。同一面内に存在する表面粗さの大きい箇所と小さい箇所とは、下記のような長短がある。
表面粗さの大きい箇所は、EVAに対して投錨効果を得やすいが、凸部で剥離応力が集中し易い。その一方、表面粗さの小さい箇所は、EVAに対する投錨効果が乏しいが、凸部での剥離応力が集中し難い。そのため、表面粗さの大きい箇所と小さい箇所とを所定の範囲に調節して共存させることで、相補的に作用すると同時に相乗効果が得られ、密着力が大きく向上する。このような表面粗さの分布の付与により、表面ヘイズの分布を引き起こす。
(In-plane distribution of surface haze)
The in-plane distribution of the surface haze of the easy-adhesion layer is preferably in the range of 0.1% to 30%. A portion having a large surface roughness and a portion having a small surface roughness in the same plane have the following advantages and disadvantages.
Where the surface roughness is large, it is easy to obtain a throwing effect on EVA, but the peeling stress tends to concentrate on the convex portions. On the other hand, the portion having a small surface roughness has a poor anchoring effect on EVA, but the peeling stress at the convex portion is difficult to concentrate. Therefore, by adjusting the portion having a large surface roughness and the portion having a small surface roughness within a predetermined range and coexisting with each other, a synergistic effect is obtained at the same time as a complementary action, and the adhesion is greatly improved. By providing such a surface roughness distribution, surface haze distribution is caused.

表面ヘイズの面内分布が0.1%以上であると、密着力の向上により一層寄与する。また、表面ヘイズの面内分布が30%以下であると、表面粗さの大きい箇所と小さい箇所とによって密着を阻害する作用(表面粗さの大きい箇所での凸部の応力集中と、表面粗さの小さい箇所での投錨効果不足)が抑えられており、表面粗さの大きい箇所と小さい箇所とが相補的に作用し、相乗効果としてより優れた密着力が現れる。
表面ヘイズの面内分布としては、0.5%以上20%以下がより好ましく、さらに好ましくは1%以上10%以下である。
If the in-plane distribution of the surface haze is 0.1% or more, it contributes further by improving the adhesion. Further, when the in-plane distribution of the surface haze is 30% or less, the effect of hindering adhesion by a portion having a large surface roughness and a portion having a small surface roughness (stress concentration of convex portions at a portion having a large surface roughness, and surface roughness) Insufficient anchoring effect at a small part) is suppressed, and a part having a large surface roughness and a part having a small surface roughness act in a complementary manner, and a better adhesion force appears as a synergistic effect.
The in-plane distribution of surface haze is more preferably from 0.5% to 20%, and even more preferably from 1% to 10%.

表面ヘイズの面内分布は、以下のようにして求められる。
20cm角の易接着層の表面において任意に選んだ10点について表面ヘイズを上記方法に従い測定し、最大値と最小値の差を、10点の表面ヘイズの平均値で除算し、百分率で示した値を表面ヘイズの面内分布とする。
The in-plane distribution of surface haze is determined as follows.
The surface haze was measured according to the above method for 10 points arbitrarily selected on the surface of the 20 cm square easy-adhesion layer, and the difference between the maximum value and the minimum value was divided by the average value of the surface haze of 10 points and expressed as a percentage. The value is the in-plane distribution of surface haze.

表面ヘイズを調節する上記の方法a)〜c)に対し、下記により表面ヘイズの面内分布を付与することができる。
(イ)上記「a)冷却による形成」による場合(塗布法)
表面粗さに面内分布を付与するには、塗布、乾燥後に行う冷却時に、冷却風の吹き出し温度に分布を与えて面内に温度差を付与することにより行える。これは、吹き出しノズルを複数設置し、各ノズルの噴出し温度に差を与えることで、面内に温度分布を形成することができる。このとき、塗布面、又は塗布面とは反対側の面のいずれの面、あるいは両面の面内に温度分布を付与してもよい。温度差としては、0.1℃以上10℃以下が好ましく、より好ましくは0.3℃以上8℃以下であり、さらに好ましくは0.5℃以上6℃以下である
(ロ)上記「b)冷却による形成」による場合(溶融ラミネート)
上記(イ)と同様に、塗布後に行う乾燥時に、乾燥風の吹き出し温度に分布を与えて面内に温度差を付与することで、表面粗さに面内分布を付与することができる。
(ハ)上記「c)エンボスによる形成」による場合(溶融ラミネート)
エンボスロールの表面凹凸に分布を付与してもよい。エンボスロール又はフィルムの加熱温度に分布を付与し、樹脂の変形し易さに差を付与することで、表面凹凸に差を付与してもよい。この場合、温度分布としては、1℃以上50℃以下が好ましく、より好ましくは2℃以上40℃以下であり、さらに好ましくは3℃以上30℃以下である。
樹脂の温度分布は、例えば加熱するIRヒーターや加熱ロールに温度変調を付与すればよい。IRヒーターによる場合は、複数に分割したヒーターを用い、各ヒーター毎に出力を変えることで達成できる。加熱ロールの場合は、ロール中の熱媒が流れる流路に邪魔板を設置し、流れに変調を付与することで達成できる。
In-plane distribution of surface haze can be imparted to the above methods a) to c) for adjusting surface haze by the following.
(I) Case of “a) Formation by cooling” (coating method)
In-plane distribution can be imparted to the surface roughness by providing a distribution of the cooling air blowing temperature and imparting a temperature difference in the plane during cooling after coating and drying. This is because a plurality of blowing nozzles are provided, and a temperature distribution can be formed in the surface by giving a difference in the ejection temperature of each nozzle. At this time, the temperature distribution may be imparted to either the coated surface, the surface opposite to the coated surface, or both surfaces. The temperature difference is preferably 0.1 ° C. or higher and 10 ° C. or lower, more preferably 0.3 ° C. or higher and 8 ° C. or lower, and still more preferably 0.5 ° C. or higher and 6 ° C. or lower. Case of “Formation by cooling” (melt lamination)
As in the case of (a) above, when drying is performed after coating, an in-plane distribution can be imparted to the surface roughness by imparting a distribution to the blowing air blowing temperature and imparting a temperature difference in the surface.
(C) Case of “c) Formation by embossing” (melt lamination)
You may provide distribution to the surface unevenness | corrugation of an embossing roll. A difference may be given to the surface unevenness by giving a distribution to the heating temperature of the embossing roll or film and giving a difference to the ease of deformation of the resin. In this case, the temperature distribution is preferably 1 ° C. or more and 50 ° C. or less, more preferably 2 ° C. or more and 40 ° C. or less, and further preferably 3 ° C. or more and 30 ° C. or less.
As for the temperature distribution of the resin, for example, temperature modulation may be applied to an IR heater or a heating roll for heating. In the case of using an IR heater, this can be achieved by using a plurality of heaters and changing the output for each heater. In the case of a heating roll, this can be achieved by installing a baffle plate in the flow path through which the heat medium in the roll flows and modulating the flow.

次に、易接着層の好ましい組成について説明する。
ポリエステルフィルムに設ける易接着層は、ポリエステルフィルムの用途にもよるが、アクリル系、ウレタン系、ポリエステル系、又はポリアミド系の樹脂を含む易接着層が好ましい。これらの樹脂は、極性がポリエステルに近く、密着力が得られやすい。
易接着層を構成する樹脂としては、例えば、特開2006−152013号公報、特開2006−332091号公報、特許第4457322号公報、特開2006−175764号公報、特開2006−253565号公報、特許4547644号公報、特許3777725号公報、特許3731286号公報、特開2009−269301号公報、特開2006−335853号公報等に記載されている易接着層等、ポリエステルフィルム基材の表面に塗布形成するための塗布液に用いる樹脂が挙げられる。さらに具体的には、例えば以下の樹脂が挙げられる。
Next, the preferable composition of an easily bonding layer is demonstrated.
The easy-adhesion layer provided on the polyester film depends on the use of the polyester film, but an easy-adhesion layer containing an acrylic, urethane, polyester, or polyamide resin is preferred. These resins have a polarity close to that of polyester and are easy to obtain adhesion.
Examples of the resin constituting the easy-adhesion layer include, for example, JP-A-2006-152013, JP-A-2006-332091, JP-A-4457322, JP-A-2006-175564, JP-A-2006-253565, Application formation on the surface of a polyester film substrate such as an easy adhesion layer described in Japanese Patent No. 4547644, Japanese Patent No. 3777725, Japanese Patent No. 3731286, Japanese Patent Application Laid-Open No. 2009-269301, Japanese Patent Application Laid-Open No. 2006-335853, etc. Examples of the resin used in the coating solution for the purpose of the treatment are as follows. More specifically, for example, the following resins may be mentioned.

−ウレタン系樹脂−
樹脂としては、ブロック型イソシアネート基を含有する樹脂であって、末端イソシアネート基を親水性基で封鎖(以下ブロックともいう)した、熱反応型の水溶性ウレタンなどが挙げられる。イソシアネート基を親水性基で封鎖するためのブロック化剤としては、重亜硫酸塩類及びスルホン酸基を含有したフェノール類、スルホン酸基を含有したアルコール類、スルホン酸基を含有したラクタム類、スルホン酸基を含有したオキシム類及びスルホン酸基を含有した活性メチレン化合物類等が挙げられる。ブロック化されたイソシアネート基はウレタンプレポリマーを親水化あるいは水溶化する。上記ポリウレタン樹脂に熱エネルギーが与えられると、ブロック化剤がイソシアネート基からはずれるため、上記ポリウレタン樹脂は自己架橋した編み目に、混合した水分散性共重合ポリエステル樹脂を固定化するとともに、上記共重合ポリエステル樹脂の末端基等とも反応する。塗布液調製中の樹脂は、親水性であるために耐水性が悪いが、塗布、乾燥して熱反応が完了すると、ウレタン樹脂の親水性基すなわちブロック化剤がはずれるため、耐水性が良好な塗膜が得られる。上記ブロック化剤の内、フィルム製造工程における熱処理温度、熱処理時間でブロック化剤がイソシアネート基からはずれる点、及び工業的に入手可能な点から、重亜硫酸塩類が最も好ましい。
-Urethane resin-
Examples of the resin include a resin having a blocked isocyanate group, and a thermally reactive water-soluble urethane in which a terminal isocyanate group is blocked with a hydrophilic group (hereinafter also referred to as a block). Blocking agents for blocking isocyanate groups with hydrophilic groups include bisulfites and phenols containing sulfonic acid groups, alcohols containing sulfonic acid groups, lactams containing sulfonic acid groups, sulfonic acids And oximes containing a group and active methylene compounds containing a sulfonic acid group. The blocked isocyanate group makes the urethane prepolymer hydrophilic or water-soluble. When thermal energy is applied to the polyurethane resin, the blocking agent deviates from the isocyanate group, so that the polyurethane resin immobilizes the mixed water-dispersible copolymer polyester resin on the self-crosslinked stitch, and the copolymer polyester. It also reacts with the terminal groups of the resin. The resin during the preparation of the coating solution is poor in water resistance because it is hydrophilic. A coating film is obtained. Among the above blocking agents, bisulfites are most preferable from the viewpoint that the blocking agent is removed from the isocyanate group at the heat treatment temperature and heat treatment time in the film production process, and from the viewpoint of being industrially available.

樹脂において使用される、ウレタンプレポリマーの化学組成としては、(1)分子内に2個以上の活性水素原子を有する有機ポリイソシアネート、又は分子内に少なくとも2個の活性水素原子を有する分子量が200〜20,000の化合物、(2)分子内に2個以上のイソシアネート基を有する有機ポリイソシアネート、あるいは、(3)分子内に少なくとも2個の活性水素原子を有する鎖伸長剤を反応せしめて得られる、末端イソシアネート基を有する化合物である。   The chemical composition of the urethane prepolymer used in the resin includes (1) an organic polyisocyanate having two or more active hydrogen atoms in the molecule, or a molecular weight having at least two active hydrogen atoms in the molecule. ˜20,000 compounds, (2) obtained by reacting an organic polyisocyanate having two or more isocyanate groups in the molecule, or (3) a chain extender having at least two active hydrogen atoms in the molecule. And a compound having a terminal isocyanate group.

上記(1)の化合物として一般に知られているのは、末端又は分子中に2個以上のヒドロキシル基、カルボキシル基、アミノ基又はメルカプト基を含むものであり、特に好ましい化合物としては、ポリエーテルポリオール、ポリエステルポリオール、ポリエーテルエステルポリオール等が挙げられる。ポリエーテルポリオールとしては、例えば、エチレンオキシド、プロピレンオキシド等のアルキレンオキシド類、スチレンオキシド、エピクロルヒドリン等を重合した化合物、又はそれら2種以上をランダム共重合若しくはブロック共重合した化合物、あるいはそれらと多価アルコールとの付加重合を行って得られた化合物がある。   The compound (1) generally known is a compound containing two or more hydroxyl groups, carboxyl groups, amino groups or mercapto groups in the terminal or molecule, and particularly preferred compounds include polyether polyols. , Polyester polyol, polyether ester polyol and the like. Examples of the polyether polyol include compounds obtained by polymerizing alkylene oxides such as ethylene oxide and propylene oxide, styrene oxide, epichlorohydrin, and the like, compounds obtained by random copolymerization or block copolymerization of two or more thereof, or polyhydric alcohols thereof. There are compounds obtained by performing addition polymerization.

−ポリエステル系樹脂−
ポリエステル系樹脂としては、以下のような多塩基酸もしくは多塩基酸のエステル形成誘導体と、ポリオール又はポリオールのエステル形成誘導体と、から形成される。すなわち、多塩基酸成分としては、テレフタル酸、イソフタル酸、フタル酸、無水フタル酸、2,6−ナフタレンジカルボン酸、1,4−シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、トリメリット酸、ピロメリット酸、ダイマー酸、5−ナトリウムスルホイソフタル酸等が挙げられる。これらの酸成分を好ましくは2種以上用いて共重合ポリエステル樹脂を合成する。また、若干量であれば不飽和多塩基酸成分としてマレイン酸、イタコン酸等や、p−ヒドロキシ安息香酸等の如きヒドロキシカルボン酸を併用することもできる。また、ポリオール成分としては、エチレングリコール、1,4−ブタンジオール、ジエチレングリコール、ジプロピレングリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、キシレングリコール、ジメチロールプロパン、ポリ(エチレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール等が挙げられる。
-Polyester resin-
Polyester resins are formed from the following polybasic acids or ester-forming derivatives of polybasic acids and polyols or ester-forming derivatives of polyols. That is, as the polybasic acid component, terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, trimellitic acid, pyromellitic An acid, a dimer acid, 5-sodium sulfo isophthalic acid, etc. are mentioned. A copolymer polyester resin is synthesized using preferably two or more of these acid components. Moreover, if it is a slight amount, a hydroxycarboxylic acid such as maleic acid, itaconic acid, or p-hydroxybenzoic acid can be used in combination as the unsaturated polybasic acid component. The polyol component includes ethylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylene glycol, dimethylolpropane, and poly (ethylene oxide) glycol. , Poly (tetramethylene oxide) glycol and the like.

−アクリル系樹脂-
アクリル系樹脂としては、以下に例示するようなアクリルモノマーを重合してなるアクリル樹脂が挙げられる。このアクリルモノマーとしては、アルキルアクリレート、アルキルメタクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等);2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレート等の水酸基含有モノマー;グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル等のエポキシ基含有モノマー;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、スチレンスルホン酸及びその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等のカルボキシ基、スルホキシ基又はその塩を含有するモノマー;アクリルアミド、メタクリルアミド、N−アルキルアクリルアミド、N−アルキルメタクリルアミド、N、N−ジアルキルアクリルアミド、N、N−ジアルキルメタクリルアミド(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)、N−アルコキシアクリルアミド、N−アルコキシメタクリルアミド、N、N−ジアルコキシアクリルアミド、N、N−ジアルコキシメタクリルアミド(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基等)、アクリロイルモルホリン、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N−フェニルアクリルアミド、N−フェニルメタクリルアミド等のアミド基を含有するモノマー;無水マレイン酸、無水イタコン酸等の酸無水物のモノマー;ビニルイソシアネート、アリルイソシアネート、スチレン、α−メチルスチレン、ビニルメチルエーテル、ビニルエチルエーテル、ビニルトリアルコキシシラン、アルキルマレイン酸モノエステル、アルキルフマル酸モノエステル、アルキルイタコン酸モノエステル、アクリロニトリル、メタクリロニトリル、塩化ビニリデン、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ブタジエン等のモノマーが挙げられる。
-Acrylic resin-
As acrylic resin, the acrylic resin formed by superposing | polymerizing the acrylic monomer which is illustrated below is mentioned. Examples of the acrylic monomer include alkyl acrylate and alkyl methacrylate (the alkyl group includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group). Groups); hydroxyl group-containing monomers such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate and 2-hydroxypropyl methacrylate; epoxy group-containing monomers such as glycidyl acrylate, glycidyl methacrylate and allyl glycidyl ether; Acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrenesulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.), etc. Monomers containing a carboxy group, a sulfoxy group or a salt thereof; acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N, N-dialkylacrylamide, N, N-dialkylmethacrylamide (the alkyl group is methyl Group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.), N-alkoxyacrylamide, N-alkoxymethacrylamide, N, N -Dialkoxyacrylamide, N, N-dialkoxymethacrylamide (alkoxy groups include methoxy, ethoxy, butoxy, isobutoxy, etc.), acryloylmorpholine, N-methylolacrylamide, N-methylolmethacrylate Monomers containing amide groups such as luamide, N-phenylacrylamide and N-phenylmethacrylamide; monomers of acid anhydrides such as maleic anhydride and itaconic anhydride; vinyl isocyanate, allyl isocyanate, styrene, α-methylstyrene, vinyl Methyl ether, vinyl ethyl ether, vinyl trialkoxysilane, alkyl maleic acid monoester, alkyl fumaric acid monoester, alkyl itaconic acid monoester, acrylonitrile, methacrylonitrile, vinylidene chloride, ethylene, propylene, vinyl chloride, vinyl acetate, butadiene And the like.

これらの中で、水酸基を含むモノマー、例えば2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレート、N−メチロールアクリルアミド、N−メチロールメタクリルアミドなどが2〜20モル%、好ましくは4〜15モル%含まれていることが好ましい。   Among these, monomers containing a hydroxyl group such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, N-methylol acrylamide, N-methylol methacrylamide and the like are 2-20. It is preferably contained in a mol%, preferably 4 to 15 mol%.

易接着層を形成するための塗布液には、さらに濡れ剤、帯電防止剤、着色剤、界面活性剤、紫外線吸収剤等を含有させてもよい。濡れ剤を含有する場合、その含有量は例えば固形分に対して1質量%〜20質量%である。   The coating liquid for forming the easy-adhesion layer may further contain a wetting agent, an antistatic agent, a colorant, a surfactant, an ultraviolet absorber and the like. When it contains a wetting agent, the content is 1 mass%-20 mass% with respect to solid content, for example.

また、易接着層としてはポリオレフィン系、例えばSBR等のゴム系樹脂も好ましい。このようなポリオレフィン系を含む易接着層であれば、柔軟な構造のために剥離応力を吸収し易く密着力を高めることができる。例えば特開昭61−60424号公報、特許2583455号公報、特許3626305号公報、特許3783989号公報、特許4041784号公報、特許4505402号公報の各公報に記載のものを使用できる。   The easy adhesion layer is also preferably a polyolefin-based, for example, a rubber-based resin such as SBR. With such an easy-adhesion layer containing a polyolefin, it is easy to absorb peeling stress due to its flexible structure, and the adhesion can be increased. For example, those described in JP-A-61-60424, Japanese Patent No. 2583455, Japanese Patent No. 3626305, Japanese Patent No. 3783989, Japanese Patent No. 4041784, and Japanese Patent No. 4505402 can be used.

また、ポリオレフィン系としては、ポリビニルアルコール(PVA)系樹脂を用いることも好ましい。これは、本発明により製造されるポリエステルフィルムを太陽電池バックシートとして用いる場合、PVA系樹脂を含む易接着層を設けておけば、易接着層上に積層するポリビニルアルコール系樹脂と親和性が高いためである。   Moreover, it is also preferable to use polyvinyl alcohol (PVA) resin as the polyolefin resin. This is because when the polyester film produced according to the present invention is used as a solar battery backsheet, if an easy-adhesion layer containing a PVA-based resin is provided, it has a high affinity with the polyvinyl alcohol resin laminated on the easy-adhesion layer. Because.

易接着層には、さらに、架橋性化合物(架橋剤)を共存させることも好ましい。これにより易接着層内あるいはポリエステルと架橋を形成し、より密着強度を上げることができる。架橋性化合物としては、エポキシ化合物、グリシジル化合物、メラミン化合物、オキサゾリン化合物等を挙げることができる。
また、易接着層に架橋剤を含有することにより、さらに耐湿性を向上させることができる。なお、架橋剤を用いる場合、その含有量が5質量%未満であると耐湿性向上の効果が発現し難く、一方、20質量%を超えると、塗膜の形成が困難となり、結果としてEVAとの接着性が低下することがあり、好ましくない。
It is also preferable that a crosslinkable compound (crosslinking agent) coexist in the easy adhesion layer. Thereby, a crosslink can be formed in the easy-adhesion layer or the polyester, and the adhesion strength can be further increased. Examples of the crosslinkable compound include an epoxy compound, a glycidyl compound, a melamine compound, and an oxazoline compound.
Moreover, moisture resistance can be improved further by containing a crosslinking agent in an easily bonding layer. In addition, when using a crosslinking agent, if the content is less than 5% by mass, the effect of improving the moisture resistance is hardly exhibited. This is not preferable because the adhesiveness of the resin may deteriorate.

架橋剤に加えて、他のエポキシ基を有する化合物も併用してもよい。これらの化合物の例としては、ソルビトトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2−ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテルなどのポリエポキシ化合物、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル等のジエポキシ化合物、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテルなどのモノエポキシ化合物を挙げることができる。   In addition to the crosslinking agent, other compounds having an epoxy group may be used in combination. Examples of these compounds include sorbitol tol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, Polyepoxy compounds such as methylolpropane polyglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, polytetramethylene Diepoxy compounds such as recall diglycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, and monoepoxy compounds such as phenyl glycidyl ether.

これらのエポキシ化合物を架橋剤と併用する場合、架橋剤とこれらのエポキシ化合物との合計量が、塗布液の固形分に対し5〜20質量%の範囲で用いることが好ましい。   When using these epoxy compounds together with a crosslinking agent, it is preferable to use the total amount of a crosslinking agent and these epoxy compounds in 5-20 mass% with respect to solid content of a coating liquid.

なお、塗布液に含有される微粒子や架橋剤、場合によりさらに濡れ剤を比較的多く含有する場合にはポリマーバインダーの量を相対的に少なくすることで固形分の合計量が100質量%となるようにすればよい。   In addition, when the fine particles and the crosslinking agent contained in the coating liquid, and in some cases further containing a relatively large amount of wetting agent, the total amount of solids becomes 100% by mass by relatively reducing the amount of the polymer binder. What should I do?

易接着層の塗設に先立ち、ポリエステルフィルム基材に表面処理を行うことも好ましく、例えばコロナ処理、火炎処理、紫外線処理、グロー処理、大気圧プラズマ処理等を挙げることができる。   Prior to the application of the easy-adhesion layer, it is also preferable to subject the polyester film substrate to a surface treatment, and examples thereof include corona treatment, flame treatment, ultraviolet treatment, glow treatment, and atmospheric pressure plasma treatment.

本発明の白色ポリエステルフィルムにおける易接着層(ポリエステルフィルムと共に延伸される場合は延伸後の易接着層)の厚みは、0.05μm以上1.5μm以下が好ましく、0.1μm以上1.0μm以下がより好ましく、さらに好ましくは0.2μm以上0.7μm以下である。易接着層の厚みが0.05μm以上であると、ポリエステルフィルムとの密着を良好に保つことができる。また、易接着層の厚みが1.5μm以下であると、温湿度の比較的高い湿熱環境(サーモ環境)下でも易接着層の経時での劣化が抑えられ、易接着層内での破壊を防ぐことができる。これにより、長期に亘って密着力に優れたものとなる。   The thickness of the easy adhesion layer (the easy adhesion layer after stretching when stretched together with the polyester film) in the white polyester film of the present invention is preferably 0.05 μm or more and 1.5 μm or less, and preferably 0.1 μm or more and 1.0 μm or less. More preferably, it is 0.2 μm or more and 0.7 μm or less. When the thickness of the easy adhesion layer is 0.05 μm or more, good adhesion with the polyester film can be maintained. In addition, when the thickness of the easy-adhesion layer is 1.5 μm or less, deterioration of the easy-adhesion layer over time is suppressed even in a relatively hot and humid environment (thermo environment), and damage within the easy-adhesion layer is prevented. Can be prevented. Thereby, it will become the thing excellent in contact | adhesion power over the long term.

−ポリエステルフィルム−
本発明の白色ポリエステルフィルムは、実質的に含まれるポリエステルとともに微粒子を含有するポリエステルフィルムを有しており、このフィルム上に既述の易接着層が設けられる。本発明における易接着層は、白色ポリエステルフィルムとの間の密着もよく、長期に亘り白色ポリエステルフィルムと太陽電池本体との密着不良及び密着不良による耐久性低下を防ぐことができる。
-Polyester film-
The white polyester film of the present invention has a polyester film containing fine particles together with the substantially contained polyester, and the above-mentioned easy adhesion layer is provided on this film. The easy-adhesion layer in the present invention has good adhesion with the white polyester film, and can prevent deterioration in durability due to poor adhesion and poor adhesion between the white polyester film and the solar cell body over a long period of time.

(ポリエステル)
ポリエステルとしては、種類が制限されるものではなく、ポリエステルとして公知のものを使用することができる。原料樹脂となるポリエステルとしては、ジカルボン酸成分とジオール成分とを用いて合成してもよいし、市販のポリエステルを用いてもよい。
本発明で用いることができる(A)ジカルボン酸成分及び(B)ジオール成分の具体例や好ましい態様、使用量等については、特開2012−197432号公報の段落[0036]〜[0039]の記載を参照することができる。
(polyester)
The type of polyester is not limited, and known polyesters can be used. As polyester used as raw material resin, you may synthesize | combine using a dicarboxylic acid component and a diol component, and may use commercially available polyester.
Specific examples, preferred embodiments, usage amounts, and the like of the (A) dicarboxylic acid component and (B) diol component that can be used in the present invention are described in paragraphs [0036] to [0039] of JP 2012-197432 A. Can be referred to.

