WO2011068132A1 - Readily bondable polyester film for solar cells - Google Patents

Readily bondable polyester film for solar cells Download PDF

Info

Publication number
WO2011068132A1
WO2011068132A1 PCT/JP2010/071513 JP2010071513W WO2011068132A1 WO 2011068132 A1 WO2011068132 A1 WO 2011068132A1 JP 2010071513 W JP2010071513 W JP 2010071513W WO 2011068132 A1 WO2011068132 A1 WO 2011068132A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polyester film
film
coating layer
solar cells
Prior art date
Application number
PCT/JP2010/071513
Other languages
French (fr)
Japanese (ja)
Inventor
晃侍 伊藤
寛子 矢吹
森 憲一
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to KR1020127015519A priority Critical patent/KR101421360B1/en
Priority to CN201080054340.2A priority patent/CN102639615B/en
Publication of WO2011068132A1 publication Critical patent/WO2011068132A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an easily adhesive polyester film for solar cells. Specifically, it is a polyester film excellent in adhesion with a sealant even under high temperature and high humidity.
  • a solar cell is a photovoltaic power generation system that directly converts sunlight energy into electricity.
  • solar cell elements semiconductors such as single crystal silicon, polycrystalline silicon, and amorphous silicon, compound-based, or organic dyes are used.
  • semiconductors such as single crystal silicon, polycrystalline silicon, and amorphous silicon, compound-based, or organic dyes are used.
  • several to several tens of solar cell elements are wired in series and in parallel, and various types of packaging are performed to protect the elements over a long period of time (about 20 years or more).
  • a unit incorporated in this package is called a solar cell module.
  • the solar cell module is generally composed of a plurality of layers such as a surface that is exposed to sunlight with glass, the solar cell element is filled with a sealing material, and the back surface is called a back sheet, such as a heat-resistant, weather-resistant plastic material.
  • a sealing material filling the solar cell element an olefin resin such as ethylene / vinyl acetate copolymer resin (hereinafter EVA) or polyvinyl butyral resin (hereinafter PVB) is used.
  • EVA ethylene / vinyl acetate copolymer resin
  • PVB polyvinyl butyral resin
  • a module is produced by stacking the above glass substrate / sealing material / solar cell element / sealing material / back sheet and heat-pressing with a vacuum laminator or the like.
  • the sealing material has a role of adhering and fixing the solar cell element, preventing moisture from entering from the outside, and protecting the solar cell element.
  • a laminated structure such as a film (antifouling layer) has been proposed.
  • the backsheet serves to protect the solar cell element from external moisture and contamination over a long period of time. Therefore, the adhesiveness between the sealing material and the polyester film on the solar cell element side that is in direct contact with the sealing material is important.
  • a polyester film that has not been subjected to a surface treatment cannot obtain sufficient adhesiveness and is required to be improved.
  • Patent Documents 1 to 4 it has been proposed to provide an adhesive layer containing a resin or a crosslinking agent.
  • compositions including additives such as a crosslinking agent and an ultraviolet absorber have come to be used for the sealing material from the viewpoint of improving productivity and preventing deterioration. Therefore, there is a demand for a highly versatile and easy-to-adhere film that exhibits the same degree of adhesion to various sealing materials.
  • the present invention has strong adhesiveness that can withstand harsh environments, hardly causes deterioration of adhesiveness under high temperature and high humidity, which has been conventionally considered to be unavoidable, and has various sealing properties. It is an object of the present invention to provide an easily adhesive polyester film for solar cells that has good adhesion to a stopper.
  • the polyester film has a coating layer on at least one surface, and the coating layer includes a urethane resin having an aliphatic polycarbonate polyol as a constituent component,
  • the main component is a urethane resin having an aromatic polycarbonate polyol as a constituent component
  • the absorbance (A 1460 ) around 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component and the vicinity of 1530 cm ⁇ 1 derived from the urethane component in the infrared spectrum In the case where the main component is a urethane resin having an aromatic polycarbonate polyol as a constituent component, the absorbance (A 1460 ) around 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component and the vicinity of 1530 cm ⁇ 1 derived from the urethane component in the infrared spectrum.
  • the coating layer having a ratio (A 1460 / A 1530 ) to the absorbance (A 1530 ) of 0.70 to 1.60, strong adhesiveness that can withstand even harsh environments can be achieved.
  • the present inventors have found that excellent adhesiveness can be obtained even under humidity, and have reached the present invention.
  • the coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a cross-linking agent as main components, the absorbance in the vicinity of 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component (A 1460 ) in the infrared spectrum.
  • An easily adhesive polyester for solar cells which is a polyester film having a substrate thickness of 20 to 500 ⁇ m having an application layer on at least one surface, and the application layer contains a urethane resin containing an aliphatic polycarbonate polyol as a constituent component the film.
  • the coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component, and the absorbance in the vicinity of 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component (A 1460) in the infrared spectrum of the coating layer.
  • the coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a cross-linking agent, and the absorbance around 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component in the infrared spectrum of the coating layer.
  • (a 1460) and 1530 cm -1 near the absorbance derived from urethane component ratio of (a 1530) (a 1460 / a 1530) is 0.50 to 1.55 the sun highly adhesive polyester film for batteries.
  • the solar cell easily adhesive polyester film wherein the crosslinking agent is at least one crosslinking agent selected from a melamine crosslinking agent, an isocyanate crosslinking agent, a carbodiimide crosslinking agent, and an oxazoline crosslinking agent.
  • the said easily adhesive polyester film for solar cells whose content of the said crosslinking agent in the said application layer is 5 to 90 mass% with respect to urethane resin.
  • the said polyester film is a white polyester film, The said easily adhesive polyester film for solar cells.
  • a solar cell backsheet in which the solar cell easy-adhesive polyester film is laminated.
  • the easily-adhesive polyester film for solar cells of the present invention exhibits strong adhesion, and is particularly excellent in adhesion (humidity heat resistance) under high temperature and high humidity. Therefore, as a preferred embodiment, the adhesiveness at the high temperature and high humidity treatment is maintained at the same level as the initial adhesiveness. Moreover, as a preferable embodiment of the present invention, when the easily adhesive polyester film for solar cell of the present invention is used as a member of a back sheet, the adhesiveness with a sealing material is good.
  • the polyester resin constituting the substrate in the present invention includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polymethylene terephthalate, and copolymerization components such as diethylene glycol, neopentyl glycol, polyalkylene glycol, etc. Polyester resins obtained by copolymerizing diol components, dicarboxylic acid components such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid can be used.
