JP5288068B1 - White polyester film for solar cell, solar cell back surface sealing sheet and solar cell module using the same - Google Patents

White polyester film for solar cell, solar cell back surface sealing sheet and solar cell module using the same Download PDF

Info

Publication number
JP5288068B1
JP5288068B1 JP2012554545A JP2012554545A JP5288068B1 JP 5288068 B1 JP5288068 B1 JP 5288068B1 JP 2012554545 A JP2012554545 A JP 2012554545A JP 2012554545 A JP2012554545 A JP 2012554545A JP 5288068 B1 JP5288068 B1 JP 5288068B1
Authority
JP
Japan
Prior art keywords
polyester film
solar cell
film
layer
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012554545A
Other languages
Japanese (ja)
Other versions
JPWO2013051661A1 (en
Inventor
良知 池畠
亮 清水
潤 稲垣
真治 澤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012554545A priority Critical patent/JP5288068B1/en
Application granted granted Critical
Publication of JP5288068B1 publication Critical patent/JP5288068B1/en
Publication of JPWO2013051661A1 publication Critical patent/JPWO2013051661A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本発明の目的は、良好な光反射性を有しながら、耐光性および耐加水分解性に代表される環境耐久性に優れた太陽電池用白色ポリエステルフィルム、これを用いた太陽電池裏面封止シートおよび太陽電池モジュールを提供することである。上記目的を達成することができた本発明の太陽電池用白色ポリエステルフィルムは、白色度が50以上、波長400〜800nmの範囲における平均反射率が50〜95%、酸価が1〜50eq/ton、厚みが30〜380μmである太陽電池用ポリエステルフィルムであり、10〜35質量%の無機微粒子を含有する無機微粒子集中含有層が少なくとも一方の最外層として配置された多層構造を有しており、上記無機微粒子集中含有層の厚みがポリエステルフィルム全体の厚みに対して5〜30%であり、ポリエステルフィルム全体における無機微粒子の含有量が2〜10質量%であることを特徴とする。   An object of the present invention is to provide a white polyester film for solar cells excellent in environmental durability represented by light resistance and hydrolysis resistance while having good light reflectivity, and a solar cell backside sealing sheet using the same And providing a solar cell module. The white polyester film for a solar cell of the present invention that has achieved the above object has a whiteness of 50 or more, an average reflectance of 50 to 95% in a wavelength range of 400 to 800 nm, and an acid value of 1 to 50 eq / ton. , A polyester film for solar cells having a thickness of 30 to 380 μm, and has a multilayer structure in which an inorganic fine particle concentration containing layer containing 10 to 35% by mass of inorganic fine particles is disposed as at least one outermost layer, The thickness of the inorganic fine particle concentration content layer is 5-30% with respect to the thickness of the whole polyester film, and the content of inorganic fine particles in the whole polyester film is 2-10% by mass.

Description

本発明は、高い白色度と良好な光反射性を有しながら、耐光性および耐加水分解性に優れた太陽電池用白色ポリエステルフィルム、これを用いた太陽電池裏面封止シートおよび太陽電池モジュールに関する。   The present invention relates to a white polyester film for solar cells that has high whiteness and good light reflectivity and is excellent in light resistance and hydrolysis resistance, a solar cell back surface sealing sheet and a solar cell module using the same. .

近年、太陽電池は次世代のクリーンエネルギー源として注目を集めている。太陽電池モジュールには、その裏面を封止する裏面封止シートなどの構成部材が使用され、これらの構成部材にはベースフィルムが用いられる。太陽電池は屋外で長期にわたり使用されるため、これらの構成部材やこれらの構成部材に使用されるベースフィルムには自然環境に対する耐久性が求められる。   In recent years, solar cells have attracted attention as a next-generation clean energy source. A constituent member such as a back surface sealing sheet for sealing the back surface is used for the solar cell module, and a base film is used for these constituent members. Since solar cells are used outdoors for a long period of time, durability to the natural environment is required for these components and the base films used for these components.

太陽電池裏面封止シート用のベースフィルムとしては、耐UV性や隠蔽性などを高めるという目的で、白色顔料などが添加されたフッ素系フィルム、ポリエチレン系フィルムまたはポリエステル系フィルムが用いられてきた(特許文献1〜9)。   As a base film for a solar cell backside sealing sheet, a fluorine-based film, a polyethylene-based film, or a polyester-based film to which a white pigment or the like is added has been used for the purpose of improving UV resistance, concealment, and the like ( Patent Documents 1 to 9).

特開平11−261085号公報JP-A-11-261085 特開2000−114565号公報JP 2000-114565 A 特開2004−247390号公報JP 2004-247390 A 特開2002−134771号公報JP 2002-134771 A 特開2006−270025号公報JP 2006-270025 A 特開2007−184402号公報JP 2007-184402 A 特開2007−208179号公報JP 2007-208179 A 特開2008−85270号公報JP 2008-85270 A WO2007−105306号公報WO 2007-105306

特許文献1〜9にも記載のように、太陽電池裏面封止シートの構成部材として白色ベースフィルムを用いることにより、太陽光を反射させ、発電効率を上げることが可能であった。しかし、これらの白色ベースフィルムには多量の白色顔料粒子を添加する必要があり、多量に添加した粒子の分散性や混合状態を良好にするため、粒子と樹脂を予備混合した原料を作製する工程や、通常の押出工程でも溶融時間を長くすることなどの手法が採られており、こういった多数の熱履歴が加えられる結果、樹脂が劣化しやすくなり、得られたベースフィルムを太陽電池裏面封止シートに使用する場合に、高温高湿度下において耐久性に乏しいという問題があった。   As described in Patent Documents 1 to 9, by using a white base film as a constituent member of the solar cell back surface sealing sheet, it was possible to reflect sunlight and increase power generation efficiency. However, it is necessary to add a large amount of white pigment particles to these white base films, and in order to improve the dispersibility and mixing state of the particles added in a large amount, a process of preparing a raw material in which particles and a resin are premixed In addition, techniques such as increasing the melting time even in the normal extrusion process are adopted, and as a result of adding such a large number of thermal histories, the resin tends to deteriorate, and the obtained base film is attached to the back surface of the solar cell. When used for a sealing sheet, there is a problem that durability is poor under high temperature and high humidity.

本発明の目的は、上記問題に鑑み、高い白色度と良好な光反射性を有しながら、耐光性および耐加水分解性に代表される環境耐久性に優れた太陽電池用白色ポリエステルフィルム、これを用いた太陽電池裏面封止シートおよび太陽電池モジュールを提供することにある。   In view of the above problems, an object of the present invention is a white polyester film for solar cells, which has high whiteness and good light reflectivity, and is excellent in environmental durability represented by light resistance and hydrolysis resistance. It is providing the solar cell backside sealing sheet and solar cell module which used this.

上記問題を解決することができた本発明にかかる太陽電池用白色ポリエステルフィルムは、白色度が50以上、波長400〜800nmの範囲における平均反射率が50〜95%、酸価が1〜50eq/ton、厚みが30〜380μmである太陽電池用ポリエステルフィルムであり、10〜35質量%の無機微粒子を含有する無機微粒子集中含有層が少なくとも一方の最外層として配置された多層構造を有しており、上記無機微粒子集中含有層の厚みがポリエステルフィルム全体の厚みに対して5〜30%であり、ポリエステルフィルム全体における無機微粒子の含有量が2〜10質量%であることを特徴とする。   The white polyester film for solar cells according to the present invention that has solved the above problems has a whiteness of 50 or more, an average reflectance of 50 to 95% in a wavelength range of 400 to 800 nm, and an acid value of 1 to 50 eq / ton, which is a polyester film for solar cells having a thickness of 30 to 380 μm, and has a multilayer structure in which an inorganic fine particle concentration containing layer containing 10 to 35% by mass of inorganic fine particles is disposed as at least one outermost layer. The thickness of the inorganic fine particle concentration layer is 5 to 30% with respect to the thickness of the whole polyester film, and the content of inorganic fine particles in the whole polyester film is 2 to 10% by mass.

上記無機微粒子はルチル型を主体とする二酸化チタンであることが好ましい。   The inorganic fine particles are preferably titanium dioxide mainly composed of rutile type.

本発明の太陽電池用白色ポリエステルフィルムは、長手方向の150℃での熱収縮率が0.2〜3.0%であることが好ましい。105℃、100%RH、0.03MPa、200時間処理の条件で促進加水分解試験後の破断伸度保持率が60〜100%であることが好ましい。   The white polyester film for solar cell of the present invention preferably has a thermal shrinkage rate at 150 ° C. in the longitudinal direction of 0.2 to 3.0%. It is preferable that the breaking elongation retention after the accelerated hydrolysis test is 60 to 100% under the conditions of 105 ° C., 100% RH, 0.03 MPa, and 200 hours treatment.

本発明の太陽電池用白色ポリエステルフィルムは、63℃、50%RH、UV照射強度100mW/cm2、100時間照射の条件で促進光劣化試験後の破断伸度保持率が35%以上であることが好ましい。上記促進光劣化試験後のカラーb*値の変化が12以下であることが好ましい。The white polyester film for solar cells of the present invention has a breaking elongation retention ratio of 35% or more after the accelerated light deterioration test under the conditions of 63 ° C., 50% RH, UV irradiation intensity of 100 mW / cm 2 , and irradiation for 100 hours. Is preferred. The change in the color b * value after the accelerated light deterioration test is preferably 12 or less.

本発明の太陽電池用白色ポリエステルフィルムは、ポリエステルフィルムの少なくとも一方の表面に脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂を含有する塗布層が配置されてもよい。   In the white polyester film for a solar cell of the present invention, a coating layer containing a polyurethane resin containing an aliphatic polycarbonate polyol as a constituent component may be disposed on at least one surface of the polyester film.

なお、本発明は、上記太陽電池用白色ポリエステルフィルムを用いた太陽電池裏面封止シート、および、太陽電池裏面封止シートと太陽電池裏面封止シートに隣接する充填剤層と充填剤層に埋設された太陽電池素子を備える太陽電池モジュールも含まれる。   In addition, this invention embeds in the solar cell backside sealing sheet using the said white polyester film for solar cells, and the filler layer adjacent to a solar cell backside sealing sheet and a solar cell backside sealing sheet, and a filler layer. A solar cell module including the solar cell element thus formed is also included.

本発明の太陽電池用白色ポリエステルフィルムは、光反射性と環境耐久性を両立したものである。本発明の太陽電池用白色ポリエステルフィルムを用いることにより、良好な光反射性を有しながら、環境耐久性に優れた、安価で軽量な太陽電池裏面封止シートおよび太陽電池モジュールを提供することが可能となった。   The white polyester film for solar cells of the present invention has both light reflectivity and environmental durability. By using the white polyester film for a solar cell of the present invention, it is possible to provide an inexpensive and lightweight solar cell backside sealing sheet and a solar cell module having excellent light reflectivity and excellent environmental durability. It has become possible.

本発明にかかる太陽電池用白色ポリエステルフィルムは、白色度が50以上、波長400〜800nmの範囲における平均反射率が50〜95%、酸価が1〜50eq/ton、厚みが30〜380μmである太陽電池用ポリエステルフィルムであり、10〜35質量%の無機微粒子を含有する無機微粒子集中含有層が少なくとも一方の最外層として配置された多層構造を有しており、上記無機微粒子集中含有層の厚みがポリエステルフィルム全体の厚みに対して5〜30%であり、ポリエステルフィルム全体における無機微粒子の含有量が2〜10質量%であることを特徴とする。   The white polyester film for solar cells according to the present invention has a whiteness of 50 or more, an average reflectance of 50 to 95% in a wavelength range of 400 to 800 nm, an acid value of 1 to 50 eq / ton, and a thickness of 30 to 380 μm. A polyester film for solar cells, having a multilayer structure in which an inorganic fine particle concentration-containing layer containing 10 to 35% by mass of inorganic fine particles is disposed as at least one outermost layer, and the thickness of the inorganic fine particle concentration content layer Is 5 to 30% with respect to the thickness of the entire polyester film, and the content of inorganic fine particles in the entire polyester film is 2 to 10% by mass.

<ポリエステル樹脂>
本発明の太陽電池用白色ポリエステルフィルムに使用されるポリエステル樹脂とは、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸のごとき芳香族ジカルボン酸またはそのエステルと、エチレングリコール、ブチレングリコール、ジエチレングリコール、1,4−ブタンジオール、ネオペンチルグリコールのごときグリコールとを重縮合させて製造されるものであり、ホモポリマーであってもよく、第三成分を共重合したコポリマーであってもよい。
<Polyester resin>
The polyester resin used in the white polyester film for solar cells of the present invention is an aromatic dicarboxylic acid or ester thereof such as terephthalic acid, isophthalic acid or naphthalenedicarboxylic acid, ethylene glycol, butylene glycol, diethylene glycol, 1,4- It is produced by polycondensation with glycols such as butanediol and neopentyl glycol, and may be a homopolymer or a copolymer obtained by copolymerizing a third component.

かかるポリエステル樹脂の代表例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン−2,6−ナフタレートなどが挙げられる。   Representative examples of such a polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and the like.

第三成分を共重合した場合、エチレンテレフタレート単位、ブチレンテレフタレート単位またはエチレン−2,6−ナフタレート単位のモル比率は、70モル%以上が好ましく、80モル%以上がより好ましく、90モル%以上がさらに好ましい。   When the third component is copolymerized, the molar ratio of ethylene terephthalate unit, butylene terephthalate unit or ethylene-2,6-naphthalate unit is preferably 70 mol% or more, more preferably 80 mol% or more, and 90 mol% or more. Further preferred.

上記ポリエステル樹脂は、芳香族ジカルボン酸とグリコールとを直接重縮合させる方法のほか、芳香族ジカルボン酸のアルキルエステルとグリコールとをエステル交換反応させた後に重縮合させる方法、芳香族ジカルボン酸のジグリコールエステルを重縮合させる方法などによって製造することができる。   In addition to the method of directly polycondensing aromatic dicarboxylic acid and glycol, the above polyester resin is a method of polycondensation after transesterification of alkyl ester of aromatic dicarboxylic acid and glycol, diglycol of aromatic dicarboxylic acid It can be produced by a method in which an ester is polycondensed.

重縮合触媒としては、アンチモン化合物、チタン化合物、ゲルマニウム化合物、スズ化合物、アルミニウムおよび/またはアルミニウム化合物、芳香環を分子内に有するリン化合物、リン化合物のアルミニウム塩などが挙げられる。   Examples of the polycondensation catalyst include antimony compounds, titanium compounds, germanium compounds, tin compounds, aluminum and / or aluminum compounds, phosphorus compounds having an aromatic ring in the molecule, and aluminum salts of phosphorus compounds.

重縮合反応の後、ポリエステル樹脂から触媒を除去するか、またはリン系化合物などを添加することで触媒を失活させることによって、ポリエステル樹脂の熱安定性をさらに高めることができる。また、ポリエステル樹脂の特性、加工性、色調に問題が生じない範囲内において、重縮合触媒は適量共存してもよい。   After the polycondensation reaction, the thermal stability of the polyester resin can be further improved by removing the catalyst from the polyester resin or deactivating the catalyst by adding a phosphorus compound or the like. Further, an appropriate amount of the polycondensation catalyst may coexist within a range in which no problem occurs in the characteristics, processability, and color tone of the polyester resin.