ポリエステルを合成する場合は、例えば、(A)ジカルボン酸成分と、(B)ジオール成分と、を周知の方法でエステル化反応及び/又はエステル交換反応させることによって得ることができる。エステル化反応及び/又はエステル交換反応には、従来から公知の反応触媒を用いることができる。本発明で用いることができる反応触媒の具体例やエステル化反応工程等については、特開2012−197432号公報の段落[0040]〜[0042]の記載を参照することができる。   When the polyester is synthesized, for example, it can be obtained by subjecting (A) a dicarboxylic acid component and (B) a diol component to an esterification reaction and / or a transesterification reaction by a well-known method. Conventionally known reaction catalysts can be used for the esterification reaction and / or the transesterification reaction. Regarding specific examples of reaction catalysts and esterification reaction steps that can be used in the present invention, the description in paragraphs [0040] to [0042] of JP 2012-197432 A can be referred to.

ポリエステルの重合に際し、リン化合物、マグネシウム化合物等を加えることも好ましく、リン化合物及びマグネシウム化合物の具体例や添加率等については、特開2012−197432号公報の段落[0071]〜[0077]の記載を参照することができる。また、エステル化反応工程の好ましい条件や使用可能な添加剤等については、特開2012−197432号公報の段落[0078]〜[0085]の記載を参照することができる。   In the polymerization of the polyester, it is also preferable to add a phosphorus compound, a magnesium compound or the like. Specific examples and addition rates of the phosphorus compound and the magnesium compound are described in paragraphs [0071] to [0077] of JP 2012-197432 A. Can be referred to. For the preferable conditions of the esterification reaction step, usable additives, and the like, the description in paragraphs [0078] to [0085] of JP 2012-197432 A can be referred to.

ポリエステルフィルムは、カルボン酸基(a)と水酸基(b)の合計(a+b)が3以上である3官能モノマー由来の構成成分を含有してもよい。カルボン酸基と水酸基との合計が3以上である構成成分のうち、カルボン酸基数(a)が3以上のカルボン酸構成成分については、三官能の芳香族カルボン酸構成成分として、トリメシン酸、トリメリット酸、ピロメリット酸、ナフタレントリカルボン酸、アントラセントリカルボン酸等が挙げられ、三官能の脂肪族カルボン酸構成成分として、メタントリカルボン酸、エタントリカルボン酸、プロパントリカルボン酸、ブタントリカルボン酸等が挙げられ、四官能の芳香族カルボン酸構成成分としてベンゼンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ナフタレンテトラカルボン酸、アントラセンテトラカルボン酸、ベリレンテトラカルボン酸等が挙げられ、四官能の脂肪族カルボン酸構成成分として、エタンテトラカルボン酸、エチレンテトラカルボン酸、ブタンテトラカルボン酸、シクロペンタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、アダマンタンテトラカルボン酸等が挙げられ、五官能以上の芳香族カルボン酸構成成分として、ベンゼンペンタカルボン酸、ベンゼンヘキサカルボン酸、ナフタレンペンタカルボン酸、ナフタレンヘキサカルボン酸、ナフタレンヘプタカルボン酸、ナフタレンオクタカルボン酸、アントラセンペンタカルボン酸、アントラセンヘキサカルボン酸、アントラセンヘプタカルボン酸、アントラセンオクタカルボン酸等が挙げられ、五官能以上の脂肪族カルボン酸構成成分として、エタンペンタカルボン酸、エタンヘプタカルボン酸、ブタンペンタカルボン酸、ブタンヘプタカルボン酸、シクロペンタンペンタカルボン酸、シクロヘキサンペンタカルボン酸、シクロヘキサンヘキサカルボン酸、アダマンタンペンタカルボン酸、アダマンタンヘキサカルボン酸等が挙げられ、並びにこれらのエステル誘導体や酸無水物等が例として挙げられる。
また、カルボン酸構成成分のカルボキシ末端に、l−ラクチド、d−ラクチド、ヒドロキシ安息香酸などのオキシ酸類及びその誘導体、オキシ酸類が複数個連なったもの等を付加させたものも好適に用いられる。
The polyester film may contain a component derived from a trifunctional monomer in which the total (a + b) of the carboxylic acid group (a) and the hydroxyl group (b) is 3 or more. Among the constituents having a total of 3 or more carboxylic acid groups and hydroxyl groups, the carboxylic acid constituents having 3 or more carboxylic acid groups (a) are trimesic acid, trimethyl as trifunctional aromatic carboxylic acid constituents. Mellitic acid, pyromellitic acid, naphthalenetricarboxylic acid, anthracentricarboxylic acid and the like are listed, and trifunctional aliphatic carboxylic acid components include methanetricarboxylic acid, ethanetricarboxylic acid, propanetricarboxylic acid, butanetricarboxylic acid, and the like. Examples of tetrafunctional aromatic carboxylic acid components include benzenetetracarboxylic acid, benzophenonetetracarboxylic acid, naphthalenetetracarboxylic acid, anthracenetetracarboxylic acid, and berylenetetracarboxylic acid. Ethanetetracarboxylic acid Examples include ethylene tetracarboxylic acid, butane tetracarboxylic acid, cyclopentane tetracarboxylic acid, cyclohexane tetracarboxylic acid, adamantane tetracarboxylic acid, etc., and pentafunctional or higher functional aromatic carboxylic acid constituents include benzene pentacarboxylic acid, benzene hexacarboxylic acid Acid, naphthalene pentacarboxylic acid, naphthalene hexacarboxylic acid, naphthalene heptacarboxylic acid, naphthalene octacarboxylic acid, anthracene pentacarboxylic acid, anthracene hexacarboxylic acid, anthracene heptacarboxylic acid, anthracene octacarboxylic acid, etc. Aliphatic carboxylic acid constituents include ethanepentacarboxylic acid, ethaneheptacarboxylic acid, butanepentacarboxylic acid, butaneheptacarboxylic acid, cyclopentanepentacarboxylic acid Cyclohexane penta carboxylic acid, cyclohexanehexacarboxylic acid, adamantane penta carboxylic acid, include such as adamantane hexacarboxylic acid, and the like ester derivatives thereof and acid anhydrides thereof as examples.
Further, those obtained by adding oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, derivatives thereof, and a combination of a plurality of oxyacids to the carboxy terminal of the carboxylic acid component are also preferably used.

また、水酸基数(b)が3以上の構成成分の例については、三官能の芳香族構成成分として、トリヒドロキシベンゼン、トリヒドロキシナフタレン、トリヒドロキシアントラセン、トリヒドロキシカルコン、トリヒドロキシフラボン、トリヒドロキシクマリンが挙げられ、三官能の脂肪族アルコール構成成分として、グリセリン、トリメチロールプロパン、プロパントリオールが挙げられ、四官能の脂肪族アルコール構成成分として、ペンタエリスリトール等の化合物が挙げられる。また、上述の化合物の水酸基末端にジオール類を付加させた構成成分(p)も好ましい。   In addition, for examples of components having 3 or more hydroxyl groups (b), trihydroxybenzene, trihydroxynaphthalene, trihydroxyanthracene, trihydroxychalcone, trihydroxyflavone, trihydroxycoumarin as trifunctional aromatic components. Examples of the trifunctional aliphatic alcohol component include glycerin, trimethylolpropane, and propanetriol, and examples of the tetrafunctional aliphatic alcohol component include compounds such as pentaerythritol. Moreover, the structural component (p) which added diol to the hydroxyl terminal of the above-mentioned compound is also preferable.

その他の構成成分として、ヒドロキシイソフタル酸、ヒドロキシテレフタル酸、ジヒドロキシテレフタル酸など、一分子中に水酸基とカルボン酸基の両方を有するオキシ酸類のうち、かつカルボン酸基数(a)と水酸基数(b)との合計(a+b)が3以上であるものが挙げられる。また上述の構成成分のカルボキシ末端に、l−ラクチド、d−ラクチド、ヒドロキシ安息香酸などのオキシ酸類、及びその誘導体、そのオキシ酸類が複数個連なったもの等を付加させたものも好適に用いられる。   As other constituent components, among oxyacids having both a hydroxyl group and a carboxylic acid group in one molecule such as hydroxyisophthalic acid, hydroxyterephthalic acid, dihydroxyterephthalic acid, etc., and the number of carboxylic acid groups (a) and the number of hydroxyl groups (b) And the total (a + b) is 3 or more. In addition, oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, in which a plurality of the oxyacids are connected to the carboxy terminus of the above-described constituents are also preferably used. .

ポリエステルフィルムは、カルボン酸基と水酸基の合計が3以上である構成成分の含有量が、ポリエステルフィルム中の全構成成分に対して0.005モル%以上2.5モル%以下であることが好ましく、より好ましくは0.020モル%以上1モル%以下である。カルボン酸基と水酸基の合計が3以上である構成成分が、ポリエステルフィルム中に存在することで、重縮合に使用されなかった官能基が、塗布層中の成分と水素結合又は共有結合することでより密着を向上させることができる。   In the polyester film, the content of the constituent components in which the total of carboxylic acid groups and hydroxyl groups is 3 or more is preferably 0.005 mol% or more and 2.5 mol% or less with respect to all the constituent components in the polyester film. More preferably, it is 0.020 mol% or more and 1 mol% or less. A component having a total of 3 or more of carboxylic acid groups and hydroxyl groups is present in the polyester film, so that functional groups not used for polycondensation are hydrogen bonded or covalently bonded to the components in the coating layer. Adhesion can be further improved.

本発明の白色ポリエステルフィルムを構成するポリエステルフィルムは、カルボジイミド化合物及び/又はケテンイミン化合物を含有することができる。カルボジイミド化合物又はケテンイミン化合物は、それぞれ一種単独で用いてもよいし、両者を組み合わせて用いてもよい。   The polyester film constituting the white polyester film of the present invention can contain a carbodiimide compound and / or a ketene imine compound. A carbodiimide compound or a ketene imine compound may be used alone or in combination.

ポリエステルの末端カルボン酸及び水酸基は、極性が高く、水を吸着し、部分放電が低下しやすくなる傾向がある。ポリエステルフィルムがカルボジイミド化合物及び/又はケテンイミン化合物を含有することにより、これらの化合物がポリエステルの末端カルボン酸基及び水酸基と反応し、末端封止剤として機能する。これにより、部分放電が低下することを抑制することができる。特に、部分放電電圧が低下しやすいサーモ処理後においても高い部分放電電圧を維持することができ、絶縁性を発揮することができる。   The terminal carboxylic acid and hydroxyl group of polyester have high polarity, tend to adsorb water, and partial discharge tends to decrease. When the polyester film contains a carbodiimide compound and / or a ketene imine compound, these compounds react with a terminal carboxylic acid group and a hydroxyl group of the polyester to function as a terminal blocking agent. Thereby, it can suppress that partial discharge falls. In particular, a high partial discharge voltage can be maintained even after a thermo treatment in which the partial discharge voltage is likely to be lowered, and insulation can be exhibited.

カルボジイミド化合物及び/又はケテンイミン化合物の含有量は、ポリエステルに対して、0.1質量%〜10質量%が好ましく、0.1質量%〜4質量%がより好ましく、0.1質量%〜2質量%がさらに好ましい。環状カルボジイミド化合物の含有率を上記範囲内とすると、ポリエステルフィルムの層間の密着性、及びポリエステルフィルムと易接着層との間の密着性を高めることができる。また、ポリエステルフィルムの耐熱性が高められる。
なお、カルボジイミド化合物とケテンイミン化合物とが併用される場合、2種類の化合物の含有率の合計が上記範囲内であることが好ましい。
The content of the carbodiimide compound and / or ketenimine compound is preferably 0.1% by mass to 10% by mass, more preferably 0.1% by mass to 4% by mass, and more preferably 0.1% by mass to 2% by mass with respect to the polyester. % Is more preferable. When the content of the cyclic carbodiimide compound is within the above range, the adhesion between the layers of the polyester film and the adhesion between the polyester film and the easy adhesion layer can be enhanced. Moreover, the heat resistance of the polyester film is enhanced.
In addition, when a carbodiimide compound and a ketene imine compound are used together, it is preferable that the sum total of the content rate of two types of compounds exists in the said range.

カルボジイミド化合物としては、分子中に1個以上のカルボジイミド基を有する化合物(ポリカルボジイミド化合物を含む)が挙げられ、モノカルボジイミド化合物として、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t−ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ−t−ブチルカルボジイミド、ジ−β−ナフチルカルボジイミド、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミドなどが例示される。ポリカルボジイミド化合物としては、米国特許第2941956号明細書、特公昭47−33279号公報、J.Org.Chem.28巻、p2069−2075(1963)、及びChemical Review 1981、81巻、第4号、p.619−621等に記載された方法により製造されたものが挙げられる。
工業的に入手可能な具体的なポリカルボジイミドとしては、カルボジライトHMV−8CA(日清紡製)、カルボジライト LA−1(日清紡製)、スタバクゾールP(ラインケミー社製)、スタバクゾールP100(ラインケミー社製)、スタバクゾールP400(ラインケミー社製)、スタビライザー9000(ラシヒケミ社製)などが例示される。
また、環骨格にカルボジイミド基を1つ含み、第一窒素と第二窒素とが結合基により結合されている環状構造を分子内に少なくとも1つ有する環状カルボジイミド化合物も使用することができる。環状カルボジイミド化合物は、国際公開2011/093478号パンフレットに記載された方法によって調製されるものが挙げられる。
Examples of the carbodiimide compound include compounds having one or more carbodiimide groups in the molecule (including polycarbodiimide compounds). Examples of the monocarbodiimide compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t- Examples include butyl isopropyl carbodiimide, diphenyl carbodiimide, di-t-butyl carbodiimide, di-β-naphthyl carbodiimide, N, N′-di-2,6-diisopropylphenyl carbodiimide, and the like. Examples of the polycarbodiimide compound include U.S. Pat. No. 2,941,956, Japanese Patent Publication No. 47-33279, Org. Chem. 28, p2069-2075 (1963), and Chemical Review 1981, 81, No. 4, p. And those produced by the method described in 619-621 and the like.
Specific examples of industrially available polycarbodiimides include carbodilite HMV-8CA (manufactured by Nisshinbo), carbodilite LA-1 (manufactured by Nisshinbo), Starbazole P (manufactured by Rhein Chemie), starbactol P100 (manufactured by Rhein Chemie), and starbactol P400. (Product made by Rhein Chemie), Stabilizer 9000 (made by Rashihi Chemi), etc. are illustrated.
In addition, a cyclic carbodiimide compound including one carbodiimide group in the ring skeleton and having in the molecule at least one cyclic structure in which the first nitrogen and the second nitrogen are bonded by a bonding group can also be used. Examples of the cyclic carbodiimide compound include those prepared by the method described in International Publication 2011/093478.

ポリエステルフィルムの原料樹脂として用いるポリエステルは、エステル化反応により重合した後、固相重合を行うことが好ましい。
固相重合することにより、ポリエステルの含水率、結晶化度、ポリエステルの酸価、すなわちポリエステルの末端カルボキシル基の濃度、固有粘度を制御することができる。固相重合する時間を長くすると、カルボン酸価は低下し、固相重合時間を短くすると、カルボン酸価は増加する。
特に、固相重合開始時のエチレングリコール(EG)ガス濃度を固相重合終了時のEGガス濃度よりも200ppm〜1000ppmの範囲で高くすることが好ましく、より好ましくは250ppm〜800ppm、さらに好ましくは300ppm〜700ppmの範囲で高くして固相重合することが好ましい。このとき、平均EGガス濃度(固相重合反応の開始時と終了時とにおけるガス濃度の平均値)を変化させることで、カルボン酸量(AV;acid value)を制御できる。すなわち、EG添加により末端COOH基と反応させてAVを低減できる。EGは、100ppm〜500ppmが好ましく、より好ましくは150ppm〜450ppmであり、さらに好ましくは200ppm〜400ppmである。
The polyester used as the raw material resin for the polyester film is preferably subjected to solid phase polymerization after polymerization by an esterification reaction.
By solid-phase polymerization, it is possible to control the moisture content of the polyester, the crystallinity, the acid value of the polyester, that is, the concentration of the terminal carboxyl group of the polyester, and the intrinsic viscosity. When the solid phase polymerization time is lengthened, the carboxylic acid value decreases, and when the solid phase polymerization time is shortened, the carboxylic acid value increases.
In particular, the ethylene glycol (EG) gas concentration at the start of solid phase polymerization is preferably higher in the range of 200 ppm to 1000 ppm than the EG gas concentration at the end of solid phase polymerization, more preferably 250 ppm to 800 ppm, and even more preferably 300 ppm. It is preferable to carry out solid phase polymerization by increasing the concentration in the range of ˜700 ppm. At this time, the amount of carboxylic acid (AV) can be controlled by changing the average EG gas concentration (average value of gas concentration at the start and end of the solid-phase polymerization reaction). That is, AV can be reduced by reacting with a terminal COOH group by adding EG. The EG is preferably 100 ppm to 500 ppm, more preferably 150 ppm to 450 ppm, and still more preferably 200 ppm to 400 ppm.

固相重合の温度は、180℃〜230℃が好ましく、より好ましくは190℃〜215℃であり、さらに好ましくは195℃〜209℃である。また、固相重合時間は、10時間〜40時間が好ましく、より好ましくは14時間〜35時間であり、さらに好ましくは18時間〜30時間である。   The temperature of the solid phase polymerization is preferably 180 ° C to 230 ° C, more preferably 190 ° C to 215 ° C, and still more preferably 195 ° C to 209 ° C. The solid phase polymerization time is preferably 10 hours to 40 hours, more preferably 14 hours to 35 hours, and still more preferably 18 hours to 30 hours.

好ましいポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレン−2,6−ナフタレート(PEN)であり、PETがより好ましい。   Preferred polyesters are polyethylene terephthalate (PET) and polyethylene-2,6-naphthalate (PEN), with PET being more preferred.

本発明の白色ポリエステルフィルムを構成するポリエステルフィルムは、単一のポリエステルフィルムからなる単層フィルムでもよいし、複数のポリエステルフィルムが積層された積層フィルムでもよい。ポリエステルフィルムが単層フィルムである場合、この単層フィルムは、少なくともポリエステルと微粒子とを含んで構成される。ポリエステルフィルムが積層フィルムである場合、複数のポリエステルフィルムは少なくともポリエステルを含み、ポリエステルフィルムの少なくとも一層はさらに微粒子を含んで構成される。積層フィルムは、複数のポリエステルフィルムの全てが微粒子を含む態様でもよいし、複数のポリエステルフィルムに含まれる微粒子に含有量がフィルム間で互いに異なる態様であってもよい。複数のポリエステルフィルムは、互いに異種の微粒子を含む態様でもよい。   The polyester film constituting the white polyester film of the present invention may be a single layer film made of a single polyester film or a laminated film in which a plurality of polyester films are laminated. When the polyester film is a single layer film, the single layer film includes at least polyester and fine particles. When the polyester film is a laminated film, the plurality of polyester films include at least polyester, and at least one layer of the polyester film further includes fine particles. The laminated film may have an aspect in which all of the plurality of polyester films contain fine particles, or may have an aspect in which the content of the fine particles contained in the plurality of polyester films differs from film to film. The plurality of polyester films may include different kinds of fine particles.

〜第1の層〜
本発明の白色ポリエステルフィルムを構成するポリエステルフィルムは、ポリエステルの質量に対して、5質量%以上30質量%以下の微粒子を含有し、微粒子の分散度が10%以上100%以下である第1の層を含む態様が好ましい。
~ First layer ~
The polyester film constituting the white polyester film of the present invention contains 5% by mass or more and 30% by mass or less of fine particles relative to the mass of the polyester, and the degree of dispersion of the fine particles is 10% or more and 100% or less An embodiment including a layer is preferred.

微粒子の含有量が5質量%以上であると、光の反射率がより良好になり、発電効率が向上する。また、微粒子の含有量が30質量%以下であると、脆性破壊を起こし難く、密着向上効果に優れる。
微粒子の含有量としては、ポリエステルの質量に対して、7質量%以上25質量%以下が好ましく、より好ましくは9質量%以上20質量%以下である。
When the content of the fine particles is 5% by mass or more, the reflectance of light becomes better and the power generation efficiency is improved. Further, when the content of the fine particles is 30% by mass or less, brittle fracture hardly occurs and the adhesion improving effect is excellent.
As content of microparticles | fine-particles, 7 mass% or more and 25 mass% or less are preferable with respect to the mass of polyester, More preferably, they are 9 mass% or more and 20 mass% or less.

第1の層中の微粒子の含有量の測定は、以下のようにして行なえる。
微粒子の含有率は、ポリエステルの総量に対する微粒子の質量の割合で表される。具体的には、微粒子の含有率は、ポリエステルフィルムの焼成前後の重さを精秤することで算出することができる。具体的には、ポリエステルフィルムを坩堝に入れ、精秤し(Xg)、次いでそのフィルムを空気中、800℃、3時間の条件で焼成し、焼成後、室温に一晩放置した後、重さ(Yg)を秤量する。
無機微粒子の含有率(質量%)は、100×Y/Xにて算出される。
ここで、ポリエステルフィルムが後述する第2の層を有する積層フィルムの場合は、剃刀で第2の層を削り落とした後、フィルムを坩堝に入れて秤量する(Xg)。
The measurement of the content of fine particles in the first layer can be performed as follows.
The content of fine particles is expressed as a ratio of the mass of fine particles to the total amount of polyester. Specifically, the content of fine particles can be calculated by precisely weighing the weight of the polyester film before and after firing. Specifically, a polyester film is put in a crucible and precisely weighed (Xg), and then the film is baked in air at 800 ° C. for 3 hours. Weigh (Yg).
The content (% by mass) of the inorganic fine particles is calculated as 100 × Y / X.
Here, when the polyester film is a laminated film having a second layer, which will be described later, the second layer is scraped off with a razor, and the film is placed in a crucible and weighed (Xg).

なお、微粒子が有機微粒子である場合、有機微粒子の含有率は、ポリエステルフィルムを溶解し、その溶解液に含まれる有機微粒子を捕集し、精秤することにより算出することができる。具体的には、ポリエステルフィルムを精秤し(Pg)、これをHFIP(ヘキサフルオロイソプロパノール)50mlに溶解する。得られた溶解液に対して14000rpmで30分間遠心分離を行い、有機微粒子を捕集する。捕集した有機微粒子を、精秤したテフロン(登録商標)製の孔径0.2μmのフィルター(Qg)でろ過し、HFIPで洗浄しながら乾燥し、精秤する(Rg)。有機微粒子の含有率(質量%)は、100×(R−Q)/Pで算出することができる。   When the fine particles are organic fine particles, the content of the organic fine particles can be calculated by dissolving the polyester film, collecting the organic fine particles contained in the solution, and accurately weighing them. Specifically, the polyester film is precisely weighed (Pg) and dissolved in 50 ml of HFIP (hexafluoroisopropanol). The obtained lysate is centrifuged at 14000 rpm for 30 minutes to collect organic fine particles. The collected organic fine particles are filtered through a precisely weighed Teflon (registered trademark) filter (Qg) having a pore diameter of 0.2 μm, dried while being washed with HFIP, and precisely weighed (Rg). The content (% by mass) of the organic fine particles can be calculated by 100 × (R−Q) / P.

微粒子が存在すると、微粒子−ポリエステル間で剥離が発生し易く、ここを起点として密着評価時の剥離力により、ポリエステルフィルム内の脆性破壊が発生、密着不良となる。これは、経時中の光分解、加水分解によりポリエステル分子が切断されて分子量が低下し、凝集破壊がより発生し易くなることから、長期経時後に顕在化する。
微粒子は、均一に分散されるのが一般的であるが、本発明では、均一分散しないこと(不均一分散)で、長期経時での凝集破壊が抑制され、長期に亘り安定的な密着性を確保することができる。
When fine particles are present, peeling is likely to occur between the fine particles and the polyester, and the brittle fracture in the polyester film occurs due to the peeling force at the time of adhesion evaluation starting from here, resulting in poor adhesion. This becomes apparent after a long period of time because the polyester molecules are cleaved by photolysis and hydrolysis over time to lower the molecular weight and more easily cause cohesive failure.
In general, the fine particles are uniformly dispersed. However, in the present invention, the non-uniform dispersion (non-uniform dispersion) suppresses the cohesive failure over a long period of time, and provides stable adhesion over a long period of time. Can be secured.

本発明における微粒子の分散度とは、以下のように測定されるものである。
まず、長手方向(MD)に沿ってポリエステルフィルムの断面を顕微鏡撮影し、厚み(T)とフィルム面方向の測定長(L)で囲まれる中に微粒子が10個〜50個入るようにLを定める。続いて、フィルム面方向にLずつ20回ずらしながら微粒子の数を計測し、この中の最大個数と最小個数との差を平均値で除算し、算出された値を「MD分散度」とする。次に、幅方向(TD)でも同様の測定を行い、「TD分散度」とする。
そして、得られたMD分散度とTD分散度との平均を求め、「分散度」とする。
The fine particle dispersity in the present invention is measured as follows.
First, a cross section of the polyester film is taken with a microscope along the longitudinal direction (MD), and L is set so that 10 to 50 fine particles can be contained in the film surrounded by the thickness (T) and the measurement length (L) in the film surface direction. Determine. Subsequently, the number of fine particles is measured while shifting 20 times by L in the film surface direction, and the difference between the maximum number and the minimum number is divided by the average value, and the calculated value is defined as “MD dispersity”. . Next, the same measurement is performed in the width direction (TD) to obtain “TD dispersion”.
Then, an average of the obtained MD dispersity and TD dispersity is obtained and set as “dispersion”.