  • the polyester resin suitably used in the present invention mainly contains at least one of polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate as a constituent component.
  • polyethylene terephthalate is most preferable from the balance between physical properties and cost.
  • these polyester films can improve chemical resistance, heat resistance, mechanical strength, etc. by biaxially stretching.
  • the polyester film of the present invention may be a single-layer polyester film or a polyester film composed of at least three layers having an outermost layer and a center layer.
  • particles are contained in the outermost layer (A layer in the case of the above-mentioned two types and three layers), and particles are substantially contained in the central layer (B layer in the case of the above two types and three layers). May not be included.
  • a layer in the case of the above-mentioned two types and three layers
  • B layer in the case of the above two types and three layers
  • particles in the A layer is that when the polyester film of the present invention is used as a member for a solar cell, a metal or a moisture-proof functional layer such as a metal oxide thin film layer or a coating layer, This is for improving the handling property in the post-processing step such as laminating a fouling functional layer.
  • sufficient handling properties suitable for processability can be obtained.
  • the B layer substantially does not contain particles is to reduce the probability of formation of protrusions due to aggregates of lubricant particles, particularly inorganic particles. Further, by adopting such a configuration, a highly transparent film can be obtained, which is suitable for a field requiring transparency, such as a see-through solar cell.
  • substantially free of inert particles means, for example, in the case of inorganic particles, when the element derived from the particles is quantitatively analyzed by fluorescent X-ray analysis, it is less than 50 ppm, preferably less than 10 ppm. Preferably, the content is below the detection limit. This is because even if particles are not added positively, contaminants derived from foreign substances and raw material resin or dirt attached to the line or equipment in the film manufacturing process may be peeled off and mixed into the film. It is.
  • These layers can contain various additives in the polyester, if necessary.
  • the additive include an antioxidant, a light resistance agent, an antigelling agent, an organic wetting agent, an antistatic agent, an ultraviolet absorber, and a surfactant.
  • the type and content of the particles contained in the outermost layer may be inorganic particles or organic particles, and are not particularly limited.
  • examples thereof include inorganic particles that are inert to metal oxides such as silica, titanium dioxide, talc, and kaolinite, and polyesters such as calcium carbonate, calcium phosphate, and barium sulfate. Any one of these inert inorganic particles may be used alone, or two or more thereof may be used in combination.
  • the above particles preferably have an average particle size of 0.1 to 3.5 ⁇ m.
  • the lower limit of the average particle diameter is more preferably 0.5 ⁇ m, further preferably 0.8 ⁇ m, and still more preferably 1.0 ⁇ m.
  • the upper limit of the average particle is more preferably 3.0 ⁇ m, still more preferably 2.8 ⁇ m. If the average particle size is less than 0.1 ⁇ m, sufficient handling properties cannot be obtained. When it exceeds 3.5 ⁇ m, coarse protrusions are likely to be generated.
  • These particles are preferably porous particles, particularly porous silica.
  • the porous particles are preferable because they are easily deformed into a flat shape when stretched in the film forming process and the decrease in transparency is small.
  • the content of the inorganic particles in the outermost layer is preferably 0.01 to 0.20% by mass with respect to the polyester constituting the outermost layer.
  • the lower limit of the concentration is more preferably 0.02% by mass, and further preferably 0.03% by mass.
  • the upper limit of the concentration is more preferably 0.15% by mass, and further preferably 0.10% by mass. If it is less than 0.01% by mass, sufficient handling properties cannot be obtained. If it exceeds 0.2% by mass, the transparency is lowered, which is not preferable.
  • the average particle diameter of the particles can be measured by the following method. Take a photograph of the particles with an electron microscope or an optical microscope and at a magnification such that the size of one smallest particle is 2 to 5 mm, the maximum diameter of 300 to 500 particles (in the case of porous silica, Particle diameter) is measured, and the average value is taken as the average particle diameter. Moreover, when calculating
  • TEM transmission electron microscope
  • a known method can be adopted.
  • it can be added at any stage for producing the polyester, but it is preferably added as a slurry dispersed in ethylene glycol or the like at the stage of esterification or after the end of the ester exchange reaction and before the start of the polycondensation reaction.
  • the polycondensation reaction may proceed.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material or a method of blending dried particles and a polyester raw material using a kneading extruder It can be carried out.
  • the film of the present invention preferably uses a white polyester film as a polyester film so that reflected light can be used from the viewpoint of improving the photoelectric conversion efficiency of the solar cell.
  • the white polyester film should have an L value of 85.0 to 100, an a value of -10.0 to +10.0, and a b value of -10.0 to +10.0. Is preferred. If it is this range, the reflectance of light becomes high and is preferable.
  • the base material contains a white pigment and / or inorganic particles from the viewpoint of imparting whiteness or hiding property to the polyester film of the base material and improving light reflectivity.
  • titanium oxide, barium sulfate, zinc oxide, zinc sulfide, calcium carbonate and the like can be used as the white pigment used for the white polyester film.
  • the white pigment can be subjected to various organic and inorganic surface treatments for the purpose of improving dispersibility.
  • titanium oxide is preferable among white pigments because it has a high refractive index and can exhibit high whiteness in a small amount.
  • a fluorescent brightening agent in combination because the whiteness can be further improved.
  • the lower limit of the content of the white pigment in the white polyester film is preferably 5% by mass, particularly preferably 8% by mass, from the viewpoint of light reflectivity.
  • the upper limit of the white pigment content is preferably 30% by mass, more preferably 25% by mass, and particularly preferably 20% by mass from the viewpoint of film formation stability.
  • inorganic particles, heat-resistant organic particles, antioxidants, crosslinking agents, ultraviolet absorbers, plasticizers having an average particle size smaller than that of the white pigment in the base material Etc. can be contained as needed.
  • the white polyester film contains a white pigment and at least one inorganic particle having an average particle size larger than that of the white pigment.
  • white pigments such as titanium oxide, barium sulfate, zinc oxide, zinc sulfide, and calcium carbonate may be used, or inorganic particles having a small difference in refractive index from polyester such as silica may be used.
  • the white pigments may be the same type or different types.
  • silica is preferable from the viewpoints of cost and handleability.