ポリエステル樹脂を製造する際には、テレフタル酸のエステル化反応時やテレフタル酸ジメチルのエステル交換反応時にジアルキレングリコールが副生する。ジアルキレングリコールがポリエステル樹脂に多く含まれると、得られたフィルムは高温環境に曝される場合、耐熱性が低下するおそれがある。そのため、本発明で使用されるポリエステル樹脂におけるジアルキレングリコールの含有量は一定範囲に抑えることが好ましい。   When the polyester resin is produced, dialkylene glycol is by-produced during the esterification reaction of terephthalic acid or the ester exchange reaction of dimethyl terephthalate. When a large amount of dialkylene glycol is contained in the polyester resin, the resulting film may have reduced heat resistance when exposed to a high temperature environment. Therefore, the content of dialkylene glycol in the polyester resin used in the present invention is preferably suppressed within a certain range.

具体的には、代表的なジアルキレングリコールとしてジエチレングリコールを例にすると、ポリエステル樹脂におけるジエチレングリコールの含有量は2.3モル%以下が好ましく、2.0モル%以下がより好ましく、1.8モル%以下がさらに好ましい。ジエチレングリコールの含有量を2.3モル%以下とすることで、熱安定性を高めることができ、乾燥時、成形時の分解による酸価の上昇を抑えることができる。なお、ジエチレングリコールは少ない方がよいが、ポリエステル樹脂を製造する際に副生するものなので、現実的にはその含有量の下限は1.0モル%、さらには1.2モル%である。   Specifically, taking diethylene glycol as an example of a representative dialkylene glycol, the content of diethylene glycol in the polyester resin is preferably 2.3 mol% or less, more preferably 2.0 mol% or less, and 1.8 mol%. The following is more preferable. When the content of diethylene glycol is 2.3 mol% or less, the thermal stability can be increased, and an increase in acid value due to decomposition during drying and molding can be suppressed. In addition, although it is better that there is little diethylene glycol, since it is by-produced when manufacturing a polyester resin, the lower limit of the content is realistically 1.0 mol%, Furthermore, 1.2 mol%.

本発明ではポリエステルフィルムに耐久性を付与するために、用いるポリエステル樹脂の固有粘度は0.65dl/g以上が好ましく、0.67dl/g以上がより好ましく、0.90dl/g以下が好ましく、0.75dl/g以下がより好ましい。ポリエステル樹脂の固有粘度を上記範囲にすることで、良好な生産性を得るとともに、形成したフィルムの耐加水分解性、耐熱性を高めることができる。一方、固有粘度が0.65dl/gより低い場合は、形成したフィルムの耐加水分解性、耐熱性が劣る場合がある。また、0.90dl/gより高い場合は、生産性が低下する場合がある。ポリエステル樹脂の固有粘度を上記範囲に調整するためには、重合後に固相重合を施すことが望ましい。   In the present invention, in order to impart durability to the polyester film, the intrinsic viscosity of the polyester resin used is preferably 0.65 dl / g or more, more preferably 0.67 dl / g or more, preferably 0.90 dl / g or less, 0 .75 dl / g or less is more preferable. By making the intrinsic viscosity of the polyester resin within the above range, good productivity can be obtained, and the hydrolysis resistance and heat resistance of the formed film can be enhanced. On the other hand, when the intrinsic viscosity is lower than 0.65 dl / g, the formed film may have poor hydrolysis resistance and heat resistance. On the other hand, if it is higher than 0.90 dl / g, the productivity may decrease. In order to adjust the intrinsic viscosity of the polyester resin within the above range, it is desirable to perform solid phase polymerization after polymerization.

酸価で表されるポリエステル樹脂のカルボキシル末端は自己触媒作用により加水分解を促進する作用がある。太陽電池用部材として高度な耐加水分解性を得るために、本発明の太陽電池用白色ポリエステルフィルムの酸価はポリエステルに対して1〜50eq/tonの範囲にあることが重要である。上記酸価はポリエステルに対して2eq/ton以上が好ましく、3eq/ton以上がより好ましく、40eq/ton以下が好ましく、30eq/ton以下がより好ましい。酸価が50eq/tonより大きい場合は、フィルムの耐加水分解性が低下し、早期劣化が生じやすくなる。   The carboxyl terminal of the polyester resin represented by the acid value has an action of promoting hydrolysis by autocatalysis. In order to obtain high hydrolysis resistance as a member for solar cell, it is important that the acid value of the white polyester film for solar cell of the present invention is in the range of 1 to 50 eq / ton relative to the polyester. The acid value is preferably 2 eq / ton or more, more preferably 3 eq / ton or more, preferably 40 eq / ton or less, more preferably 30 eq / ton or less with respect to the polyester. When an acid value is larger than 50 eq / ton, the hydrolysis resistance of a film falls and early deterioration tends to occur.

フィルムの酸価を上記範囲にするには、原料樹脂として用いるポリエステル樹脂の酸価を一定範囲に抑えることが好ましい。具体的には、ポリエステル樹脂の酸価は50eq/ton未満が好ましく、25eq/ton以下がより好ましく、20eq/ton以下がさらに好ましい。また、フィルムの酸価は小さい方が好ましいが、生産性の点から0.5eq/tonが下限である。ポリエステル樹脂やフィルムの酸価は後記する滴定法により測定することができる。   In order to make the acid value of a film into the said range, it is preferable to suppress the acid value of the polyester resin used as raw material resin to a fixed range. Specifically, the acid value of the polyester resin is preferably less than 50 eq / ton, more preferably 25 eq / ton or less, and further preferably 20 eq / ton or less. Moreover, although the one where the acid value of a film is small is preferable, 0.5 eq / ton is a minimum from the point of productivity. The acid value of the polyester resin or film can be measured by a titration method described later.

ポリエステル樹脂の酸価を上記範囲に制御するためには、樹脂の重合条件、詳しくは、エステル化反応装置の構造などの製造装置要因や、エステル化反応装置に供給するスラリーのジカルボン酸とグリコールの組成比、エステル化反応温度、反応圧および反応時間などのエステル化反応条件もしくは固層重合条件などを適宜設定すればよい。また、押出機へ供給するポリエステルチップの水分量を制御したり、溶融工程での樹脂温度を制御することも有効である。さらに、エポキシ化合物やカルボジイミド化合物などによりカルボキシル末端を封鎖することも好ましい方法である。   In order to control the acid value of the polyester resin within the above range, the polymerization conditions of the resin, specifically, the production equipment factors such as the structure of the esterification reactor, and the dicarboxylic acid and glycol of the slurry supplied to the esterification reactor What is necessary is just to set suitably esterification reaction conditions, such as composition ratio, esterification reaction temperature, reaction pressure, and reaction time, or solid layer polymerization conditions. It is also effective to control the moisture content of the polyester chip supplied to the extruder or to control the resin temperature in the melting step. Furthermore, it is also a preferable method to block the carboxyl terminal with an epoxy compound or a carbodiimide compound.

例えば、ポリエステルチップを押出機に供給する際、酸価上昇を抑えるためには、十分乾燥したポリエステルチップを用いることが好ましい。具体的には、ポリエステルチップの水分量は100ppm以下が好ましく、50ppm以下がより好ましく、30ppm以下がさらに好ましい。   For example, when supplying polyester chips to an extruder, it is preferable to use sufficiently dried polyester chips in order to suppress an increase in acid value. Specifically, the moisture content of the polyester chip is preferably 100 ppm or less, more preferably 50 ppm or less, and even more preferably 30 ppm or less.

ポリエステルチップの乾燥方法は、減圧乾燥や加熱乾燥など公知の方法を用いることができる。例えば、加熱乾燥の場合、加熱温度は100〜200℃が好ましく、120〜180℃がより好ましい。乾燥時間は1時間以上が好ましく、3時間以上がより好ましく、6時間以上がさらに好ましい。   As a method for drying the polyester chip, a known method such as vacuum drying or heat drying can be used. For example, in the case of heat drying, the heating temperature is preferably 100 to 200 ° C, more preferably 120 to 180 ° C. The drying time is preferably 1 hour or longer, more preferably 3 hours or longer, and even more preferably 6 hours or longer.

また、ポリエステル樹脂の酸価を抑えるために、溶融工程での樹脂温度を一定範囲に制御することも有効である。具体的には、溶融温度は280〜310℃であることが好ましく、290〜300℃であることがより好ましい。溶融温度を上げることにより押出機内での濾過時の背圧が低下し、良好な生産性を奏することができるが、溶融温度が310℃よりも高くなると、樹脂の熱劣化が進行し、樹脂の酸価が上昇するため、得られたフィルムの耐加水分解性が低下する場合がある。   In order to suppress the acid value of the polyester resin, it is also effective to control the resin temperature in the melting step within a certain range. Specifically, the melting temperature is preferably 280 to 310 ° C, and more preferably 290 to 300 ° C. By increasing the melting temperature, the back pressure during filtration in the extruder can be reduced, and good productivity can be achieved. However, when the melting temperature is higher than 310 ° C., thermal degradation of the resin proceeds, Since an acid value rises, the hydrolysis resistance of the obtained film may fall.

なお、ポリエステル樹脂中には、使用する目的に応じて、蛍光増白剤、紫外線防止剤、赤外線吸収色素、熱安定剤、界面活性剤、酸化防止剤などの各種添加剤を1種もしくは多種含有させることもできる。   The polyester resin contains one or many kinds of various additives such as a fluorescent brightening agent, an ultraviolet ray inhibitor, an infrared absorbing dye, a heat stabilizer, a surfactant, and an antioxidant depending on the purpose of use. It can also be made.

酸化防止剤としては、芳香族アミン系、フェノール系などの酸化防止剤が使用可能であり、熱安定剤としては、リン酸やリン酸エステル等のリン系、イオウ系、アミン系などの熱安定剤が使用可能である。   Antioxidants such as aromatic amines and phenols can be used as antioxidants, and thermal stabilizers such as phosphoric acid and phosphoric acid esters such as phosphorous, sulfur esters, and amines can be used. The agent can be used.

<無機微粒子>
本発明の太陽電池用白色ポリエステルフィルムに使用される無機微粒子としては、特に限定されるものではなく、二酸化チタン、硫酸バリウム、シリカ、カオリナイト、タルク、炭酸カルシウム、ゼオライト、アルミナ、カーボンブラック、酸化亜鉛、硫化亜鉛などが例示できる。白色度と生産性を向上させる点からは白色顔料である二酸化チタンまたは硫酸バリウムが好ましく、二酸化チタンがより好ましい。
<Inorganic fine particles>
The inorganic fine particles used for the white polyester film for solar cells of the present invention are not particularly limited, and are titanium dioxide, barium sulfate, silica, kaolinite, talc, calcium carbonate, zeolite, alumina, carbon black, oxidation. Examples thereof include zinc and zinc sulfide. From the viewpoint of improving whiteness and productivity, titanium dioxide or barium sulfate which is a white pigment is preferable, and titanium dioxide is more preferable.

上記無機微粒子の平均粒径は、0.1μm以上が好ましく、0.5μm以上がより好ましく、3μm以下が好ましく、2.5μm以下がより好ましい。無機微粒子の平均粒径を上記範囲にすることで、光散乱効果によるフィルムの白色度を高めると共に、好適に製膜を行うことができる。一方、平均粒径が0.1μm未満の場合は、光散乱効果の不足でフィルムに必要な白色度が得られないおそれがある。また、平均粒径が3μm超の場合は、製膜中にフィルムの破断が生じやすくなり、製膜をうまく行えないおそれがある。   The average particle size of the inorganic fine particles is preferably 0.1 μm or more, more preferably 0.5 μm or more, preferably 3 μm or less, and more preferably 2.5 μm or less. By setting the average particle size of the inorganic fine particles within the above range, the whiteness of the film due to the light scattering effect can be increased and film formation can be suitably performed. On the other hand, when the average particle size is less than 0.1 μm, the whiteness necessary for the film may not be obtained due to insufficient light scattering effect. On the other hand, when the average particle size is more than 3 μm, the film is easily broken during film formation, and there is a possibility that film formation cannot be performed well.

本発明において無機微粒子の平均粒径は以下の電子顕微鏡法により求めることができる。具体的には、無機微粒子を走査型電子顕微鏡で観察し、粒子の大きさに応じて適宜倍率を変え、写真を撮影し、写真撮影したものを拡大コピーし、ランダムに選んだ少なくとも100個以上の微粒子について、各粒子の外周をトレースし、画像解析装置にてこれらのトレース像から粒子の円相当径を測定し、それらの平均値を平均粒径とする。   In the present invention, the average particle size of the inorganic fine particles can be determined by the following electron microscope method. Specifically, the inorganic fine particles are observed with a scanning electron microscope, the magnification is appropriately changed according to the size of the particles, a photograph is taken, and the photographed photograph is enlarged and at least 100 or more randomly selected. The outer circumference of each particle is traced, and the equivalent circle diameter of the particle is measured from these trace images with an image analyzer, and the average value thereof is taken as the average particle diameter.

太陽電池は屋外において長時間で太陽光の照射を受けるため、光劣化に対する耐久性(耐光性)が要求される。耐光性を向上させる点からは、本発明のフィルムに用いる無機微粒子はルチル型を主体とする二酸化チタン微粒子が好ましい。   Since a solar cell is irradiated with sunlight for a long time outdoors, durability against light deterioration (light resistance) is required. From the viewpoint of improving light resistance, the inorganic fine particles used in the film of the present invention are preferably titanium dioxide fine particles mainly composed of rutile type.

二酸化チタンでは、主にルチル型とアナターゼ型の2つの結晶形態が知られている。アナターゼ型は紫外線の分光反射率が非常に大きいのに対し、ルチル型は紫外線の吸収率が大きい(即ち、分光反射率が小さい)という特性を有する。二酸化チタンの結晶形態におけるこうした分光特性の違いに着目し、ルチル型の紫外線吸収性能を利用することで、フィルムの耐光性を好適に向上させることができ、フィルムの光劣化による着色も低減させることが可能となる。これにより、本発明のより好適な態様においては、ほかの紫外線吸収剤を実質的に添加しなくても耐光性に優れる。そのため、紫外線吸収剤のブリードアウトによる汚染や密着性の低下のような問題が生じにくい。   In titanium dioxide, two crystal forms of rutile type and anatase type are mainly known. The anatase type has a characteristic that the spectral reflectance of ultraviolet rays is very large, whereas the rutile type has a characteristic that the absorption rate of ultraviolet rays is large (that is, the spectral reflectance is small). Paying attention to the difference in spectral characteristics of titanium dioxide crystal form, it is possible to improve the light resistance of the film suitably by using the rutile UV absorption performance, and to reduce the coloration due to light deterioration of the film. Is possible. Thereby, in the more suitable aspect of this invention, it is excellent in light resistance, even if it does not add another ultraviolet absorber substantially. For this reason, problems such as contamination due to bleeding out of the ultraviolet absorber and a decrease in adhesion are unlikely to occur.