このように分散度を規定するのは、以下の機構によるものと推定している。
長期経時で分解した低分子量成分は、ポリエステル中から押出され微粒子との界面に集まり易い。結果、凝集破壊が一層進み易くなる。微粒子の多い箇所では、凝集破壊し易くなるが、微粒子の少ない箇所では、凝集破壊は発生し難い。そのため、凝集破壊を起こし難い「微粒子の少ない箇所」の強度が「微粒子の多い箇所」よりも優位に働くと、フィルム全体の強度低下が抑制され、密着は剥離応力によって破壊し難くなる。したがって、微粒子量を同じにして比較した場合、密着強度が向上することになる。
更に、微粒子が多い箇所は、光が多重散乱するために耐光性が低下し易い(つまり、光によるポリエステルの分子切断が起きき易い)が、微粒子が少ない箇所では、光の多重散乱が少なく、耐光性が低下し難い。したがって、上記と同様に「微粒子の少ない箇所」での凝集破壊抑制効果が「微粒子の多い箇所」よりも優位に働き、フィルム全体の凝集破壊が抑制される効果が得られる。
It is presumed that the degree of dispersion is defined by the following mechanism.
Low molecular weight components decomposed over a long period of time are easily extruded from the polyester and collected at the interface with the fine particles. As a result, cohesive failure is further facilitated. Cohesive failure is likely to occur at locations where there are many fine particles, but cohesive failure is unlikely to occur at locations where there are few fine particles. For this reason, if the strength of the “parts with few fine particles” that hardly cause cohesive failure works more preferentially than the “parts with many fine particles”, a decrease in the strength of the entire film is suppressed, and adhesion becomes difficult to break due to peeling stress. Therefore, when compared with the same amount of fine particles, the adhesion strength is improved.
Furthermore, light resistance tends to decrease because the light is scattered multiple times in places where there are many fine particles (that is, the molecular cleavage of polyester due to light is likely to occur), but in places where there are few fine particles, there is little multiple scattering of light, Light resistance is unlikely to decrease. Therefore, as described above, the effect of suppressing cohesive failure at “locations with few fine particles” works more preferentially than “location with high fine particles”, and the effect of suppressing cohesive failure of the entire film is obtained.

以上の点から、本発明の白色ポリエステルフィルムを構成するポリエステルフィルムは、微粒子の分散度が10%以上100%以下である第1の層を含むことが好ましい。微粒子の分散度が10%以上であると、密着力がより向上する。また、微粒子の分散度が100%以下であると、微粒子の多い箇所の強度低下が抑えられ、微粒子の少ない箇所の高強度と相俟ってフィルム全体の強度が向上し、密着力がより向上する。
微粒子の分散度としては、20%以上90%以下がより好ましく、更に好ましくは25%以上85%以下である。
From the above points, the polyester film constituting the white polyester film of the present invention preferably includes a first layer having a fine particle dispersity of 10% or more and 100% or less. When the degree of dispersion of the fine particles is 10% or more, the adhesion is further improved. In addition, when the degree of dispersion of the fine particles is 100% or less, the strength reduction of the portion having a lot of fine particles is suppressed, and the strength of the whole film is improved in combination with the high strength of the portion having a small amount of fine particles, and the adhesion is further improved. To do.
The degree of dispersion of fine particles is more preferably 20% or more and 90% or less, and further preferably 25% or more and 85% or less.

第1の層中の微粒子の分散度は、以下のようにして付与することができる。
押出機に原材料を投入し、押出機のバレルとスクリュとの間で溶融混練したメルトをダイから押出し、このメルトをチルロール上で冷却固化して製膜するに際して、スクリュのトルクに変動を与えることで、微粒子の分散度を上記範囲に調整できる。原材料としては、樹脂ペレット(主としてポリエステルペレット)及び微粒子、又は微粒子が分散された樹脂ペレット(例えばポリエステルを含むマスターペレット)が用いられる。
スクリュのトルクには、0.5%以上20%以下の変動、より好ましくは1%以上15%以下の変動、更に好ましくは1.5%以上10%以下の変動を与えることが好ましい。
ここで、トルクの変動とは、1分間計測したトルクの最大値と最小値の差を、トルクの平均値で除算した値である。
The degree of dispersion of the fine particles in the first layer can be imparted as follows.
Feeding raw materials into the extruder, extruding the melt melted and kneaded between the barrel and screw of the extruder from the die, cooling and solidifying this melt on a chill roll, and changing the torque of the screw Thus, the degree of dispersion of the fine particles can be adjusted to the above range. As raw materials, resin pellets (mainly polyester pellets) and fine particles, or resin pellets in which fine particles are dispersed (for example, master pellets containing polyester) are used.
The screw torque is preferably given a fluctuation of 0.5% to 20%, more preferably a fluctuation of 1% to 15%, and still more preferably a fluctuation of 1.5% to 10%.
Here, the torque fluctuation is a value obtained by dividing the difference between the maximum value and the minimum value of the torque measured for one minute by the average value of the torque.

微粒子の分散度は、いわば分散の不均一性のことであり、押出機内で樹脂を溶融混練する程度を低下させることで達成することができる。溶融混練の程度の低下は、バレルとスクリュとの間の樹脂の充満の程度を低下させる、すなわちバレルとスクリュとの間に隙間を作ることで達成される。溶融混練時は、一般に樹脂とスクリュ及びバレルとの間の摩擦で混練されるが、バレルとスクリュとの間に隙間が発生すると、摩擦が低下して混練の程度が低下する。
本発明においては、スクリュのトルクに変動を与えることで、押出機でのペレットの食い込みが不安定になり、バレルとスクリュとの間に隙間が発生する。トルクの変動は、スクリュを動かすモータの電流値を変動させることで達成される。
トルクの変動周期としては、スクリュ1回転に要する時間の1/10〜10倍が好ましい。
The degree of dispersion of the fine particles is so-called non-uniformity of dispersion, and can be achieved by reducing the degree of melt-kneading the resin in the extruder. The reduction in the degree of melt kneading is achieved by reducing the degree of resin filling between the barrel and the screw, that is, by creating a gap between the barrel and the screw. At the time of melt-kneading, kneading is generally carried out by friction between the resin and the screw and the barrel. However, if a gap is generated between the barrel and the screw, the friction is lowered and the degree of kneading is lowered.
In the present invention, by giving fluctuations to the torque of the screw, the bite of the pellet in the extruder becomes unstable, and a gap is generated between the barrel and the screw. Torque variation is achieved by varying the current value of the motor that moves the screw.
The torque fluctuation period is preferably 1/10 to 10 times the time required for one screw rotation.

(微粒子)
微粒子としては、無機微粒子及び有機微粒子が挙げられる。微粒子は、特に制限されるものではないが、1種単独で又は2種以上を組み合わせて用いることができる。
無機微粒子としては、例えば、炭酸亜鉛、炭酸カルシウム、炭酸マグネシウム、酸化チタン、酸化マグネシウム、酸化亜鉛、シリカ、タルク、カオリン、フッ化リチウム、フッ化カルシウム、硫酸バリウム、硫化亜鉛、アルミナ、リン酸カルシウム、マイカ等を挙げることができる。また、有機微粒子としては、例えば、ポリスチレン、ポリメチルスチレン、ポリメトキシスチレン、ポリエチレン、ポリプロピレン、ポリメタクリレート、ポリメチルメタクリレート、架橋ポリジビニルベンゼン粒子、架橋ポリスチレン粒子、架橋ポリエステル粒子、架橋ポリイミド粒子、架橋ポリエーテルスルフォン粒子、シリコーン粒子等を用いることができる。
(Fine particles)
Examples of the fine particles include inorganic fine particles and organic fine particles. The fine particles are not particularly limited, but can be used singly or in combination of two or more.
Examples of the inorganic fine particles include zinc carbonate, calcium carbonate, magnesium carbonate, titanium oxide, magnesium oxide, zinc oxide, silica, talc, kaolin, lithium fluoride, calcium fluoride, barium sulfate, zinc sulfide, alumina, calcium phosphate, mica. Etc. Examples of the organic fine particles include polystyrene, polymethylstyrene, polymethoxystyrene, polyethylene, polypropylene, polymethacrylate, polymethyl methacrylate, crosslinked polydivinylbenzene particles, crosslinked polystyrene particles, crosslinked polyester particles, crosslinked polyimide particles, and crosslinked polycrystals. Ether sulfone particles, silicone particles and the like can be used.

ポリエステルフィルムの白色度やその色目等の点から、無機微粒子が好ましく、中でも酸化チタン、炭酸カルシウム、硫酸バリウム等が好ましく、特に酸化チタンがより好ましい。酸化チタンは、製法等が種々開示されており、詳細には、例えば化学大辞典(共立出版(株))等に説明されているルチル型、アナターゼ型の微粒子を用いることができる。中でも、白色度や分散性、隠蔽性等から好適なものを使用することが好ましい。また、微粒子は、多孔質や中空多孔質等の形態であってもよく、更には、ポリエステルに対する分散性を良化するため、有機酸やその塩、官能基をもつポリマー、無機酸等で表面処理が施されていてもよい。また、微粒子と共に分散剤を併用すると粒子の凝集が防げ、耐スクラッチ性がより良好となるので望ましい。   From the viewpoints of the whiteness of the polyester film and its color, inorganic fine particles are preferable. Among these, titanium oxide, calcium carbonate, barium sulfate and the like are preferable, and titanium oxide is more preferable. Various production methods and the like of titanium oxide are disclosed. For example, rutile type and anatase type fine particles described in, for example, Chemical Dictionary (Kyoritsu Shuppan Co., Ltd.) can be used. Among them, it is preferable to use a material suitable for whiteness, dispersibility, concealment and the like. The fine particles may be in the form of a porous or hollow porous material. Further, in order to improve the dispersibility with respect to polyester, the surface is made of an organic acid, a salt thereof, a polymer having a functional group, an inorganic acid, or the like. Processing may be performed. In addition, it is desirable to use a dispersing agent together with the fine particles because the aggregation of the particles can be prevented and the scratch resistance becomes better.

微粒子の平均粒子径は、有機微粒子又は無機微粒子のいずれにおいても、0.1μm以上10μm以下の範囲が好ましく、0.2μm以上5μm以下の範囲がより好ましく、さらに好ましくは0.3μm以上2μm以下である。平均粒子径が上記の範囲内であると、光の反射率に優れる。   The average particle diameter of the fine particles is preferably in the range of 0.1 μm to 10 μm, more preferably in the range of 0.2 μm to 5 μm, and even more preferably in the range of 0.3 μm to 2 μm in both organic fine particles and inorganic fine particles. is there. When the average particle diameter is within the above range, the light reflectance is excellent.

微粒子を加える方法としては、特に制限はないが、例えば微粒子をポリエステルに混練してマスターペレットとした後、このマスターペレットを押出機に投入し、溶融混練し製膜するようにしてもよい。また、微粒子の粉体を直接押出機に投入してもよい。   The method for adding the fine particles is not particularly limited. For example, after the fine particles are kneaded with polyester to form a master pellet, the master pellet may be put into an extruder and melt-kneaded to form a film. Further, fine particle powder may be directly fed into an extruder.

白色ポリエステルフィルムは、ボイド(気泡)により白色化されていてもよい。ポリエステルとボイドの界面で電場を分散させることで、部分放電電圧を上昇させることができる。ボイドの形成方法は、特に制限はないが、例えば、ポリエステル樹脂の親和性の低い無機微粒子、非相溶樹脂又は不活性ガスをポリエステル樹脂に含有させて延伸することで形成することができる。中でも、非相溶樹脂をポリエステル樹脂に混合し、押出した原反を延伸することで、好適にボイドを形成することができる。   The white polyester film may be whitened by voids (bubbles). The partial discharge voltage can be increased by dispersing the electric field at the interface between the polyester and the void. Although there is no restriction | limiting in particular in the formation method of a void, For example, it can form by making the polyester resin contain the inorganic fine particle, incompatible resin, or inert gas with low affinity of polyester resin, and extending | stretching. Especially, a void can be formed suitably by mixing incompatible resin with a polyester resin and extending | stretching the extruded raw material.

本発明では、ポリエステルに非相溶樹脂が粒子状に微分散し、かつ多数含有していることが好ましい。非相溶樹脂は、ポリエステルに非相溶の熱可塑性樹脂が好適であり、ポリエステルに非相溶性のものであれば特に制限されるものではない。具体的には、非相溶樹脂の例としては、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリアクリル系樹脂、ポリカーボネート樹脂、ポリスルホン系樹脂、セルロース系樹脂などが挙げられる。特にポリスチレン系樹脂あるいはポリメチルペンテン、ポリプロピレンなどのポリオレフィン系樹脂が好適である。   In the present invention, it is preferable that the incompatible resin is finely dispersed in a particulate form in the polyester and contained in large numbers. The incompatible resin is preferably a thermoplastic resin that is incompatible with polyester, and is not particularly limited as long as it is incompatible with polyester. Specifically, examples of incompatible resins include polystyrene resins, polyolefin resins, polyacrylic resins, polycarbonate resins, polysulfone resins, and cellulose resins. In particular, polystyrene resins or polyolefin resins such as polymethylpentene and polypropylene are suitable.

非相溶樹脂のポリエステルに対する混合量は、目的とするボイド(気泡)の量によって異なってくるが、フィルム全体に対して3質量%〜20質量%の範囲が好ましく、更には5質量%〜18質量%の範囲がより好ましい。非相溶樹脂の混合量が3質量%以上であると、ボイドの生成量に限界がある。また、非相溶樹脂の混合量が20質量%以下であると、耐熱性や強度、腰の強さを損なうことがない。   The mixing amount of the incompatible resin with respect to the polyester varies depending on the desired amount of voids (bubbles), but is preferably in the range of 3% by mass to 20% by mass, and more preferably 5% by mass to 18% with respect to the entire film. A range of mass% is more preferred. When the mixing amount of the incompatible resin is 3% by mass or more, there is a limit to the amount of voids generated. Further, when the mixing amount of the incompatible resin is 20% by mass or less, heat resistance, strength, and waist strength are not impaired.

第1の層の厚みとしては、5μm以上80μm以下の範囲が好ましい。
第1の層の厚みが5μm以上であると、反射率がより高く、太陽電池での発電効率をより向上させることができる。また、第1の層の厚みが80μm以下であると、第1の層上に後述する第2の層を積層した場合の効果がより高くなる。つまり、第2の層は光や熱に対する耐候性を維持するが、第1の層が厚くなり過ぎない範囲であることで、第1の層が劣化した場合に第2の層が強度を保持し得、密着性を長期に亘り良好に維持することができる。
第1の層の厚みとしては、10μm以上70μm以下が好ましく、さらに好ましくは15μm以上65μm以下である。
The thickness of the first layer is preferably in the range of 5 μm to 80 μm.
When the thickness of the first layer is 5 μm or more, the reflectance is higher and the power generation efficiency in the solar cell can be further improved. Moreover, the effect at the time of laminating | stacking the 2nd layer mentioned later on a 1st layer as the thickness of a 1st layer is 80 micrometers or less becomes higher. In other words, the second layer maintains weather resistance to light and heat, but the first layer is in a range that does not become too thick, so that the second layer retains strength when the first layer deteriorates. In addition, the adhesion can be maintained well over a long period of time.
The thickness of the first layer is preferably 10 μm or more and 70 μm or less, and more preferably 15 μm or more and 65 μm or less.

第1の層の厚みは、溶融樹脂を製膜する場合に、例えば下記の方法で調節することができる。
(1)樹脂の押出し量を調節することで、所望とする厚みに調整する。例えば押出量を上げると、膜厚を厚くすることができる。
(2)キャストドラムの周速を調整することで、所望とする厚みに調整する。例えば、押出機から押出された溶融樹脂(メルト)をキャストドラム上で固化する際に、ドラムの周速を遅くすることで、膜厚を厚くすることができる。
When the molten resin is formed into a film, the thickness of the first layer can be adjusted, for example, by the following method.
(1) It adjusts to desired thickness by adjusting the extrusion amount of resin. For example, when the amount of extrusion is increased, the film thickness can be increased.
(2) The thickness is adjusted to a desired thickness by adjusting the peripheral speed of the cast drum. For example, when the molten resin (melt) extruded from the extruder is solidified on a cast drum, the film thickness can be increased by reducing the peripheral speed of the drum.

このとき、第1の層の厚み分布としては、1%以上20%以下の範囲が好ましい。
第1の層に厚み分布が存在することで、隣接層(例えば後述する第2の層)との間の境界長が長くなる。結果、界面での微粒子の分布付与による効果が発現し易くなり、密着力がより効果的に向上する。
厚み分布が1%以上であると、界面での微粒子の分布付与による効果が現れやすく、密着力が向上する。また、厚み分布が20%以下であると、第1の層の一部が厚くなり過ぎることがない。結果、相対的に隣接層(例えば後述する第2の層)の厚みが低下するのを防ぐことができることになり、部分的な応力集中や剥離応力での破壊が生じ難く、密着力がより優れたものとなる。
第1の層の厚みの分布としては、2%以上18%以下がより好ましく、さらに好ましくは3%以上15%以下である。
At this time, the thickness distribution of the first layer is preferably in the range of 1% to 20%.
The presence of the thickness distribution in the first layer increases the boundary length between adjacent layers (for example, a second layer described later). As a result, the effect due to the distribution of fine particles at the interface is easily exhibited, and the adhesion is more effectively improved.
When the thickness distribution is 1% or more, the effect due to the distribution of fine particles at the interface tends to appear, and the adhesion is improved. Further, when the thickness distribution is 20% or less, a part of the first layer does not become too thick. As a result, it is possible to prevent the thickness of the adjacent layer (for example, a second layer described later) from decreasing relatively, and it is difficult for partial stress concentration or peeling stress to break, resulting in better adhesion. It will be.
The thickness distribution of the first layer is more preferably 2% or more and 18% or less, and further preferably 3% or more and 15% or less.

第1の層の厚み及び厚み分布は、以下の方法で求められる。
第1の層の厚み分布は、ポリエステルフィルムをMDに沿って2cm間隔で10点の1cm長サンプルを作成し、各サンプルの断面を走査型電子顕微鏡(SEM)で観察し、各点の第1の層の厚みを測定する。測定値のうち、最大値と最小値との差を求め、この差を測定値の平均値で除算した値を百分率で示し、MDの厚み分布とする。また、TDについても、ポリエステルフィルムをTDに沿って2cm間隔で10点の1cm長サンプルを作成し、MDと同様にして測定し、TDの厚み分布を求める。
そして、得られたMDの厚み分布とTDの厚み分布との平均を求め、第1の層の厚み分布とする。
また、第1の層におけるMDの平均厚みとTDの平均厚みとを平均し、この平均値を第1の層の厚みとする。
The thickness and thickness distribution of the first layer are determined by the following method.
The thickness distribution of the first layer is as follows. A 1 cm long sample of 10 points is made at 2 cm intervals along the MD of the polyester film, and the cross section of each sample is observed with a scanning electron microscope (SEM). The thickness of the layer is measured. Among the measured values, the difference between the maximum value and the minimum value is obtained, and the value obtained by dividing the difference by the average value of the measured values is shown as a percentage, and is defined as the MD thickness distribution. As for TD, 10 cm 1 cm long samples are prepared at intervals of 2 cm along the TD and measured in the same manner as in MD to obtain the TD thickness distribution.
And the average of thickness distribution of obtained MD and thickness distribution of TD is calculated | required, and it is set as the thickness distribution of a 1st layer.
Moreover, the average thickness of MD in the 1st layer and the average thickness of TD are averaged, and let this average value be the thickness of a 1st layer.

溶融樹脂(メルト)をダイの内部で積層するが、その際にメルトの粘性に変動を付与することで、ダイ内の流動性に差が発生し、厚み分布が形成される。
メルトの粘性に変動を与えるには、ダイに設置したヒーターの出力に変調を与えることで達成される。このとき、ダイの温度変動が0.5℃以上10℃以下になるようにヒーター出力を変調することが好ましい。ダイの温度変動は、0.7℃以上8℃以下がより好ましく、さらに好ましくは1℃以上5℃以下である。
また、温度変調の周期としては、0.05秒以上1秒以下が好ましく、より好ましくは0.1秒以上0.8秒以下であり、さらに好ましくは0.2秒以上0.7秒以下である。
Molten resin (melt) is laminated inside the die. At that time, by varying the melt viscosity, a difference occurs in the fluidity in the die, and a thickness distribution is formed.
The fluctuation of the melt viscosity is achieved by modulating the output of the heater installed in the die. At this time, it is preferable to modulate the heater output so that the temperature fluctuation of the die is 0.5 ° C. or more and 10 ° C. or less. The temperature fluctuation of the die is more preferably 0.7 ° C. or more and 8 ° C. or less, and further preferably 1 ° C. or more and 5 ° C. or less.
Further, the period of temperature modulation is preferably 0.05 seconds or more and 1 second or less, more preferably 0.1 seconds or more and 0.8 seconds or less, and further preferably 0.2 seconds or more and 0.7 seconds or less. is there.

上記の第1の層を有する場合、白色ポリエステルフィルムを構成するポリエステルフィルムの総厚としては、40μm以上350μm以下であることが好ましい。
総厚が40μm以上であると、光の反射効率により優れる。また、総厚が350μm以下であると、密着性により優れたものとなる。これは、次の理由によるものである。すなわち、太陽電池に白色ポリエステルフィルムを積層した後、剥離させて密着性を評価する場合、白色ポリエステルフィルムは通常U字状に曲げながら剥離されるため、U字部の内周側と外周側とで周長差が生じ、結果、フィルム内に歪みが発生する。この内周と外周との差はフィルムが厚いほど大きく、歪みによるフィルム内の凝集破壊による密着不良を招きやすいため、総厚は350μm以下が好ましい。
総厚としては、45μm以上330μm以下がより好ましく、さらに好ましくは50μm以上300μm以下である。
When it has said 1st layer, it is preferable that it is 40 micrometers or more and 350 micrometers or less as total thickness of the polyester film which comprises a white polyester film.
When the total thickness is 40 μm or more, the light reflection efficiency is excellent. Further, when the total thickness is 350 μm or less, the adhesiveness is more excellent. This is due to the following reason. That is, after laminating a white polyester film on a solar cell and peeling it to evaluate adhesion, the white polyester film is usually peeled while being bent in a U shape, so that the inner and outer sides of the U-shaped part In this case, a difference in circumference occurs, and as a result, distortion occurs in the film. The difference between the inner periphery and the outer periphery is larger as the film is thicker, and adhesion failure due to cohesive failure in the film due to distortion tends to be caused. Therefore, the total thickness is preferably 350 μm or less.
The total thickness is more preferably 45 μm or more and 330 μm or less, and still more preferably 50 μm or more and 300 μm or less.

第1の層の総厚は、溶融樹脂を製膜する場合に、既述のように例えば第1の層の厚みを調節する方法と同様にして調節することができる。   When the molten resin is formed into a film, the total thickness of the first layer can be adjusted, for example, in the same manner as the method of adjusting the thickness of the first layer as described above.

〜第2の層〜
本発明の白色ポリエステルフィルムを構成するポリエステルフィルムは、既述の第1の層に加え、更に、ポリエステルの質量に対して0.06質量%以上10質量%以下の微粒子を含み、かつ微粒子の分散度が10%以上100%以下である第2の層の少なくとも1層を含む態様が好ましい。
~ Second layer ~
The polyester film constituting the white polyester film of the present invention contains 0.06% by mass or more and 10% by mass or less of fine particles in addition to the first layer described above, and the dispersion of fine particles. The aspect containing at least 1 layer of the 2nd layer whose degree is 10% or more and 100% or less is preferable.

本発明の白色ポリエステルフィルムを構成するポリエステルフィルムは、既述の第1の層に加え、さらに第2の層を設けた態様に構成されることで、微粒子の分散度を所定の範囲にすることによる効果が助長され、長期間光や熱等に曝された際の密着性がより一層改善される。これは、以下の機構によるものと推定される。
つまり、第1の層と第2の層との界面では、微粒子の含有濃度が異なり、この界面において微粒子の分散状態が形成されており、既述したように、隣接層との間で密着性の向上効果が奏される。
The polyester film constituting the white polyester film of the present invention is configured in a mode in which a second layer is further provided in addition to the first layer described above, so that the degree of dispersion of fine particles is within a predetermined range. The effect by this is promoted, and the adhesion when exposed to light, heat, etc. for a long time is further improved. This is presumed to be due to the following mechanism.
That is, the concentration of fine particles is different at the interface between the first layer and the second layer, and a dispersed state of the fine particles is formed at this interface. The improvement effect is exhibited.

第2の層は、第1の層上に少なくとも1層設けられていることが好ましい。第2の層は、第1の層の片面に設けてもよく、両面に設けてもよい。本発明の白色ポリエステルフィルムを構成するポリエステルフィルムは、第1の層及び第2の層が積層され、さらに第1の層又は第2の層の表面、あるいは第1の層及び第2の層の両方の表面に易接着層が積層された構造を有している態様が好ましい。更には、第1の層及び第2の層を含み、第1の層と、第2の層と、易接着層と、がこの順に積層された構造を有している態様が好ましい。
第2の層の層数としては、1層以上5層以下が好ましく、より好ましくは1層以上3層以下であり、さらに好ましくは1層以上2層以下である。多層構造の層数が上記の範囲であることで、効果が飽和せずに層数に見合う効果が期待でき、設備が大型化することもない。
It is preferable that at least one second layer is provided on the first layer. The second layer may be provided on one side of the first layer or on both sides. As for the polyester film which comprises the white polyester film of this invention, 1st layer and 2nd layer are laminated | stacked, and also the surface of 1st layer or 2nd layer, or 1st layer and 2nd layer An embodiment having a structure in which an easy adhesion layer is laminated on both surfaces is preferable. Furthermore, the aspect which has the structure where the 1st layer, the 2nd layer, and the easily bonding layer were laminated | stacked in this order including the 1st layer and the 2nd layer is preferable.
The number of second layers is preferably 1 or more and 5 or less, more preferably 1 or more and 3 or less, and still more preferably 1 or more and 2 or less. When the number of layers of the multilayer structure is in the above range, an effect commensurate with the number of layers can be expected without saturating the effect, and the equipment is not enlarged.