  • the upper limit value of the average particle diameter of the inorganic particles contained in the white polyester film is important to be 5.0 ⁇ m from the viewpoint of appearance in post-processing, preferably 3.0 ⁇ m, particularly preferably 2.0 ⁇ m. It is. Further, the lower limit of the average particle diameter of the inorganic particles contained in the base film is preferably 0.5 ⁇ m, particularly preferably from the viewpoint of slipperiness in the film production process and the post-processing process. 7 ⁇ m.
  • the white polyester film may be a single layer or a multilayer.
  • the layer containing the white pigment and / or inorganic particles is an A layer and the other layers are a B layer and a C layer
  • a / B / A, A / B / C, C / A / B / Layer configurations such as A, C / A / B / A / C, C / A / B, etc. can be selected.
  • the B / A / B layer has a two-type / three-layer structure
  • the B layer may not contain particles, and in order to further improve the light reflectivity, a white pigment is used in the same manner as the A layer.
  • inorganic particles, heat-resistant organic particles, or the like may be included.
  • a fluorescent whitening agent may be contained in the B layer as long as the effects of the present invention are not impaired.
  • the white polyester film is preferably a cavity-containing film in which a polyester resin and a thermoplastic resin incompatible with the polyester resin are contained as a cavity-forming agent and then a cavity is formed by stretching in at least one direction.
  • the thickness of the polyester film serving as the substrate of the present invention is 20 to 500 ⁇ m, more preferably 25 to 450 ⁇ m, and still more preferably 30 to 300 ⁇ m.
  • the substrate thickness is thin, the influence of heat shrinkage is large, and the adhesiveness after high temperature and high humidity treatment may be reduced. If it is thick, it cannot be wound as a roll.
  • the easily adhesive polyester film for solar cells of the present invention is characterized by containing a urethane resin containing an aliphatic polycarbonate polyol as a constituent component.
  • a urethane resin containing an aliphatic polycarbonate polyol as a main component is used as a coating layer as a coating layer, an absorbance around 1460 cm ⁇ 1 derived from an aliphatic polycarbonate component (A 1460 ) as measured by infrared spectroscopy. It is important that the ratio (A 1460 / A 1530 ) of the absorbance (A 1530 ) near 1530 cm ⁇ 1 derived from the urethane component is 0.70 to 1.60.
  • the coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a cross-linking agent as main components
  • the absorbance in the vicinity of 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component (A 1460 ) in the infrared spectrum is 0.50 to 1.55.
  • the “main component” means that it is contained in an amount of 50% by mass or more, more preferably 70% by mass or more as the total solid component contained in the coating layer.
  • the conventional technical common sense positively introduces a cross-linking structure in forming the coating layer to make the coating layer rigid and strong, in order to improve the durability of the coating layer.
  • the polyurethane resin comprising an aliphatic polycarbonate polyol as a constituent component controls the absorbance by infrared spectroscopy within a certain range, thereby exhibiting strong adhesion and adhesion under high temperature and high humidity heat.
  • the inventors have found a remarkable effect of improving the quality of the present invention and have reached the present invention.
  • the mechanism of improving adhesiveness with such a configuration is not well understood, the present inventor thinks as follows.
  • thermocompression bonding is performed at a high temperature in a configuration in which a polyester film (coating layer) having a glass substrate / sealing material / coating layer is laminated.
  • stress arises between a polyester film (coating layer) and a sealing material by the thermal contraction of the polyester film at the time of high temperature adhesion.
  • the generation of such stress can also vary depending on various kinds of sealing materials and bonding conditions. As a result, it was considered that the stress could not be alleviated and the adhesiveness with the sealing material was lowered.
  • degradation of the coating layer proceeds due to hydrolysis.
  • a coating layer mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component, and an absorbance around 1460 cm ⁇ 1 derived from an aliphatic polycarbonate component measured by infrared spectroscopy (A 1460 ) and the absorbance (A 1530 ) in the vicinity of 1530 cm ⁇ 1 derived from the urethane component (A 1460 / A 1530 ) are 0.70 to 1.60, so that the above characteristics can be achieved. That is, the above-mentioned characteristics can be achieved by coexisting an aliphatic polycarbonate component having hydrolysis resistance and a urethane component exhibiting toughness at a predetermined ratio.
  • the absorbance (A 1460 ) in the vicinity of 1460 cm ⁇ 1 is derived from the bending vibration specific to the C—H bond in the methylene group contained in the aliphatic polycarbonate component. Therefore, the absorbance (A 1460 ) in the vicinity of 1460 cm ⁇ 1 depends on the amount of the aliphatic polycarbonate polyol component constituting the urethane resin present in the coating layer. On the other hand, the absorbance around 1530 cm ⁇ 1 (A 1530 ) originates from the variable vibration that is characteristic of the N—H bond contained in the urethane component.
  • the magnitude of absorbance (A 1530 ) near 1530 cm ⁇ 1 depends on the amount of the urethane component constituting the urethane resin present in the coating layer. Therefore, these absorbance ratios (A 1460 / A 1530 ) indicate that both components having different characteristics coexist in a specific ratio.
  • the ratio (A 1460 / A 1530 ) is 0.70 to 1.60, but the lower limit of the ratio (A 1460 / A 1530 ) is preferably 0.75, more preferably 0.00. 80.
  • the upper limit of the ratio (A 1460 / A 1530 ) is preferably 1.50, more preferably 1.45, and even more preferably 1.40.
  • the ratio (A 1460 / A 1530 ) is less than 0.70, the amount of the hard urethane component is excessive, and the stress relaxation of the coating layer is lowered, so that the heat and moisture resistance is lowered.
  • the ratio (A 1460 / A 1530 ) exceeds 1.55, the aliphatic component of the flexible aliphatic polycarbonate is excessively increased, and the strength of the coating layer is lowered, so that the coating strength and moisture and heat resistance are reduced. Decreases.
  • the present invention can exhibit strong adhesiveness with the sealing material and can improve the adhesiveness (humidity heat resistance) under high temperature and high humidity. Further, the configuration of the present invention will be described in detail below.
  • the coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a cross-linking agent
  • the ratio (A 1460 / A 1530 ) of the light absorbency (A 1530 ) in the vicinity of 1530 cm ⁇ 1 derived from the urethane component is 0.50 to 1.55, in addition to satisfying the above characteristics, various sealing It has versatility that can be widely applied to materials.
  • composition types including additives such as a crosslinking agent and an ultraviolet absorber have come to be used for the sealing material from the viewpoint of improving productivity and preventing deterioration.