なお、ここでいう「主体」とは、全二酸化チタン微粒子中のルチル型二酸化チタンの含有量が50質量%を超えていることを意味する。また、全二酸化チタン微粒子中のアナターゼ型二酸化チタンの含有量は10質量%以下が好ましく、5質量%以下がより好ましく、0質量%が最も好ましい。アナターゼ型二酸化チタンの含有量が10質量%を超えると、全二酸化チタン微粒子中に占めるルチル型二酸化チタンの含有量が少なくなるために紫外線吸収性能が不十分となる場合があるほか、アナターゼ型二酸化チタンは光触媒作用が強いため、この作用によっても耐光性が低下する傾向にある。ルチル型二酸化チタンとアナターゼ型二酸化チタンとはX線構造回折や分光吸収特性により区別することができる。   Here, “main body” means that the content of rutile-type titanium dioxide in all titanium dioxide fine particles exceeds 50 mass%. Further, the content of anatase-type titanium dioxide in all the titanium dioxide fine particles is preferably 10% by mass or less, more preferably 5% by mass or less, and most preferably 0% by mass. If the content of anatase-type titanium dioxide exceeds 10% by mass, the content of rutile-type titanium dioxide in the total fine titanium dioxide particles will be reduced, resulting in insufficient UV absorption performance. Titanium has a strong photocatalytic action, and this action also tends to reduce light resistance. Rutile titanium dioxide and anatase titanium dioxide can be distinguished by X-ray structure diffraction and spectral absorption characteristics.

なお、本発明のルチル型を主体とする二酸化チタン微粒子表面に、アルミナやシリカなどによる無機処理、またはシリコーン系やアルコール系などによる有機処理を施してもよい。   The surface of the titanium dioxide fine particles mainly composed of the rutile type of the present invention may be subjected to inorganic treatment with alumina or silica, or organic treatment with silicone or alcohol.

上記構成において本発明のフィルムは光照射下でも優れた耐光性を奏することができる。具体的には、63℃、50%RH、照射強度100mW/cm2で100時間UV照射した場合、フィルムの破断伸度保持率を好ましくは35%以上、より好ましくは40%以上に維持することができる。このように光照射によっても本発明のフィルムは光分解や劣化が抑制されるため、屋外で用いられる太陽電池の裏面封止シートとして好適である。In the above structure, the film of the present invention can exhibit excellent light resistance even under light irradiation. Specifically, when UV irradiation is performed for 100 hours at 63 ° C., 50% RH and irradiation intensity of 100 mW / cm 2 , the elongation at break of the film is preferably maintained at 35% or more, more preferably 40% or more. Can do. As described above, the film of the present invention is also suitable as a back surface sealing sheet for solar cells used outdoors because the photodecomposition and deterioration are suppressed by light irradiation.

フィルム中への無機微粒子の添加は公知の方法を用いることが可能であるが、熱履歴を低減させる点からは、予めポリエステル樹脂と無機微粒子を押出機で混合しておくマスターバッチ法(MB法)が好ましい。中でも、予め乾燥していないポリエステル樹脂と無機微粒子を押出機に投入し、水分や空気などを脱気しながらマスターバッチを作製する方法を採用することができるが、予め少しでも乾燥したポリエステル樹脂を用いてマスターバッチを作製する方がポリエステル樹脂の酸価上昇を抑えられるため好ましい。この場合、脱気しながらマスターバッチを作製する方法や、十分乾燥したポリエステル樹脂により脱気をせずに作製する方法が挙げられる。このようにポリエステル樹脂への無機微粒子の添加態様を制御することにより、高濃度の無機微粒子を含みながら好適にポリエステル樹脂の酸価を低く保持することができるから、高い白色度や光反射率を有しながら、耐光性と耐加水分解性とを両立したフィルムが得られやすい。   A known method can be used to add inorganic fine particles to the film. However, from the viewpoint of reducing the heat history, a master batch method (MB method) in which a polyester resin and inorganic fine particles are previously mixed with an extruder. ) Is preferred. Among them, a polyester resin that has not been dried in advance and inorganic fine particles are put into an extruder, and a method of preparing a master batch while degassing moisture and air can be adopted. It is preferable to prepare a masterbatch by using it because an increase in the acid value of the polyester resin can be suppressed. In this case, a method of producing a masterbatch while degassing or a method of producing a masterbatch without deaeration using a sufficiently dried polyester resin can be mentioned. By controlling the addition mode of the inorganic fine particles to the polyester resin in this way, the acid value of the polyester resin can be suitably kept low while containing high concentrations of inorganic fine particles, so that high whiteness and light reflectance are achieved. While having it, it is easy to obtain a film having both light resistance and hydrolysis resistance.

上記のように、マスターバッチを作製する際、投入するポリエステル樹脂は予め乾燥により水分率を低減させることが好ましい。乾燥条件としては、好ましくは100〜200℃、より好ましくは120〜180℃において、好ましくは1時間以上、より好ましくは3時間以上、さらに好ましくは6時間以上乾燥する。これにより、ポリエステル樹脂の水分量を好ましくは50ppm以下、より好ましくは30ppm以下になるように十分乾燥する。   As mentioned above, when producing a masterbatch, it is preferable to reduce the moisture content of the polyester resin to be charged in advance by drying. Drying conditions are preferably 100 to 200 ° C., more preferably 120 to 180 ° C., preferably 1 hour or more, more preferably 3 hours or more, and further preferably 6 hours or more. Thereby, it is sufficiently dried so that the moisture content of the polyester resin is preferably 50 ppm or less, more preferably 30 ppm or less.

脱気しながらマスターバッチを作製する場合は、250〜300℃、好ましくは270〜280℃の温度でポリエステル樹脂を融解し、予備混練機に一つ、好ましくは二つ以上の脱気口を設け、0.05MPa以上、好ましくは0.1MPa以上の連続吸引脱気を行い、混合機内の減圧を維持することなどの方法を採用することが好ましい。   When producing a masterbatch while degassing, melt the polyester resin at a temperature of 250 to 300 ° C, preferably 270 to 280 ° C, and provide one, preferably two or more degassing ports in the preliminary kneader. It is preferable to adopt a method such as continuous suction deaeration of 0.05 MPa or more, preferably 0.1 MPa or more, and maintaining the reduced pressure in the mixer.

なお、予備混合の方法は特に限定されず、バッチによる方法でもよいし、単軸もしくは二軸以上の混練押出機によってもよい。   The premixing method is not particularly limited, and may be a batch method or a single-screw or biaxial or more kneading extruder.

<無機微粒子集中含有層>
本発明の太陽電池用白色ポリエステルフィルムでは、10〜35質量%の無機微粒子を含有する無機微粒子集中含有層が少なくとも一方の最外層として配置される。また、無機微粒子集中含有層における無機微粒子の含有量は、11質量以上%が好ましく、28質量%以下が好ましく、21質量%以下がより好ましい。無機微粒子の含有量を上記範囲にすることで、高い白色度や反射率を有しながら、環境耐久性に優れた太陽電池用白色ポリエステルフィルムを得ることができる。一方、含有量が10質量%より低い場合、フィルムの白色度や反射率が不十分となり、フィルムの光劣化が進みやすくなる。また、35質量%を超えると、樹脂中に均一に分散させるため、多数の熱履歴が必要となり、前記した従来の問題を解決できない。
<Concentrated layer containing inorganic fine particles>
In the white polyester film for a solar cell of the present invention, an inorganic fine particle concentration containing layer containing 10 to 35% by mass of inorganic fine particles is disposed as at least one outermost layer. Moreover, 11 mass% or more is preferable, as for content of the inorganic fine particle in an inorganic fine particle concentration containing layer, 28 mass% or less is preferable, and 21 mass% or less is more preferable. By setting the content of the inorganic fine particles in the above range, it is possible to obtain a white polyester film for a solar cell excellent in environmental durability while having high whiteness and reflectance. On the other hand, when the content is lower than 10% by mass, the whiteness and reflectance of the film are insufficient, and the film is easily deteriorated by light. On the other hand, if it exceeds 35% by mass, the resin is uniformly dispersed in the resin, so that a large number of heat histories are required, and the conventional problems described above cannot be solved.

また、フィルム全体における無機微粒子の含有量は2〜10質量%とする。好ましくは、3質量%以上、8質量%以下である。   Moreover, content of the inorganic fine particle in the whole film shall be 2-10 mass%. Preferably, they are 3 mass% or more and 8 mass% or less.

本発明の太陽電池用白色ポリエステルフィルムは、少なくとも2層の積層構成であり、それ以上の多層構造であっても構わないが、無機微粒子含有量の多い層(無機微粒子集中含有層)が少なくとも一方の最外層となるような構成をとる。例えば、無機微粒子集中含有層をA層とし、無機微粒子集中含有層より無機微粒子含有量の少ない他の層をB層とする時、A層/B層、A層/B層/A層などの構成をとることができる。好ましい構成としては2層構成が挙げられ、バックシートとした時に、直接太陽光に接する側の最外層に無機粒子を多く含んだ層を配置することでフィルム自身、及びバックシートを構成する内層の部材フィルム、シートや接着層の紫外線などによる劣化を効率的に防止する。   The white polyester film for solar cells of the present invention has a laminated structure of at least two layers, and may have a multilayer structure higher than that, but at least one of the layers containing a large amount of inorganic fine particles (inorganic fine particle concentration containing layer) is present. The structure is the outermost layer. For example, when the layer containing inorganic fine particles is the A layer and the other layer having a smaller content of inorganic fine particles than the layer containing the inorganic fine particles is the B layer, the A layer / B layer, A layer / B layer / A layer, etc. Configuration can be taken. Preferred configurations include a two-layer configuration, and when the back sheet is formed, the film itself and the inner layer constituting the back sheet are arranged by arranging a layer containing a large amount of inorganic particles in the outermost layer on the side in direct contact with sunlight. It effectively prevents deterioration of member films, sheets and adhesive layers due to ultraviolet rays.

紫外線などによる劣化防止のために設けられる層にはある程度高い濃度の無機微粒子を添加させるため、表面粗さも大きくなってしまい、層間の密着も得にくくなる。2層構成とすることの利点は、反対面の無機微粒子濃度を低く抑えることができるため、そのような問題は生じないことが好ましい理由の一つである。   Since inorganic fine particles having a certain high concentration are added to the layer provided for preventing deterioration due to ultraviolet rays or the like, the surface roughness increases and it becomes difficult to obtain adhesion between the layers. One advantage of having a two-layer structure is that such a problem does not occur because the concentration of inorganic fine particles on the opposite surface can be kept low.

2層構成(A層/B層)または3層構成(A層/B層/A層)とする場合、フィルム全層に対して最外層であるスキン層(A層)の厚み(片面、もしくは両面スキン層合計の厚み)は5〜30%とする。スキン層(A層)の厚み比率は8%以上が好ましく、10%以上がより好ましく、15%以上がさらに好ましい。また、28%以下が好ましく、25%以下がより好ましく、25%以下がさらに好ましい。スキン層の厚み比率を上記範囲にすることで、白色度、反射率と環境耐久性とが両立した太陽電池封止用白色ポリエステルフィルムが得られる。一方、スキン層の厚み比率が上記下限よりも低い場合には、フィルム光劣化が徐々に厚み方向へ進むおそれがある。また、スキン層の厚み比率が上記上限よりも高い場合には、フィルム全体の耐加水分解性に劣る傾向にある。   In the case of a two-layer configuration (A layer / B layer) or a three-layer configuration (A layer / B layer / A layer), the thickness (one side or The total thickness of the double-sided skin layers is 5-30%. The thickness ratio of the skin layer (A layer) is preferably 8% or more, more preferably 10% or more, and further preferably 15% or more. Moreover, 28% or less is preferable, 25% or less is more preferable, and 25% or less is further more preferable. By setting the thickness ratio of the skin layer within the above range, a white polyester film for sealing solar cells in which whiteness, reflectance, and environmental durability are compatible can be obtained. On the other hand, when the thickness ratio of the skin layer is lower than the lower limit, film light deterioration may gradually progress in the thickness direction. Moreover, when the thickness ratio of a skin layer is higher than the said upper limit, it exists in the tendency for the hydrolysis resistance of the whole film to be inferior.

特に、本発明の太陽電池用白色ポリエステルフィルムは、上記厚み比率を満足する2層からなる構成が好ましい。光劣化は太陽光が直接侵入する側の最外層から厚み方向へ徐序に進む。そのため、無機微粒子集中含有層は何層にも分けて設置するよりも、太陽光が直接侵入する側の最外層に一層設けることにより、この層に効率的に光劣化を防止する機能を集中させることができる。また、中間層に無機微粒子集中含有層を配置した場合には、樹脂劣化によりフィルム剥離が生じるおそれがあり、そのような観点からも、無機微粒子集中含有層は太陽光が直接侵入する側の最外層のみに存在することが好ましい。本発明のフィルムは2層構成とし、太陽光が直接侵入する側の最外層に無機微粒子含有量を集中させ、フィルム全体としては無機微粒子含有量を低めに抑えることで、高い白色度や光反射率、耐UV性能、耐加水分解性を高度に両立させることが可能となる。   In particular, the white polyester film for solar cells of the present invention preferably has a two-layer structure that satisfies the above thickness ratio. Photodegradation progresses gradually in the thickness direction from the outermost layer where sunlight directly enters. Therefore, the concentration of the inorganic fine particle concentration layer is provided in the outermost layer on the side where sunlight directly enters rather than being divided into several layers, thereby concentrating the function of efficiently preventing light deterioration on this layer. be able to. In addition, when an inorganic fine particle concentration-containing layer is disposed in the intermediate layer, there is a risk of film peeling due to resin deterioration. From such a viewpoint, the inorganic fine particle concentration-containing layer is the most on the side where sunlight directly enters. It is preferable to exist only in the outer layer. The film of the present invention has a two-layer structure, and the concentration of inorganic fine particles is concentrated in the outermost layer on the side where sunlight directly enters, and the entire film is kept low in inorganic fine particle content, resulting in high whiteness and light reflection. Rate, UV resistance, and hydrolysis resistance can be made highly compatible.

<無機微粒子含有量が少ない他の層>
本発明の太陽電池用白色ポリエステルフィルムでは、上記無機微粒子集中含有層より無機微粒子含有量の少ない他の層が含まれていもよい。この他の層における無機微粒子の含有量は、上記無機微粒子集中含有層における無機微粒子の含有量より少なければよいが、上記の理由で、無機微粒子集中含有層における無機微粒子の含有量との差が10質量%以上が好ましい。
<Other layers with low content of inorganic fine particles>
In the white polyester film for solar cells of the present invention, another layer having a smaller content of inorganic fine particles than the above-mentioned concentration layer containing inorganic fine particles may be included. The content of the inorganic fine particles in the other layer should be less than the content of the inorganic fine particles in the inorganic fine particle concentration-containing layer, but for the above reason, the difference from the content of the inorganic fine particles in the inorganic fine particle concentration-containing layer is different. 10 mass% or more is preferable.

<機能付与層>
本発明の太陽電池用白色ポリエステルフィルムに易接着性、絶縁性、耐擦傷性などの各種機能が要求される場合、その表面がコーティングなどにより高分子樹脂で被覆されてもよい。また、易滑性が要求される場合、上記被覆層に無機および/または有機粒子が含まれてもよい。
<Functional layer>
When various functions such as easy adhesion, insulation, and scratch resistance are required for the white polyester film for solar cell of the present invention, the surface thereof may be coated with a polymer resin by coating or the like. Moreover, when slipperiness is requested | required, an inorganic and / or organic particle | grain may be contained in the said coating layer.

易接着性が要求される場合、フィルムの少なくとも一方の表面に水溶性または水分散性の共重合ポリエステル樹脂、アクリル樹脂およびポリウレタン樹脂の内、少なくとも1種を含む水性塗布液を用いて塗布層を設けることが好ましい。これらの塗布液としては、例えば、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報などに開示された水性塗布液が挙げられる。   When easy adhesion is required, the coating layer is formed on at least one surface of the film using an aqueous coating solution containing at least one of water-soluble or water-dispersible copolymer polyester resin, acrylic resin and polyurethane resin. It is preferable to provide it. Examples of these coating liquids include aqueous coating liquids disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, and the like.