第2の層は、複数層を共押出することができる押出機を用い、押出された溶融樹脂をマルチマニホルドダイ、フィードブロックダイ等に導入して積層することで形成することができる。第2の層が複数層ある場合、各層の組成は同じでもよく異なっていてもよい。   The second layer can be formed by using an extruder capable of co-extrusion of a plurality of layers and introducing and laminating the extruded molten resin into a multi-manifold die, a feed block die or the like. When there are a plurality of second layers, the composition of each layer may be the same or different.

第2の層は、微粒子の含有量がポリエステルの質量に対して0.06質量%以上10質量%以下の範囲であり、既述の第1の層における微粒子の含有量と異なっていることが好ましい。第2の層中の微粒子濃度が第1の層中の微粒子含量と異なることで、第1の層との界面における密着力をより一層向上させることができる。
また、第2の層中の微粒子濃度が第1の層中の微粒子濃度より低いことで、第1の層が劣化した場合でも第2の層が強度を保つ効果を奏するので、第2の層の光や熱に対する耐候性がより向上する。結果、剥離応力で第1の層が破壊しかけても、第2の層が凝集破壊を抑制し、密着力が向上させる。
In the second layer, the content of the fine particles is in the range of 0.06% by mass to 10% by mass with respect to the mass of the polyester, and is different from the content of the fine particles in the first layer described above. preferable. When the fine particle concentration in the second layer is different from the fine particle content in the first layer, the adhesion at the interface with the first layer can be further improved.
In addition, since the fine particle concentration in the second layer is lower than the fine particle concentration in the first layer, the second layer has an effect of maintaining the strength even when the first layer is deteriorated. The weather resistance to light and heat is further improved. As a result, even if the first layer is about to break due to peeling stress, the second layer suppresses cohesive failure and improves adhesion.

さらに第2の層においても、第1の層と同様に微粒子の分散度が付与されていることで、第1の層と同様の効果を得ることができる。すなわち、第1の層と同様の作用機構により、密着が改善される。この効果は、第2の層と第1の層とを積層することで、相乗的に密着力が向上するうえ、光の反射効率も向上する。したがって、第1の層から漏れた光を第2の層で反射して第1の層に戻すことで、反射効率が高まり、発電効率の向上に寄与する。   Further, in the second layer, the same effect as that of the first layer can be obtained by providing the fine particle dispersity in the same manner as in the first layer. That is, adhesion is improved by the same action mechanism as that of the first layer. This effect is that, by laminating the second layer and the first layer, the adhesive force is synergistically improved, and the light reflection efficiency is also improved. Therefore, the light leaked from the first layer is reflected by the second layer and returned to the first layer, thereby increasing the reflection efficiency and contributing to the improvement of the power generation efficiency.

第2の層における微粒子の分散度は、既述の第1の層における微粒子の分散度と同義であり、分散度の好ましい範囲も同様である。すなわち、
微粒子の分散度が10%以上であると、密着力がより向上する。また、微粒子の分散度が100%以下であると、微粒子の多い箇所の強度低下が抑えられ、微粒子の少ない箇所の高強度と相俟ってフィルム全体の強度が向上し、密着力がより向上する。
微粒子の分散度としては、20%以上90%以下がより好ましく、更に好ましくは25%以上85%以下である。
The dispersion degree of the fine particles in the second layer is synonymous with the dispersion degree of the fine particles in the first layer, and the preferable range of the dispersion degree is also the same. That is,
When the degree of dispersion of the fine particles is 10% or more, the adhesion is further improved. In addition, when the degree of dispersion of the fine particles is 100% or less, the strength reduction of the portion having a lot of fine particles is suppressed, and the strength of the whole film is improved in combination with the high strength of the portion having a small amount of fine particles, and the adhesion is further improved. To do.
The degree of dispersion of fine particles is more preferably 20% or more and 90% or less, and further preferably 25% or more and 85% or less.

第2の層中の微粒子の分散度の測定は、既述の第1の層中の微粒子の分散度の測定方法と同様にして行なえる。
また、第2の層中の微粒子の分散度は、第1の層における場合と同様、分散の不均一性のことであり、押出機内で樹脂を溶融混練する程度を低下させることで達成することができる。詳細な達成方法については、第1の層における場合と同様である。
The degree of dispersion of the fine particles in the second layer can be measured in the same manner as the method for measuring the degree of dispersion of the fine particles in the first layer.
Further, the degree of dispersion of the fine particles in the second layer is the dispersion non-uniformity as in the case of the first layer, and is achieved by reducing the degree of melt kneading of the resin in the extruder. Can do. The detailed achievement method is the same as that in the first layer.

第2の層における微粒子の含有量が0.06質量%以上であると、光の反射率がより良好になり、発電効率が向上する。また、微粒子の含有量が10質量%以下であると、耐候性に優れ、既述の第1の層が劣化した場合でも第2の層が強度を維持する効果が奏され、密着性をより長期に亘り保つことができる。
微粒子の含有量としては、ポリエステルの質量に対して、0.1質量%以上5質量%以下が好ましく、より好ましくは0.2質量%以上2質量%以下である。
When the content of the fine particles in the second layer is 0.06% by mass or more, the reflectance of light becomes better, and the power generation efficiency is improved. Further, when the content of the fine particles is 10% by mass or less, the weather resistance is excellent, and even when the first layer described above is deteriorated, the effect of maintaining the strength of the second layer is exerted, and the adhesion is further improved. It can be maintained for a long time.
As content of microparticles | fine-particles, 0.1 mass% or more and 5 mass% or less are preferable with respect to the mass of polyester, More preferably, they are 0.2 mass% or more and 2 mass% or less.

第2の層中の微粒子の含有量の測定は、以下のようにして行なえる。
微粒子の含有率は、第1の層と同様に、ポリエステルフィルムの焼成前後の重さを精秤することで算出することができる。具体的には、ポリエステルフィルムの第2の層を削り落として坩堝に入れ、精秤する(Xg)。次いで、坩堝に入れた第2の層を空気中、800℃、3時間の条件で焼成する。焼成後、室温に一晩放置した後、重さを秤量する(Yg)。
無機微粒子の含有率(質量%)は、100×Y/Xにて算出される。
なお、第2の層が複数層ある場合は、上記方法で各層について測定する。
The measurement of the content of fine particles in the second layer can be performed as follows.
Similar to the first layer, the content of the fine particles can be calculated by accurately weighing the weight of the polyester film before and after firing. Specifically, the second layer of the polyester film is scraped off and placed in a crucible and precisely weighed (Xg). Next, the second layer placed in the crucible is fired in air at 800 ° C. for 3 hours. After firing, the sample is allowed to stand at room temperature overnight and then weighed (Yg).
The content (% by mass) of the inorganic fine particles is calculated as 100 × Y / X.
In addition, when there are a plurality of second layers, each layer is measured by the above method.

微粒子を第2の層に加える方法としては、特に制限はないが、共押出の際に第2の層を形成するポリエステル中に微粒子を添加すればよい。例えば微粒子をポリエステルに混練してマスターペレットとした後、このマスターペレットを押出機に投入し、溶融混練し製膜するようにしてもよい。また、微粒子の粉体を直接押出機に投入してもよい。   The method for adding the fine particles to the second layer is not particularly limited, but the fine particles may be added to the polyester that forms the second layer during coextrusion. For example, fine particles may be kneaded with polyester to form a master pellet, and then the master pellet may be put into an extruder, melt-kneaded to form a film. Further, fine particle powder may be directly fed into an extruder.

第2の層を有する場合、第2の層の厚みは、白色ポリエステルフィルムを構成するポリエステルフィルムの総厚の40%以上95%以下が好ましく、より好ましくは45%以上90%以下、さらに好ましくは50%以上85%以下である。
第2の層の厚みが40%以上であると、第2の層を設けることによる密着改善効果がより一層奏される。また、第2の層の厚みが95%以下であると、光反射率により優れたものとなる。
In the case of having the second layer, the thickness of the second layer is preferably 40% or more and 95% or less, more preferably 45% or more and 90% or less, more preferably the total thickness of the polyester film constituting the white polyester film. It is 50% or more and 85% or less.
When the thickness of the second layer is 40% or more, the adhesion improving effect by providing the second layer is further exhibited. Further, when the thickness of the second layer is 95% or less, the light reflectance is more excellent.

本発明の白色ポリエステルフィルムは、温度120℃、湿度100%RHの環境条件下に60時間曝された際の破断伸度半減時間としては、70時間以上200時間以下であることが好ましい。
破断伸度半減時間が70時間以上であると、密着性の向上に有利であると共に、裁断屑の発生が抑えられる。また、破断伸度半減時間が200時間以下であると、ポリエステル分子の運動性が保たれて脆化が抑制され、結果、裁断時の割れが生じ難く、裁断屑の発生も抑えられる。
破断伸度半減時間としては、80時間以上170時間以下がより好ましく、さらに好ましくは90時間以上150時間以下である。
The white elongation at break of the white polyester film of the present invention when exposed to environmental conditions of a temperature of 120 ° C. and a humidity of 100% RH for 60 hours is preferably from 70 hours to 200 hours.
When the rupture elongation half time is 70 hours or more, it is advantageous for improving the adhesion and the generation of cutting waste is suppressed. Moreover, when the elongation at break half time is 200 hours or less, the mobility of the polyester molecules is maintained, embrittlement is suppressed, and as a result, cracking during cutting is less likely to occur, and generation of cutting waste is also suppressed.
The breaking elongation half time is more preferably 80 hours or more and 170 hours or less, and further preferably 90 hours or more and 150 hours or less.

破断伸度半減時間が上記範囲内であると、下記(a)の効果に加え、予測し得ない特異な効果として(b)の効果が奏される。
(a)密着改善効果
温度120℃、湿度100%RHの環境条件下で湿熱処理を施した場合、ポリエステルは加水分解して分子量が低下し、分子量の低下に伴ってポリエステルは脆化し、剥離応力が加えられたときにはポリエステル内で凝集破壊が発生し、密着力は低下する。破断伸度半減時間が上記範囲内であることで、ポリエステルの加水分解が抑制され、湿熱経時した後の密着力が向上する。
(b)裁断屑低減
微粒子の含有により切削時に裁断屑が発生しやすく、特に本発明のように微粒子に濃度分布がある場合には、微粒子濃度の高い箇所で裁断屑が発生し易い。破断伸度半減時間が上記範囲内であることで、裁断屑が低減される。これは、以下の機構によるものと推察される。すなわち、
破断伸度半減時間が上記のように長い(通常30〜50時間)ポリエステル、すなわち加水分解し難いポリエステルは、ポリエステル分子の運動性を抑制することにより得られる。運動性の低下により水との反応性が抑制されることになり、運動性の低いポリエステルは、フィルム中を移動し難く、ポリエステルフィルムの変形(クリープ)が抑制されることになる。裁断屑は、微粒子とポリエステルとの界面に裁断応力が集中し、ポリエステルが変形(伸張)して切断されることで発生する。したがって、ポリエステルの加水分解性を上げて運動性の低下を図ることで、裁断屑は低下する。
When the breaking elongation half time is within the above range, in addition to the effect (a) below, the effect (b) is exhibited as a unique effect that cannot be predicted.
(A) Adhesion improvement effect When wet heat treatment is performed under the environmental conditions of a temperature of 120 ° C. and a humidity of 100% RH, the polyester is hydrolyzed to lower the molecular weight. When is added, cohesive failure occurs in the polyester, and the adhesion is reduced. When the breaking elongation half time is within the above range, hydrolysis of the polyester is suppressed, and the adhesion strength after wet heat aging is improved.
(B) Cutting waste reduction Cutting fines are likely to be generated during cutting due to the inclusion of fine particles, and particularly when there is a concentration distribution in the fine particles as in the present invention, cutting waste is likely to be generated at a location where the fine particle concentration is high. Cutting scraps are reduced when the half elongation at break is within the above range. This is presumably due to the following mechanism. That is,
Polyesters having a long half elongation at break as described above (usually 30 to 50 hours), that is, polyesters that are difficult to hydrolyze, can be obtained by suppressing the mobility of polyester molecules. Reactivity with water is suppressed due to the decrease in mobility, and polyester with low mobility is difficult to move through the film, and deformation (creep) of the polyester film is suppressed. Cutting waste is generated when cutting stress concentrates on the interface between the fine particles and the polyester, and the polyester is deformed (stretched) and cut. Therefore, cutting waste is reduced by increasing the hydrolyzability of the polyester to reduce the mobility.

破断伸度半減時間の測定は、以下に示す方法で行なえる。
サンプルフィルムを120℃100%の中に50時間、60時間、70時間と10時間ずつ増やしながら、下記の方法で破断伸度保持率が10%になるまで測定する。サーモ処理した時間を横軸にとり、破断伸度保持率を縦軸にとってプロットし、破断伸度保持率が50%となる時間を内挿して求める。破断伸度保持率は、サーモ処理前の破断伸度(S0)と、一定時間サーモ処理した後の破断伸度(St)と、から下記式にしたがって求められる。
破断伸度保持率(%)=100×(St)/(S0)
The measurement of the elongation at break half time can be performed by the following method.
While increasing the sample film in 100% at 120 ° C. for 50 hours, 60 hours, 70 hours and 10 hours, the measurement is performed until the breaking elongation retention rate becomes 10% by the following method. The time for the thermo treatment is plotted on the horizontal axis and the breaking elongation retention is plotted on the vertical axis, and the time at which the breaking elongation retention is 50% is interpolated. The breaking elongation retention is determined according to the following formula from the breaking elongation (S0) before the thermo treatment and the breaking elongation (St) after the thermo treatment for a certain time.
Breaking elongation retention rate (%) = 100 × (St) / (S0)

通常、ポリエステルの破断伸度保持率は、固相重合等で向上させることができるが、白色ポリエステルにおいては、この方法は十分な効果が期待できない。特に、裁断屑の抑制効果は得られない。
白色ポリエステル(例えば白色PET)の場合、通常の加水分解以外に、微粒子の周辺でポリエステルが結晶化し易く、かつ高温高湿下でこれが促進される。そのため、ポリエステルは一層脆くなり易く、破断伸度保持率が低下し易い。白色ポリエステルを製膜する際に結晶核となる球晶の発生を抑制することで、微粒子周辺での結晶形成を抑制でき、破断伸度保持率を向上させ易い。ポリエステルの製膜工程の中では、縦延伸で球晶が最も形成され易く、延伸後に急冷し球晶を形成する温度域を速やかに冷却することで達成できる。すなわち、縦延伸後の冷却速度を5℃/秒以上100℃/秒以下にするのが好ましい。
冷却速度は、10℃/秒以上90℃/秒以下がより好ましく、15℃/秒以上80℃/秒以下がさらに好ましい。冷却速度が5℃/秒以上であると、微粒子周囲に結晶が生成し難く、裁断屑の発生が抑えられる。また、冷却速度が100℃/秒以下であると、急冷に伴うポリエステルフィルム中の残留歪みが小さくなり、裁断時に残留歪みを起点に発生する割れが抑えられ、裁断屑の発生も抑制される。
縦延伸後に所定の冷却速度で冷却する方法は、ポリエステルフィルムを冷却ロールに接触させたり、冷風を吹き当てることにより行なえる。
Normally, the elongation at break of polyester can be improved by solid phase polymerization or the like, but this method cannot be expected to be sufficiently effective for white polyester. In particular, the effect of suppressing cutting waste cannot be obtained.
In the case of white polyester (for example, white PET), in addition to normal hydrolysis, the polyester is easily crystallized around fine particles, and this is promoted under high temperature and high humidity. Therefore, polyester tends to be more brittle and the elongation at break tends to decrease. By suppressing the generation of spherulites as crystal nuclei when forming a white polyester film, it is possible to suppress the formation of crystals around the fine particles and to easily improve the elongation at break. In the polyester film-forming process, spherulites are most easily formed by longitudinal stretching, and this can be achieved by rapidly cooling after stretching and rapidly cooling the temperature range in which spherulites are formed. That is, it is preferable that the cooling rate after longitudinal stretching is 5 ° C./second or more and 100 ° C./second or less.
The cooling rate is more preferably 10 ° C./second to 90 ° C./second, and further preferably 15 ° C./second to 80 ° C./second. When the cooling rate is 5 ° C./second or more, it is difficult to produce crystals around the fine particles, and generation of cutting waste is suppressed. Further, when the cooling rate is 100 ° C./second or less, the residual strain in the polyester film accompanying rapid cooling is reduced, cracks generated from the residual strain at the time of cutting are suppressed, and generation of cutting waste is also suppressed.
The method of cooling at a predetermined cooling rate after the longitudinal stretching can be performed by bringing the polyester film into contact with a cooling roll or blowing cold air.

<白色ポリエステルフィルムの製造方法>
本発明の白色ポリエステルフィルムの製造方法は、製膜途中のポリエステルフィルムの少なくとも一方面に塗布により易接着層を形成する工程と、下記の(1)及び(2)の少なくとも一方の工程と、を少なくとも有している。
(1)塗布形成された易接着層を、易接着層の面内に0.5℃以上10℃以下の温度差を付与して乾燥させる乾燥工程
(2)易接着層が形成されたポリエステルフィルムを、ポリエステルフィルムの面内に0.5℃以上10℃以下の温度差を付与して、延伸する延伸工程
<Method for producing white polyester film>
The method for producing a white polyester film of the present invention comprises a step of forming an easy-adhesion layer on at least one surface of a polyester film in the middle of film formation, and at least one of the following steps (1) and (2): Have at least.
(1) Drying step of drying the applied easy-adhesion layer by applying a temperature difference of 0.5 ° C. or more and 10 ° C. or less within the surface of the easy-adhesion layer (2) Polyester film on which the easy-adhesion layer is formed Stretching step in which a temperature difference of 0.5 ° C. or more and 10 ° C. or less is applied to the surface of the polyester film.

(易接着層の形成)
本発明の白色ポリエステルフィルムの製造方法は、製膜途中のポリエステルフィルムの少なくとも一方面に塗布により易接着層を形成する工程(以下、易接着層形成工程ともいう。)を有する。本発明では、易接着層の形成を、製膜後の延伸等の処理が完了していない製膜途中のポリエステルフィルムに対して行うことで、厚みが0.01μm以上1μm以下であり、厚み分布が1%以上30%以下である易接着層がポリエステルフィルム上に形成された白色ポリエステルフィルムが得られる。
(Formation of easy adhesion layer)
The manufacturing method of the white polyester film of this invention has the process (henceforth an easy-adhesion layer formation process) of forming an easily bonding layer by application | coating at least one surface of the polyester film in the middle of film forming. In the present invention, the easy-adhesion layer is formed on a polyester film in the middle of film formation in which processing such as stretching after film formation has not been completed, so that the thickness is 0.01 μm or more and 1 μm or less, and the thickness distribution A white polyester film in which an easy-adhesion layer having a thickness of 1% or more and 30% or less is formed on the polyester film is obtained.

製膜途中のポリエステルフィルムとは、溶融押出された溶融樹脂がフィルム状に製膜されているが、延伸処理、並びに延伸後の熱固定処理や熱緩和処理が完了していないポリエステルフィルムをいう。   The polyester film in the middle of film formation refers to a polyester film in which the melt-extruded molten resin is formed into a film, but the stretching process, the heat setting process after stretching, and the heat relaxation process are not completed.

本発明の易接着層形成工程では、特に、製膜途中のポリエステルフィルムとして、製膜後に縦延伸し横延伸を行っていないポリエステルフィルムに対して、易接着層用塗布液を塗布し乾燥させて易接着層を形成することが好ましい。これにより、易接着層が形成されたポリエステルフィルムを延伸することにより、易接着層とポリエステルフィルムとの間に界面混合が生じ、密着力をより向上させることができる。
易接着層の詳細については、既述の通りである。
In the easy-adhesion layer forming process of the present invention, in particular, as a polyester film in the middle of film formation, the easy-adhesion layer coating solution is applied and dried on a polyester film that has been longitudinally stretched and not laterally stretched after film formation. It is preferable to form an easy adhesion layer. Thereby, by extending | stretching the polyester film in which the easily bonding layer was formed, interfacial mixing arises between an easily bonding layer and a polyester film, and adhesive force can be improved more.
Details of the easy-adhesion layer are as described above.

ポリエステルフィルムの表面に易接着層を設ける方法としては、例えば、バーコート法、ロールコート法、ナイフエッジコート法、グラビアコート法、カーテンコート法等の公知の塗布技術を用いることができる。
また、易接着層の形成前に、ポリエステルフィルムの易接着層形成面に対して表面処理(火炎処理、コロナ処理、プラズマ処理、紫外線処理等)を施してもよい。
As a method of providing an easy-adhesion layer on the surface of the polyester film, for example, a known coating technique such as a bar coating method, a roll coating method, a knife edge coating method, a gravure coating method, or a curtain coating method can be used.
Moreover, you may perform surface treatment (a flame treatment, a corona treatment, a plasma treatment, an ultraviolet treatment, etc.) with respect to the easily bonding layer formation surface of a polyester film before formation of an easily bonding layer.

易接着層を形成するための塗布液(易接着層用塗布液)は、ポリエステルフィルムの用途にもよるが、アクリル系、ウレタン系、ポリエステル系、又はポリアミド系の樹脂を少なくとも含有する。樹脂の詳細は、既述の通りである。   The coating liquid for forming the easy-adhesion layer (coating liquid for easy-adhesion layer) contains at least an acrylic, urethane-based, polyester-based, or polyamide-based resin, depending on the use of the polyester film. Details of the resin are as described above.

(製膜工程)
易接着層が設けられるポリエステルフィルムは、原材料となるポリエステルを微粒子や他の樹脂などと共に混合し、押出機で溶融混練し、押出された溶融樹脂(メルト)を製膜することで得られる。
(Film forming process)
The polyester film provided with the easy-adhesion layer can be obtained by mixing polyester as a raw material together with fine particles and other resins, melting and kneading with an extruder, and forming an extruded molten resin (melt).

樹脂を溶融混練するにあたっては、予め、ポリエステル、微粒子又は非相溶樹脂を溶融混練し、高濃度に微粒子又は非相溶樹脂が分散されたマスターペレットを用意しておいてもよい。
マスターペレットの調製に用いるポリエステル樹脂は、ジオールとジカルボン酸とを常法に従い重縮合した後、ペレット状に加工して用いることが好ましい。カルボジイミドやケテンイミン化合物等の末端封止剤は、押出機に直接添加してもよいが、予めポリエステルと共に混合してマスターバッチを形成し、このマスターバッチを押出機に投入することが、押出安定性の観点から好ましい。
マスターペレット中の微粒子又は非相溶樹脂、末端封止剤の含有濃度は、フィルムでの使用濃度の1.5倍〜20倍が好ましく、より好ましくは2倍〜15倍、さらに好ましくは3倍〜10倍である。含有濃度を目的とする濃度よりも高くするのは、次工程の製膜工程で、ポリエステルペレットによって希釈されて目的濃度となるためである。
In melt-kneading the resin, a master pellet in which polyester, fine particles or incompatible resin is melt-kneaded and fine particles or incompatible resin is dispersed at a high concentration may be prepared in advance.
The polyester resin used for the preparation of the master pellet is preferably used after polycondensation of diol and dicarboxylic acid according to a conventional method and then processing into a pellet. End-capping agents such as carbodiimides and ketene imine compounds may be added directly to the extruder, but mixing with polyester in advance to form a masterbatch, and this masterbatch is put into the extruder, extrusion stability From the viewpoint of
The concentration of the fine particles or incompatible resin and end-capping agent in the master pellet is preferably 1.5 to 20 times, more preferably 2 to 15 times, and even more preferably 3 times the concentration used in the film. 10 times. The reason why the content concentration is made higher than the target concentration is that the concentration is diluted with the polyester pellets in the next film-forming step to reach the target concentration.

混練には、単軸押出機、2軸押出機、バンバリーミキサー、ブラベンダー等の各種混練機を使用できる。中でも、2軸押出機を用いることが好ましい。
混練温度は、ポリエステルの結晶融解温度(Tm)以上Tm+80℃以下が好ましく、より好ましくはTm+10〜Tm+70℃であり、さらに好ましくはTm+20〜Tm+60℃である。
混練雰囲気は、空気中、真空中、又は不活性気流中いずれでもよいが、より好ましくは真空中又は不活性気流中である。
混練時間は、1分〜20分が好ましく、より好ましくは2分〜18分であり、さらに好ましくは3分〜15分である。
混練した樹脂はストランド状に押出し、空気中あるいは水中で冷却、固化した後に裁断しペレット化する。
For kneading, various kneaders such as a single screw extruder, a twin screw extruder, a Banbury mixer, and a Brabender can be used. Among these, it is preferable to use a twin screw extruder.
The kneading temperature is preferably from the crystal melting temperature (Tm) of the polyester to Tm + 80 ° C., more preferably Tm + 10 to Tm + 70 ° C., and even more preferably Tm + 20 to Tm + 60 ° C.
The kneading atmosphere may be in air, in a vacuum, or in an inert stream, but more preferably in a vacuum or an inert stream.
The kneading time is preferably from 1 minute to 20 minutes, more preferably from 2 minutes to 18 minutes, and even more preferably from 3 minutes to 15 minutes.
The kneaded resin is extruded into strands, cooled and solidified in air or water, and then cut into pellets.

乾燥は、微粒子又は非相溶樹脂、ポリエステル、末端封止剤等の組成物を真空中あるいは熱風中で乾燥し、含水率が100ppm以下、より好ましくは80ppm以下、さらに好ましくは60ppm以下になるように行われる。このときの乾燥温度は、80℃〜200℃が好ましく、より好ましくは100℃〜180℃、さらに好ましくは110℃〜170℃である。乾燥時間は、上記含水率になるように適宜調整することができる。   Drying is performed by drying a composition such as fine particles or incompatible resin, polyester, and terminal blocker in vacuum or hot air so that the water content is 100 ppm or less, more preferably 80 ppm or less, and even more preferably 60 ppm or less. To be done. The drying temperature at this time is preferably 80 ° C to 200 ° C, more preferably 100 ° C to 180 ° C, and further preferably 110 ° C to 170 ° C. The drying time can be appropriately adjusted so as to achieve the above moisture content.