  • heat treatment for example, 30 to 50 minutes at 140 to 160 ° C.
  • thermocompression bonding for example, 90 to 130 ° C. for 5 to 10 minutes
  • sealing is performed slowly.
  • Adhesive conditions for curing the stop material are employed.
  • an adhesive condition is employed in which heat-pressure bonding (for example, 15 to 20 minutes at 140 to 160 ° C.) is performed in a short time and the sealing material is rapidly cured.
  • it is a coating layer mainly composed of a urethane resin having a aliphatic polycarbonate polyol as a constituent component and a cross-linking agent, and has a wavelength of about 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component measured by infrared spectroscopy.
  • a urethane resin having a aliphatic polycarbonate polyol as a constituent component and a cross-linking agent
  • the ratio of the absorbance (A 1460 ) to the absorbance (A 1530 ) in the vicinity of 1530 cm ⁇ 1 derived from the urethane component (A 1460 / A 1530 ) is 0.50 to 1.55, the above characteristics are compatible. .
  • the ratio (A 1460 / A 1530 ) is 0.50 to 1.55, and the lower limit of the ratio (A 1460 / A 1530 ) is preferably 0.60, and more preferably 0.70.
  • the upper limit of the ratio (A 1460 / A 1530 ) is preferably 1.45, more preferably 1.35, and even more preferably 1.25. This makes it possible to relieve stress due to thermal shrinkage of the film during thermal bonding at high temperatures, so that strong adhesiveness can be obtained even under various sealing materials and bonding conditions. It is believed that the coating layer can be prevented from deteriorating because it retains heat resistance and hydrolysis resistance even in a humid environment. The reason why the preferable ratio range shifts to the crosslinking agent is considered to be due to an increase in crosslinking points by the crosslinking agent.
  • the urethane resin of the present invention includes at least a polyol component and a polyisocyanate component as constituent components, and further includes a chain extender as necessary.
  • the urethane resin of the present invention is a polymer compound in which these constituent components are mainly copolymerized by urethane bonds. In this invention, it has an aliphatic polycarbonate polyol as a structural component of a urethane resin. Heat-moisture resistance can be improved by including a urethane resin containing an aliphatic polycarbonate polyol as a constituent component in the coating layer of the present invention.
  • the components of these urethane resins can be specified by nuclear magnetic resonance analysis or the like.
  • the diol component which is a constituent component of the urethane resin of the present invention, needs to contain an aliphatic polycarbonate polyol having excellent heat resistance and hydrolysis resistance. From the viewpoint of preventing yellowing by sunlight of the present invention, it is preferable to use an aliphatic polycarbonate polyol.
  • Examples of the aliphatic polycarbonate polyol include aliphatic polycarbonate diols and aliphatic polycarbonate triols, and aliphatic polycarbonate diols can be preferably used.
  • Examples of the aliphatic polycarbonate diol that is a component of the urethane resin of the present invention include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl.
  • aliphatic polycarbonate diol obtained by reacting one or more diols such as cyclohexanedimethanol with carbonates such as dimethyl carbonate, diphenyl carbonate, ethylene carbonate, and phosgene. It is below.
  • the number average molecular weight of the aliphatic polycarbonate diol is preferably 1500 to 4000, more preferably 2000 to 3000.
  • the ratio of the aliphatic polycarbonate component constituting the urethane resin is relatively small. Therefore, in order to make the ratio (A 1460 / A 1530 ) within the above range, it is preferable to control the number average molecular weight of the aliphatic polycarbonate diol within the above range.
  • the absorbance (A 1460 ) near 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component increases and the aliphatic component increases. The strength after processing may be reduced.
  • the number average molecular weight of the aliphatic polycarbonate diol is small, a strong urethane component increases, and stress due to thermal shrinkage of the base material cannot be relieved, and adhesiveness may be lowered.
  • aromatic aliphatic diisocyanates such as xamethylene diisocyanate and aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate, or a poly (polysiloxane) obtained by adding one or more of these compounds with trimethylolpropane or the like in advance. Isocyanates.
  • Chain extenders include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol, ethylenediamine Diamines such as hexamethylenediamine and piperazine, aminoalcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, and water.
  • glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol
  • polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol
  • ethylenediamine Diamines such as hexamethylenediamine and piperazine
  • a chain extender having a short main chain when used, the absorbance (A 1530 ) in the vicinity of 1530 cm ⁇ 1 derived from the urethane component increases, and the flexibility of the coating layer may decrease. Therefore, a chain extender having a long main chain is preferable. From the viewpoint of imparting the flexibility of the coating layer, an aliphatic diol or diamine chain extender having a length of 4 to 10 carbon atoms in the main chain is preferred. From these points, 1,4-butanediol, 1,6-hexanediol, hexamethylenediamine and the like are preferable as the chain extender used in the present invention.
  • the coating method of the coating layer of the present invention is not particularly limited, and various off-line coating methods and in-line coating methods can be employed. However, from the viewpoint of productivity and environmental protection, the coating layer of the present invention is preferably provided by an in-line coating method described later using an aqueous coating solution. In this case, it is desirable that the urethane resin of the present invention is water-soluble.
  • the “water-soluble” means that it dissolves in water or an aqueous solution containing less than 50% by mass of a water-soluble organic solvent.
  • a sulfonic acid (salt) group or a carboxylic acid (salt) group can be introduced (copolymerized) into the urethane molecular skeleton. Since the sulfonic acid (salt) group is strongly acidic and it may be difficult to maintain moisture resistance due to its hygroscopic performance, it is preferable to introduce a weakly acidic carboxylic acid (salt) group. Moreover, nonionic groups, such as a polyoxyalkylene group, can also be introduced.
  • a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid is introduced as a copolymer component to form a salt.
  • the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, and tri-n-butylamine, N such as N-methylmorpholine and N-ethylmorpholine.
  • -N-dialkylalkanolamines such as alkylmorpholines, N-dimethylethanolamine and N-diethylethanolamine. These can be used alone or in combination of two or more.
  • the composition molar ratio of the polyol compound having a carboxylic acid (salt) group in the urethane resin is the same as that of the urethane resin.
  • the total polyisocyanate component is 100 mol%, it is preferably 3 to 60 mol%, more preferably 5 to 40 mol%. If the composition molar ratio is less than 3 mol%, water dispersibility may be difficult. Moreover, when the said composition molar ratio exceeds 60 mol%, since water resistance falls, moist heat resistance may fall.