特に本発明の太陽電池用白色ポリエステルフィルムは、EVAやPVBなどのオレフィン樹脂の充填剤層と接する面に用いる場合、充填剤層に対する易接着性を奏するため、水性塗布液にポリウレタン樹脂を含有させることが好適である。中でも、耐熱性、耐加水分解性に優れて、太陽光による黄変防止の点から、脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂を含有させることが好ましい。このようなポリウレタン樹脂を含有させることで、フィルムの湿熱下での接着性を向上させることができる。   In particular, when the white polyester film for solar cells of the present invention is used on a surface in contact with a filler layer of an olefin resin such as EVA or PVB, a polyurethane resin is included in the aqueous coating liquid in order to exhibit easy adhesion to the filler layer. Is preferred. Especially, it is excellent in heat resistance and hydrolysis resistance, and it is preferable to contain the polyurethane resin which uses aliphatic polycarbonate polyol as a structural component from the point of yellowing prevention by sunlight. By including such a polyurethane resin, the adhesiveness of the film under wet heat can be improved.

脂肪族系ポリカーボネートポリオールとしては、脂肪族系ポリカーボネートジオールや脂肪族系ポリカーボネートトリオールなどが挙げられるが、脂肪族系ポリカーボネートジオールの数平均分子量としては、好ましくは1500〜4000であり、より好ましくは2000〜3000である。脂肪族系ポリカーボネートジオールの数平均分子量が1500より小さいと、強硬なウレタン成分が増加し、基材の熱収縮による応力を緩和できず、接着性が低下する場合がある。また、数平均分子量が4000を超えると、接着性や高温高湿処理後の強度が低下する場合がある。   Examples of the aliphatic polycarbonate polyol include aliphatic polycarbonate diol and aliphatic polycarbonate triol. The number average molecular weight of the aliphatic polycarbonate diol is preferably 1500 to 4000, more preferably 2000 to 2000. 3000. If the number average molecular weight of the aliphatic polycarbonate diol is less than 1500, a hard urethane component increases, stress due to thermal contraction of the substrate cannot be relieved, and adhesiveness may decrease. Moreover, when a number average molecular weight exceeds 4000, the adhesiveness and the intensity | strength after a high temperature, high humidity process may fall.

脂肪族系ポリカーボネートポリオールのモル比は、ポリウレタン樹脂の全ポリイソシアネート成分を100モル%としたときに、3モル%以上が好ましく、5モル%以上がより好ましく、60モル%以下が好ましく、40モル%以下がより好ましい。モル比が3モル%未満の場合は、水分散性が困難になる場合がある。また、60モル%を超えると、耐水性が低下するため耐湿熱性が低下する。   The molar ratio of the aliphatic polycarbonate polyol is preferably 3 mol% or more, more preferably 5 mol% or more, preferably 60 mol% or less, when the total polyisocyanate component of the polyurethane resin is 100 mol%, preferably 40 mol% or less. % Or less is more preferable. If the molar ratio is less than 3 mol%, water dispersibility may be difficult. On the other hand, if it exceeds 60 mol%, the water resistance is lowered and the heat and moisture resistance is lowered.

上記ポリウレタン樹脂のガラス転移温度は特に限定されないが、0℃未満が好ましく、−5℃未満がより好ましい。これにより、加圧接着の際に部分的に溶融したEVAやPVBなどのオレフィン樹脂と粘度が近くなり、部分的混合により接着性が向上し、好適な柔軟性が奏しやすい。   The glass transition temperature of the polyurethane resin is not particularly limited, but is preferably less than 0 ° C and more preferably less than -5 ° C. As a result, the viscosity is close to that of partially melted olefin resin such as EVA or PVB at the time of pressure bonding, and the adhesiveness is improved by partial mixing, and suitable flexibility is easily achieved.

<太陽電池用白色ポリエステルフィルムの製造方法>
本発明の太陽電池用白色ポリエステルフィルムの製造方法は、特に制限されるものではないが、各層形成用のポリエステルチップを別々の押出機に供給した後、溶融状態で積層して同一のダイから押し出す共押出法が好ましい。例えば、無機微粒子集中含有層を含む2層構成のフィルムを製造する場合、無機微粒子を多く含んだポリエステルチップ(無機微粒子集中含有層用樹脂チップ)と、これより無機微粒子の含有量が少ないポリエステルチップ(他の層用樹脂チップ)を別々の押出機に供給した後、溶融状態で積層して同一のダイから押し出せばよい。
<Method for producing white polyester film for solar cell>
Although the manufacturing method of the white polyester film for solar cells of this invention is not restrict | limited especially, after supplying the polyester chip for each layer formation to a separate extruder, it laminates | stacks in a molten state and it extrudes from the same die | dye. A coextrusion method is preferred. For example, when manufacturing a film having a two-layer structure including a layer containing inorganic fine particles, a polyester chip containing a large amount of inorganic fine particles (resin chip for a layer containing inorganic fine particles) and a polyester chip containing less inorganic fine particles After supplying (resin chips for other layers) to separate extruders, they may be laminated in a molten state and extruded from the same die.

ポリエステルチップを押出機に供給する際、酸価上昇を抑えるためには、十分乾燥したポリエステルチップを用いることが好ましい。具体的には、ポリエステルチップの水分量は100ppm以下が好ましく、50ppm以下がより好ましく、30ppm以下がさらに好ましい。   When supplying the polyester chip to the extruder, it is preferable to use a sufficiently dried polyester chip in order to suppress an increase in acid value. Specifically, the moisture content of the polyester chip is preferably 100 ppm or less, more preferably 50 ppm or less, and even more preferably 30 ppm or less.

ポリエステルチップの乾燥方法は、減圧乾燥や加熱乾燥など公知の方法を用いることができる。例えば、加熱乾燥の場合、加熱温度は100〜200℃が好ましく、120〜180℃がより好ましい。乾燥時間は1時間以上が好ましく、3時間以上がより好ましく、6時間以上がさらに好ましい。   As a method for drying the polyester chip, a known method such as vacuum drying or heat drying can be used. For example, in the case of heat drying, the heating temperature is preferably 100 to 200 ° C, more preferably 120 to 180 ° C. The drying time is preferably 1 hour or longer, more preferably 3 hours or longer, and even more preferably 6 hours or longer.

押出機内におけるポリエステルチップの溶融温度は、280〜310℃が好ましく、290〜300℃がより好ましい。溶融温度を上げることにより押出機内での濾過時の背圧が低下し、良好な生産性を奏することができるが、溶融温度が310℃よりも高くなると、樹脂の熱劣化が進行し、樹脂の酸価が上昇するため、得られたフィルムの耐加水分解性が低下する場合がある。   The melting temperature of the polyester chip in the extruder is preferably 280 to 310 ° C, more preferably 290 to 300 ° C. By increasing the melting temperature, the back pressure during filtration in the extruder can be reduced, and good productivity can be achieved. However, when the melting temperature is higher than 310 ° C., thermal degradation of the resin proceeds, Since an acid value rises, the hydrolysis resistance of the obtained film may fall.

次いで、別々の押出機で溶融した各層形成用のポリエステル樹脂を溶融状態で積層して同一のダイからシート状に押し出し、冷却ロールで引き取ることにより未延伸フィルムを形成する。   Next, the polyester resin for forming each layer melted by separate extruders is laminated in a molten state, extruded from the same die into a sheet, and taken out by a cooling roll to form an unstretched film.

得られた未延伸フィルムは二軸配向処理により延伸する。延伸方法としては、得られた未延伸フィルムを加熱ロールや非接触ヒーターで加熱した後、速度差をもったロール間で延伸(ロール延伸)を行い、次いでクリップにて一軸延伸したフィルムの両端部を把持し、オーブン内で加熱した後に幅方向に延伸(テンター延伸)を行い、さらに高い熱をかけて熱固定を行う逐次二軸延伸法や、縦、横方向に同時に延伸を行える機構を有するテンターで延伸(テンター同時二軸延伸)を行う同時二軸延伸法、空気圧で拡げることによる延伸を行うインフレーション延伸法などが挙げられる。これらの延伸工程において、得られたフィルムの破断伸度を好適に保持するために、縦横の延伸倍率比を適宜に制御することによって縦横の配向バランスをとることが好ましい。   The obtained unstretched film is stretched by a biaxial orientation treatment. As the stretching method, the obtained unstretched film is heated with a heating roll or a non-contact heater, then stretched between rolls having a speed difference (roll stretching), and then uniaxially stretched with a clip. It is equipped with a sequential biaxial stretching method that stretches in the width direction (tenter stretching) after heating in the oven and then heat-sets by applying higher heat, and a mechanism that can simultaneously stretch in the vertical and horizontal directions Examples thereof include a simultaneous biaxial stretching method in which stretching is performed with a tenter (tenter simultaneous biaxial stretching), and an inflation stretching method in which stretching is performed by expanding with air pressure. In these stretching steps, in order to suitably maintain the elongation at break of the obtained film, it is preferable to maintain a longitudinal and lateral orientation balance by appropriately controlling the longitudinal and lateral stretching ratios.

高度な熱寸法安定性が要求される場合は、フィルムに縦緩和処理を施すことが望ましい。縦緩和処理の方法としては、公知の方法、例えばテンターのクリップ間隔を徐々に狭くして縦緩和処理を行う方法(特公平4−028218号公報)や、テンターの内で剃刀を入れフィルムの端部を切断してクリップの影響を避けて縦緩和処理を行う方法(特公昭57−54290号公報)などが例示できる。また、オフラインで熱をかけて緩和させる方法を用いてもよい。さらに、上記延伸工程において、延伸条件を適宜に制御することによってフィルムに高度な熱寸法安定性を付与することもできる。   When high thermal dimensional stability is required, it is desirable to subject the film to a longitudinal relaxation treatment. As a method of the longitudinal relaxation treatment, a known method, for example, a method of performing longitudinal relaxation treatment by gradually narrowing the clip interval of the tenter (Japanese Patent Publication No. 4-0221818), a razor in the tenter, and the end of the film For example, a method of cutting the portion to avoid the influence of the clip and performing the longitudinal relaxation treatment (Japanese Patent Publication No. 57-54290) can be exemplified. Further, a method of relaxing by applying heat off-line may be used. Furthermore, in the said extending process, high thermal dimensional stability can also be provided to a film by controlling extending | stretching conditions suitably.

なお、フィルムに各種機能を付与するために、フィルムの表面にコーティングなどにより高分子樹脂を被覆したり、被覆層中に無機および/または有機粒子を含有させたりすることもできる。付与する方法は特に限定されず、例えば、易接着性などを付与するための塗布層を形成する場合は、塗布層をフィルム製膜後(オフラインコート法)に設けてもよいし、フィルム製膜中(インラインコート法)に設けてもよい。生産性の点からはフィルム製膜中に設けることが好ましい。   In order to impart various functions to the film, the surface of the film may be coated with a polymer resin by coating or the like, or inorganic and / or organic particles may be contained in the coating layer. The method of providing is not particularly limited. For example, when forming a coating layer for imparting easy adhesion, the coating layer may be provided after film formation (off-line coating method), or film formation It may be provided inside (in-line coating method). From the viewpoint of productivity, it is preferably provided during film formation.

<太陽電池用白色ポリエステルフィルムの特性>
本発明の太陽電池用白色ポリエステルフィルムの厚みは30〜380μmとする。35μm以上が好ましく、40μm以上がより好ましく、250μm以下が好ましく、230μm以下がより好ましい。フィルムの厚みを上記範囲にすることで、電気絶縁性に優れると共に、軽量化や薄膜化されやすい。一方、フィルムの厚みが380μmより大きい場合は、軽量化や薄膜化に対応しにくい。また、30μmより小さい場合は、電気絶縁効果が奏しにくい。
<Characteristics of white polyester film for solar cell>
The thickness of the white polyester film for solar cells of the present invention is 30 to 380 μm. 35 μm or more is preferable, 40 μm or more is more preferable, 250 μm or less is preferable, and 230 μm or less is more preferable. By making the thickness of the film within the above range, it is excellent in electrical insulation, and is easily reduced in weight and thickness. On the other hand, when the thickness of the film is larger than 380 μm, it is difficult to cope with the reduction in weight and thickness. Moreover, when smaller than 30 micrometers, an electrical insulation effect is hard to show | play.

本発明の太陽電池用白色ポリエステルフィルムの白色度は50以上であり、好ましくは60以上である。白色度が50未満では、隠蔽性が劣ったり、太陽電池モジュール加工時に目視でのフィルム確認が困難となり、加工効率が下がるおそれがある。   The whiteness degree of the white polyester film for solar cells of this invention is 50 or more, Preferably it is 60 or more. When the whiteness is less than 50, the concealability is inferior, and it is difficult to visually check the film when processing the solar cell module, which may reduce the processing efficiency.

本発明の太陽電池用白色ポリエステルフィルムの波長400〜800nmの範囲における平均反射率は50%以上であり、好ましくは60%以上である。また、平均反射率は高いほどよいが、現実的には95%程度が上限である。反射率が50%未満の場合、フィルム自身、および太陽電池内部部材の光による劣化が大きくなるので好ましくない。   The average reflectance in the wavelength range of 400-800 nm of the white polyester film for solar cells of this invention is 50% or more, Preferably it is 60% or more. Further, the higher the average reflectance, the better. However, in reality, the upper limit is about 95%. When the reflectance is less than 50%, the film itself and the solar cell internal member are deteriorated by light, which is not preferable.

本発明の太陽電池用白色ポリエステルフィルムの150℃での熱収縮率は、長手方向で0.2%以上が好ましく、0.4%以上がより好ましく、3.0%以下が好ましく、1.8%以下がより好ましい。これにより、加熱加工時や積層状態でのカールの発生などが抑制される。一方、熱収縮率が0.2%未満であると、加工時にフィルムがたわみとなる場合がある。また、3.0%より大きい場合は、加工時の収縮が大きく、洗濯板状のシワが発生する場合がある。150℃での熱収縮率を上記範囲にする方法としては、延伸条件を制御することや、もしくは熱固定工程において縦緩和処理および横緩和処理を施すことにより行うことができる。   The thermal shrinkage rate at 150 ° C. of the white polyester film for solar cell of the present invention is preferably 0.2% or more, more preferably 0.4% or more, and preferably 3.0% or less in the longitudinal direction, 1.8 % Or less is more preferable. This suppresses the occurrence of curling during heat processing or in a laminated state. On the other hand, if the heat shrinkage rate is less than 0.2%, the film may bend during processing. Moreover, when larger than 3.0%, the shrinkage | contraction at the time of a process is large, and a washboard-like wrinkle may generate | occur | produce. As a method of setting the heat shrinkage rate at 150 ° C. within the above range, it can be carried out by controlling stretching conditions or by applying longitudinal relaxation treatment and transverse relaxation treatment in the heat setting step.

本発明の太陽電池用白色ポリエステルフィルムは、縦横の配向バランスをとることが好ましい。即ち、フィルム厚みを50μmに換算したときのMOR値(MOR−C)が、1.0以上が好ましく、1.3以上がより好ましく、2.0以下が好ましく、1.8以下がより好ましい。これにより、フィルムの縦横の配向バランスが調整され、機械的強度や耐久性が維持されやすい。また、積層時のカールの発生が抑制され、密着性も向上する。MOR−Cを上記範囲にする方法としては、延伸工程における縦横の延伸倍率の比を制御することにより行うことができる。   The white polyester film for solar cells of the present invention preferably has a vertical and horizontal orientation balance. That is, the MOR value (MOR-C) when the film thickness is converted to 50 μm is preferably 1.0 or more, more preferably 1.3 or more, preferably 2.0 or less, and more preferably 1.8 or less. Thereby, the vertical and horizontal orientation balance of the film is adjusted, and the mechanical strength and durability are easily maintained. Further, curling during the lamination is suppressed, and adhesion is improved. As a method for bringing MOR-C into the above range, it can be carried out by controlling the ratio of the longitudinal and lateral stretching ratios in the stretching step.