製膜工程において、微粒子及び非相溶樹脂の含有率が異なる溶融樹脂は、ダイを通してキャストドラム上に押出しされる。積層する場合は、多層ダイを通してキャストドラム上に共押出しされる。溶融樹脂は、キャスト上で固化し、製膜され、キャストフィルム(未延伸原反)として得られる。多層ダイの方式は、マルチマニホールドダイ、フィードブロックダイのいずれも好適に用いることができる。ダイの形状はT−ダイ、ハンガーコートダイ、フィッシュテール等とすることができる。溶融樹脂(メルト)は、メルト配管を通し、ギアポンプ、濾過器を通すことが好ましい。濾過器の目開きは、1μm〜50μmが好ましく、より好ましくは5μm〜40μmであり、さらに好ましくは10μm〜30μmである。また、メルト配管中にスタチックミキサーを設け、樹脂と添加物の混合を促すことも好ましい。   In the film forming process, molten resins having different contents of fine particles and incompatible resin are extruded through a die onto a cast drum. When laminating, it is coextruded on a cast drum through a multilayer die. The molten resin is solidified on a cast, formed into a film, and obtained as a cast film (unstretched original fabric). As the multi-layer die system, either a multi-manifold die or a feed block die can be suitably used. The shape of the die can be a T-die, a hanger coat die, a fish tail, or the like. The molten resin (melt) is preferably passed through a melt pipe, a gear pump, and a filter. The opening of the filter is preferably 1 μm to 50 μm, more preferably 5 μm to 40 μm, and even more preferably 10 μm to 30 μm. It is also preferable to provide a static mixer in the melt pipe to promote mixing of the resin and the additive.

キャストドラムの温度は、0℃〜60℃が好ましく、より好ましくは5℃〜55℃であり、さらに好ましくは10℃〜50℃である。このとき、溶融樹脂とキャストドラムとの密着を向上させて平面性を向上させるため、静電印加法、エアナイフ法、キャストドラム上への水被覆等の等を用いることも好ましい。さらに冷却を効率的に行なうため、キャストドラム上から冷風を吹きつけてもよい。   The temperature of the cast drum is preferably 0 ° C to 60 ° C, more preferably 5 ° C to 55 ° C, and further preferably 10 ° C to 50 ° C. At this time, in order to improve the adhesion between the molten resin and the cast drum and improve the flatness, it is also preferable to use an electrostatic application method, an air knife method, water coating on the cast drum, or the like. Furthermore, in order to perform cooling efficiently, cold air may be blown from the cast drum.

押出しは、真空排気や不活性ガス雰囲気下で行なうことが好ましい。これにより、ケテンイミン、カルボジイミド化合物等の分解を抑止できる。押出機の温度は、使用するポリエステルの融点から融点+80℃以下までの温度範囲で行なうことが好ましく、より好ましくは融点+10℃以上、融点+70℃以下の範囲であり、さらに好ましくは融点+20℃以上、融点+60℃以下の範囲である。押出機の温度がポリエステルの融点以上であると、樹脂の融解が良好になり、逆に押出機の温度が「融点+80℃」以下であると、ポリエステルやケテンイミン化合物、カルボジイミド化合物等の分解が抑えられる。
なお、ポリエステルやケテンイミン化合物、カルボジイミド化合物等のマスターバッチは、押出前に乾燥させておくことが好ましい。この場合の好ましい含水率は、10ppm〜300ppmであり、より好ましくは20ppm〜150ppmである。
Extrusion is preferably performed under vacuum exhaust or an inert gas atmosphere. Thereby, decomposition | disassembly of a ketene imine, a carbodiimide compound, etc. can be suppressed. The temperature of the extruder is preferably in the temperature range from the melting point of the polyester used to the melting point + 80 ° C or less, more preferably in the range of melting point + 10 ° C or more, melting point + 70 ° C or less, more preferably melting point + 20 ° C or more. , Melting point + 60 ° C. or less. If the temperature of the extruder is higher than the melting point of the polyester, the resin will melt better. Conversely, if the temperature of the extruder is lower than the "melting point + 80 ° C", decomposition of the polyester, ketene imine compound, carbodiimide compound, etc. will be suppressed. It is done.
In addition, it is preferable to dry masterbatches, such as polyester, a ketene imine compound, a carbodiimide compound, before extrusion. The preferable water content in this case is 10 ppm to 300 ppm, more preferably 20 ppm to 150 ppm.

白色ポリエステルフィルムを構成するポリエステルフィルムを製膜する製膜工程は、樹脂材料及び微粒子、又は微粒子が分散された樹脂材料を溶融押出機に投入し、溶融押出機のスクリュのトルクに0.5%以上20%以下の変動を付与して溶融押出する工程を設けて構成することができる。
この工程では、ポリエステルフィルムを構成する既述の「第1の層」が製膜される。ポリエステルフィルムが単層よりなる場合、第1の層を製膜することで、白色ポリエステルフィルムを構成するポリエステルフィルムが得られる。
溶融押出機に投入される原材料としては、樹脂材料(主としてポリエステル)及び微粒子の混合材料、又は微粒子が樹脂(主としてポリエステル)中に分散された樹脂材料(例えばポリエステル材)が用いられる。
原材料が投入された押出機で溶融押出するに際して、回転するスクリュのトルクに0.5%以上20%以下の変動を付与することにより、バレルとスクリュとの間に隙間が発生し、分散が不均一になり、結果、微粒子の分散度を良好な密着性が得られる範囲に調製することができる。好ましい微粒子の分散度は、既述のように10%以上100%以下である。
The film forming process for forming the polyester film constituting the white polyester film is a process in which the resin material and the fine particles or the resin material in which the fine particles are dispersed are charged into the melt extruder, and the torque of the screw of the melt extruder is 0.5%. It can be configured by providing a step of melting and extruding with a variation of 20% or less.
In this step, the aforementioned “first layer” constituting the polyester film is formed. When a polyester film consists of a single layer, the polyester film which comprises a white polyester film is obtained by forming a 1st layer.
As a raw material charged into the melt extruder, a resin material (mainly polyester) and a mixed material of fine particles, or a resin material (for example, a polyester material) in which fine particles are dispersed in a resin (mainly polyester) are used.
When melt extrusion is performed with an extruder in which raw materials are charged, a fluctuation of 0.5% or more and 20% or less is applied to the torque of the rotating screw, whereby a gap is generated between the barrel and the screw, and dispersion is not achieved. As a result, the dispersion degree of the fine particles can be adjusted within a range where good adhesion can be obtained. A preferable degree of dispersion of the fine particles is 10% or more and 100% or less as described above.

製膜工程において、溶融押出機で溶融混練された溶融樹脂をダイから押出して第1の層を製膜する際、ダイに0.5℃以上10℃以下の温度変動を付与することが好ましい。ダイの温度変動によって、溶融樹脂(メルト)の粘性が変動し、ダイ内の流動性に差が生じて厚み分布が形成される結果、第1の層に厚み分布を付与することができる。このようにすることで、白色ポリエステルフィルムは密着力により優れたものとなる。   In the film forming step, when the molten resin melt-kneaded by a melt extruder is extruded from the die to form the first layer, it is preferable to give the die a temperature variation of 0.5 ° C. or more and 10 ° C. or less. As the temperature of the die fluctuates, the viscosity of the molten resin (melt) fluctuates, resulting in a difference in fluidity within the die and the formation of a thickness distribution. As a result, a thickness distribution can be imparted to the first layer. By doing in this way, a white polyester film becomes the thing excellent by adhesive force.

また、白色ポリエステルフィルムを構成するポリエステルフィルムを製膜する製膜工程は、樹脂材料及び微粒子、又は微粒子が分散された樹脂材料を溶融押出機に投入し、溶融押出機のスクリュのトルクに0.5%以上20%以下の変動を付与して溶融押出する工程を設けて構成することができる。
この工程では、ポリエステルフィルムを構成する既述の「第2の層」が製膜される。第1の層に加え、さらに第2の層を製膜することで、白色ポリエステルフィルムを構成する多層構造のポリエステルフィルムが得られる。
溶融押出機に投入される原材料としては、「第1の層」の製膜と同様である。
原材料が投入された押出機で溶融押出するに際して、回転するスクリュのトルクに0.5%以上20%以下の変動を付与することにより、バレルとスクリュとの間に隙間が発生し、分散が不均一になり、結果、微粒子の分散度を良好な密着性が得られる範囲に調製することができる。好ましい微粒子の分散度は、既述のように10%以上100%以下である。
Further, in the film forming process for forming the polyester film constituting the white polyester film, the resin material and the fine particles or the resin material in which the fine particles are dispersed are charged into the melt extruder, and the torque of the screw of the melt extruder is set to 0.00. A step of melt-extrusion with a variation of 5% or more and 20% or less can be provided.
In this step, the aforementioned “second layer” constituting the polyester film is formed. By forming a second layer in addition to the first layer, a multilayer polyester film constituting the white polyester film can be obtained.
The raw material charged into the melt extruder is the same as that for forming the “first layer”.
When melt extrusion is performed with an extruder in which raw materials are charged, a fluctuation of 0.5% or more and 20% or less is applied to the torque of the rotating screw, whereby a gap is generated between the barrel and the screw, and dispersion is not achieved. As a result, the dispersion degree of the fine particles can be adjusted within a range where good adhesion can be obtained. A preferable degree of dispersion of the fine particles is 10% or more and 100% or less as described above.

また、易接着層形成工程の後には、下記の(1)又は(2)、あるいは(1)及び(2)の工程が施される。
(1)乾燥工程
ここでの乾燥工程では、塗布形成された易接着層を、製膜途中のポリエステルフィルムの面内に0.5℃以上10℃以下の温度差を付与して乾燥させる。乾燥時は、高温部では乾燥が速く、低温では塗布液が高温部に流入しやすいため、高温部が厚くなる傾向がある。このことから、塗布後の乾燥時間に分布を付与することで、易接着層に厚み分布を与えることができる。
0.5℃以上10℃以下の温度差の意義については、既述の通りであり、温度差の好ましい範囲も既述した通りである。
Further, after the easy adhesion layer forming step, the following steps (1) or (2) or (1) and (2) are performed.
(1) Drying step In the drying step, the easy-adhesion layer formed by coating is dried by imparting a temperature difference of 0.5 ° C. or more and 10 ° C. or less to the surface of the polyester film during film formation. At the time of drying, since the drying is fast in the high temperature part and the coating liquid tends to flow into the high temperature part at a low temperature, the high temperature part tends to be thick. From this, thickness distribution can be given to an easily bonding layer by providing distribution to the drying time after application | coating.
The significance of the temperature difference between 0.5 ° C. and 10 ° C. is as described above, and the preferable range of the temperature difference is also as described above.

乾燥工程では、例えば、熱風等の乾燥風を吹き出すノズルのスリット部に吹き出し量の分布を持たせて、易接着層にあたる乾燥風の量に分布ができるようにすることができる。これにより、易接着層に厚み分布を与えることができる。
また、乾燥ゾーンに設置したヒーターを分割し、各ヒーターの出力に分布を持たせてもよい。
In the drying step, for example, the distribution of the amount of blown air that hits the easy-adhesion layer can be achieved by providing the distribution of the amount of blown air to the slit portion of the nozzle that blows out the dry air such as hot air. Thereby, thickness distribution can be given to an easily bonding layer.
Moreover, the heater installed in the drying zone may be divided so that the output of each heater has a distribution.

また、乾燥工程では、面内に0.1℃以上10℃以下の温度差を与えて乾燥を行うことが好ましい。面内に温度差を付して乾燥させると、易接着層に表面ヘイズの面内分布を与えることができる。表面ヘイズの面内分布としては、既述のように、0.1%以上30%以下の範囲の面内分布を付与することができる。ここでの温度差としては、0.3℃以上8℃以下がより好ましく、さらに好ましくは0.5℃以上6℃以下である。   In the drying step, it is preferable to perform drying by giving a temperature difference of 0.1 ° C. or more and 10 ° C. or less in the surface. When drying is performed with a temperature difference in the plane, the in-plane distribution of surface haze can be given to the easy-adhesion layer. As the in-plane distribution of the surface haze, as described above, an in-plane distribution in the range of 0.1% to 30% can be given. As a temperature difference here, 0.3 degreeC or more and 8 degrees C or less are more preferable, More preferably, they are 0.5 degreeC or more and 6 degrees C or less.

上記の乾燥工程後には、乾燥された易接着層を有するポリエステルフィルムを、ポリエステルフィルムの一方面と他方面との間に0.1℃以上10℃以下の温度差を付与して冷却する冷却工程を設けることができる。易接着層用塗布液を塗布、乾燥させた後に冷却する際、塗布面側と塗布面側とは反対面側とに温度差を与えることで、表面粗さ、すなわち表面ヘイズを調節することができる。表面ヘイズの調整は、0.01%以上3%以下の範囲とするのが好ましい。
温度差は、0.3℃以上8℃以下がより好ましく、さらに好ましくは0.5℃以上6℃以下である。
After the drying step, a cooling step of cooling the polyester film having the dried easy-adhesion layer by imparting a temperature difference of 0.1 ° C. or more and 10 ° C. or less between one side and the other side of the polyester film. Can be provided. When cooling after coating and drying the easy-adhesion layer coating solution, the surface roughness, i.e., surface haze, can be adjusted by giving a temperature difference between the coated surface side and the coated surface side opposite to the coated surface side. it can. The adjustment of the surface haze is preferably in the range of 0.01% to 3%.
The temperature difference is more preferably 0.3 ° C. or more and 8 ° C. or less, and further preferably 0.5 ° C. or more and 6 ° C. or less.

(2)延伸工程
ここでの延伸工程では、易接着層が形成されたポリエステルフィルムを、ポリエステルフィルムの面内に0.5℃以上10℃以下の温度差を付与して、延伸する。塗布後に延伸する場合、延伸中のフィルムに温度分布を付与することで、局所的に延伸倍率を変えることができる。すなわち、高温ほど延伸倍率が高く、低温ほど延伸倍率が低くなる。したがって、高温部では易接着層が薄くなり、低温部では易接着層が厚くなることで、易接着層に厚み分布が付与できる。
0.5℃以上10℃以下の温度差の意義については、既述の通りであり、温度差の好ましい範囲も既述した通りである。
(2) Stretching step In the stretching step here, the polyester film on which the easy-adhesion layer is formed is stretched by applying a temperature difference of 0.5 ° C. or more and 10 ° C. or less in the plane of the polyester film. When extending | stretching after application | coating, a draw ratio can be locally changed by providing temperature distribution to the film in extending | stretching. That is, the higher the temperature, the higher the draw ratio, and the lower the temperature, the lower the draw ratio. Therefore, the easy-adhesion layer becomes thin in the high-temperature part, and the easy-adhesion layer becomes thick in the low-temperature part, whereby a thickness distribution can be imparted to the easy-adhesion layer.
The significance of the temperature difference between 0.5 ° C. and 10 ° C. is as described above, and the preferable range of the temperature difference is also as described above.

製膜工程で製膜された未延伸フィルムは、延伸工程において、延伸処理を施すことができる。延伸は、縦方向(MD)、横方向(TD)の少なくとも一方に行なうことが好ましく、フィルム物性のバランスが良い点で、好ましくはMD、TDの両方向に延伸される。このような2方向への延伸は、縦、横逐次に行ってもよく、同時に実施してもよい。延伸工程においては、冷却ロールで冷却固化させた未延伸フィルムに1つ又は2つの方向に延伸されることが好ましく、2つの方向に延伸されることがより好ましい。2つの方向への延伸(二軸延伸)は、長手方向(MD;Machine Direction)の延伸(以下「縦延伸」ともいう)及び幅方向(TD;Transverse Direction)の延伸(以下、「横延伸」ともいう)であることが好ましい。縦延伸、横延伸は、各々1回実施してもよいし、複数回に亘って実施してもよい。同時に縦、横の双方に延伸してもよい。
延伸処理は、フィルムのガラス温度(Tg;℃)以上(Tg+60)℃以下の範囲で行うのが好ましく、より好ましくは(Tg+3)℃〜(Tg+40)℃であり、さらに好ましくは(Tg+5)℃〜(Tg+30)℃である。このとき、上述のように温度分布を付与することが好ましい。
The unstretched film formed in the film forming process can be subjected to a stretching process in the stretching process. Stretching is preferably performed in at least one of the machine direction (MD) and the transverse direction (TD), and is preferably stretched in both the MD and TD directions in terms of a good balance of film properties. Such stretching in two directions may be performed sequentially in the vertical and horizontal directions, or may be performed simultaneously. In the stretching step, the unstretched film cooled and solidified with a cooling roll is preferably stretched in one or two directions, and more preferably stretched in two directions. Stretching in two directions (biaxial stretching) includes stretching in the longitudinal direction (MD) (hereinafter also referred to as “longitudinal stretching”) and stretching in the width direction (TD) (hereinafter referred to as “lateral stretching”). It is also preferred that Each of the longitudinal stretching and the lateral stretching may be performed once or a plurality of times. At the same time, it may be stretched both vertically and horizontally.
The stretching treatment is preferably performed in the range of the glass temperature (Tg; ° C.) to (Tg + 60) ° C. of the film, more preferably (Tg + 3) ° C. to (Tg + 40) ° C., and further preferably (Tg + 5) ° C. (Tg + 30) ° C. At this time, it is preferable to provide a temperature distribution as described above.

好ましい延伸倍率は、少なくとも一方に280%〜500%、より好ましくは300%〜480%、さらに好ましくは320%〜460%である。二軸延伸の場合、縦、横に均等に延伸してもよいが、一方の延伸倍率を他方より大きくして不均等に延伸する方がより好ましい。延伸倍率は、縦方向(MD)、横方向(TD)のいずれを大きくしてもよい。
延伸倍率は、以下の式を用いて求められるものである。
延伸倍率(%)=100×{(延伸後の長さ)/(延伸前の長さ)}
A preferred draw ratio is 280% to 500%, more preferably 300% to 480%, and still more preferably 320% to 460% on at least one side. In the case of biaxial stretching, the film may be stretched evenly in the vertical and horizontal directions, but it is more preferable to stretch one of the stretch ratios more than the other and unevenly stretch. The draw ratio may be increased in either the machine direction (MD) or the transverse direction (TD).
A draw ratio is calculated | required using the following formula | equation.
Stretch ratio (%) = 100 × {(Length after stretching) / (Length before stretching)}

二軸延伸処理は、例えば、フィルムのガラス転移温度である(Tg1)℃〜(Tg1+60)℃の範囲で、合計の倍率が3倍〜6倍になるように縦方向(MD)に1回もしくは2回以上延伸した後、(Tg1)℃〜(Tg+60)℃の範囲で、倍率が3〜5倍になるように幅方向に延伸することができる。   The biaxial stretching treatment is performed once in the machine direction (MD), for example, in the range of (Tg1) ° C to (Tg1 + 60) ° C, which is the glass transition temperature of the film, so that the total magnification becomes 3 to 6 times. After extending | stretching 2 times or more, it can extend | stretch in the width direction so that magnification may become 3-5 times in the range of (Tg1) degreeC-(Tg + 60) degreeC.

二軸延伸処理は、出口側の周速を速くした2対以上のニップロールを用いて、長手方向(MD)に延伸(縦延伸)することができ、またチャックで幅方向(TD)を把持した後、このチャック間の長手方向の間隔を広げることで延伸してもよい。横延伸は、フィルムの両端をチャックで把持し、チャックを直交方向(長手方向と直角方向)に広げて行うことができる。
また、同時延伸は、チャックで把持した後、長手方向にチャック間隔を拡げる操作と、幅方向にチャック間隔を拡げる操作と、を組み合わせることで実施できる。
The biaxial stretching process can be stretched (longitudinal stretch) in the longitudinal direction (MD) using two or more pairs of nip rolls with increased peripheral speed on the outlet side, and is held in the width direction (TD) with a chuck. Thereafter, stretching may be performed by widening the distance between the chucks in the longitudinal direction. The transverse stretching can be performed by holding both ends of the film with a chuck and spreading the chuck in an orthogonal direction (a direction perpendicular to the longitudinal direction).
The simultaneous stretching can be performed by combining an operation of expanding the chuck interval in the longitudinal direction and an operation of expanding the chuck interval in the width direction after being held by the chuck.

延伸工程に、易接着層を塗布形成する塗布工程を組み合わせることが好ましい。
易接着層は、延伸工程の前や延伸工程の途中の工程において、塗布によりポリエステルフィルムの表面に形成されるのが好ましい。すなわち、本発明では、塗布液を塗布することで易接着層が形成されたポリエステルフィルムを少なくとも1回延伸することが好ましい。
例えば、延伸工程と塗布工程とは、下記のような組合せで実施することができる。
(a)縦延伸→塗布→横延伸
(b)塗布→縦延伸→横延伸
(c)塗布→縦、横同時延伸
(d)縦延伸→横延伸→塗布→縦延伸
(e)縦延伸→横延伸→塗布→横延伸
この中で好ましい方法は、(a)、(b)、(c)であり、より好ましい方法は(a)である。この場合、最も密着力が高く、設備もコンパクトとなり好ましい。
It is preferable to combine the stretching process with a coating process for coating and forming an easy-adhesion layer.
The easy adhesion layer is preferably formed on the surface of the polyester film by coating before the stretching step or in the middle of the stretching step. That is, in this invention, it is preferable to extend | stretch the polyester film in which the easily bonding layer was formed by apply | coating a coating liquid at least once.
For example, the stretching process and the coating process can be performed in the following combinations.
(A) Longitudinal stretching → Coating → Horizontal stretching (b) Coating → Longitudinal stretching → Horizontal stretching (c) Coating → Vertical and transverse simultaneous stretching (d) Longitudinal stretching → Horizontal stretching → Coating → Vertical stretching (e) Longitudinal stretching → Horizontal Stretch->application-> lateral stretch Among these, preferred methods are (a), (b), and (c), and a more preferred method is (a). In this case, it is preferable because it has the highest adhesion and the equipment is compact.

延伸工程が、縦延伸する工程と横延伸する工程とを含む場合、縦延伸する工程と横延伸する工程との間に、縦延伸後のポリエステルフィルムを、5℃/秒以上100℃/秒以下の冷却速度で冷却する工程を設けておくことが好ましい。縦延伸後のポリエステルフィルムを所定の冷却速度で冷却(急冷)することで、破断伸度半減時間が長く密着性に優れたものとなる。
急冷は、例えば、ポリエステルフィルムを冷却ロールに接触させる方法、冷風を吹き付ける方法、等により行なうことができる。
When the stretching step includes a step of longitudinal stretching and a step of lateral stretching, the polyester film after longitudinal stretching is stretched between 5 ° C./second and 100 ° C./second between the step of longitudinal stretching and the step of lateral stretching. It is preferable to provide a step of cooling at a cooling rate of. By cooling (rapid cooling) the polyester film after longitudinal stretching at a predetermined cooling rate, the elongation at break half-life is long and the adhesiveness is excellent.
The rapid cooling can be performed by, for example, a method of bringing a polyester film into contact with a cooling roll, a method of blowing cool air, or the like.

延伸工程においては、延伸処理の前又は後、好ましくは延伸処理の後に、フィルムに熱処理を施すことができる。熱処理を施すことによって、微結晶を生成し、力学特性や耐久性を向上させることができる。180〜225℃程度(更に好ましくは、185〜21
0℃)で1〜60秒間(更に好ましくは2〜30秒間)の熱処理をフィルムに施してもよい。
In the stretching step, the film can be subjected to heat treatment before or after the stretching treatment, preferably after the stretching treatment. By performing heat treatment, microcrystals can be generated, and mechanical properties and durability can be improved. About 180-225 ° C. (more preferably, 185-21
The film may be subjected to heat treatment at 0 ° C. for 1 to 60 seconds (more preferably 2 to 30 seconds).

延伸工程においては、熱処理後、熱緩和処理を施すことができる。
熱緩和処理とは、フィルムに対して応力緩和のために熱を加えて、フィルムを収縮させる処理である。熱緩和処理は、ポリエステルフィルムのMD及びTDの両方向に施すことが好ましい。熱緩和処理における諸条件は、熱処理温度より低い温度で処理することが好ましく、130℃〜220℃が好ましい。また、熱緩和処理は、フィルムの熱収縮率がMD及びTDのいずれも1%〜12%であることが好ましく、1%〜10%が更に好ましい。
熱収縮率は、測定方向350mm、幅50mmのサンプルを切り出し、サンプルの長手方向の両端近傍300mm間隔に標点を付け、150℃の温度に調整されたオーブンに一端を固定、他端をフリーとした状態で30分間放置した後、室温で標点間距離を測定する。測定された長さをL(mm)とし、測定値を下記式にあてはめることで熱収縮率が求められる。
150℃での熱収縮率(%)=100×(300−L)/300
また、熱収縮率が正の場合は縮みを、熱収縮率が負の場合は伸びを表す。
In the stretching step, a thermal relaxation treatment can be performed after the heat treatment.
The thermal relaxation treatment is a treatment for shrinking the film by applying heat to the film for stress relaxation. The thermal relaxation treatment is preferably performed in both the MD and TD directions of the polyester film. The various conditions in the thermal relaxation treatment are preferably a treatment at a temperature lower than the heat treatment temperature, and preferably 130 to 220 ° C. In the heat relaxation treatment, the thermal shrinkage of the film is preferably 1% to 12% for both MD and TD, and more preferably 1% to 10%.
For the heat shrinkage rate, a sample with a measurement direction of 350 mm and a width of 50 mm was cut out, marked at 300 mm intervals near both ends in the longitudinal direction of the sample, one end was fixed to an oven adjusted to a temperature of 150 ° C., and the other end was free. After being allowed to stand for 30 minutes, the distance between the gauge points is measured at room temperature. The measured length is L (mm), and the thermal contraction rate is obtained by applying the measured value to the following equation.
Thermal shrinkage at 150 ° C. (%) = 100 × (300−L) / 300
Further, when the heat shrinkage rate is positive, it indicates shrinkage, and when the heat shrinkage rate is negative, it indicates elongation.