  • the glass transition temperature of the urethane resin of the present invention is preferably less than 0 ° C, more preferably less than -5 ° C.
  • the viscosity is close to that of partially melted olefin resin such as EVA or PVB at the time of pressure bonding, contributing to the improvement of strong adhesiveness by partial mixing, From the viewpoint of stress relaxation of the coating layer, it is preferable because it is easy to achieve suitable flexibility.
  • a crosslinking group may be introduced into the resin itself in order to improve adhesion after high temperature and high humidity.
  • a silanol group is preferred from the viewpoint of the stability over time of the coating solution and the effect of improving the crosslinking density.
  • a resin other than the urethane resin of the present invention may be contained in order to improve adhesiveness.
  • a urethane resin, an acrylic resin, a polyester resin, or the like containing polyether or polyester as a constituent component can be used.
  • the coating layer can contain a crosslinking agent as a main component together with the urethane resin.
  • a crosslinking agent By including a crosslinking agent, it becomes possible to further improve the adhesiveness under high temperature and high humidity. Moreover, when making it heat-press by high temperature for a short time, the fall of the base-material adhesiveness by EVA erosion can be prevented. Therefore, highly versatile and easy-to-adhere that can be applied under various bonding conditions.
  • the crosslinking agent those that react with a carboxylic acid group, a hydroxyl group, an amino group, etc.
  • an amide bond, a urethane bond, or a urea bond are preferable because they are not easily deteriorated by high-temperature and high-humidity treatment.
  • an ester bond or an ether bond is involved, it may be hydrolyzable, which is not preferable.
  • the crosslinking agent suitably used in the present invention include melamine-based, isocyanate-based, carbodiimide-based, and oxazoline-based. Among these, an isocyanate type and a carbodiimide type are preferable from the viewpoint of the stability over time of the coating liquid and the effect of improving the adhesiveness under high temperature and high humidity treatment.
  • an isocyanate-based crosslinking agent from the viewpoint that the coating layer has appropriate flexibility and suitably imparts the stress relaxation action of the coating layer.
  • a catalyst etc. are used suitably as needed.
  • content of a crosslinking agent 5 mass% or more and 90 mass% or less are preferable with respect to urethane resin. More preferably, it is 10 mass% or more and 50 mass% or less. If the amount is small, the strength of the coating layer under high temperature and high humidity may decrease, and the adhesiveness may decrease. Adhesiveness may be reduced.
  • crosslinking agents may be mixed in order to improve the coating film strength.
  • a catalyst etc. are used suitably as needed.
  • particles may be contained in the coating layer.
  • Particles are (1) silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, barium sulfate, carbon black, zinc oxide, zinc sulfate, zinc carbonate, titanium dioxide, satin white, aluminum silicate, diatomaceous earth
  • Inorganic particles such as soil, calcium silicate, aluminum hydroxide, hydrous halloysite, magnesium carbonate, magnesium hydroxide, (2) acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene / acrylic, styrene / Butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / isoprene, methyl methacrylate / butyl methacrylate, melamine, polycarbonate, urea, epoxy, urethane, phenol, di Rirufutareto systems include organic particles of polyester
  • the particles preferably have an average particle diameter of 1 to 500 nm.
  • the average particle size is not particularly limited, but is preferably 1 to 100 nm from the viewpoint of maintaining the transparency of the film.
  • the particles may contain two or more kinds of particles having different average particle diameters.
  • said average particle diameter measures the maximum diameter of the 10 or more particle
  • the particle content is preferably 0.5% by mass or more and 20% by mass or less.
  • the amount is small, sufficient blocking resistance cannot be obtained. Further, scratch resistance is deteriorated.
  • the amount is large, the coating film strength decreases.
  • the coating layer may contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating solution.
  • the surfactant may be any of cationic, anionic and nonionic surfactants, but is preferably a silicon-based, acetylene glycol-based or fluorine-based surfactant. These surfactants are preferably contained in a range that does not impair the adhesion to the sealing material, for example, in the range of 0.005 to 0.5 mass% in the coating solution.
  • additives may be contained within a range that does not impair the adhesion with the sealing material.
  • the additive include fluorescent dyes, fluorescent brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, foam suppressors, antifoaming agents, preservatives, and antistatic agents.
  • a method of providing a coating layer on a polyester film a method of coating and drying a coating solution containing a solvent, particles and a resin on the polyester film can be mentioned.
  • the solvent include organic solvents such as toluene, water, or a mixed system of water and a water-soluble organic solvent.
  • water alone or a mixture of a water-soluble organic solvent and water is used from the viewpoint of environmental problems. preferable.
  • PET film Polyethylene terephthalate
  • the PET resin After sufficiently drying the PET resin in a vacuum, it is supplied to an extruder, melted and extruded at about 280 ° C. from a T-die into a rotating cooling roll into a sheet, cooled and solidified by an electrostatic application method, and unstretched PET. Get a sheet.
  • the unstretched PET sheet may have a single layer structure or a multilayer structure by a coextrusion method.
  • the obtained unstretched PET sheet is stretched 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially stretched PET film. Further, the end of the film is gripped with a clip, led to a hot air zone heated to 70 to 140 ° C., and stretched 2.5 to 5.0 times in the width direction. Subsequently, the film is guided to a heat treatment zone of 160 to 240 ° C., and heat treatment is performed for 1 to 60 seconds to complete crystal orientation.
  • a coating solution is applied to at least one surface of the PET film to form the coating layer.
  • the solid concentration of the resin composition in the coating solution is preferably 2 to 35% by weight, particularly preferably 4 to 15% by weight.
  • any known method can be used as a method for applying this coating solution to the PET film.
  • reverse roll coating method gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. It is done. These methods are applied alone or in combination.
  • the coating layer is formed by applying the coating solution to an unstretched or uniaxially stretched PET film, drying it, stretching it at least in a uniaxial direction, and then performing a heat treatment. Since the adhesion between the coating layer and the polyester film substrate is further improved by the in-line coating method for forming the coating layer during film formation, it is preferable in terms of improving the adhesion with the sealing material after high temperature and high humidity.
  • the thickness of the finally obtained coating layer is preferably 10 to 3000 nm, more preferably 10 to 1000 nm, still more preferably 10 to 500 nm, and still more preferably 10 to 400 nm.
  • the coating amount after drying of the coating layer is preferably 0.01 to 3 g / m 2 , more preferably 0.01 to 1 g / m 2 , further preferably 0.01 to 0.5 g / m 2 , and more. More preferably, it is 0.01 to 0.4 g / m 2 .