本発明の太陽電池用白色ポリエステルフィルムは、屋外での長期使用に耐え得る高い耐加水分解性を奏することができる。具体的には、耐加水分解性の評価指標として、促進加水分解試験(105℃、100%RH、0.03MPa、200時間処理)後のフィルムの破断伸度保持率を60%以上、好ましくは70%以上、100%以下に維持することが可能である。   The white polyester film for solar cells of the present invention can exhibit high hydrolysis resistance that can withstand long-term use outdoors. Specifically, as an evaluation index for hydrolysis resistance, the breaking elongation retention of the film after accelerated hydrolysis test (105 ° C., 100% RH, 0.03 MPa, treatment for 200 hours) is preferably 60% or more, preferably It can be maintained at 70% or more and 100% or less.

本発明の太陽電池用白色ポリエステルフィルムは、光照射下でも光分解や劣化が抑制されたため、屋外での長期使用に耐え得る優れた耐光性を奏することができる。具体的には、耐光性の評価指標として、促進光劣化試験(63℃、50%RH、UV照射強度100mW/cm2、100時間照射)後のフィルムの破断伸度保持率を35%以上、好ましくは40%以上に維持することが可能である。Since the white polyester film for solar cells of the present invention is suppressed from photolysis and deterioration even under light irradiation, it can exhibit excellent light resistance that can withstand long-term use outdoors. Specifically, as an evaluation index of the light resistance, the breaking elongation retention of the film after the accelerated light deterioration test (63 ° C., 50% RH, UV irradiation intensity 100 mW / cm 2 , irradiation for 100 hours) is 35% or more, Preferably, it can be maintained at 40% or more.

本発明の太陽電池用白色ポリエステルフィルムの上記促進光劣化試験後のカラーb*値の変化は12以下が好ましく、10以下がより好ましい。カラーb*値の変化が12より大きい場合は、経年変化により外観が悪くなり好ましくない。   The change in the color b * value after the accelerated light deterioration test of the white polyester film for solar cell of the present invention is preferably 12 or less, and more preferably 10 or less. When the change in the color b * value is greater than 12, the appearance deteriorates due to secular change, which is not preferable.

本発明の太陽電池用白色ポリエステルフィルムはさらに他層と積層して太陽電池裏面封止シートとして用いられるので、フィルム表面は平滑であることが好ましい。具体的には、本発明の太陽電池用白色ポリエステルフィルムの三次元表面粗さ(SRa)は0.1μm以下が好ましい。   Since the white polyester film for solar cells of the present invention is further laminated with another layer and used as a solar cell back surface sealing sheet, the film surface is preferably smooth. Specifically, the three-dimensional surface roughness (SRa) of the white polyester film for solar cells of the present invention is preferably 0.1 μm or less.

上記のように、本発明の太陽電池用白色ポリエステルフィルムは、耐光性および耐加水分解性に代表される環境耐久性と白色度や光反射性とを両立し、かつ優れた電気絶縁性を奏するものであるから、従来の耐久層(耐加水分解層)、白色層および絶縁層を一体化することが可能となる。そのため、本発明の太陽電池用白色ポリエステルフィルムを太陽電池裏面封止シートに用いることで、軽量化と薄膜化に対応することができる。   As described above, the white polyester film for solar cells of the present invention has both environmental durability represented by light resistance and hydrolysis resistance, whiteness and light reflectivity, and excellent electrical insulation. Therefore, the conventional durable layer (hydrolysis-resistant layer), white layer and insulating layer can be integrated. Therefore, it can respond to weight reduction and thin film by using the white polyester film for solar cells of this invention for a solar cell backside sealing sheet.

<太陽電池裏面封止シート>
本発明の太陽電池用白色ポリエステルフィルムは、太陽電池裏面封止シートやフレキシブルな電子部材の貼合材の基材フィルム(ベースフィルム)として用いることができる。特に、高い環境耐久性が求められる太陽電池裏面封止シートのベースフィルムとして好適である。
<Solar cell backside sealing sheet>
The white polyester film for solar cells of the present invention can be used as a base film (base film) for a solar cell backside sealing sheet or a bonding material for flexible electronic members. In particular, it is suitable as a base film for a solar cell backside sealing sheet that requires high environmental durability.

本発明でいう太陽電池裏面封止シートとは、太陽電池モジュールの充填剤層に接する側の面および/または太陽電池モジュールの最外面に用いることで太陽電池の裏側の太陽電池モジュールを保護するものであり、本発明の太陽電池用白色ポリエステルフィルムを用いたことを特徴とする。   The solar cell backside sealing sheet referred to in the present invention is a sheet that protects the solar cell module on the back side of the solar cell by being used on the surface in contact with the filler layer of the solar cell module and / or the outermost surface of the solar cell module. It is characterized by using the white polyester film for solar cells of the present invention.

本発明の太陽電池用白色ポリエステルフィルムは、単独または2枚以上を貼り合わせて太陽電池裏面封止シートとして使用することができる。また、水蒸気バリア性を付与する目的で、本発明の太陽電池用白色ポリエステルフィルムに水蒸気バリア性フィルムやアルミニウム箔などの水蒸気バリア層を積層することもできる。上記水蒸気バリア層の積層形態としては、接着層を介して積層したり、直接積層したり、サンドイッチ構造とすることができる。   The white polyester film for solar cells of the present invention can be used as a solar cell back surface sealing sheet alone or in combination of two or more. For the purpose of imparting water vapor barrier properties, a water vapor barrier layer such as a water vapor barrier film or an aluminum foil can be laminated on the white polyester film for solar cells of the present invention. As a lamination | stacking form of the said water vapor | steam barrier layer, it can laminate | stack via an adhesive layer, can be laminated | stacked directly, or can be made into a sandwich structure.

上記水蒸気バリア性フィルムとしては、ポリフッ化ビニリデンコートフィルム、酸化ケイ素蒸着フィルム、酸化アルミニウム蒸着フィルム、アルミニウム蒸着フィルムなどを用いることができる。   As said water vapor | steam barrier film, a polyvinylidene fluoride coating film, a silicon oxide vapor deposition film, an aluminum oxide vapor deposition film, an aluminum vapor deposition film, etc. can be used.

<太陽電池モジュール>
本発明でいう太陽電池モジュールとは、太陽光、室内光などの入射光を取り込んで電気に変換し、当該電気を蓄えるシステムをいい、上記太陽電池裏面封止シートと、太陽電池裏面封止シートに隣接する充填剤層と、充填剤層に埋設された太陽電池素子を備えることを特徴とする。
<Solar cell module>
The solar cell module in the present invention refers to a system that takes in incident light such as sunlight and room light, converts it into electricity, and stores the electricity. The solar cell back surface sealing sheet and the solar cell back surface sealing sheet And a solar cell element embedded in the filler layer.

充填剤層に用いる樹脂は特に限定されず、EVAやPVBなどのオレフィン樹脂が例示できる。   Resin used for a filler layer is not specifically limited, Olefin resin, such as EVA and PVB, can be illustrated.

なお、本発明の太陽電池モジュールは、表面保護シート、高光線透過材などを含んでもよく、用途によりフレキシブルな性状のものもある。   In addition, the solar cell module of the present invention may include a surface protective sheet, a high light transmissive material, and the like, and may have a flexible property depending on the application.

本願は、2011年10月7日に出願された日本国特許出願第2011−223049号に基づく優先権の利益を主張するものである。2011年10月7日に出願された日本国特許出願第2011−223049号の明細書の全内容が、本願に参考のため援用される。   This application claims the benefit of priority based on Japanese Patent Application No. 2011-223049 filed on Oct. 7, 2011. The entire contents of the specification of Japanese Patent Application No. 2011-223049 filed on October 7, 2011 are incorporated herein by reference.

次に、実施例および比較例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に含まれる。本発明に用いる測定・評価方法は以下の通りである。   Next, the present invention will be described in detail with reference to examples and comparative examples. However, the present invention is not limited to these examples, and all modifications may be made without departing from the spirit described above and below. It is included in the technical scope of the present invention. The measurement / evaluation method used in the present invention is as follows.

<無機微粒子の平均粒径>
無機微粒子を走査型電子顕微鏡で観察し、粒子の大きさに応じて適宜倍率を変え、写真を撮影した。写真撮影したものを拡大コピーし、ランダムに選んだ少なくとも100個以上の微粒子について、各粒子の外周をトレースし、画像解析装置にてこれらのトレース像から粒子の円相当径を測定し、それらの平均値を平均粒径とした。
<Average particle size of inorganic fine particles>
The inorganic fine particles were observed with a scanning electron microscope, and the magnification was appropriately changed according to the size of the particles, and photographs were taken. An enlarged copy of the photograph was taken, and the circumference of each particle was traced for at least 100 fine particles selected at random, and the equivalent circle diameters of the particles were measured from these trace images with an image analysis device. The average value was defined as the average particle size.

<ポリエステルの固有粘度(IV)>
ポリエステルをフェノール/1,1,2,2−テトラクロロエタンの6/4(質量比)混合溶媒に溶解し、温度30℃にて固有粘度を測定した。微粒子含有のマスターバッチおよびフィルムの場合は、遠心分離により固形分を除いた後、測定を行った。
<Intrinsic viscosity of polyester (IV)>
The polyester was dissolved in a 6/4 (mass ratio) mixed solvent of phenol / 1,1,2,2-tetrachloroethane, and the intrinsic viscosity was measured at a temperature of 30 ° C. In the case of a master batch and a film containing fine particles, the solid content was removed by centrifugation, and then the measurement was performed.

<ジエチレングリコール(DEG)の含有量>
ポリエステル0.1gをメタノール2ml中に250℃で加熱分解させた後、ガスクロマトグラフィーにより定量した。
<Content of diethylene glycol (DEG)>
After 0.1 g of polyester was thermally decomposed in 2 ml of methanol at 250 ° C., it was quantitatively determined by gas chromatography.

<酸価>
フィルムまたは原料ポリエステル樹脂の酸価は下記の方法により測定した。
<Acid value>
The acid value of the film or the raw material polyester resin was measured by the following method.

(1)試料の調製
フィルムまたは原料ポリエステル樹脂を粉砕し、70℃で24時間真空乾燥を行った後、天秤を用いて0.20±0.0005gの範囲に秤量し、そのときの質量をW(g)とした。試験管にベンジルアルコール10mlと秤量した試料を加え、試験管を205℃に加熱したベンジルアルコール浴に浸し、ガラス棒で攪拌しながら試料を溶解させ、溶解時間を3分間、5分間、7分間としたときのサンプルをそれぞれA,B,Cとした。次いで、新たに試験管を用意し、ベンジルアルコールのみを入れ、同様の手順で処理し、溶解時間を3分間、5分間、7分間としたときのサンプルをそれぞれa,b,cとした。
(1) Preparation of sample The film or the raw material polyester resin is pulverized and vacuum-dried at 70 ° C. for 24 hours, and then weighed in a range of 0.20 ± 0.0005 g using a balance. (G). A sample weighed with 10 ml of benzyl alcohol is added to a test tube, the test tube is immersed in a benzyl alcohol bath heated to 205 ° C., and the sample is dissolved while stirring with a glass rod. The dissolution time is 3 minutes, 5 minutes, and 7 minutes. The samples at that time were designated as A, B, and C, respectively. Next, a new test tube was prepared, and only benzyl alcohol was added, and the same procedure was followed. Samples when the dissolution time was 3, 5, and 7 minutes were designated as a, b, and c, respectively.

(2)滴定
予めファクター(NF)が分かっている0.04mol/Lの水酸化カリウム溶液(エタノール溶液)を用いて滴定した。指示薬であるフェノールレッドが黄緑色から淡紅色に変化したところを終点とし、水酸化カリウム溶液の滴定量を求めた。サンプルA,B,Cの滴定量をXA,XB,XC(ml)とし、サンプルa,b,cの滴定量をXa,Xb,Xc(ml)とした。
(2) Titration Titration was performed using a 0.04 mol / L potassium hydroxide solution (ethanol solution) whose factor (NF) was previously known. The titration of the potassium hydroxide solution was determined with the point where the indicator phenol red changed from yellowish green to light red. Samples A, B, and C were titrated as XA, XB, and XC (ml), and samples a, b, and c were titrated as Xa, Xb, and Xc (ml).

(3)酸価の算出
各溶解時間に対しての滴定量XA,XB,XCから、最小2乗法により、溶解時間0分での滴定量V(ml)を求めた。同様にXa,Xb,Xcから、溶解時間0分での滴定量V0(ml)を求めた。次いで、次式に従い酸価(eq/ton)を求めた。
酸価(eq/ton)=[(V−V0)×0.04×NF×1000]/W
(3) Calculation of acid value From the titration amounts XA, XB, and XC for each dissolution time, the titration amount V (ml) at a dissolution time of 0 minutes was determined by the least square method. Similarly, a titration amount V0 (ml) at a dissolution time of 0 minutes was determined from Xa, Xb, and Xc. Next, the acid value (eq / ton) was determined according to the following formula.
Acid value (eq / ton) = [(V−V0) × 0.04 × NF × 1000] / W

<フィルムの見かけ密度>
フィルムの見かけ密度は、JIS K 7222「発泡プラスチックおよびゴム−見かけ密度の測定」に準拠して測定した。但し、表記を簡便にするために単位をg/cm3に換算した。
<Apparent density of film>
The apparent density of the film was measured according to JIS K 7222 “Foamed Plastics and Rubber—Measurement of Apparent Density”. However, in order to simplify the notation, the unit was converted to g / cm 3 .

<フィルムの白色度>
フィルムの白色度は、JIS L 1015−1981−B法により、日本電色工業社製のZ−1001DPを用いて行った。
<Whiteness of film>
The whiteness of the film was measured using Z-1001DP manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS L 1015-1981 method.

<フィルムの平均反射率>
分光光度計(島津製作所社製、自記分光光度計「UV−3150」)に積分球を装着し、標準白色板(SphereOptics社製、白色標準板「ZRS−99−010−W」)の反射率を100%として校正し、分光反射率を測定した。測定は波長400〜800nmの領域で1nm刻みに行い平均値を求めた。なお、フィルム単体の場合は無反射の黒台紙を試料フィルム背面に配して測定した。無機微粒子集中含有層側から光を当てて測定した。
<Average reflectance of film>
An integrating sphere is attached to a spectrophotometer (manufactured by Shimadzu Corporation, self-recording spectrophotometer “UV-3150”), and the reflectance of a standard white plate (manufactured by SphereOptics, white standard plate “ZRS-99-010-W”). Was calibrated as 100%, and the spectral reflectance was measured. The measurement was performed in 1 nm increments in the wavelength range of 400 to 800 nm, and the average value was obtained. In the case of a single film, measurement was performed by placing a non-reflective black mount on the back of the sample film. Measurement was performed by applying light from the concentrated inorganic fine particle containing layer side.