本発明の白色ポリエステルフィルムの用途は、特に限定されないが、太陽電池モジュール用バックシート、バリアフィルム基材等の用途に好適である。白色ポリエステルフィルムを太陽電池モジュール用バックシートに用いる場合、白色ポリエステルフィルム上に易接着層を設け、さらに下記の層が設けられてもよい。
1.着色層
本発明の白色ポリエステルフィルムには、着色層を設けることができる。着色層は、ポリエステルフィルムの表面に接触させて、あるいは他の層を介して配置される層であり、顔料やバインダーを用いて構成することができる。具体的には、特開2012−166354号公報の段落[0126]〜[0138]の記載を参照することができる。
2.下塗り層
本発明の白色ポリエステルフィルムには、下塗り層を設けることができる。下塗り層は、例えば、着色層が設けられるときには、着色層とポリエステルフィルムとの間に下塗り層を設けてもよい。下塗り層は、バインダー、架橋剤、界面活性剤等を用いて構成することができる。具体的には、特開2012−166354号公報の段落[0139]〜[0142]の記載を参照することができる。
3.防汚層(フッ素系樹脂層・ケイ素系樹脂層)
本発明の白色ポリエステルフィルムには、フッ素系樹脂層及びケイ素系(Si系)樹脂層の少なくとも一方を防汚層として設けることが好ましい。フッ素系樹脂層やSi系樹脂層を設けることで、ポリエステル表面の汚れ防止、耐候性向上が図れる。具体的には、特開2012−166354号公報の段落[0143]〜[0144]の記載を参照することができる。
Although the use of the white polyester film of this invention is not specifically limited, It is suitable for uses, such as a solar cell module backsheet and a barrier film base material. When using a white polyester film for a solar cell module backsheet, an easy-adhesion layer may be provided on the white polyester film, and the following layers may be provided.
1. Colored layer A colored layer can be provided in the white polyester film of the present invention. The colored layer is a layer arranged in contact with the surface of the polyester film or through another layer, and can be constituted using a pigment or a binder. Specifically, the description of paragraphs [0126] to [0138] of JP2012-166354A can be referred to.
2. Undercoat layer The white polyester film of the present invention may be provided with an undercoat layer. For example, when a colored layer is provided, the undercoat layer may be provided between the colored layer and the polyester film. The undercoat layer can be formed using a binder, a crosslinking agent, a surfactant, and the like. Specifically, reference can be made to the descriptions in paragraphs [0139] to [0142] of JP2012-166354A.
3. Antifouling layer (fluorine resin layer / silicon resin layer)
The white polyester film of the present invention is preferably provided with at least one of a fluorine-based resin layer and a silicon-based (Si-based) resin layer as an antifouling layer. By providing the fluorine-based resin layer or the Si-based resin layer, it is possible to prevent contamination of the polyester surface and improve weather resistance. Specifically, reference can be made to the descriptions in paragraphs [0143] to [0144] of JP2012-166354A.

<太陽電池モジュール及びその製造方法>
本発明の太陽電池モジュールは、既述の本発明の白色ポリエステルフィルムを太陽電池用バックシートとして設けて構成されている。本発明の太陽電池モジュールに設けられている、既述の本発明の白色ポリエステルフィルムが隣接層に対する長期に亘る密着性に優れたものであることで、本発明の太陽電池モジュールは、長期間安定的な発電性能を保つことが可能になる。
<Solar cell module and manufacturing method thereof>
The solar cell module of the present invention is configured by providing the above-described white polyester film of the present invention as a solar cell backsheet. The solar cell module of the present invention is stable for a long period of time because the white polyester film of the present invention described above provided in the solar cell module of the present invention has excellent long-term adhesion to the adjacent layer. It becomes possible to maintain a typical power generation performance.

具体的には、本発明の太陽電池モジュールは、太陽光が入射する透明性の基材(ガラス基板等のフロント基材)と、基材上に設けられ、太陽電池素子及び太陽電池素子を封止する封止材を有する素子構造部分と、素子構造部分のガラス基板等の基板が位置する側と反対側に配置された白色ポリエステルフィルム(太陽電池用バックシート)と、を備えており、透明性のフロント基材/素子構造部分/バックシートの積層構造を有している。具体的には、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子が配された素子構造部分を、太陽光が直接入射する側に配置された透明性のフロント基材と、本発明の白色ポリエステルフィルムとの間に配置し、フロント基材と白色ポリエステルフィルムとの間において、太陽電池素子を含む素子構造部分(例えば太陽電池セル)をエチレン−酢酸ビニル(EVA)系等の封止材を用いて封止、接着した構成になっている。本発明の白色ポリエステルフィルムは、特にEVAとの接着性に優れており、長期耐久性の向上を図ることができる。   Specifically, the solar cell module of the present invention is provided on a transparent base material (a front base material such as a glass substrate) on which sunlight enters and the base material, and seals the solar cell element and the solar cell element. An element structure portion having a sealing material to be stopped, and a white polyester film (back sheet for solar cell) disposed on a side opposite to a side where a substrate such as a glass substrate of the element structure portion is located, and transparent It has a laminated structure of a front substrate / element structure portion / back sheet. Specifically, an element structure portion in which a solar cell element that converts light energy of sunlight into electric energy is disposed on a transparent front base material disposed on a side where sunlight directly enters, and Sealing material such as an ethylene-vinyl acetate (EVA) system that is arranged between a white polyester film and an element structure portion (for example, a solar battery cell) including a solar battery element between the front substrate and the white polyester film. It is the structure which sealed and adhere | attached using. The white polyester film of the present invention is particularly excellent in adhesiveness with EVA and can improve long-term durability.

太陽電池モジュール、太陽電池セル、バックシート以外の部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)に詳細に記載されている。
透明性の基材は、太陽光が透過し得る光透過性を有していればよく、光を透過する基材から適宜選択することができる。発電効率の観点からは、光の透過率が高いものほど好ましく、このような基板として、例えば、ガラス基板、アクリル樹脂などの透明樹脂などを好適に用いることができる。
太陽電池素子の例としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅−インジウム−ガリウム−セレン、銅−インジウム−セレン、カドミウム−テルル、ガリウム−砒素などのIII−V族やII−VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。基板とポリエステルフィルムとの間は、例えばエチレン−酢酸ビニル共重合体等の樹脂(いわゆる封止材)で封止して構成することができる。
The members other than the solar cell module, the solar cell, and the back sheet are described in detail in, for example, “Photovoltaic power generation system constituent material” (supervised by Eiichi Sugimoto, Kogyo Kenkyukai, published in 2008).
The transparent base material should just have the light transmittance which sunlight can permeate | transmit, and can be suitably selected from the base materials which permeate | transmit light. From the viewpoint of power generation efficiency, the higher the light transmittance, the better. For such a substrate, for example, a glass substrate, a transparent resin such as an acrylic resin, or the like can be suitably used.
Examples of solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, and group III-V such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, and gallium-arsenic. Various known solar cell elements such as II-VI group compound semiconductor systems can be applied. A space between the substrate and the polyester film can be configured by sealing with a resin (so-called sealing material) such as an ethylene-vinyl acetate copolymer.

(貼合工程)
本発明の太陽電池モジュールの製造方法は、熱寸法変化分布が1%以上40%以下のエチレン−酢酸ビニル樹脂と、既述の本発明の白色ポリエステルフィルムと、を貼り合わせる貼合工程を設けて構成されている。熱収縮分布が1%以上40%以下のEVAと貼り合せることで、密着性が更に向上する。
(Bonding process)
The manufacturing method of the solar cell module of the present invention includes a bonding step of bonding an ethylene-vinyl acetate resin having a thermal dimensional change distribution of 1% to 40% and the white polyester film of the present invention described above. It is configured. Adhesion is further improved by bonding with EVA having a heat shrinkage distribution of 1% to 40%.

エチレン−酢酸ビニル樹脂は、太陽電池に備えられている太陽電池素子を封止する封止材として用いられるものであり、本発明の貼合工程では、この封止材に対して白色ポリエステルフィルムをバックシートとして貼り合わせて太陽電池モジュールとする。
太陽電池素子及び太陽電池素子を封止する封止材を有する素子構造部分の製造については、公知の方法を適宜選択して行うことができる。
The ethylene-vinyl acetate resin is used as a sealing material for sealing the solar cell element provided in the solar cell, and in the bonding step of the present invention, a white polyester film is applied to the sealing material. Laminate as a back sheet to make a solar cell module.
About manufacture of the element structure part which has a sealing material which seals a solar cell element and a solar cell element, it can carry out by selecting a well-known method suitably.

白色ポリエステルフィルムとEVAとを熱で貼り合せる際、EVAが熱収縮しようとするが、ポリエステルと貼り合せているために収縮できず残留応力となる。この残留応力が、剥離応力が与えられたときの力と相俟って剥離を促進し、密着力が低下することになる。EVA内に熱収縮の大きな箇所と小さな箇所とが存在すると、熱収縮の小さな箇所がEVA全体の熱収縮を抑制しており、EVAの熱寸法変化分布を1%以上40%以下の範囲とすることで、平均熱収縮率が同程度になり、密着力をより効果的に向上できる。   When the white polyester film and EVA are bonded together by heat, EVA tends to thermally shrink, but since it is bonded to polyester, it cannot shrink and becomes a residual stress. This residual stress promotes peeling in combination with the force when the peeling stress is applied, and the adhesion force is reduced. If there are large and small portions of heat shrinkage in the EVA, the portions with small heat shrinkage suppress the heat shrinkage of the whole EVA, and the thermal dimensional change distribution of EVA is in the range of 1% to 40%. As a result, the average heat shrinkage rate becomes approximately the same, and the adhesion can be improved more effectively.

EVAの熱寸法変化分布としては、2%以上30%以下がより好ましく、さらに好ましくは3%以上20%以下である。熱寸法変化分布がこの範囲内であると、熱寸法変化の大きな箇所が減って残留応力も抑えられるので、残留応力を起点に起きやすい剥離の発生が抑制される。結果、密着力の向上効果に優れたものとなる。   The thermal dimensional change distribution of EVA is more preferably 2% or more and 30% or less, and further preferably 3% or more and 20% or less. If the thermal dimensional change distribution is within this range, the locations where the thermal dimensional change is large are reduced and the residual stress is also suppressed, so that the occurrence of peeling that tends to occur from the residual stress is suppressed. As a result, the effect of improving the adhesion is excellent.

EVAの熱寸法変化分布は、以下の方法で測定される。
a)EVAを25℃、60%RHの環境下に一晩調湿した後、20cm間隔で基準点を付け、測長する(L1)
b)このEVAシートを60℃で1時間、空気恒温槽中で熱処理する
c)その後、25℃、60%RHの環境下に一晩調湿した後、測長する(L2)
d)下記式より熱寸法変化を算出する
熱寸法変化(%)=100×|L1−L2|/L1
なお、式中の「|L1−L2|」は、L1とL2との差の絶対値を表す。
e)この測定を、原反ロールから切り出した30cm角のシート10枚について繰り返し、MD、TDに沿って上記方法で各シートの熱寸法変化を測定する
f)MD、TDに沿った各10点の熱寸法変化の最大値と最小値との差を、MD、TD各10点の熱寸法変化の平均値で除算して百分率で示し、MD、TDの熱寸法変化分布を求める。そして、MDの熱寸法変化分布とTDの熱寸法変化分布との平均を求め、熱寸法変化分布とする。
The thermal dimensional change distribution of EVA is measured by the following method.
a) After conditioning the EVA overnight in an environment of 25 ° C. and 60% RH, reference points are set at intervals of 20 cm and measured (L1).
b) This EVA sheet is heat-treated at 60 ° C. for 1 hour in an air thermostatic chamber. c) Thereafter, humidity is adjusted overnight in an environment of 25 ° C. and 60% RH, and then the length is measured (L2).
d) Calculate the thermal dimensional change from the following formula: Thermal dimensional change (%) = 100 × | L1-L2 | / L1
Note that “| L1−L2 |” in the formula represents the absolute value of the difference between L1 and L2.
e) This measurement is repeated for 10 sheets of 30 cm square cut out from the raw fabric roll, and the thermal dimensional change of each sheet is measured by the above method along MD and TD. f) Each of 10 points along MD and TD The difference between the maximum value and the minimum value of the thermal dimensional change is divided by the average value of the thermal dimensional change at 10 points for each of MD and TD and expressed as a percentage to obtain the thermal dimensional change distribution of MD and TD. Then, an average of the thermal dimensional change distribution of MD and the thermal dimensional change distribution of TD is obtained to obtain the thermal dimensional change distribution.

EVAの熱寸法変化の平均値は、0.1%以上5%以下が好ましく、より好ましくは0.3%以上4%以下であり、さらに好ましくは0.5%以上3%以下である。   The average value of EVA thermal dimensional change is preferably 0.1% to 5%, more preferably 0.3% to 4%, and still more preferably 0.5% to 3%.

熱寸法変化分布は、製膜中に発生した熱収縮の一部を緩和させることで調整できる。
具体的には、EVAの平均温度が40℃〜70℃、より好ましくは45℃〜65℃、さらに好ましくは50℃〜60℃であり、EVAの温度分布が0.5〜8℃、より好ましくは1〜7℃、さらに好ましくは1.5〜6℃であるヒーターを用い、1分〜10分、より好ましくは1.5分〜9分、さらに好ましくは2分〜8分間加熱する。
The thermal dimensional change distribution can be adjusted by relaxing a part of the thermal shrinkage generated during film formation.
Specifically, the average temperature of EVA is 40 ° C to 70 ° C, more preferably 45 ° C to 65 ° C, still more preferably 50 ° C to 60 ° C, and the temperature distribution of EVA is more preferably 0.5 to 8 ° C. Is 1 to 7 ° C, more preferably 1.5 to 6 ° C, and heating is performed for 1 minute to 10 minutes, more preferably 1.5 minutes to 9 minutes, and further preferably 2 minutes to 8 minutes.

温度分布の周期は、5cm〜1mが好ましく、より好ましくは10cm〜80cmであり、さらに好ましくは15cm〜60cmである。このような温度分布を有する加熱方法は、特に限定されないが、例えば下記のような方法が挙げられる。
イ)上記周期で縦、横に分割したパネルヒーターを用い、これらの温度を上記温度分布となるように設定、これにEVAを接触させる
ロ)EVAの片面もしくは両面から、分割したノズルから熱風を噴出し、各ノズルの温度に上記温度分布を付与する
The period of the temperature distribution is preferably 5 cm to 1 m, more preferably 10 cm to 80 cm, and still more preferably 15 cm to 60 cm. Although the heating method which has such a temperature distribution is not specifically limited, For example, the following method is mentioned.
B) Using a panel heater divided vertically and horizontally with the above period, set these temperatures to have the above temperature distribution, and bring EVA into contact with this. B) Hot air from divided nozzles from one or both sides of EVA. The above temperature distribution is given to the temperature of each nozzle.

以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。
なお、本発明16、本発明22、本発明23、本発明29、本発明30、本発明37、及び本発明43は、本発明の参考例である。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. Unless otherwise specified, “part” is based on mass.
The present invention 16, the present invention 22, the present invention 23, the present invention 29, the present invention 30, the present invention 37, and the present invention 43 are reference examples of the present invention.

(1)ポリエステル
(1−1)ペレットの準備
−A.Ti触媒PET(Ti−PET)−
特開2007−70462号公報の段落0098〜0104に記載の実施例1と同様の方法でチタン触媒を用いてポリエステル(ポリエチレンテレフタレート;以下、Ti触媒PET又はTi−PETと略記する。)を製造し、ペレットとした。
(1) Preparation of polyester (1-1) pellets-A. Ti catalyst PET (Ti-PET)-
Polyester (polyethylene terephthalate; hereinafter abbreviated as Ti catalyst PET or Ti-PET) is produced using a titanium catalyst in the same manner as in Example 1 described in paragraphs 0098 to 0104 of JP-A-2007-70462. A pellet was obtained.

−B.Sb触媒PET(Sb−PET)−
国際公開第2010/110119号パンフレットの段落0054に記載されている「原料PET−1」に従い、下記のようにポリエステルを得た。
ジメチルテレフタレート100質量%、及びエチレングリコール60質量%の混合物を、酢酸カルシウム0.08質量%、三酸化アンチモン0.03質量%を添加して、常法により加熱昇温してエステル交換反応を行った。ここで得られたエステル交換反応生成物に、酢酸リチウム0.16質量%、及びリン酸トリメチル0.11質量%を添加した後、重合反応槽に移行した。加熱昇温しながら反応系を徐々に減圧し、1mmHgの減圧下、290℃で常法により重合し、固有粘度が0.52のポリエステル(ポリエチレンテレフタレート)を得、ペレットとした。
-B. Sb catalyst PET (Sb-PET)-
According to “Raw material PET-1” described in paragraph 0054 of WO 2010/110119 pamphlet, polyester was obtained as follows.
A mixture of 100% by mass of dimethyl terephthalate and 60% by mass of ethylene glycol was added with 0.08% by mass of calcium acetate and 0.03% by mass of antimony trioxide, and heated to increase the temperature by a conventional method to conduct a transesterification reaction. It was. After adding lithium acetate 0.16 mass% and trimethyl phosphate 0.11 mass% to the transesterification product obtained here, it moved to the polymerization reaction tank. The reaction system was gradually depressurized while being heated and heated, and polymerization was performed at 290 ° C. under a reduced pressure of 1 mmHg by a conventional method to obtain a polyester (polyethylene terephthalate) having an intrinsic viscosity of 0.52, which was made into pellets.

−C.Al触媒PET(Al−PET)−
攪拌機付の熱媒循環式(2リットル)ステンレス製オートクレーブに、高純度テレフタル酸とその2倍モル量のエチレングリコール及びトリエチルアミンを、酸成分に対して0.3mol%になるように加え、0.25MPaの加圧下245℃にて、水を系外に留去しながらエステル化反応を120分間実施して、オリゴマー混合物を得た。このオリゴマー混合物に、重縮合触媒として15g/l塩基性酢酸アルミニウムのエチレングリコール溶液を、ポリエステル中の酸成分に対してアルミニウム原子換算で0.014mol%と、リン化合物としてIrganox1425(チバ・スペシャルティ・ケミカルズ社製)の10g/lエチレングリコール溶液を、ポリエステル中の酸成分に対してIrganox1425の固形分量換算で0.02 mol%と、を加えた。
このとき、重縮合触媒として加える塩基性酢酸アルミニウムは、塩基性酢酸アルミニウム(Aldrich製)水溶液及びエチレングリコールを還留することで得られる、15g/l塩基性酢酸アルミニウムのエチレングリコール溶液として使用した。
次いで、窒素雰囲気下、常圧にて245℃で10分間攪拌した。その後、60分間をかけて275℃まで昇温しつつ、反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに275℃、13.3Paで所望のIVが得られるまで、重縮合反応を実施した。所定の攪拌トルクに到達した時点でオートクレーブに窒素を導入して常圧に戻し、重縮合反応を停止させた。
このようにして、Al触媒PET(Al−PET)を得て、ペレットとした。
-C. Al catalyst PET (Al-PET)-
To a heat medium circulation type (2 liter) stainless steel autoclave with a stirrer, high-purity terephthalic acid and its 2-fold molar amount of ethylene glycol and triethylamine are added so as to be 0.3 mol% with respect to the acid component. The esterification reaction was carried out for 120 minutes while distilling water out of the system at 245 ° C. under a pressure of 25 MPa to obtain an oligomer mixture. To this oligomer mixture, an ethylene glycol solution of 15 g / l basic aluminum acetate as a polycondensation catalyst was 0.014 mol% in terms of aluminum atom with respect to the acid component in the polyester, and Irganox 1425 (Ciba Specialty Chemicals) as the phosphorus compound. 10 g / l ethylene glycol solution, 0.02 mol% in terms of solid content of Irganox 1425, relative to the acid component in the polyester was added.
At this time, the basic aluminum acetate added as a polycondensation catalyst was used as an ethylene glycol solution of 15 g / l basic aluminum acetate obtained by returning a basic aluminum acetate (Aldrich) aqueous solution and ethylene glycol.
Subsequently, it stirred at 245 degreeC for 10 minutes by the normal pressure in nitrogen atmosphere. Thereafter, while raising the temperature to 275 ° C. over 60 minutes, the pressure of the reaction system is gradually reduced to 13.3 Pa (0.1 Torr) until a desired IV is obtained at 275 ° C. and 13.3 Pa. A polycondensation reaction was performed. When a predetermined stirring torque was reached, nitrogen was introduced into the autoclave to return to normal pressure, and the polycondensation reaction was stopped.
In this way, Al catalyst PET (Al-PET) was obtained and formed into pellets.

−D.PEN−
特開2011−258641号公報の段落0120に記載の実施例3と同様の方法により、ポリエチレン−2,6−ナフタレート(PEN)樹脂を製造し、ペレットとした。
-D. PEN-
Polyethylene-2,6-naphthalate (PEN) resin was produced by the same method as in Example 3 described in paragraph 0120 of JP2011-258641, and pelletized.

(1−2)固相重合
上記の各樹脂(ペレット)をそれぞれ180℃で5時間乾燥させ、結晶化させた。なお、ペレットのサイズは、直径3mm、長さ5mmの円柱状のものを用いた。
乾燥後、205℃の固相重合槽にペレットを移し、固相重合槽に窒素ガスを、樹脂1kgあたり1Nm/hrとなるように流して固相重合反応させた。固相重合は、205℃で24時間実施した。
(1-2) Solid Phase Polymerization Each of the above resins (pellets) was dried at 180 ° C. for 5 hours and crystallized. In addition, the pellet size used was a cylindrical shape having a diameter of 3 mm and a length of 5 mm.
After drying, the pellets were transferred to a 205 ° C. solid phase polymerization tank, and a solid phase polymerization reaction was performed by flowing nitrogen gas into the solid phase polymerization tank at 1 Nm 3 / hr per kg of resin. Solid phase polymerization was carried out at 205 ° C. for 24 hours.

(2)微粒子(白色化材等)の準備
白色化材として、以下の無機微粒子及び非相溶性樹脂を用意した。なお、平均粒径は、HORIBA製のLA−750パーティクルサイズアナライザー(Particle Size Analyzer)を用いて測定した。粒子全体の50質量%に相当する各粒子の粒子径を読み取り、この値の平均値を取って平均粒径とした。
<イ.無機微粒子(白色粒子)>
・TiO−1:ルチル型二酸化酸価チタン粒子(表面をアルミナで被覆したもの、平均粒径:0.2μm)
・TiO−2:ルチル型二酸化酸価チタン粒子(表面をアルミナとトリメチロールプロパンで被覆したもの、平均粒径:0.3μm)
・BaSO−1:硫酸バリウム粒子(硫酸バリウム単体;平均粒径:1μm)
・BaSO−2:硫酸バリウム粒子(表面をシリカで被覆したもの(平均粒径:3μm)
(2) Preparation of fine particles (whitening material, etc.) The following inorganic fine particles and incompatible resin were prepared as whitening materials. In addition, the average particle diameter was measured using the LA-750 particle size analyzer (Particle Size Analyzer) made from HORIBA. The particle diameter of each particle corresponding to 50% by mass of the entire particle was read, and the average value of these values was taken as the average particle diameter.
<I. Inorganic fine particles (white particles)>
TiO 2 −1: Rutile type titanium dioxide particles (surface coated with alumina, average particle size: 0.2 μm)
TiO 2 -2: Rutile-type titanium dioxide particles (surface coated with alumina and trimethylolpropane, average particle size: 0.3 μm)
BaSO 4 -1: barium sulfate particles (barium sulfate simple substance; average particle size: 1 μm)
BaSO 4 -2: barium sulfate particles (surface coated with silica (average particle size: 3 μm)

<ロ.非相溶性樹脂>
・TPX:ポリメチルペンテン(TPX DX820、三井化学社製)
<B. Incompatible resin>
-TPX: Polymethylpentene (TPX DX820, manufactured by Mitsui Chemicals)

(3)ポリエステルフィルムの製造
−製膜(押出し、キャスト)−
上記のように固相重合を終えた各ペレット(ポリエステル)、微粒子、及び非相溶性樹脂を下記表1〜表2に示すように用いて混合した。このとき、微粒子の配合割合は、下記表1〜表2に示す比率(添加量[質量基準])とした。
製膜にあたり、予め2軸混練機を用いてポリエステル、微粒子、及び非相溶性樹脂を配合したマスターバッチを作製し、このマスターバッチと、マスターバッチに用いたものと同じポリエステル単独から成るペレットと、を混合し、スクリュ径200mmの二軸混練押出機のホッパーに投入し、真空下、290℃で溶融混練して押出した。このとき、スクリュの回転方向は、同方向回転とし、押出機のスクリュに表1〜表2に記載のトルク変動を付与することで、微粒子の分散度を変化させた。2層構造よりなるポリエステルフィルムを製膜する場合は、製膜は共押出により行なった。なお、ペレットは、ホッパー投入前に含水率を50ppm以下に乾燥させておいた。
押出された溶融樹脂(メルト)は、ギアポンプを通し、濾過(孔径:20μm)した後、フィードブロックダイを用いて積層し、ダイリップからキャストドラム上に押出して製膜した。このとき、ダイに取り付けた分割ヒーターに表1〜表2に記載の温度分布を付与することで、ポリエステルフィルムを構成するポリエステルフィルム(第1の層)に厚み分布を付与した。
キャスト時には下記条件で静電印加した。
・キャストドラム:直径3m
・キャストドラム温度:25℃
・キャストドラム速度:10m/分
(3) Production of polyester film-Film production (extrusion, casting)-
The pellets (polyester), fine particles, and incompatible resin that had been subjected to solid phase polymerization as described above were mixed as shown in Tables 1 and 2 below. At this time, the mixing ratio of the fine particles was the ratio shown in Tables 1 and 2 below (addition amount [mass basis]).
When forming a film, a master batch in which polyester, fine particles, and an incompatible resin are blended in advance using a biaxial kneader is prepared, and this master batch and pellets made of the same polyester alone as used in the master batch, Were mixed, put into a hopper of a twin-screw kneading extruder having a screw diameter of 200 mm, melt-kneaded at 290 ° C. under vacuum, and extruded. At this time, the rotation direction of the screw was the same direction rotation, and the dispersion of fine particles was changed by applying the torque fluctuation described in Tables 1 and 2 to the screw of the extruder. In the case of forming a polyester film having a two-layer structure, the film formation was performed by coextrusion. The pellets were dried to a water content of 50 ppm or less before the hopper was charged.
The extruded molten resin (melt) was filtered through a gear pump (pore diameter: 20 μm), laminated using a feed block die, and extruded from a die lip onto a cast drum to form a film. At this time, thickness distribution was provided to the polyester film (1st layer) which comprises a polyester film by providing the temperature distribution of Table 1-Table 2 to the division | segmentation heater attached to die | dye.
When casting, electrostatic application was performed under the following conditions.
・ Cast drum: 3m in diameter
・ Cast drum temperature: 25 ℃
・ Cast drum speed: 10m / min

−縦延伸・塗布−
上記のようにして、キャストドラム上で冷却固化された樹脂(未延伸のポリエステルフィルム)は、キャストドラムから剥ぎ取られた後、70℃に予熱した。そして、この未延伸のポリエステルフィルムを周速差の異なるニップロールを用いて90℃で3.5倍に縦延伸し、下記表1〜表2に示す冷却速度にて30℃まで冷却した。このとき、縦延伸後に冷風を吹き当てることにより、下記表1〜表2に記載の温度分布を付与し、破断伸度半減時間を達成した。
-Longitudinal stretching and application-
The resin (unstretched polyester film) cooled and solidified on the cast drum as described above was preheated to 70 ° C. after being peeled off from the cast drum. And this unstretched polyester film was longitudinally stretched 3.5 times at 90 degreeC using the nip roll from which a peripheral speed difference differs, and it cooled to 30 degreeC with the cooling rate shown in the following Table 1-2. At this time, by blowing cold air after longitudinal stretching, the temperature distributions shown in Tables 1 and 2 below were given, and the elongation at break half time was achieved.