  • the coating amount of the coating layer is less than 0.01 g / m 2 , the effect on adhesiveness is almost lost. On the other hand, when the coating amount exceeds 3 g / m 2 , the blocking resistance is lowered.
  • the back sheet for solar cell of the present invention comprises a polyester film having the coating layer as a constituent member.
  • it is preferably used for the outermost layer that is in direct contact with the sealing material.
  • the solar cell backsheet of the present invention can exhibit strong adhesion to the encapsulant, and can exhibit good adhesion even under harsh environments over a long period of time. Therefore, it can contribute to moisture proof maintenance and barrier property improvement of the solar cell element.
  • a polyester film / adhesive / metal foil having a coating layer or a film / adhesive / polyvinyl fluoride film having a metal-based thin film layer or a polyester-based highly durable moisture-proof A configuration such as a film is exemplified.
  • the polyester film of the present invention may have a configuration having the coating layer on both sides.
  • the coating layer of the present invention can exhibit good adhesiveness with configurations other than the sealing material.
  • a film having a metal foil or a metal thin film layer a film having a water vapor barrier property can be suitably used.
  • the metal examples include aluminum, tin, magnesium, silver, and stainless steel. Among them, aluminum and silver are preferable because they have a relatively high reflectance and are easily available industrially.
  • the metal layer may be used as a metal foil, or may be laminated as a thin film on a polyester film or the like. As a method of laminating these metals as a thin film, a vacuum deposition method, a sputtering method, an ion plating method, a plasma vapor deposition method (CVD), or the like can be used.
  • each layer of the polyester film having the coating layer, the metal foil or the metal-based thin film layer, the polyvinyl fluoride film or the polyester-based high durability moisture-proof film is integrally laminated by vacuum suction or the like and heat-pressed.
  • a solar cell backsheet can be produced by thermocompression-bonding each of the above-mentioned layers as an integral molded body using a normal molding method such as the cation method.
  • the adhesive include (meth) acrylic resins, olefinic resins, vinyl resins, and other heat melting adhesives, solvent-based adhesives, photo-curing adhesives, etc. whose main component is a vehicle. It is done.
  • the high durability moisture-proof film is laminated for the purpose of improving the weather resistance.
  • the high durability moisture-proof film include polytetrafluoroethylene (PTFE), 4-fluoroethylene-perchloroalkoxy copolymer.
  • Polymer (PFA) 4-Fluoroethylene-6-Fluoropropylene Copolymer (FEP), 2-Ethylene-4 Fluoroethylene Copolymer (ETFE), Poly-3-Fluoroethylene (PCTFE), Polyfluoride Fluorine resin film such as vinylidene (PVDF) or polyfuca vinyl (PVF), or UV absorber for resin such as polycarbonate, polymethyl methacrylate, polyacrylate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), acrylic A film made of a kneaded resin composition It is.
  • PVDF vinylidene
  • PEN polyfuca vinyl
  • the solar cell module uses, for example, a glass substrate, a solar cell element as a photovoltaic element provided with wiring, a sealing material interposed so as to sandwich the solar cell element, and the solar cell backsheet of the present invention.
  • a sealant an olefin resin such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin is preferably used.
  • the coating layer of the present invention since the coating layer of the present invention has such flexibility, it can exhibit good adhesiveness with a sealing material such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin.
  • Sealing materials are classified into a standard cure type that cures by a curing process in an oven provided in a separate line after thermocompression bonding in the laminating process, and a fast cure type that cures inside the laminator in the laminating process. However, either can be applied.
  • an olefin resin such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin is used.
  • the “main component” means that 50% by mass or more, more preferably 70% by mass or more of the sealant is contained.
  • a crosslinking agent or a reaction initiator for causing the crosslinking reaction to proceed is added.
  • 2,5-dimethylhexane-2,5-dihydroxyperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, di-t Organic peroxides such as -butyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane are used.
  • a photosensitizer such as benzophenone, methyl orthobenzoylbenzoate or benzoin ether is used.
  • a silane coupling agent may be blended in consideration of adhesion to the glass substrate.
  • an epoxy group-containing compound is added for the purpose of promoting adhesion and curing.
  • the epoxy group-containing compound include triglycidyl tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, and 1,6-hexanediol.
  • Epoxy group-containing compounds such as diglycidyl ether, acrylic glycidyl ether, and 2-ethylhexyl glycidyl ether are used.
  • the infrared spectrum of the coating layer was determined as the difference spectrum between the infrared spectrum obtained from the coating layer sample piece and the spectrum of the blank sample piece.
  • Absorbance around 1460 cm -1 derived from an aliphatic polycarbonate component (A 1460) is 1460 and the value of the absorption peak height having an absorption maximum in the region of ⁇ 10 cm -1
  • the absorbance in the vicinity of 1530 cm -1 derived from urethane component (A 1530 ) is the value of the absorption peak height having an absorption maximum in the region of 1530 ⁇ 10 cm ⁇ 1 .
  • the baseline was a line connecting the hems on both sides of each maximum absorption peak.
  • the prepared easy-adhesive white polyester film for solar cells was prepared by cutting out a 100 mm width ⁇ 100 mm length and an EVA sheet 70 mm width ⁇ 90 mm length, and the film (coating layer surface) / EVA / (Coating layer surface)
  • a sample was prepared by stacking with a film structure and heat-pressing with a vacuum laminator under the bonding conditions described below.
  • the prepared sample was cut out into a width of 20 mm and a length of 100 mm, attached to a SUS plate, and the peel strength between the film layer and the EVA layer was measured with a tensile tester under the conditions described below.
  • the peel strength was determined as the average value of the portions that peeled stably after exceeding the maximum point.
  • the ranking was based on the following criteria. ⁇ : 100 N / 20 mm or more, or film breakage of film ⁇ : 75 N / 20 mm or more, less than 100 N / 20 mm ⁇ : 50 N / 20 mm or more, less than 75 N / 20 mm ⁇ : less than 50 N / 20 mm
  • a water-soluble polyurethane resin having a solid content of 35% was obtained in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) was changed to a polyhexamethylene carbonate diol having a number average molecular weight of 1000.
  • a solution (A-5) was obtained.
  • a water-soluble polyurethane resin having a solid content of 35% was obtained in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) was changed to a polyhexamethylene carbonate diol having a number average molecular weight of 5000.