<フィルムの光反射変動率>
得られたフィルムロールについて、ロール巻き始めを0%、巻き終わりを100%とした場合に、10%、50%、90%の長さ位置の中央部から1m×1.8mのフィルム片を切り出した。それぞれのフィルム片の四隅および中央より20cm四方の正方形の5つのフィルム試料をサンプリングし、上記「フィルムの平均反射率」による方法でそれぞれの平均反射率を測定した。各フィルム試料の平均反射率の平均値を中心値とし、平均反射率の最大値と最小値の差を中心値で割ったものを光反射変動率とした。
<Light reflection fluctuation rate of film>
With respect to the obtained film roll, when the roll winding start is 0% and the winding end is 100%, a 1 m × 1.8 m film piece is cut out from the center of the length position of 10%, 50%, 90%. It was. Five film samples having a square of 20 cm square from the four corners and the center of each film piece were sampled, and each average reflectance was measured by the above-described “average reflectance of film”. The average value of the average reflectance of each film sample was set as the center value, and the difference between the maximum value and the minimum value of the average reflectance divided by the center value was set as the light reflection variation rate.

<促進光劣化試験>
アイスーパーUVテスター(岩崎電気社製、SUV−W151)を用い、フィルムの無機微粒子集中含有層側に63℃、50%RH、照射強度100mW/cm2で100時間の連続UV照射処理を行った。
<Accelerated light degradation test>
Using an eye super UV tester (SUV-W151, manufactured by Iwasaki Electric Co., Ltd.), continuous UV irradiation treatment was performed for 100 hours at 63 ° C., 50% RH, irradiation intensity of 100 mW / cm 2 on the inorganic fine particle concentration containing layer side of the film. .

<促進加水分解試験>
JIS C 60068−2−66で規格化されているHAST(Highly Accelerated temperature and humidity Stress Test)を行った。試料フィルムは70mm×190mmにカットし、治具を用い各々が接触しない距離を保ち設置した。エスペック社製のEHS−221を用い、105℃、100%RH、0.03MPa、200時間処理を行った。
<Accelerated hydrolysis test>
HAST (Highly Accelerated Temperature and Humidity Stress Test) standardized in JIS C 60068-2-66 was performed. The sample film was cut into a size of 70 mm × 190 mm, and a jig was used to keep the distance where they did not contact each other. Using EHS-221 manufactured by ESPEC CORP., Treatment was performed at 105 ° C., 100% RH, 0.03 MPa, 200 hours.

<破断伸度保持率>
耐光性および耐加水分解性の評価は、破断伸度保持率で行った。促進光劣化試験および促進加水分解試験それぞれの処理前後の破断伸度を、JIS C 2318−1997 5.3.31(引張強さおよび伸び率)に準拠して測定し、下記式に従い破断伸度保持率(%)を算出した。
破断伸度保持率(%)=[(処理後の破断伸度)×100]/(処理前の破断伸度)
促進光劣化試験後の伸度保持率については、35%未満のものを×、35%以上、60%未満のものを○、60%以上のものを◎とした。
<Break elongation retention>
Evaluation of light resistance and hydrolysis resistance was carried out based on the elongation at break. The elongation at break before and after the accelerated light degradation test and accelerated hydrolysis test was measured according to JIS C 2318-1997 5.3.31 (tensile strength and elongation), and the elongation at break according to the following formula: Retention rate (%) was calculated.
Breaking elongation retention ratio (%) = [(breaking elongation after treatment) × 100] / (breaking elongation before treatment)
With respect to the elongation retention after the accelerated light deterioration test, the case of less than 35% was evaluated as x, the case of 35% or more and less than 60% as ◯, and the case of 60% or more as ◎.

促進加水分解試験後の伸度保持率については、60%未満のものを×、60%以上、80%未満のものを○、80%以上のものを◎とした。   With respect to the elongation retention after the accelerated hydrolysis test, x is less than 60%, o is 60% or more and less than 80%, and o is 80% or more.

<カラーb*値の変化>
試料フィルムを40mm×40mmにカットし、X=94.19,Y=92.22,Z=110.58の標準白板を用いて、カラーb*値色差計(日本電色社製、ZE−2000)により、促進光劣化試験前後の試料フィルムのカラーb*値をJIS K 7105−1981 5.3.5(a)に準拠して測定した。下記式に従いカラーb*値の変化を求めた。
カラーb*値の変化=(促進光劣化試験後のカラーb*値)−(促進光劣化試験前のカラーb*値)
カラーb*値の変化については、12より高いものを×、5〜12のものを○、5未満のものを◎とした。
<Change in color b * value>
The sample film was cut into 40 mm × 40 mm and a color white * color difference meter (ZE-2000, manufactured by Nippon Denshoku Co., Ltd.) was used using a standard white plate with X = 94.19, Y = 92.22 and Z = 110.58. ), The color b * value of the sample film before and after the accelerated light degradation test was measured according to JIS K 7105-1981 5.3.5 (a). The change in color b * value was determined according to the following formula.
Change in color b * value = (color b * value after accelerated light degradation test) − (color b * value before accelerated light degradation test)
Regarding the change in the color b * value, a value higher than 12 was indicated as x, a value of 5-12 as ◯, and a value of less than 5 as 、 5.

<長手方向の150℃での熱収縮率(HS150)>
試料フィルムを10mm×250mmにカットし、長辺を測定したい方向に合わせて、200mm間隔で印をつけ、5gの一定張力下で印の間隔Aを測った。続いて、試料フィルムを無荷重で150℃の雰囲気のオーブン中で30分間放置した後、オーブンから取り出し室温まで冷却した。その後、5gの一定張力下で印の間隔Bを求め、下記式により熱収縮率(%)を求めた。なお、上記熱収縮率は試料フィルムの幅方向に3等分した位置で測定し、3点の平均値を小数第3位の桁で四捨五入し、小数第2位の桁を丸めて用いた。
熱収縮率(%)=[(A−B)×100]/A
<Heat shrinkage at 150 ° C. in the longitudinal direction (HS150)>
The sample film was cut into 10 mm × 250 mm, and the long side was aligned in the direction in which measurement was desired, and marks were made at intervals of 200 mm, and the mark interval A was measured under a constant tension of 5 g. Subsequently, the sample film was allowed to stand in an oven at 150 ° C. under no load for 30 minutes, and then removed from the oven and cooled to room temperature. Thereafter, the mark interval B was determined under a constant tension of 5 g, and the thermal shrinkage (%) was determined by the following formula. The heat shrinkage rate was measured at a position equally divided into three in the width direction of the sample film, the average value of the three points was rounded off to the third decimal place, and the second decimal place was rounded.
Thermal contraction rate (%) = [(A−B) × 100] / A

<MOR−C>
得られたフィルムを幅方向に5等分割し、それぞれの位置で長手方向、幅方向に100mmの正方形サンプルを採取し、マイクロ波透過型分子配向計(王子計測機器社製、MOA−6004)を用いて測定を行った。厚み補正を50μmとし、MOR−Cを求め5点の平均値を用いた。
<MOR-C>
The obtained film was divided into 5 equal parts in the width direction, 100 mm square samples were taken in the longitudinal direction and the width direction at each position, and a microwave transmission type molecular orientation meter (manufactured by Oji Scientific Instruments, MOA-6004) was used. And measured. The thickness correction was 50 μm, MOR-C was determined, and an average value of 5 points was used.

<表面強度>
5cm×20cmに切り出した試料フィルムを、ポリエステル両面粘着テープAを用い、無機微粒子集中含有層側が外側となるように平板ガラスに全面接着した。試料フィルムの表面に幅24mmの粘着テープB(ニチバン社製、セロテープ(登録商標))を長さ35mmにわたって貼付し1分間放置した。この後、粘着テープBをガラス面に垂直な方向に一気に引き剥がして無機微粒子集中含有層側の表面を観察した。
<Surface strength>
The sample film cut out to 5 cm × 20 cm was adhered to the flat glass using the polyester double-sided pressure-sensitive adhesive tape A so that the inorganic fine particle concentration containing layer side was the outside. A 24 mm wide adhesive tape B (manufactured by Nichiban Co., Ltd., cello tape (registered trademark)) was applied to the surface of the sample film over a length of 35 mm and left for 1 minute. Thereafter, the adhesive tape B was peeled off in a direction perpendicular to the glass surface, and the surface on the inorganic fine particle concentration containing layer side was observed.

粘着テープBの剥離部面積の50%以上で試料フィルム表面が剥がれたものを「剥離」とし、5回以上の繰り返しで「剥離」頻度が半数未満の場合を「○」(表面強度が優れる)、半数以上の場合を「×」(表面強度が劣る)と評価した。   When the surface of the sample film is peeled off at 50% or more of the peeled area of the adhesive tape B, it is defined as “peeling”. When the frequency of “peeling” is less than half after 5 or more repetitions, “◯” (excellent surface strength) The case of more than half was evaluated as “×” (poor surface strength).

<接着性>
実施例13で得られたフィルムを100mm×100mmに、下記のEVAシートを70mm×90mmに切り出したものを用意し、フィルム/EVAシート/フィルム(いずれのフィルムも塗布層面がEVAシートに対向するように設置した。)の構成で重ね、下記接着条件で加熱圧着し、サンプルを作製した。作製したサンプルを20mm×100mmに切り出した後、SUS板に貼りつけ、引張り試験機を用いて下記条件でフィルム層とEVAシート層の剥離強度を測定した。剥離強度は極大点を超えた後に安定して剥離している部分の平均値として求めた。下記の基準でランク分けした。
◎:100N/20mm以上、または、フィルムの材料破壊
○:75N/20mm以上、100N/20mm未満
△:50N/20mm以上、75N/20mm未満
×:50N/20mm未満
<Adhesiveness>
Prepare the film obtained in Example 13 to 100 mm × 100 mm and the following EVA sheet cut out to 70 mm × 90 mm, and prepare a film / EVA sheet / film (all films have the coating layer surface facing the EVA sheet) The sample was prepared by stacking with the structure of 2) and thermocompression bonding under the following adhesion conditions. The produced sample was cut out to 20 mm × 100 mm, and then attached to a SUS plate, and the peel strength between the film layer and the EVA sheet layer was measured using a tensile tester under the following conditions. The peel strength was determined as the average value of the parts that were stably peeled after exceeding the maximum point. The ranking was based on the following criteria.
A: 100 N / 20 mm or more, or material destruction of film ○: 75 N / 20 mm or more, less than 100 N / 20 mm Δ: 50 N / 20 mm or more, less than 75 N / 20 mm ×: less than 50 N / 20 mm

(サンプルの作製条件)
装置:真空ラミネーター(エヌ・ピー・シー社製、LM−30×30型)
加圧:1気圧
EVAシート:
A.スタンダードキュアタイプ
I.サンビック社製、Urtla Pearl(登録商標)PV(0.4μm)
ラミネート工程:100℃(真空5分、真空加圧5分)
キュア工程:熱処理150℃(常圧45分)
II.三井ファブロ社製、ソーラーエバ(登録商標)SC4(0.4μm)
ラミネート工程:130℃(真空5分、真空加圧5分)
キュア工程:熱処理150℃(常圧45分)
B.ファストキュアタイプ
I.サンビック社製 Urtla Pearl(登録商標)PV(0.45μm)
ラミネート工程:135℃(真空5分、真空加圧15分)
II.三井ファブロ社製 ソーラーエバ(登録商標)RC02B(0.45μm)
ラミネート工程:150℃(真空5分、真空加圧15分)
(Sample preparation conditions)
Apparatus: Vacuum laminator (manufactured by NPC, LM-30 × 30 type)
Pressurization: 1 atm EVA sheet:
A. Standard cure type Sunvik, Ultra Pearl (registered trademark) PV (0.4 μm)
Lamination process: 100 ° C. (vacuum 5 minutes, vacuum pressurization 5 minutes)
Cure process: Heat treatment 150 ° C (normal pressure 45 minutes)
II. Solar Eva (registered trademark) SC4 (0.4 μm), manufactured by Mitsui Fabro
Lamination process: 130 ° C (vacuum 5 minutes, vacuum pressurization 5 minutes)
Cure process: Heat treatment 150 ° C (normal pressure 45 minutes)
B. Fast cure type Ultravial (registered trademark) PV (0.45 μm) manufactured by Sanvic
Lamination process: 135 ° C (vacuum 5 minutes, vacuum pressure 15 minutes)
II. Solar Eva (registered trademark) RC02B (0.45 μm) manufactured by Mitsui Fabro
Lamination process: 150 ° C. (vacuum 5 minutes, vacuum pressure 15 minutes)

<ポリエステル樹脂ペレットの製造>
(1)PET樹脂ペレットI(PET−I)の製造
エステル化反応缶を昇温し、200℃に到達した時点で、テレフタル酸86.4質量部およびエチレングリコール64.4質量部からなるスラリーを仕込み、攪拌しながら、触媒として三酸化アンチモンを0.017質量部およびトリエチルアミンを0.16質量部添加した。次いで、加圧昇温を行いゲージ圧3.5kgf/cm2(343kPa)、240℃の条件で、加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻し、酢酸マグネシウム四水和物0.071質量部、次いでリン酸トリメチル0.014質量部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部、次いで酢酸ナトリウム0.0036質量部を添加した。15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、減圧下で260℃から280℃へ徐々に昇温し、285℃で重縮合反応を行った。
<Manufacture of polyester resin pellets>
(1) Production of PET resin pellet I (PET-I) When the temperature of the esterification reaction can was reached and reached 200 ° C., a slurry composed of 86.4 parts by mass of terephthalic acid and 64.4 parts by mass of ethylene glycol was prepared. While charging and stirring, 0.017 parts by mass of antimony trioxide and 0.16 parts by mass of triethylamine were added as catalysts. Next, the pressure was increased and the pressure esterification reaction was performed under the conditions of a gauge pressure of 3.5 kgf / cm 2 (343 kPa) and 240 ° C. Thereafter, the inside of the esterification reaction vessel was returned to normal pressure, and 0.071 part by mass of magnesium acetate tetrahydrate and then 0.014 part by mass of trimethyl phosphate were added. Furthermore, the temperature was raised to 260 ° C. over 15 minutes, and 0.012 part by mass of trimethyl phosphate and then 0.0036 part by mass of sodium acetate were added. After 15 minutes, the resulting esterification reaction product was transferred to a polycondensation reaction can, gradually heated from 260 ° C. to 280 ° C. under reduced pressure, and subjected to a polycondensation reaction at 285 ° C.

重縮合反応終了後、95%カット径が5μmのナスロン(登録商標)製フィルターで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られたPET樹脂ペレット(PET−I)の固有粘度は0.616dl/gであり、酸価は15.1eq/tonであり、不活性粒子および内部析出粒子は実質上含有していなかった。   After completion of the polycondensation reaction, filtration is performed with a filter made of NASRON (registered trademark) with a 95% cut diameter of 5 μm, extruded into a strand form from a nozzle, and using cooling water that has been previously filtered (pore diameter: 1 μm or less). It was cooled and solidified and cut into pellets. The obtained PET resin pellet (PET-I) had an intrinsic viscosity of 0.616 dl / g, an acid value of 15.1 eq / ton, and contained substantially no inert particles and internally precipitated particles.

(2)PET樹脂ペレットII(PET−II)の製造
PET樹脂ペレットI(PET−I)を予め160℃で予備結晶化させた後、温度220℃の窒素雰囲気下で固相重合し、固有粘度0.71dl/g、酸価11eq/tonのPET樹脂ペレットII(PET−II)を得た。
(2) Production of PET resin pellet II (PET-II) After pre-crystallizing PET resin pellet I (PET-I) at 160 ° C in advance, it was subjected to solid phase polymerization in a nitrogen atmosphere at 220 ° C, and intrinsic viscosity was obtained. A PET resin pellet II (PET-II) having 0.71 dl / g and an acid value of 11 eq / ton was obtained.