次いで、未延伸のポリエステルフィルムの片面に、下記条件でコロナ処理を施した。
<条件>
・電極と誘電体ロールギャップクリアランス:1.6mm
・処理周波数:9.6kHz
・処理速度:20m/分
・処理強度:0.375kV・A・分/m
Next, corona treatment was performed on one side of the unstretched polyester film under the following conditions.
<Condition>
・ Electrode and dielectric roll gap clearance: 1.6mm
・ Processing frequency: 9.6 kHz
Processing speed: 20 m / min Processing strength: 0.375 kV A / min / m 2

その後、未延伸のポリエステルフィルムのコロナ処理面に、以下の易接着層用塗布液を下記表1〜表2に示すように変えてバー塗布し、塗布層である易接着層を形成した。易接着層用塗布液の詳細は、以下の通りである。また、塗布層の厚みは、バーの番手を変えることにより達成した。   Then, the following coating liquid for easy-adhesion layers was applied to the corona-treated surface of the unstretched polyester film as shown in Tables 1 and 2 below, and an easy-adhesion layer as an application layer was formed. The details of the coating solution for the easy adhesion layer are as follows. The thickness of the coating layer was achieved by changing the bar count.

また、易接着層の形成は、密着の程度を確認するため、下記表1〜表2に示すように、第1の層側と第2の層側とにおいてそれぞれ行った。表1〜表2中の易接着層の「塗布面」の欄において、「第1の層」とあるのは第1の層の表面に易接着層を形成したことを表しており、「両面」とあるのは第1の層と第2の層との両方の面上に易接着層を形成したことを表している。   In addition, the easy-adhesion layer was formed on the first layer side and the second layer side as shown in Tables 1 and 2 below in order to confirm the degree of adhesion. In the column of “application surface” of the easy-adhesion layer in Tables 1 and 2, “first layer” means that the easy-adhesion layer was formed on the surface of the first layer. "" Indicates that an easy-adhesion layer was formed on both surfaces of the first layer and the second layer.

(易接着層用塗布液の調製)
以下に示す組成を有する樹脂(イ)〜(ヲ)の溶液を、それぞれ易接着層塗布液として用いた。
(イ)アクリル系樹脂:A−1
・メチルメタクリレート ・・・55モル%
・エチルアクリレート ・・・40モル%
・N−メチロールアクリルアミド ・・・3モル%
・2−ヒドロキシエチルメタクリレート ・・・2モル%
以上の成分で構成されているアクリル樹脂のTg=27℃
(Preparation of coating solution for easy adhesion layer)
Solutions of resins (A) to (V) having the following compositions were used as the easy-adhesion layer coating solutions, respectively.
(A) Acrylic resin: A-1
・ Methyl methacrylate: 55 mol%
・ Ethyl acrylate: 40 mol%
・ N-methylolacrylamide: 3 mol%
・ 2-hydroxyethyl methacrylate 2 mol%
Tg of acrylic resin composed of the above components = 27 ° C.

(ロ)ウレタン系樹脂:U−1
・下記のウレタン樹脂A−1
(B) Urethane resin: U-1
-Urethane resin A-1 below

(ハ)ウレタン系樹脂:U−2
・水 ・・・51.00質量%
・イソプロパノール ・・・30.00質量%
・下記のポリウレタン樹脂 ・・・12.58質量%
・下記のオキサゾリン基を有する樹脂 ・・・4.72質量%
・粒子 ・・・1.57質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
・粒子 ・・・0.08質量%
(平均粒径450nmのシリカゾル、固形分濃度40質量%)
・界面活性剤 ・・・0.05質量%
(信越シリコーン社製のKF6011、シリコーン系界面活性剤、固形分濃度100質量%)
(C) Urethane resin: U-2
・ Water: 51.00% by mass
・ Isopropanol: 30.00% by mass
・ The following polyurethane resin: 12.58% by mass
-Resin having the following oxazoline group: 4.72% by mass
・ Particle: 1.57 mass%
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
・ Particles: 0.08% by mass
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
・ Surfactant ... 0.05% by mass
(KF6011, manufactured by Shin-Etsu Silicone, silicone surfactant, solid concentration 100% by mass)

−ポリウレタン樹脂の調製−
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4−ジフェニルメタンジイソシアネート43.75質量%、ジメチロールブタン酸12.85質量%、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41質量%、ジブチルスズジラウレート0.03質量%、及び溶剤としてアセトン84.00質量%を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量%を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min−1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトン及び水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂を調製した。得られたポリウレタン樹脂のガラス転移点温度は−30℃であった。
-Preparation of polyurethane resin-
In a four-necked flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, and thermometer, 43.75% by mass of 4,4-diphenylmethane diisocyanate, 12.85% by mass of dimethylolbutanoic acid, several An average molecular weight of 2000 polyhexamethylene carbonate diol 153.41% by mass, dibutyltin dilaurate 0.03% by mass, and 84.00% by mass of acetone as a solvent were added, and the mixture was stirred at 75 ° C. for 3 hours in a nitrogen atmosphere. It was confirmed that had reached the predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 8.77 mass% of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring and adjusted to 25 ° C., while stirring and mixing at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin having a solid content of 35%. The glass transition temperature of the obtained polyurethane resin was −30 ° C.

−オキサゾリン基を有する樹脂の調製−
温度計、窒素ガス導入管、還流冷却器、滴下ロート、及び攪拌機を備えたフラスコに水性媒体としてのイオン交換水58質量%とイソプロパノール58質量%との混合物、及び、重合開始剤(2,2’−アゾビス(2−アミジノプロパン)・二塩酸塩)4質量%を投入した。一方、滴下ロートに、オキサゾリン基を有する重合性不飽和単量体としての2−イソプロペニル−2−オキサゾリン16質量%、メトキシポリエチレングリコールアクリレート(エチレングリコールの平均付加モル数・9モル、新中村化学社製)32質量%、及びメタクリル酸メチル32質量%の混合物を投入し、窒素雰囲気下、70℃において1時間にわたり滴下した。滴下終了後、反応溶液を9時間攪拌し、冷却することで固形分濃度40質量%のオキサゾリン基を有する水溶性樹脂を得た。
-Preparation of resin having oxazoline group-
A flask equipped with a thermometer, a nitrogen gas inlet tube, a reflux condenser, a dropping funnel, and a stirrer, a mixture of 58% by mass of ion-exchanged water and 58% by mass of isopropanol as an aqueous medium, and a polymerization initiator (2, 2 4% by mass of '-azobis (2-amidinopropane) dihydrochloride) was added. On the other hand, in a dropping funnel, 16% by mass of 2-isopropenyl-2-oxazoline as a polymerizable unsaturated monomer having an oxazoline group, methoxypolyethylene glycol acrylate (average added mole number of ethylene glycol, 9 mol, Shin-Nakamura Chemical) A mixture of 32% by mass and 32% by mass of methyl methacrylate was added, and the mixture was added dropwise at 70 ° C. for 1 hour in a nitrogen atmosphere. After completion of the dropwise addition, the reaction solution was stirred for 9 hours and cooled to obtain a water-soluble resin having an oxazoline group having a solid concentration of 40% by mass.

(ニ)ウレタン系樹脂:U−3
各成分の固形分が下記比率になるように水を加えて調製した濃度10質量%の塗布液
・ポリウレタン ・・・60質量%
(大日本インキ化学工業社製のハイドランAP−40)
・ポリウレタン ・・・10質量%
(三洋化成工業社製のパーマリンUA310
・ポリエステル ・・・20質量%
(大日本インキ化学工業社製のファインテックスES−670)
・アルキロールメラミン ・・・10質量%
(D) Urethane resin: U-3
Coating liquid / polyurethane with a concentration of 10% by mass prepared by adding water so that the solid content of each component is the following ratio: 60% by mass
(Hydran AP-40 manufactured by Dainippon Ink & Chemicals, Inc.)
・ Polyurethane ... 10% by mass
(Permarin UA310 manufactured by Sanyo Chemical Industries, Ltd.
・ Polyester: 20% by mass
(Finetex ES-670 manufactured by Dainippon Ink & Chemicals, Inc.)
・ Alkyrol melamine: 10% by mass

(ホ)ウレタン系樹脂:U−4
・水 ・・・55.86質量%
・イソプロパノール ・・・30.00質量%
・下記のポリウレタン樹脂溶液(A−1) ・・・13.52質量%
・粒子 ・・・0.59質量%
(平均粒径40nmのシリカゾル、固形分濃度:40質量%)
・界面活性剤 ・・・0.03質量%
(シリコーン系、固形分濃度:100質量%)
(E) Urethane resin: U-4
・ Water: 55.86% by mass
・ Isopropanol: 30.00% by mass
・ The following polyurethane resin solution (A-1): 13.52% by mass
・ Particle: 0.59 mass%
(Silica sol with an average particle diameter of 40 nm, solid content concentration: 40% by mass)
・ Surfactant ... 0.03% by mass
(Silicone-based, solid content concentration: 100% by mass)

−ウレタン樹脂溶液(A−1)の調製−
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4−ジフェニルメタンジイソシアネート43.75質量部、ジメチロールブタン酸12.85質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次いで、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に水450gを添加し、25℃に調整して2000min−1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトン及び水の一部を除去することにより、固形分35質量%の水溶性ポリウレタン樹脂溶液(A−1)を調製した。得られたポリウレタン樹脂(A−1)のガラス転移点温度は−30℃であった。
-Preparation of urethane resin solution (A-1)-
In a four-necked flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, and thermometer, 43.75 parts by mass of 4,4-diphenylmethane diisocyanate, 12.85 parts by mass of dimethylolbutanoic acid, several 153.41 parts by mass of polyhexamethylene carbonate diol having an average molecular weight of 2000, 0.03 parts by mass of dibutyltin dilaurate, and 84.00 parts by mass of acetone as a solvent were added and stirred at 75 ° C. for 3 hours in a nitrogen atmosphere. It was confirmed that had reached the predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, and the polyurethane prepolymer solution was added and dispersed in water while adjusting to 25 ° C. and stirring and mixing at 2000 min −1 . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution (A-1) having a solid content of 35% by mass. The obtained polyurethane resin (A-1) had a glass transition temperature of -30 ° C.

(ヘ)ポリエステル系樹脂:E−1
・架橋剤 ・・・15質量%
(メチルメタクリレート30モル%/2−イソプロペニル−2−オキサゾリン30モル%/ポリエチレンオキシド(n=10)メタクリレート10モル%/アクリルアミド30モル%で構成された、オキサゾリン基を有する重合体(Tg=50℃))
・樹脂成分 ・・・75質量%
(酸成分としてテレフタル酸80モル%/イソフタル酸15モル%/5−ナトリウムスルホイソフタル酸5モル%、グリコール成分としてエチレングリコール60モル%/ジエチレングリコール40モル%で構成された共重合ポリエステル(Tg=43℃))
・フィラー(平均粒径60nmのシリカ粒子) ・・・4質量%
・濡れ剤(ポリオキシエチレン(n=7)ラウリルエーテル) ・・・6質量%
(F) Polyester resin: E-1
・ Crosslinking agent ... 15% by mass
(Methyl methacrylate 30 mol% / 2-isopropenyl-2-oxazoline 30 mol% / polyethylene oxide (n = 10) methacrylate 10 mol% / acrylamide 30 mol% polymer having oxazoline group (Tg = 50 ℃))
・ Resin component: 75% by mass
(Copolymerized polyester composed of 80 mol% terephthalic acid / 15 mol% isophthalic acid / 5 mol% 5-sodium sulfoisophthalic acid as the acid component and 60 mol% ethylene glycol / 40 mol% diethylene glycol as the glycol component (Tg = 43 ℃))
・ Filler (silica particles having an average particle diameter of 60 nm): 4% by mass
・ Wetting agent (polyoxyethylene (n = 7) lauryl ether) 6 mass%

(ト)ポリエステル系樹脂:E−2
・水 ・・・40.16質量%
・イソプロパノール ・・・30.00質量%
・下記のポリエステル水分散液 ・・・18.19質量%
・ブロックポリイソシアネート水分散液 ・・・2.08質量%
(第一工業製薬社製のエラストロンE−37)
・粒子A ・・・9.37質量%
(多木化学社製のセラメースS−8、固形分濃度:8質量%)
・粒子B ・・・0.17質量%
(日本触媒社製のシーホスターKEW50、固形分濃度:15質量%)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング社製のDC57、固形分濃度:100質量%)
粒子Aは屈折率2.1のSnOであり、粒子Bは平均1次粒径約500nmのシリカ粒子である。
(G) Polyester resin: E-2
・ Water: 40.16% by mass
・ Isopropanol: 30.00% by mass
・ The following polyester aqueous dispersion: 18.19% by mass
・ Block polyisocyanate aqueous dispersion: 2.08% by mass
(Elastoron E-37 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
・ Particle A: 9.37% by mass
(Cerames S-8 manufactured by Taki Chemical Co., Ltd., solid content concentration: 8% by mass)
-Particle B: 0.17% by mass
(Sea Catalyst KEW50 manufactured by Nippon Shokubai Co., Ltd., solid content concentration: 15% by mass)
・ Silicone-based surfactant 0.03% by mass
(DC57 manufactured by Toray Dow Corning, solid content concentration: 100% by mass)
The particle A is SnO 2 having a refractive index of 2.1, and the particle B is a silica particle having an average primary particle size of about 500 nm.

−ポリエステル水分散液の調製−
攪拌機、温度計と還流装置を備えた反応器に下記のポリエステル樹脂(a−1)30質量%、エチレングリコールn−ブチルエーテル15質量%を入れ、110℃で加熱、攪拌し樹脂を溶解した。樹脂が完全に溶解した後、水55質量%をポリエステル溶液に攪拌しつつ徐々に添加した。添加後、液を攪拌しつつ室温まで冷却して、固形分30質量%の乳白色のポリエステル水分散液を作製した。
-Preparation of aqueous polyester dispersion-
30% by mass of the following polyester resin (a-1) and 15% by mass of ethylene glycol n-butyl ether were placed in a reactor equipped with a stirrer, a thermometer and a reflux device, and heated and stirred at 110 ° C. to dissolve the resin. After the resin was completely dissolved, 55% by mass of water was gradually added to the polyester solution while stirring. After the addition, the liquid was cooled to room temperature while stirring to prepare a milky white polyester aqueous dispersion having a solid content of 30% by mass.

−ポリエステル樹脂(a−1)の調製−
攪拌機、温度計、及び部分還流式冷却器を備えたステンレススチール製オートクレーブに、ジメチルテレフタレート194.2質量%、ジメチルイソフタレート184.5質量%、ジメチル−5−ナトリウムスルホイソフタレート14.8質量%、ジエチレングリコール233.5質量%、エチレングリコール136.6質量%、及びテトラ−n−ブチルチタネート0.2質量%を仕込み、160℃から220℃まで4時間かけてエステル交換反応を行なった。次いで255℃まで昇温し、反応系を徐々に減圧した後、30Paの減圧下で1時間30分反応させ、共重合ポリエステル樹脂(a−1)を得た。得られた共重合ポリエステル樹脂(a−1)は、淡黄色透明であった。また、得られた共重合ポリエステル樹脂(a−1)の還元粘度を測定したところ,0.70dl/gであった。DSCによるガラス転移温度は40℃であった。
-Preparation of polyester resin (a-1)-
In a stainless steel autoclave equipped with a stirrer, a thermometer, and a partial reflux condenser, dimethyl terephthalate 194.2% by mass, dimethyl isophthalate 184.5% by mass, dimethyl-5-sodium sulfoisophthalate 14.8% by mass Then, 233.5% by mass of diethylene glycol, 136.6% by mass of ethylene glycol, and 0.2% by mass of tetra-n-butyl titanate were charged, and a transesterification reaction was performed from 160 ° C. to 220 ° C. over 4 hours. Next, the temperature was raised to 255 ° C., the pressure of the reaction system was gradually reduced, and the mixture was reacted for 1 hour 30 minutes under a reduced pressure of 30 Pa to obtain a copolymerized polyester resin (a-1). The obtained copolyester resin (a-1) was light yellow and transparent. Moreover, it was 0.70 dl / g when the reduced viscosity of the obtained copolyester resin (a-1) was measured. The glass transition temperature by DSC was 40 ° C.

(チ)ポリエステル系樹脂:E−3
・変性ポリエステル高分子結着剤 ・・・80質量%
(FS−44、日本化工塗料社製)
・イソシアネート系架橋結合剤(TD硬化剤) ・・・19.9質量%
・滑剤MP−300(綜研化学(株)) ・・・0.1質量%
(H) Polyester resin: E-3
・ Modified polyester polymer binder: 80% by mass
(FS-44, manufactured by Nippon Kakko Paint Co., Ltd.)
・ Isocyanate-based crosslinking agent (TD curing agent) ... 19.9% by mass
・ Lubricant MP-300 (Soken Chemical Co., Ltd.) ... 0.1% by mass

(リ)ポリエステル系樹脂:E−4
−酸成分−
・テレフタル酸 ・・・32.8質量%
・イソフタル酸 ・・・10.5質量%
・トリメリット酸 ・・・14.7質量%
・セバシン酸 ・・・4.3質量%
−グリコール成分−
・エチレングリコール ・・・6.5質量%
・ネオペンチルグリコール ・・・13.1質量%
・1,4−ブタンジオール ・・・18.1質量%
ここでは、酸成分とグリコール成分とからなるポリエステル樹脂(Tg:20℃)のアンモニウム塩型水分散体を得た。
(I) Polyester resin: E-4
-Acid component-
・ Terephthalic acid 32.8% by mass
・ Isophthalic acid: 10.5% by mass
・ Trimellitic acid: 14.7% by mass
-Sebacic acid: 4.3% by mass
-Glycol component-
・ Ethylene glycol: 6.5% by mass
・ Neopentyl glycol: 13.1% by mass
・ 1,4-Butanediol: 18.1% by mass
Here, an ammonium salt type aqueous dispersion of a polyester resin (Tg: 20 ° C.) composed of an acid component and a glycol component was obtained.

(ヌ)ポリエステル系樹脂:E−5
・水系ポリエステル ・・・30質量%
(東洋紡績社製、バイロナール)
・水系ポリブロックイソシアネート化合物B ・・・33質量%
(第一工業製薬社製、亜硫酸塩ブロック型)
・水系ポリブロックイソシアネート化合物C ・・・3質量%
(第一工業製薬社製、エラストロンBN11)
・帯電防止剤として半極性有機ホウ素化合物 ・・・34質量%
(ボロンインターナショナル社製、ハイボロン)
ここでは、酸成分と、溶剤質量比率が水/イソプロパノール=93/7の溶媒と、により固形分濃度14.6質量%の塗布液を得た。
(Nu) Polyester resin: E-5
・ Water-based polyester: 30% by mass
(Baironal, manufactured by Toyobo Co., Ltd.)
・ Water-based polyblock isocyanate compound B: 33% by mass
(Daiichi Kogyo Seiyaku, sulfite block type)
・ Water-based polyblock isocyanate compound C: 3% by mass
(Eastron BN11, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
・ Semipolar organoboron compound as antistatic agent: 34% by mass
(Boron International, High Boron)
Here, a coating solution having a solid content concentration of 14.6% by mass was obtained from the acid component and the solvent having a mass ratio of water / isopropanol = 93/7.

(ル)PVA系樹脂:V−1
・ポリビニルアルコール(ケン化度86〜89mol%のポリビニルアルコール)・・・20質量%
・微粒子(平均粒径100nmの球状シリカ粒子)・・・0.2質量%
・架橋剤(下記構造の化合物)・・・1質量%
ここでは、上記組成を有する水性塗布液を得た。
(L) PVA resin: V-1
・ Polyvinyl alcohol (polyvinyl alcohol having a saponification degree of 86 to 89 mol%): 20% by mass
・ Fine particles (spherical silica particles having an average particle diameter of 100 nm)...
・ Crosslinking agent (compound with the following structure): 1% by mass
Here, an aqueous coating solution having the above composition was obtained.

(ヲ)ポリオレフィン系樹脂:O−1
・ポリオレフィンバインダー ・・・24.12質量%
(アローベースSE−1013N、ユニチカ社製、固形分濃度:20質量%)
・オキサゾリン系架橋剤 ・・・3.90質量%
(エポクロスWS−700、日本触媒社製、固形分濃度:25質量%)
・フッ素系界面活性剤 ・・・ 0.19質量%
(ナトリウム=ビス(3,3,4,4,5,5,6,6−ノナフルオロ)=2−スルホナイトオキシスクシナート、三協化学社製、固形分濃度:1質量%)
・蒸留水 ・・・71.80質量%
(Wo) Polyolefin resin: O-1
・ Polyolefin binder: 24.12% by mass
(Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content concentration: 20% by mass)
・ Oxazoline-based crosslinking agent: 3.90% by mass
(Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., solid content concentration: 25% by mass)
・ Fluorine-based surfactant: 0.19% by mass
(Sodium = bis (3,3,4,4,5,5,6,6-nonafluoro) = 2-sulfonite oxysuccinate, manufactured by Sankyo Chemical Co., Ltd., solid content concentration: 1% by mass)
・ Distilled water ... 71.80 mass%

<乾燥、横延伸>
続いて、未延伸のポリエステルフィルム上に易接着層用塗布液を塗布した後、下記表1〜表2に示すように塗布面に与えられる乾燥風の風量に分布を付与することにより乾燥速度に分布を付与し、易接着層に厚み分布を与えた。このとき、乾燥風の分布は、乾燥風の吹き出しノズルの開度に分布を設けて形成した。さらに、塗布面とは反対面に対し、下記表1〜表2に示すように、ポリエステルフィルムの塗布面側と非塗布面側との間に温度差ができるように両面にそれぞれ乾燥風を吹きつけ、厚み分布を付与した。
<Drying, transverse stretching>
Subsequently, after applying the coating solution for the easy-adhesion layer on the unstretched polyester film, as shown in Tables 1 and 2 below, the distribution is given to the air volume of the drying air given to the coating surface, thereby increasing the drying speed. Distribution was given and thickness distribution was given to the easily bonding layer. At this time, the distribution of the drying air was formed by providing a distribution in the opening degree of the blowing nozzle of the drying air. Further, as shown in Tables 1 and 2 below, dry air is blown on both sides of the polyester film so that there is a temperature difference between the coated surface side and the non-coated surface side. The thickness distribution was given.

次いで、易接着層が形成された未延伸のポリエステルフィルムをテンターに通しチャックで両端を把持した後、平均120℃の熱風に曝しながら拡幅することで幅方向に4倍延伸した。その後、210℃で30秒間熱固定し、205℃で縦方向、横方向に各々5%ずつ緩和した後、70℃まで冷却した。このとき、フィルムの表裏に下記表1〜表2に示すような温度差ができるように冷風を吹きつけ、フィルムの表裏に温度差を付与することで、表1〜表2に示すように表面ヘイズを調整した。さらに、塗布面側の吹き出しノズルを分割し塗布面側に温度分布を付与することで、表面ヘイズの面内分布を調整した。
その後、フィルムの両端を10cmずつトリミングした後、チャックを外し、ナーリングを付与した。その後、2m幅で2000m巻き取った。
Next, an unstretched polyester film on which an easy-adhesion layer was formed was passed through a tenter, and both ends were gripped by a chuck, and then widened while being exposed to hot air at an average of 120 ° C. to be stretched 4 times in the width direction. Thereafter, the film was heat-fixed at 210 ° C. for 30 seconds, relaxed by 5% in each of the vertical and horizontal directions at 205 ° C., and then cooled to 70 ° C. At this time, by blowing cold air so that a temperature difference as shown in Tables 1 and 2 below can be made on the front and back of the film, and by giving a temperature difference to the front and back of the film, the surface as shown in Tables 1 and 2 Adjusted the haze. Furthermore, the in-plane distribution of the surface haze was adjusted by dividing the blowing nozzle on the application surface side and providing a temperature distribution on the application surface side.
Then, after trimming both ends of the film by 10 cm, the chuck was removed and knurling was applied. Thereafter, it was wound up to 2000 m with a width of 2 m.

以上のようにして、ポリエステルフィルム上に易接着層を有する本発明の白色ポリエステルフィルムを作製した。   As described above, the white polyester film of the present invention having an easy-adhesion layer on the polyester film was produced.