  • a solution (A-6) was obtained.
  • a water-soluble polyurethane resin solution (A) having a solid content of 35% was prepared in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) was changed to a polyester diol having a number average molecular weight of 2000. -7) was obtained.
  • Polymerization of block polyisocyanate crosslinking agent 100 parts by mass of a polyisocyanate compound having an isocyanurate structure using hexamethylene diisocyanate as a raw material (manufactured by Asahi Kasei Chemicals, Duranate TPA) in a flask equipped with a stirrer, a thermometer and a reflux condenser, 55 parts by mass of propylene glycol monomethyl ether acetate, 30 parts by mass of polyethylene glycol monomethyl ether (average molecular weight 750) was charged and held at 70 ° C. for 4 hours in a nitrogen atmosphere.
  • a polyisocyanate compound having an isocyanurate structure using hexamethylene diisocyanate as a raw material manufactured by Asahi Kasei Chemicals, Duranate TPA
  • reaction solution temperature was lowered to 50 ° C., and 47 parts by mass of methyl ethyl ketoxime was added dropwise.
  • the infrared spectrum of the reaction solution was measured to confirm that the absorption of the isocyanate group had disappeared, and a block polyisocyanate aqueous dispersion (B) having a solid content of 75% by mass was obtained.
  • a dropping funnel 16 parts by mass of 2-isopropenyl-2-oxazoline as a polymerizable unsaturated monomer having an oxazoline group, methoxypolyethylene glycol acrylate (average number of moles of ethylene glycol added: 9 moles, Shin Nakamura Chemical)
  • methoxypolyethylene glycol acrylate average number of moles of ethylene glycol added: 9 moles, Shin Nakamura Chemical
  • Example 1 Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created. Water 55.86% by mass Isopropanol 30.00% by mass Polyurethane resin solution (A-1) 13.52% by mass 0.59% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • PET resin pellet inherent viscosity is 0.62 dl / g
  • silica particles having an average particle diameter of 2.5 ⁇ m as a film raw material polymer is 133 Pa.
  • it supplied to the extruder and melt
  • Each of the PET resins was filtered through a stainless steel filter medium (nominal filtration accuracy: 10 ⁇ m particle 95% cut) and melt extruded into a sheet. It was quenched and solidified on a rotating cooling metal roll maintained at a surface temperature of 30 ° C. to obtain an unstretched PET sheet.
  • the unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.
  • Experimental example 1 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-5).
  • Experimental example 2 A reester film for a solar cell was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-6).
  • Comparative Example 1 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to polyurethane resin (A-7).
  • Comparative Example 2 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-8).
  • Comparative Example 3 A solar cell easy-adhesive polyester film was obtained in the same manner as in Example 1 except that the substrate thickness of the solar cell easy-adhesive polyester film was changed to 5 ⁇ m.
  • Example 2 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-2).
  • Example 3 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-3).
  • Example 4 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to a silanol group-containing polyurethane resin (A-4).
  • Example 5 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the substrate thickness of the easy-adhesive polyester film for solar cells was changed to 50 ⁇ m.
  • Example 6 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the substrate thickness of the easy-adhesive polyester film for solar cells was changed to 100 ⁇ m.
  • Example 7 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the substrate thickness of the easy-adhesive polyester film for solar cells was changed to 350 ⁇ m.
  • Example 8 Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for solar cells. 61.51% by mass of water Isopropanol 30.00% by mass Polyurethane resin solution (A-1) 8.11% by mass 0.35% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Example 9 Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for solar cells.
  • Polyurethane resin solution (A-1) 27.05% by mass 1.18% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
  • Surfactant 0.06% by mass Surfactant 0.06% by mass (Silicon, solid content concentration of 100% by mass)
  • Example 11 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-9).
  • Example 12 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-10).
  • Example 13 Manufacture of solar cell backsheet
  • the dry-lamination method used in Example 11 was an adhesive polyester film for solar cell / white polyester film (50 ⁇ m) / aluminum foil (30 ⁇ m) / polyvinyl fluoride film (38 ⁇ m).
  • the solar cell back sheet was obtained by bonding.
  • Example 14 (1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created. Water 55.86% by mass Isopropanol 30.00% by mass Polyurethane resin solution (A-1) 13.52% by mass 0.59% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Silica particle-containing polyethylene terephthalate resin was polymerized by a conventional method to produce polyethylene terephthalate (raw material b) having an intrinsic viscosity of 0.62 dl / g and containing 500 ppm of agglomerated silica particles (average particle diameter of 2.0 ⁇ m).
  • Tianium oxide particle-containing masterbatch c Tianium oxide particle-containing masterbatch c
  • the above polyethylene terephthalate (raw material b) and anatase-type titanium dioxide particles (manufactured by Sakai Chemical Industry Co., Ltd.) having an average particle size of 0.2 ⁇ m are mixed at a mass ratio of 50/50, kneaded with a vent type kneading extruder, A master batch (raw material c) containing titanium particles was produced.
  • the B layer was bonded to both sides of the A layer so as to have the same thickness.
  • 10 degreeC air was sprayed on the opposite surface of the molten polymer extruded on the cooling drum, and the molten polymer was cooled and solidified from both surfaces.
  • the unstretched film obtained by the above method was heated to 65 ° C. using a heating roll, and then stretched 3.2 times between rolls having different peripheral speeds.
  • a condensing infrared heater was installed in the middle of the low-speed roll and the high-speed roll at a position facing each other across the film, and a sufficient amount of heat necessary to uniformly stretch the film was given evenly from both sides of the film. .
  • the film was introduced into a tenter, and stretched 3.9 times in the width direction while heating from 120 ° C to 150 ° C. Further, heat treatment was performed by blowing hot air of 220 ° C. for 30 seconds in the tenter. Thereafter, a 2% relaxation treatment is applied in the width direction while gradually cooling to room temperature over 40 seconds, and a void-containing laminated biaxially oriented solar cell having an apparent density of 1.10 g / cm 3 and a thickness of 250 ⁇ m. An easily adhesive white polyester film was obtained. The evaluation results are shown in Table 2.
  • Example 15 An easy-adhesive white polyester film for solar cells was obtained in the same manner as in Example 14 except that the polyurethane resin was changed to the polyurethane resin (A-2).
  • Example 16 An easily adhesive white polyester film for solar cells was obtained in the same manner as in Example 14 except that the polyurethane resin was changed to the polyurethane resin (A-3).