(3)PET樹脂ペレットIII(PET−III)の製造
重縮合反応時間を変更した以外は、PET樹脂ペレットI(PET−I)と同様の方法で、固有粘度0.51dl/g、酸価39eq/tonのPET樹脂ペレットIII(PET−III)を得た。
(3) Production of PET resin pellet III (PET-III) Except for changing the polycondensation reaction time, the same method as PET resin pellet I (PET-I) was used, with an intrinsic viscosity of 0.51 dl / g and an acid value of 39 eq. / Ton PET resin pellet III (PET-III) was obtained.

(4)PET樹脂ペレットIV(PET−IV)の製造
(重縮合触媒溶液の調製)
ア)リン化合物のエチレングリコール溶液の調製
窒素導入管、冷却管を備えたフラスコに、常温常圧下、エチレングリコール2.0リットルを加えた後、窒素雰囲気下、200rpmで攪拌しながら、リン化合物としてIrganox(登録商標)1222(チバ・スペシャルティーケミカルズ社(現BASF社)製)200gを加えた。さらに2.0リットルのエチレングリコールを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却した。得られた溶液中のIrganox1222のモル分率は40%、Irganox1222から構造変化した化合物のモル分率は60%であった。
(4) Production of PET resin pellet IV (PET-IV) (Preparation of polycondensation catalyst solution)
A) Preparation of ethylene glycol solution of phosphorus compound To a flask equipped with a nitrogen inlet tube and a cooling tube, 2.0 liters of ethylene glycol was added at room temperature and normal pressure, and then stirred at 200 rpm in a nitrogen atmosphere as a phosphorus compound. 200 g of Irganox (registered trademark) 1222 (manufactured by Ciba Specialty Chemicals (currently BASF)) was added. Further, 2.0 liters of ethylene glycol was added, the temperature was raised by changing the jacket temperature setting to 196 ° C., and the mixture was stirred under reflux for 60 minutes from the time when the internal temperature reached 185 ° C. or higher. Thereafter, the heating was stopped, the solution was immediately removed from the heat source, and the solution was cooled to 120 ° C. or less within 30 minutes while maintaining the nitrogen atmosphere. The mole fraction of Irganox 1222 in the obtained solution was 40%, and the mole fraction of the compound whose structure changed from Irganox 1222 was 60%.

イ)アルミニウム化合物のエチレングリコール溶液の調製
冷却管を備えたフラスコに、常温常圧下、純水5.0リットルを加えた後、200rpmで攪拌しながら、塩基性酢酸アルミニウム200gを純水とのスラリーとして加えた。さらに全体として10.0リットルとなるよう純水を追加して常温常圧で12時間攪拌した。その後、ジャケット温度の設定を100.5℃に変更して昇温し、内温が95℃以上になった時点から3時間還流下で攪拌した。攪拌を止め、室温まで放冷しアルミニウム化合物の水溶液を得た。
I) Preparation of ethylene glycol solution of aluminum compound To a flask equipped with a cooling tube, 5.0 liters of pure water was added at room temperature and normal pressure, and then 200 g of basic aluminum acetate was slurried with pure water while stirring at 200 rpm. Added as. Further, pure water was added so as to be 10.0 liters as a whole, and the mixture was stirred at normal temperature and pressure for 12 hours. Thereafter, the jacket temperature was changed to 100.5 ° C., the temperature was raised, and the mixture was stirred under reflux for 3 hours from the time when the internal temperature reached 95 ° C. or higher. Stirring was stopped and the mixture was allowed to cool to room temperature to obtain an aqueous solution of an aluminum compound.

得られたアルミニウム化合物の水溶液に等容量のエチレングリコールを加え、室温で30分間攪拌した後、内温80〜90℃にコントロールし、徐々に減圧して、到達27hPaとして、数時間攪拌しながら系から水を留去し、20g/lのアルミニウム化合物のエチレングリコール溶液を得た。得られたアルミニウム溶液の27Al−NMRスペクトルのピーク積分値比は2.2であった。After adding an equal volume of ethylene glycol to the obtained aqueous solution of the aluminum compound and stirring for 30 minutes at room temperature, the system was controlled to an internal temperature of 80 to 90 ° C., gradually reduced in pressure to reach 27 hPa, and stirred for several hours. Then, water was distilled off to obtain an ethylene glycol solution of an aluminum compound at 20 g / l. The peak integration value ratio of 27 Al-NMR spectrum of the obtained aluminum solution was 2.2.

(エステル化反応および重縮合)
3基の連続エステル化反応槽および3基の重縮合反応槽よりなり、かつ第3エステル化反応槽から第1重縮合反応槽への移送ラインに高速攪拌器を有したインラインミキサーが設置された連続式ポリエステル製造装置において、高純度テレフタル酸1質量部に対してエチレングリコール0.75質量部をスラリー調製槽に連続的に供給した。第1エステル化反応槽を250℃、110kPa、第2エステル化反応槽を260℃、105kPa、第3エステル化反応槽を260℃、105kPaとして、調製されたスラリーを連続的に供給し、ポリエステルオリゴマーを得た。なお、第2エステル化反応槽にエチレングリコール0.025質量部を連続的に投入した。得られたオリゴマーを3基の反応槽よりなる連続重縮合装置に連続的に移送すると共に、移送ラインに設置されたインラインミキサーに上記方法で調製したアルミニウム化合物のエチレングリコール溶液およびリン化合物のエチレングリコール溶液をそれぞれポリエステル中の酸成分に対してアルミニウム原子およびリン原子として0.015モル%および0.036モル%となるように連続式のミキサーで攪拌しながら連続的に添加し、初期重縮合反応槽を265℃、9kPa、中期重縮合反応槽を265〜268℃、0.7kPa、最終重縮合反応槽を273℃、13.3Paとして重縮合し、固有粘度0.63dl/g、酸価10.5eq/tonのPET樹脂ペレットIV(PET−IV)を得た。
(Esterification reaction and polycondensation)
An in-line mixer having a high-speed stirrer was installed in the transfer line from the third esterification reaction tank to the first polycondensation reaction tank, comprising three continuous esterification reaction tanks and three polycondensation reaction tanks. In the continuous polyester production apparatus, 0.75 part by mass of ethylene glycol was continuously supplied to the slurry preparation tank with respect to 1 part by mass of high-purity terephthalic acid. The first esterification reaction tank is 250 ° C. and 110 kPa, the second esterification reaction tank is 260 ° C. and 105 kPa, the third esterification reaction tank is 260 ° C. and 105 kPa, and the prepared slurry is continuously supplied to the polyester oligomer. Got. In addition, 0.025 mass part of ethylene glycol was continuously thrown into the 2nd esterification reaction tank. The obtained oligomer was continuously transferred to a continuous polycondensation apparatus consisting of three reaction vessels, and an ethylene glycol solution of an aluminum compound and an ethylene glycol of a phosphorus compound prepared by the above method in an in-line mixer installed in a transfer line. The initial polycondensation reaction was carried out by continuously adding the solution while stirring with a continuous mixer so as to be 0.015 mol% and 0.036 mol% as aluminum atoms and phosphorus atoms, respectively, with respect to the acid component in the polyester. The polycondensation was carried out at 265 ° C. and 9 kPa, the medium-term polycondensation reaction vessel at 265 to 268 ° C. and 0.7 kPa, the final polycondensation reaction vessel at 273 ° C. and 13.3 Pa, an intrinsic viscosity of 0.63 dl / g, and an acid value of 10 PET resin pellet IV (PET-IV) of .5 eq / ton was obtained.

(5)PET樹脂ペレットV(PET−V)の製造
得られたPET樹脂ペレットIV(PET−IV)を用いて回転型真空重合装置で、0.5mmHgの減圧下、220℃で固相重合を行い、固有粘度0.73dl/g、酸価5.0eq/tonのPET樹脂ペレットV(PET−V)を得た。
(5) Production of PET resin pellet V (PET-V) Using the obtained PET resin pellet IV (PET-IV), solid-state polymerization was performed at 220 ° C. under a reduced pressure of 0.5 mmHg using a rotary vacuum polymerization apparatus. Then, PET resin pellet V (PET-V) having an intrinsic viscosity of 0.73 dl / g and an acid value of 5.0 eq / ton was obtained.

<微粒子含有マスターバッチペレットの製造>
(6)マスターバッチペレットI(MB−I)の製造
原料として、予め120℃、8時間ほど、10−3torr(約0.133Pa)下で乾燥したPET樹脂ペレットI(PET−I)50質量%に、平均粒径0.3μm(電子顕微鏡法により求めた値)のルチル型二酸化チタン50質量%を混合したものをベント式二軸押出機に供給して、混練りして脱気しながら275℃で押出し、ルチル型二酸化チタン微粒子含有マスターバッチペレットI(MB−I)を得た。このペレットの固有粘度は0.45dl/g、酸価は42.2eq/tonであった。
<Manufacture of master batch pellets containing fine particles>
(6) Production of Master Batch Pellet I (MB-I) As a raw material, PET resin pellet I (PET-I) 50 mass previously dried at 120 ° C. for about 8 hours under 10 −3 torr (about 0.133 Pa) % Is mixed with 50% by mass of rutile-type titanium dioxide having an average particle size of 0.3 μm (value obtained by electron microscopy) while being fed to a vented twin screw extruder, kneaded and deaerated. Extrusion was performed at 275 ° C. to obtain rutile type titanium dioxide fine particle-containing master batch pellet I (MB-I). The pellet had an intrinsic viscosity of 0.45 dl / g and an acid value of 42.2 eq / ton.

(7)マスターバッチペレットII(MB−II)の製造
マスターバッチペレットI(MB−I)を用いて回転型真空重合装置で、0.5mmHgの減圧下、220℃で固相重合を行い、固有粘度0.71dl/g、酸価23.5eq/tonのマスターバッチペレットII(MB−II)を得た。
(7) Manufacture of Master Batch Pellet II (MB-II) Using Master Batch Pellet I (MB-I), solid-state polymerization is performed at 220 ° C. under a reduced pressure of 0.5 mmHg in a rotary vacuum polymerization apparatus. Master batch pellets II (MB-II) having a viscosity of 0.71 dl / g and an acid value of 23.5 eq / ton were obtained.

(8)マスターバッチペレットIII(MB−III)の製造
PET樹脂ペレットI(PET−I)の代わりにPET樹脂ペレットIV(PET−IV)を用いた以外は、マスターバッチペレットI(MB−I)と同様の方法でルチル型二酸化チタン微粒子含有マスターバッチペレットIII(MB−III)を得た。このペレットの固有粘度は0.46dl/g、酸価は36.3eq/tonであった。
(8) Production of Master Batch Pellet III (MB-III) Master Batch Pellet I (MB-I) except that PET resin pellet IV (PET-IV) was used instead of PET resin pellet I (PET-I) In the same manner, rutile type titanium dioxide fine particle-containing master batch pellets III (MB-III) were obtained. The pellet had an intrinsic viscosity of 0.46 dl / g and an acid value of 36.3 eq / ton.

(9)マスターバッチペレットIV(MB−IV)の製造
マスターバッチペレットIII(MB−III)用いて回転型真空重合装置で、0.5mmHgの減圧下、220℃で固相重合を行い、固有粘度0.70dl/g、酸価19.4eq/tonのルチル型二酸化チタン微粒子含有マスターバッチペレットIV(MB−IV)を得た。
(9) Manufacture of master batch pellet IV (MB-IV) Using master batch pellet III (MB-III), solid-state polymerization is performed at 220 ° C. under a reduced pressure of 0.5 mmHg in a rotary vacuum polymerization apparatus, and intrinsic viscosity is obtained. A master batch pellet IV (MB-IV) containing rutile-type titanium dioxide fine particles having 0.70 dl / g and an acid value of 19.4 eq / ton was obtained.

<塗布液の調製>
4,4−ジフェニルメタンジイソシアネート43.75質量部、ジメチロールブタン酸12.85質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41質量部、ジブチルスズジラウレート0.03質量部、および溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。ポリウレタンプレポリマー溶液に水450質量部を添加し、25℃に調整して2000min-1で攪拌混合することによって水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂溶液を調製した。得られたポリウレタン樹脂のガラス転移温度は−30℃であった。
<Preparation of coating solution>
4,4-diphenylmethane diisocyanate 43.75 parts by mass, dimethylolbutanoic acid 12.85 parts by mass, number-average molecular weight 2000 polyhexamethylene carbonate diol 153.41 parts by mass, dibutyltin dilaurate 0.03 parts by mass, and acetone as a solvent 84.00 parts by mass was added and stirred at 75 ° C. for 3 hours under a nitrogen atmosphere. After the reaction solution was cooled to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. . 450 parts by mass of water was added to the polyurethane prepolymer solution, adjusted to 25 ° C., and stirred and mixed at 2000 min −1 for water dispersion. Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution having a solid content of 35%. The glass transition temperature of the obtained polyurethane resin was −30 ° C.

次いで、水55.86質量%、イソプロパノール30.00質量%、上記で得られたポリウレタン樹脂溶液13.52質量%、粒子(平均粒径40nmのシリカゾル、固形分濃度40質量%)0.59質量%、界面活性剤(シリコーン系、固形分濃度100質量%)0.03質量%となるように混合し、塗布液を調製した。   Next, 55.86% by mass of water, 30.00% by mass of isopropanol, 13.52% by mass of the polyurethane resin solution obtained above, and particles (silica sol having an average particle size of 40 nm, solid content concentration of 40% by mass) 0.59% % And a surfactant (silicone-based, solid content concentration: 100% by mass) to 0.03% by mass to prepare a coating solution.

<太陽電池用白色ポリエステルフィルムの製造>
実施例1
PET−IIを60質量%、MB−IIを40質量%混合した微粒子集中含有層(A層)の原料と、PET−IIを86質量%、MB−IIを14質量%混合した他の層(B層)の原料とをそれぞれ別々の押出機に投入し、285℃で混合、溶融し、続いてフィードブロックを用い、A層/B層となるように溶融状態で接合した。このとき、A層とB層の吐出量比率は、ギアポンプを用いて制御した。次いでT−ダイを用いて30℃に調節された冷却ドラム上に押出し、未延伸シートを作製した。
<Manufacture of white polyester film for solar cells>
Example 1
The raw material of the fine particle concentration layer (A layer) in which 60% by mass of PET-II and 40% by mass of MB-II are mixed, and another layer in which 86% by mass of PET-II and 14% by mass of MB-II are mixed ( The raw materials of layer B) were put into separate extruders, mixed and melted at 285 ° C., and then joined in a molten state to form layer A / layer B using a feed block. At this time, the discharge rate ratio of the A layer and the B layer was controlled using a gear pump. Subsequently, it was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to produce an unstretched sheet.

得られた未延伸シートを、加熱ロールを用いて75℃に均一加熱し、非接触ヒーターで100℃に加熱して3.3倍のロール延伸(縦延伸)を行った。得られた一軸延伸フィルムをテンターに導き、140℃に加熱して4.0倍に横延伸し、幅固定して215℃で5秒間の熱処理を施し、さらに210℃で幅方向に4%緩和させることにより、厚み80μmの太陽電池用白色ポリエステルフィルムロールを得た。   The obtained unstretched sheet was uniformly heated to 75 ° C. using a heating roll, and heated to 100 ° C. with a non-contact heater to perform 3.3-fold roll stretching (longitudinal stretching). The resulting uniaxially stretched film is guided to a tenter, heated to 140 ° C, stretched 4.0 times, fixed in width, heat treated at 215 ° C for 5 seconds, and further relaxed 4% in the width direction at 210 ° C. By doing so, a white polyester film roll for solar cells having a thickness of 80 μm was obtained.