<評価>
上記より得られた白色ポリエステルフィルムを用い、下記方法により密着性、裁断屑を評価した。評価結果は、下記表1〜表2に示す。
なお、易接着層の厚み及び厚み分布、易接着層の表面ヘイズ及び面内分布、微粒子の量及び分散度、第1の層の厚み及び厚み分布、並びにEVAの熱収縮(熱寸法変化及びその分布)の測定方法については、既述の通りである。
<Evaluation>
Using the white polyester film obtained from the above, adhesion and cutting waste were evaluated by the following methods. The evaluation results are shown in Tables 1 and 2 below.
Note that the thickness and thickness distribution of the easy-adhesion layer, the surface haze and in-plane distribution of the easy-adhesion layer, the amount and dispersion of fine particles, the thickness and thickness distribution of the first layer, and EVA heat shrinkage (thermal dimensional change and its The measurement method of (distribution) is as described above.

本実施例では、白色ポリエステルフィルムに貼り付けるEVAシートは、下記表1〜表2に記載の条件で熱処理を行い、熱収縮分布を付与したものを使用した。   In this example, the EVA sheet to be attached to the white polyester film was subjected to heat treatment under the conditions described in Tables 1 and 2 below and provided with a heat shrinkage distribution.

(1)密着性
得られた白色ポリエステルフィルムを長さ100mm×幅100mmのサイズに裁断し、PETサンプルを用意した。また、EVAシートを長さ90mm×幅70mmに切り出し、EVAサンプルを用意した。
これらサンプルを用い、PETサンプル(易接着層面)/EVAサンプル/(易接着層面)PETサンプルの順に重ね、真空ラミネーターで下記の接着条件で加熱圧着し、積層体を作製した。なお、PETサンプルは、易接着層面においてEVAサンプルと接するように配置されている。得られた積層体を下記条件でサーモ処理した後、長さ100mm×20mm幅に切り出し、SUS板に貼りつけ、引張り試験機を用いて下記条件にてPETサンプルとEVAサンプルとの間の剥離強度を測定した。剥離強度は、極大点を越えた後に安定して剥離している部分の平均値として求めた。
<EVAシートの種類>
A.スタンダードキュアタイプ
Urtla Pearl PV(厚み:0.4μm)、サンビック社製
B.ファストキュアタイプ
ソーラーエバ RC02B(厚み:0.45μm)、三井ファブロ社製
<接着条件>
・装置:真空ラミネーター エヌ・ピー・シー社製 LM−30×30型
・加圧:1気圧
・EVAシートにUrtla Pearl PVを用いた場合、
ラミネート工程:100℃(真空5分、真空加圧5分)
キュア工程:熱処理150℃(常圧45分)
EVAシートにソーラーエバ RC02Bを用いた場合
ラミネート工程:150℃(真空5分、真空加圧15分)
<サーモ条件>
・温度:120℃、湿度:100%RH
・処理時間:70時間
<測定条件>
剥離強度の測定は、サーモ処理後の積層体を25℃、60%RHの雰囲気中に1日放置した後、下記方法で行なった。
・装置:テンシロン 東洋BALDWIN社製 RTM−100
・剥離速度:200mm/分
・剥離角度:180度
(1) Adhesiveness The obtained white polyester film was cut into a size of 100 mm length × 100 mm width to prepare a PET sample. Moreover, the EVA sheet | seat was cut out to length 90mm x width 70mm, and the EVA sample was prepared.
Using these samples, a PET sample (easy-adhesive layer surface) / EVA sample / (easy-adhesive layer surface) PET sample was layered in this order, and thermocompression bonded under the following adhesion conditions with a vacuum laminator to prepare a laminate. The PET sample is disposed so as to be in contact with the EVA sample on the surface of the easy adhesion layer. The obtained laminate was thermo-treated under the following conditions, then cut into a length of 100 mm × 20 mm, attached to a SUS plate, and peel strength between a PET sample and an EVA sample under the following conditions using a tensile tester Was measured. The peel strength was determined as the average value of the portions that peeled stably after exceeding the maximum point.
<Types of EVA sheet>
A. Standard cure type Ultra Pearl PV (thickness: 0.4 μm), B. Fast cure type Solar EVA RC02B (thickness: 0.45μm), manufactured by Mitsui Fabro
<Adhesion conditions>
・ Equipment: Vacuum Laminator NP-30 type LM-30 × 30 ・ Pressurization: 1 atm ・ When using Ultra Pearl PV for EVA sheet,
Lamination process: 100 ° C. (vacuum 5 minutes, vacuum pressurization 5 minutes)
Cure process: Heat treatment 150 ° C (normal pressure 45 minutes)
When using EVA EVA RC02B for EVA sheet Laminating process: 150 ° C (vacuum 5 minutes, vacuum pressurization 15 minutes)
<Thermo conditions>
-Temperature: 120 ° C, Humidity: 100% RH
・ Processing time: 70 hours
<Measurement conditions>
The peel strength was measured by the following method after leaving the thermo-treated laminate in an atmosphere of 25 ° C. and 60% RH for 1 day.
・ Device: Tensilon RTM-100 manufactured by Toyo BALDWIN
・ Peeling speed: 200 mm / min ・ Peeling angle: 180 degrees

(2)裁断屑(切り屑)
一辺10cmの正方形のトムソン刃を用いて、黒紙の上で白色ポリエステルフィルムから10枚のフィルム片を打ち抜き、黒紙上に散在した白色の屑を数えた。
(2) Cutting waste (chip)
Ten pieces of film were punched out of the white polyester film on the black paper using a square Thomson blade having a side of 10 cm, and the white scraps scattered on the black paper were counted.

(3)光線反射率
分光光度計(島津製作所社製、自記分光光度計「UV−3150」)に積分球を装着し、標準白色板(SphereOptics社製、白色標準板「ZRS−99−010−W」)の反射率を100%として校正し、白色ポリエステルフィルムに対して易接着層側から光を入射して分光反射率(%)を測定した。測定は、波長400nm〜800nmの領域で1nm刻みに行い、平均値を求めた。
(3) Light reflectance A spectrophotometer (manufactured by Shimadzu Corp., self-recording spectrophotometer "UV-3150") is mounted with an integrating sphere, and a standard white plate (Sphere Optics, white standard plate "ZRS-99-010-"). W ") was calibrated with a reflectance of 100%, light was incident on the white polyester film from the easy-adhesion layer side, and the spectral reflectance (%) was measured. The measurement was performed in 1 nm increments in the wavelength region of 400 nm to 800 nm, and the average value was obtained.

(4)破断伸度半減時間
白色ポリエステルフィルムを120℃、100%RHの環境下に静置し、50時間、60時間、70時間と10時間ずつ増やしながら、下記の方法で破断伸度保持率が10%になるまで測定した。
このとき、サーモ処理した時間を横軸にとり、破断伸度保持率を縦軸にとってプロットし、破断伸度保持率が50%となる時間を内挿して求めた。破断伸度保持率は、サーモ処理前の破断伸度(S0)と、一定時間サーモ処理した後の破断伸度(St)と、から下記式にしたがって求めた。
破断伸度保持率(%)=100×(St)/(S0)
(4) Breaking elongation half-life The white polyester film was allowed to stand in an environment of 120 ° C. and 100% RH and increased by 50 hours, 60 hours, 70 hours and 10 hours, respectively, and the breaking elongation retention rate was as follows. Was measured until 10%.
At this time, the time for the thermo treatment was plotted on the horizontal axis, and the breaking elongation retention was plotted on the vertical axis, and the time at which the breaking elongation retention was 50% was interpolated. The breaking elongation retention was determined according to the following formula from the breaking elongation (S0) before the thermo treatment and the breaking elongation (St) after the thermo treatment for a certain time.
Breaking elongation retention rate (%) = 100 × (St) / (S0)

上記の表1〜表2に示すように、白色ポリエステルフィルムに0.01μm以上1μm以下の厚みで設けられた易接着層が、1%以上30%以下の範囲の厚み分布を有していることで、EVAとの間において優れた密着性を示した。また、光線反射率も良好であり、切り屑の発生も低く抑えられた。   As shown in Tables 1 and 2, the easy adhesion layer provided on the white polyester film with a thickness of 0.01 μm or more and 1 μm or less has a thickness distribution in the range of 1% or more and 30% or less. Thus, excellent adhesion with EVA was shown. Moreover, the light reflectance was also good and the generation of chips was kept low.

Claims (16)

微粒子を含有するポリエステルフィルムと、
前記ポリエステルフィルムの少なくとも一方面に有し、厚みが0.01μm以上1μm以下であり、厚み分布が1%以上30%以下である易接着層と、
を有し、
前記微粒子を含有するポリエステルフィルムは、ポリエステルの質量に対して5質量%以上30質量%以下の微粒子を含み、かつ該微粒子の分散度が10%以上100%以下である第1の層を含み、
前記易接着層は、表面ヘイズが0.01%以上3%以下であり、前記表面ヘイズの面内分布が0.1%以上30%以下である白色ポリエステルフィルム。
A polyester film containing fine particles;
An easy-adhesion layer having at least one surface of the polyester film, having a thickness of 0.01 μm to 1 μm, and a thickness distribution of 1% to 30%;
Have
Polyester film containing the fine particles, containing 5% by weight to 30% by weight of particles relative to the weight of the polyester, and saw including a first layer dispersion degree is less than 100% to 10% of the fine particles ,
The easy adhesion layer is a white polyester film having a surface haze of 0.01% to 3% and an in-plane distribution of the surface haze of 0.1% to 30% .
製膜途中のポリエステルフィルムの少なくとも一方面に塗布により前記易接着層を形成し、下記の(1)及び(2)の少なくとも一方の工程を施して製膜された請求項1に記載の白色ポリエステルフィルム。
(1)形成された易接着層を、該易接着層の面内に0.5℃以上10℃以下の温度差を付与して乾燥させる乾燥工程
(2)易接着層が形成されたポリエステルフィルムを、該ポリエステルフィルムの面内に0.5℃以上10℃以下の温度差を付与して、延伸する延伸工程
The white polyester according to claim 1, wherein the easy-adhesion layer is formed on at least one surface of a polyester film in the middle of film formation, and is formed by performing at least one of the following steps (1) and (2). the film.
(1) A drying step in which the formed easy-adhesion layer is dried by applying a temperature difference of 0.5 ° C. or more and 10 ° C. or less in the plane of the easy-adhesion layer. Stretching step in which a temperature difference of 0.5 ° C. or more and 10 ° C. or less is applied in the plane of the polyester film.
前記微粒子を含有するポリエステルフィルムは、更に、ポリエステルの質量に対して0.06質量%以上10質量%以下の微粒子を含み、かつ該微粒子の分散度が10%以上100%以下である第2の層の少なくとも1層を含む請求項1又は請求項2に記載の白色ポリエステルフィルム。 The polyester film containing the fine particles further includes 0.06% by mass to 10% by mass of fine particles with respect to the mass of the polyester, and the degree of dispersion of the fine particles is 10% to 100%. The white polyester film according to claim 1, comprising at least one layer. 前記第1の層は、厚みが5μm以上80μm以下であり、かつ厚み分布が1%以上20%以下であって、前記微粒子を含有するポリエステルフィルムの総厚が40μm以上350μm以下である請求項1〜請求項のいずれか1項に記載の白色ポリエステルフィルム。 2. The first layer has a thickness of 5 μm or more and 80 μm or less, a thickness distribution of 1% or more and 20% or less, and a total thickness of the polyester film containing the fine particles is 40 μm or more and 350 μm or less. The white polyester film according to claim 3 . 前記微粒子を含有するポリエステルフィルムとして、前記第1の層及び前記第2の層が積層され、かつ第1の層及び第2の層の少なくとも一方の表面に前記易接着層が積層された構造を有する請求項又は請求項に記載の白色ポリエステルフィルム。 The polyester film containing the fine particles has a structure in which the first layer and the second layer are laminated, and the easy adhesion layer is laminated on at least one surface of the first layer and the second layer. The white polyester film according to claim 3 or 4 which has. 前記微粒子を含有するポリエステルフィルムとして、前記第1の層及び前記第2の層を含み、第1の層と、第2の層と、易接着層と、がこの順に積層された構造を有する請求項〜請求項のいずれか1項に記載の白色ポリエステルフィルム。 The polyester film containing the fine particles includes the first layer and the second layer, and has a structure in which the first layer, the second layer, and the easy adhesion layer are laminated in this order. The white polyester film according to any one of Items 3 to 5 . 温度120℃、湿度100%RHの環境条件下に60時間曝された際の破断伸度半減時間が70時間以上200時間以下である請求項1〜請求項のいずれか1項に記載の白色ポリエステルフィルム。 The white according to any one of claims 1 to 6 , wherein the half elongation at break when exposed to an environmental condition of a temperature of 120 ° C and a humidity of 100% RH for 60 hours is from 70 hours to 200 hours. Polyester film. 熱寸法変化分布が1%以上40%以下のエチレン−酢酸ビニル樹脂と、請求項1〜請求項のいずれか1項に記載の白色ポリエステルフィルムと、を貼り合わせる貼合工程を含む太陽電池モジュールの製造方法。 Solar cell module comprising a vinyl acetate resin, a white polyester film according to any one of claims 1 to 7, the be bonded bonding step of - thermal dimensional change distribution is less than 40% 1% of ethylene Manufacturing method. 前記貼合工程は、貼り合わせる前に、エチレン−酢酸ビニル樹脂を、平均温度が40℃以上70℃以下であり、温度分布が0.5℃以上8℃以下であるヒーターを用いて1分以上10分以下の範囲で加熱処理する工程を含む、請求項に記載の太陽電池モジュールの製造方法。 In the pasting step, the ethylene-vinyl acetate resin is bonded to the ethylene-vinyl acetate resin for 1 minute or more using a heater having an average temperature of 40 ° C. or higher and 70 ° C. or lower and a temperature distribution of 0.5 ° C. or higher and 8 ° C. or lower. The manufacturing method of the solar cell module of Claim 8 including the process of heat-processing in the range for 10 minutes or less. 微粒子を含む製膜途中のポリエステルフィルムの少なくとも一方面に、塗布により易接着層を形成する工程と、
下記の(1)及び(2)の少なくとも一方の工程と、
樹脂材料及び微粒子、又は微粒子が分散された樹脂材料を溶融押出機に投入し、溶融押出機のスクリュのトルクに0.5%以上20%以下の変動を付与して溶融押出することで、全質量に対して5質量%以上30質量%以下の微粒子を含み、かつ微粒子の分散度が10%以上100%以下である第1の層を製膜する工程と、
を有し、
前記ポリエステルフィルムは少なくとも第1の層を含む白色ポリエステルフィルムの製造方法。
(1)形成された易接着層を、該易接着層の面内に0.5℃以上10℃以下の温度差を付与して乾燥させる乾燥工程と、前記乾燥工程後、乾燥された易接着層を有するポリエステルフィルムを、該ポリエステルフィルムの一方面と他方面との間に0.1℃以上10℃以下の温度差を付与して冷却する工程と、を有する工程
(2)易接着層が形成されたポリエステルフィルムを、該ポリエステルフィルムの面内に0.5℃以上10℃以下の温度差を付与して、延伸する延伸工程
Forming an easy-adhesion layer by coating on at least one surface of the polyester film in the middle of film formation containing fine particles;
At least one of the following steps (1) and (2);
A resin material and fine particles, or a resin material in which fine particles are dispersed are charged into a melt extruder, and melt extrusion is performed by giving a variation of 0.5% to 20% to the screw torque of the melt extruder. Forming a first layer containing fine particles of 5% by mass or more and 30% by mass or less with respect to the mass and having a fine particle dispersity of 10% or more and 100% or less;
Have
The method for producing a white polyester film, wherein the polyester film includes at least a first layer.
(1) A drying step in which the formed easy-adhesion layer is dried by applying a temperature difference of 0.5 ° C. or more and 10 ° C. or less in the surface of the easy-adhesion layer, and an easy adhesion dried after the drying step A step (2) having an easy-adhesion layer comprising: cooling a polyester film having a layer by applying a temperature difference of 0.1 ° C. or more and 10 ° C. or less between one surface and the other surface of the polyester film. A stretching process in which the formed polyester film is stretched by giving a temperature difference of 0.5 ° C. or more and 10 ° C. or less in the plane of the polyester film.
前記(1)の工程を有するときには、前記乾燥工程後、乾燥された易接着層を有するポリエステルフィルムを、該ポリエステルフィルムの面内に0.1℃以上10℃以下の温度差を付与して冷却する工程を、更に有する請求項10に記載の白色ポリエステルフィルムの製造方法。 When the step (1) is included, after the drying step, the polyester film having the dried easy-adhesion layer is cooled by providing a temperature difference of 0.1 ° C. or more and 10 ° C. or less in the plane of the polyester film. The manufacturing method of the white polyester film of Claim 10 which further has the process to do. 樹脂材料及び微粒子、又は微粒子が分散された樹脂材料を溶融押出機に投入し、溶融押出機のスクリュのトルクに0.5%以上20%以下の変動を付与して溶融押出することで、更に、全質量に対して0.06質量%以上10質量%以下の微粒子を含み、かつ微粒子の分散度が10%以上100%以下である第2の層を製膜する工程を更に有し、前記ポリエステルフィルムは少なくとも第1の層及び第2の層を含む請求項10又は請求項11に記載の白色ポリエステルフィルムの製造方法。 A resin material and fine particles, or a resin material in which fine particles are dispersed are charged into a melt extruder, and melt extrusion is performed by imparting a variation of 0.5% to 20% to the screw torque of the melt extruder. , Further comprising a step of forming a second layer containing 0.06% by mass or more and 10% by mass or less of fine particles with respect to the total mass and having a fine particle dispersity of 10% or more and 100% or less, The method for producing a white polyester film according to claim 10 or 11 , wherein the polyester film comprises at least a first layer and a second layer. 前記溶融押出機で溶融混練された溶融樹脂をダイから溶融押出して第1の層を製膜する際、ダイに0.5℃以上10℃以下の温度変動を付与する請求項10〜請求項12のいずれか1項に記載の白色ポリエステルフィルムの製造方法。 When forming a film of the first layer is melt-extruded melt-kneaded molten resin in the melt extruder through a die, according to claim 10 to claim 12 for imparting the temperature change of 10 ° C. below 0.5 ℃ above the die The manufacturing method of the white polyester film of any one of these. 前記(1)の工程を有するときには、
未延伸の前記ポリエステルフィルムを縦延伸する工程と、
縦延伸されたポリエステルフィルムを横延伸する工程と、
縦延伸する工程と横延伸する工程との間に、縦延伸後のポリエステルフィルムを5℃/秒以上100℃/秒以下の冷却速度で冷却する工程と、
を更に有する請求項10〜請求項13のいずれか1項に記載の白色ポリエステルフィルムの製造方法。
When having the step (1),
A step of longitudinally stretching the unstretched polyester film;
A step of transversely stretching the longitudinally stretched polyester film;
Between the step of longitudinal stretching and the step of lateral stretching, a step of cooling the polyester film after longitudinal stretching at a cooling rate of 5 ° C./second to 100 ° C./second,
The method for producing a white polyester film according to any one of claims 10 to 13 , further comprising:
前記(2)の工程を有するときには、前記延伸工程は、未延伸の前記ポリエステルフィルムを縦延伸する工程と、縦延伸されたポリエステルフィルムを横延伸する工程と、を含み、
縦延伸する工程と横延伸する工程との間に、縦延伸後のポリエステルフィルムを5℃/秒以上100℃/秒以下の冷却速度で冷却する工程を更に有する、請求項10〜請求項14のいずれか1項に記載の白色ポリエステルフィルムの製造方法。
When having the step (2), the stretching step includes a step of longitudinally stretching the unstretched polyester film and a step of laterally stretching the longitudinally stretched polyester film,
Between the step of the step and the transverse stretching of longitudinal stretching, further comprising the step of cooling the polyester film after longitudinal stretching at 5 ° C. / sec or higher 100 ° C. / sec cooling rate, according to claim 10 to claim 14 The manufacturing method of the white polyester film of any one.
太陽光が入射する透明性の基材と、前記基材上に設けられ、太陽電池素子及び前記太陽電池素子を封止する封止材を有する素子構造部分と、前記素子構造部分の前記基材が位置する側と反対側に配置された請求項1〜請求項のいずれか1項に記載の白色ポリエステルフィルムと、を備えた太陽電池モジュール。 A transparent base material on which sunlight is incident, an element structure portion provided on the base material and having a solar cell element and a sealing material for sealing the solar cell element, and the base material of the element structure portion solar cell module comprising but a white polyester film according to any one of claims 1 to 7 disposed on the side opposite to the side on which is located.
JP2014020801A 2014-02-05 2014-02-05 White polyester film and method for producing the same, solar cell module and method for producing the same Active JP6096135B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014020801A JP6096135B2 (en) 2014-02-05 2014-02-05 White polyester film and method for producing the same, solar cell module and method for producing the same
CN201580006444.9A CN105939851B (en) 2014-02-05 2015-02-04 White polyester film and its manufacture method and solar module and its manufacture method
PCT/JP2015/053130 WO2015119164A1 (en) 2014-02-05 2015-02-04 White polyester film and production method therefor, and solar cell module and production method therefor
KR1020167019568A KR101869179B1 (en) 2014-02-05 2015-02-04 White polyester film and production method therefor, and solar cell module and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014020801A JP6096135B2 (en) 2014-02-05 2014-02-05 White polyester film and method for producing the same, solar cell module and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015147334A JP2015147334A (en) 2015-08-20
JP6096135B2 true JP6096135B2 (en) 2017-03-15

Family

ID=53777967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020801A Active JP6096135B2 (en) 2014-02-05 2014-02-05 White polyester film and method for producing the same, solar cell module and method for producing the same

Country Status (4)

Country Link
JP (1) JP6096135B2 (en)
KR (1) KR101869179B1 (en)
CN (1) CN105939851B (en)
WO (1) WO2015119164A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420293B2 (en) 2020-09-23 2024-01-23 カシオ計算機株式会社 Learning support systems, learning support methods and programs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4223522A1 (en) * 2020-10-01 2023-08-09 Toyobo Co., Ltd. Heat-shrinkable polyester film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080263B1 (en) * 2008-12-11 2011-11-08 도레이첨단소재 주식회사 Polyester film having the primer layer with ipproved adhesive and durability
JP5551973B2 (en) * 2010-06-10 2014-07-16 富士フイルム株式会社 Polyester film laminate and method for producing the same
JP2013045980A (en) * 2011-08-25 2013-03-04 Fujifilm Corp Polymer sheet for solar battery, and solar battery module
JP5288068B1 (en) * 2011-10-07 2013-09-11 東洋紡株式会社 White polyester film for solar cell, solar cell back surface sealing sheet and solar cell module using the same
JP5914393B2 (en) * 2012-03-26 2016-05-11 富士フイルム株式会社 Polyester film and method for producing the same, solar cell backsheet and solar cell module
JP2014080561A (en) * 2012-09-26 2014-05-08 Fujifilm Corp Aromatic polyester film, back sheet for solar cell module and solar cell module
JP2014162107A (en) * 2013-02-25 2014-09-08 Fujifilm Corp White multilayer polyester film, laminated film, back sheet for solar cell module and solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420293B2 (en) 2020-09-23 2024-01-23 カシオ計算機株式会社 Learning support systems, learning support methods and programs

Also Published As

Publication number Publication date
CN105939851A (en) 2016-09-14
KR101869179B1 (en) 2018-06-19
WO2015119164A1 (en) 2015-08-13
KR20160101128A (en) 2016-08-24
CN105939851B (en) 2018-03-30
JP2015147334A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP5815276B2 (en) POLYMER SHEET FOR SOLAR CELL BACK SHEET, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
JP5747353B2 (en) Back protection sheet for solar cell module
JP5145479B2 (en) Laminated polyester film for solar cell back surface protective film
EP2484716B1 (en) Polyester film for solar cells
KR101511201B1 (en) Solar cell backsheet, method of manufacturing same, and solar cell module
JP5619802B2 (en) POLYESTER FILM MANUFACTURING METHOD, POLYESTER FILM, AND SOLAR CELL BACK SHEET
JP5914393B2 (en) Polyester film and method for producing the same, solar cell backsheet and solar cell module
KR101649054B1 (en) Protective sheet for solar cells, method for producing same, back sheet for solar cells, and solar cell module
KR102480269B1 (en) Polyester film comprising amorphous polyester
JP2012056090A (en) Polyester film and method of manufacturing the same, backsheet for solar cell, and solar cell module
JP2013058747A (en) Back sheet for solar cell and manufacturing method therefor, and solar cell module
CN110023437B (en) PV cell and back sheet polyester film
JP6096135B2 (en) White polyester film and method for producing the same, solar cell module and method for producing the same
JP5763021B2 (en) SOLAR CELL POLYMER SHEET, PROCESS FOR PRODUCING THE SAME, AND SOLAR CELL MODULE
WO2012005034A1 (en) Polyester film for protecting rear surface of solar cell
WO2015182282A1 (en) Polyester film for solar cell back sheets
JP5562889B2 (en) LAMINATED FILM, SOLAR CELL BACK SHEET, AND METHOD FOR PRODUCING LAMINATED FILM
JP2015216213A (en) Polyester film for solar battery backside protective films, and solar battery backside protective film including the same
JP6348867B2 (en) Stretched white polyester film and method for producing the same, solar cell backsheet, and solar cell module
JP2013045980A (en) Polymer sheet for solar battery, and solar battery module
JP2016036026A (en) Protective sheet for solar batteries, manufacturing method thereof, and solar battery module
JP5694092B2 (en) Polyester film and method for producing the same, solar cell backsheet and solar cell module
JP2015188015A (en) Laminate polyester film for solar battery backside protection, solar battery backside protective sheet, and solar battery module
JP5995769B2 (en) Laminated film, back sheet for solar cell module, and solar cell module
JP2013042006A (en) Polymer sheet for solar cell module, method of manufacturing the same, back sheet for solar cell module and solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170215

R150 Certificate of patent or registration of utility model

Ref document number: 6096135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250