実施例2
A層、B層の原料組成を表1のように変更した以外は、実施例1と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 2
The white polyester film roll for solar cells was obtained by the same method as Example 1 except having changed the raw material composition of A layer and B layer as shown in Table 1.

実施例3
A層、B層の原料組成を表1のように変更した以外は、実施例1と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 3
The white polyester film roll for solar cells was obtained by the same method as Example 1 except having changed the raw material composition of A layer and B layer as shown in Table 1.

実施例4
A層、B層の原料組成を表1のように変更した以外は、実施例1と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 4
The white polyester film roll for solar cells was obtained by the same method as Example 1 except having changed the raw material composition of A layer and B layer as shown in Table 1.

実施例5
フィルムロール厚みが50μmとなるように吐出量と速度を変更した以外は、実施例4と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 5
The white polyester film roll for solar cells was obtained by the same method as Example 4 except having changed the discharge amount and speed so that film roll thickness might be set to 50 micrometers.

実施例6
A層、B層の原料組成を表1のように変更した以外は、実施例5と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 6
A white polyester film roll for solar cells was obtained in the same manner as in Example 5 except that the raw material compositions of the A layer and the B layer were changed as shown in Table 1.

実施例7
A層、B層の原料組成を表1のように変更した以外は、実施例5と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 7
A white polyester film roll for solar cells was obtained in the same manner as in Example 5 except that the raw material compositions of the A layer and the B layer were changed as shown in Table 1.

実施例8
縦延伸倍率を3.1倍にし、フィルムロール厚みが188μmとなるように吐出量と速度を変更した以外は、実施例5と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 8
A white polyester film roll for solar cells was obtained in the same manner as in Example 5 except that the longitudinal draw ratio was 3.1 times and the discharge rate and speed were changed so that the film roll thickness was 188 μm.

実施例9
縦延伸倍率を3.0倍に、横延伸倍率を3.7倍にし、フィルムロール厚みが350μmとなるように吐出量と速度を変更した以外は、実施例5と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 9
A white color for solar cells was obtained in the same manner as in Example 5 except that the longitudinal draw ratio was 3.0 times, the transverse draw ratio was 3.7 times, and the discharge amount and speed were changed so that the film roll thickness was 350 μm. A polyester film roll was obtained.

実施例10
A層、B層の原料組成を表1のように変更した以外は、実施例5と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 10
A white polyester film roll for solar cells was obtained in the same manner as in Example 5 except that the raw material compositions of the A layer and the B layer were changed as shown in Table 1.

実施例11
実施例1で得られたフィルムロールを160℃の温度に設定されたオフラインコーターに通し、速度、張力を調整して弛緩処理を行い、太陽電池用白色ポリエステルフィルムロールを得た。
Example 11
The film roll obtained in Example 1 was passed through an offline coater set to a temperature of 160 ° C., and the relaxation treatment was performed by adjusting the speed and tension to obtain a white polyester film roll for solar cells.

実施例12
フィードブロックを変更してA層/B層/A層の構成となるようにした以外は、実施例1と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 12
A white polyester film roll for solar cells was obtained in the same manner as in Example 1 except that the feed block was changed to have a configuration of A layer / B layer / A layer.

実施例13
縦延伸を終えた一軸延伸フィルムのB層側に上記で調製した塗布液をロールコート法で、最終(二軸延伸後)の乾燥後の塗布量が0.15g/m2になるように塗布した後に80℃で20秒間乾燥した以外は、実施例1と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Example 13
Apply the coating solution prepared above on the B layer side of the uniaxially stretched film after longitudinal stretching by the roll coating method so that the final (after biaxial stretching) coating amount after drying is 0.15 g / m 2. After that, a white polyester film roll for a solar cell was obtained in the same manner as in Example 1 except that it was dried at 80 ° C. for 20 seconds.

Figure 0005288068
Figure 0005288068

実施例1〜13で得られたフィルムロールの物性を表2に示す。   Table 2 shows the physical properties of the film rolls obtained in Examples 1 to 13.

Figure 0005288068
Figure 0005288068

比較例1、2
A層、B層の組成を表3のように変更した以外は、実施例1と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Comparative Examples 1 and 2
The white polyester film roll for solar cells was obtained by the same method as Example 1 except having changed the composition of A layer and B layer as shown in Table 3.

比較例3〜5
A層、B層の組成を表3のように変更するとともに、フィルムロール厚みが50μmとなるように吐出量と速度を変更した以外は、実施例1と同じ方法で太陽電池用白色ポリエステルフィルムロールを得た。
Comparative Examples 3-5
A white polyester film roll for solar cells in the same manner as in Example 1 except that the composition of the A layer and the B layer was changed as shown in Table 3 and the discharge rate and speed were changed so that the film roll thickness was 50 μm. Got.

Figure 0005288068
Figure 0005288068

比較例1〜5で得られたフィルムロールの物性を表4に示す。   Table 4 shows the physical properties of the film rolls obtained in Comparative Examples 1 to 5.

Figure 0005288068
Figure 0005288068

本発明の太陽電池用白色ポリエステルフィルムは、良好な白色度と光反射性を有しながら、環境耐久性に優れ、かつ良好な電気絶縁性を奏するものである。本発明の太陽電池用白色ポリエステルフィルムを用いることにより、環境耐久性に優れ、安価で軽量な太陽電池裏面封止シートおよび太陽電池モジュールを提供することができる。   The white polyester film for solar cells of the present invention has excellent whiteness and light reflectivity, and has excellent environmental durability and good electrical insulation. By using the white polyester film for solar cells of the present invention, it is possible to provide a solar cell back surface sealing sheet and a solar cell module that are excellent in environmental durability, are inexpensive and lightweight.

Claims (9)

白色度が50以上、波長400〜800nmの範囲における平均反射率が50〜95%、酸価が1〜50eq/ton、厚みが30〜380μmである太陽電池用白色ポリエステルフィルムであり、
10〜35質量%の無機微粒子を含有する無機微粒子集中含有層が少なくとも一方の最外層として配置された多層構造を有しており、上記無機微粒子集中含有層の厚みがポリエステルフィルム全体の厚みに対して5〜30%であり、ポリエステルフィルム全体における無機微粒子の含有量が2〜10質量%であることを特徴とする太陽電池用白色ポリエステルフィルム。
A white polyester film for solar cells having a whiteness of 50 or more, an average reflectance in the range of wavelengths from 400 to 800 nm of 50 to 95%, an acid value of 1 to 50 eq / ton, and a thickness of 30 to 380 μm.
The inorganic fine particle concentration containing layer containing 10 to 35% by mass of inorganic fine particles has a multilayer structure arranged as at least one outermost layer, and the thickness of the inorganic fine particle concentration containing layer is relative to the total thickness of the polyester film. The white polyester film for solar cells, wherein the content of inorganic fine particles in the entire polyester film is 2 to 10% by mass.
上記無機微粒子がルチル型を主体とする二酸化チタンである請求項1に記載の太陽電池用白色ポリエステルフィルム。   The white polyester film for solar cells according to claim 1, wherein the inorganic fine particles are titanium dioxide mainly composed of a rutile type. 長手方向の150℃での熱収縮率が0.2〜3.0%である請求項1または2に記載の太陽電池用白色ポリエステルフィルム。   The white polyester film for solar cells according to claim 1 or 2, wherein a heat shrinkage rate at 150 ° C in the longitudinal direction is 0.2 to 3.0%. 105℃、100%RH、0.03MPa、200時間処理の条件で促進加水分解試験後の破断伸度保持率が60〜100%である請求項1〜3のいずれかに記載の太陽電池用白色ポリエステルフィルム。   The white for solar cells according to any one of claims 1 to 3, wherein the breaking elongation retention after the accelerated hydrolysis test is 60 to 100% under the conditions of 105 ° C, 100% RH, 0.03 MPa and 200 hours. Polyester film. 63℃、50%RH、UV照射強度100mW/cm2、100時間照射の条件で促進光劣化試験後の破断伸度保持率が35%以上である請求項1〜4のいずれかに記載の太陽電池用白色ポリエステルフィルム。The sun according to any one of claims 1 to 4, wherein the breaking elongation retention after the accelerated light deterioration test is 35% or more under the conditions of 63 ° C, 50% RH, UV irradiation intensity of 100 mW / cm 2 and irradiation for 100 hours. White polyester film for batteries. 63℃、50%RH、UV照射強度100mW/cm2、100時間照射の条件で促進光劣化試験後のカラーb*値の変化が12以下である請求項1〜5のいずれかに記載の太陽電池用白色ポリエステルフィルム。6. The sun according to claim 1, wherein the change in the color b * value after the accelerated light deterioration test is 12 or less under the conditions of 63 ° C., 50% RH, UV irradiation intensity of 100 mW / cm 2 and irradiation for 100 hours. White polyester film for batteries. ポリエステルフィルムの少なくとも一方の表面に、脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂を含有する塗布層が配置されるものである請求項1〜6のいずれかに記載の太陽電池用白色ポリエステルフィルム。   The white polyester film for solar cells according to any one of claims 1 to 6, wherein a coating layer containing a polyurethane resin containing an aliphatic polycarbonate polyol as a constituent component is disposed on at least one surface of the polyester film. . 請求項1〜7のいずれかに記載の太陽電池用白色ポリエステルフィルムを用いたことを特徴とする太陽電池裏面封止シート。   The solar cell backside sealing sheet using the white polyester film for solar cells in any one of Claims 1-7. 請求項8に記載の太陽電池裏面封止シートと、太陽電池裏面封止シートに隣接する充填剤層と、充填剤層に埋設された太陽電池素子を備えることを特徴とする太陽電池モジュール。   A solar cell module comprising the solar cell back surface sealing sheet according to claim 8, a filler layer adjacent to the solar cell back surface sealing sheet, and a solar cell element embedded in the filler layer.
JP2012554545A 2011-10-07 2012-10-04 White polyester film for solar cell, solar cell back surface sealing sheet and solar cell module using the same Active JP5288068B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012554545A JP5288068B1 (en) 2011-10-07 2012-10-04 White polyester film for solar cell, solar cell back surface sealing sheet and solar cell module using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011223049 2011-10-07
JP2011223049 2011-10-07
PCT/JP2012/075835 WO2013051661A1 (en) 2011-10-07 2012-10-04 White polyester film for solar cells, solar cell back side sealing sheet and solar cell module that use same
JP2012554545A JP5288068B1 (en) 2011-10-07 2012-10-04 White polyester film for solar cell, solar cell back surface sealing sheet and solar cell module using the same

Publications (2)

Publication Number Publication Date
JP5288068B1 true JP5288068B1 (en) 2013-09-11
JPWO2013051661A1 JPWO2013051661A1 (en) 2015-03-30

Family

ID=48043814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012554545A Active JP5288068B1 (en) 2011-10-07 2012-10-04 White polyester film for solar cell, solar cell back surface sealing sheet and solar cell module using the same

Country Status (3)

Country Link
JP (1) JP5288068B1 (en)
TW (1) TWI499064B (en)
WO (1) WO2013051661A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119164A1 (en) * 2014-02-05 2015-08-13 富士フイルム株式会社 White polyester film and production method therefor, and solar cell module and production method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016009755A1 (en) * 2014-07-14 2017-04-27 富士フイルム株式会社 Reflector for solar power generation
US10475943B2 (en) * 2015-03-20 2019-11-12 Toyobo Co., Ltd. White polyester film for a solar cell, sealing sheet for back surface of solar cell using same, and solar cell module
TWI746359B (en) * 2021-01-29 2021-11-11 南亞塑膠工業股份有限公司 Polyester film and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040161A1 (en) * 2009-09-30 2011-04-07 東洋紡績株式会社 Polyester film for protection of back surfaces of solar cells
JP2011097012A (en) * 2009-09-29 2011-05-12 Toyobo Co Ltd Polyester film for solar cell rear surface protective film
JP2012140124A (en) * 2012-01-27 2012-07-26 Takashi Yano Door device of automobile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079798A1 (en) * 2009-01-07 2010-07-15 東洋紡績株式会社 Polyester film for solar cell back surface protection film
KR20120115214A (en) * 2009-12-03 2012-10-17 도레이 카부시키가이샤 Film for backside sealing sheet of solar cell
JP5434602B2 (en) * 2010-01-05 2014-03-05 東洋紡株式会社 Easy-adhesive white polyester film for solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097012A (en) * 2009-09-29 2011-05-12 Toyobo Co Ltd Polyester film for solar cell rear surface protective film
WO2011040161A1 (en) * 2009-09-30 2011-04-07 東洋紡績株式会社 Polyester film for protection of back surfaces of solar cells
JP2012140124A (en) * 2012-01-27 2012-07-26 Takashi Yano Door device of automobile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119164A1 (en) * 2014-02-05 2015-08-13 富士フイルム株式会社 White polyester film and production method therefor, and solar cell module and production method therefor
JP2015147334A (en) * 2014-02-05 2015-08-20 富士フイルム株式会社 White polyester film and production method therefor, and solar cell module and production method therefor
KR20160101128A (en) * 2014-02-05 2016-08-24 후지필름 가부시키가이샤 White polyester film and production method therefor, and solar cell module and production method therefor
CN105939851A (en) * 2014-02-05 2016-09-14 富士胶片株式会社 White polyester film and production method therefor, and solar cell module and production method therefor
CN105939851B (en) * 2014-02-05 2018-03-30 富士胶片株式会社 White polyester film and its manufacture method and solar module and its manufacture method
KR101869179B1 (en) * 2014-02-05 2018-06-19 후지필름 가부시키가이샤 White polyester film and production method therefor, and solar cell module and production method therefor

Also Published As

Publication number Publication date
WO2013051661A1 (en) 2013-04-11
JPWO2013051661A1 (en) 2015-03-30
TW201324816A (en) 2013-06-16
TWI499064B (en) 2015-09-01

Similar Documents

Publication Publication Date Title
JP6241414B2 (en) Solar cell backside sealing sheet and solar cell module
JP5835667B2 (en) Method for producing polyester film for sealing solar cell back surface
JP6068802B2 (en) Polyester film for solar cell, easily adhesive polyester film for solar cell, and front sheet using the same
WO2011068132A1 (en) Readily bondable polyester film for solar cells
JP5288068B1 (en) White polyester film for solar cell, solar cell back surface sealing sheet and solar cell module using the same
WO2013024902A1 (en) Back sheet for solar cell, method for manufacturing same, and solar cell module
WO2012043000A1 (en) Polyester film for protective material for back surface of solar battery
WO2013047370A1 (en) Biaxially oriented polyester film
JP6708206B2 (en) White polyester film for solar cell, solar cell backside sealing sheet and solar cell module using the same
JP2011139036A (en) Easily bondable white polyester film for solar cell, and back sheet using the same
JP2012064927A (en) Easily adhesive black polyester film for solar battery and back sheet using the same
JP5594082B2 (en) Easy-adhesive white polyester film for solar cell and back sheet using the same
JP6111525B2 (en) Solar cell backside sealing sheet and solar cell module
JP2012064926A (en) Easily adhesive black polyester film for solar battery and back sheet using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5288068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350