  • Example 17 An easily adhesive white polyester film for solar cells was obtained in the same manner as in Example 14 except that the polyurethane resin was changed to a silanol group-containing polyurethane resin (A-4).
  • Example 18 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 14 except that the polyurethane resin was changed to polyurethane resin (A-9).
  • Example 19 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 14 except that the polyurethane resin was changed to polyurethane resin (A-10).
  • Example 20 (1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created. Water 55.62% by mass Isopropanol 30.00% by mass Polyurethane resin solution (A-1) 11.29% by mass Block polyisocyanate aqueous dispersion (B) 2.26% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.07% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass) Surfactant 0.05% by mass (Silicon, solid content concentration of 100% by mass)
  • PET resin pellet inherent viscosity is 0.62 dl / g
  • silica particles having an average particle diameter of 2.5 ⁇ m as a film raw material polymer is 133 Pa.
  • it supplied to the extruder and melt
  • Each of the PET resins was filtered through a stainless steel filter medium (nominal filtration accuracy: 10 ⁇ m particle 95% cut) and melt extruded into a sheet. It was quenched and solidified on a rotating cooling metal roll maintained at a surface temperature of 30 ° C. to obtain an unstretched PET sheet.
  • the unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.
  • Comparative Example 4 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-7).
  • Comparative Example 5 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-8).
  • Comparative Example 6 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the substrate thickness of the easy-adhesive polyester film for solar cells was changed to 5 ⁇ m.
  • Example 21 Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
  • Polyurethane resin solution (A-1) 9.47% by mass
  • Block polyisocyanate aqueous dispersion (B) 1.89 mass% 0.59% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
  • Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Example 22 Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells. 54.75% by mass of water Isopropanol 30.00% by mass Polyurethane resin solution (A-1) 12.99% by mass Block polyisocyanate aqueous dispersion (B) 1.52% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Example 23 Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
  • Polyurethane resin solution (A-1) 8.12% by mass
  • Block polyisocyanate aqueous dispersion (B) 3.79% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
  • Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Example 24 Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
  • Polyurethane resin solution (A-1) 3.25% by mass
  • Block polyisocyanate aqueous dispersion (B) 6.06% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
  • Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Example 25 Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells. 60.82% by mass of water Isopropanol 30.00% by mass Polyurethane resin solution (A-1) 1.62% by mass Block polyisocyanate aqueous dispersion (B) 6.82 mass% Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Example 26 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-2).
  • Example 27 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-3).
  • Example 28 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to a silanol group-containing polyurethane resin (A-4).
  • Example 29 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the block polyisocyanate aqueous dispersion (B) was changed to a water-soluble resin (C) having an oxazoline group.
  • Example 30 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the block polyisocyanate aqueous dispersion (C) was changed to the carbodiimide water-soluble resin (D).
  • Example 31 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the block polyisocyanate aqueous dispersion (C) was changed to imino / methylolmelamine (solid content concentration: 70% by mass).
  • Example 32 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the substrate thickness of the easily adhesive polyester film for solar cells was changed to 50 ⁇ m.
  • Example 33 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the substrate thickness of the easy-adhesive polyester film for solar cells was changed to 100 ⁇ m.
  • Example 34 A solar cell easy-adhesive polyester film was obtained in the same manner as in Example 20, except that the substrate thickness of the solar cell easy-adhesive polyester film was changed to 350 ⁇ m.
  • Example 35 Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells. 62.82% by mass of water Isopropanol 30.00% by mass Polyurethane resin solution (A-1) 5.67% by mass Block polyisocyanate aqueous dispersion (B) 1.13% by mass 0.35% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) Surfactant 0.03% by mass (Silicon, solid content concentration of 100% by mass)
  • Example 36 Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
  • Polyurethane resin solution (A-1) 18.99% by mass
  • Block polyisocyanate aqueous dispersion (B) 3.80% by mass 1.19% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
  • Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Example 37 Manufacture of back sheet for solar cell
  • the solar cell back sheet was obtained by bonding.
  • Example 38 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to polyurethane resin (A-9).
  • Example 39 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-10).
  • Example 40 Manufacture of solar cell backsheet A dry laminate method with a configuration of easily adhesive polyester film for solar cell / black polyester film (50 ⁇ m) / aluminum foil (30 ⁇ m) / polyvinyl fluoride film (38 ⁇ m) of Example 38.
  • the solar cell back sheet was obtained by bonding.
  • Example 37 About the solar cell backsheets of Example 37 and Example 40, an ISUZAWA UV Tester SUV-W151 manufactured by Iwasaki Electric Co., Ltd. was used with the easily adhesive polyester film surface for solar cells as an irradiation surface, and a temperature of 63 ° C, 50% Rh Continuous UV irradiation treatment was performed for 100 hours at an irradiation intensity of 100 mW / cm 2 .
  • the solar cell backsheet of Example 37 was slightly yellowed, but on the entire surface of the solar cell backsheet of Example 40. There was no change in color, and a good appearance was maintained.
  • Example 41 Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created. Water 55.62% by mass Isopropanol 30.00% by mass Polyurethane resin solution (A-1) 11.29% by mass Block polyisocyanate aqueous dispersion (B) 2.26% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) 0.07% by mass of particles (Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass) Surfactant 0.05% by mass (Silicon, solid content concentration of 100% by mass)
  • Silica particle-containing polyethylene terephthalate resin was polymerized by a conventional method to produce polyethylene terephthalate (raw material b) having an intrinsic viscosity of 0.62 dl / g and containing 500 ppm of agglomerated silica particles (average particle diameter of 2.0 ⁇ m).
  • Tianium oxide particle-containing masterbatch c Tianium oxide particle-containing masterbatch c
  • the above polyethylene terephthalate (raw material b) and anatase-type titanium dioxide particles (manufactured by Sakai Chemical Industry Co., Ltd.) having an average particle size of 0.2 ⁇ m are mixed at a mass ratio of 50/50, kneaded with a vent type kneading extruder, A master batch (raw material c) containing titanium particles was produced.
  • the B layer was bonded to both sides of the A layer so as to have the same thickness.
  • 10 degreeC air was sprayed on the opposite surface of the molten polymer extruded on the cooling drum, and the molten polymer was cooled and solidified from both surfaces.
  • the unstretched film obtained by the above method was heated to 65 ° C. using a heating roll, and then stretched 3.2 times between rolls having different peripheral speeds.
  • a condensing infrared heater was installed in the middle of the low-speed roll and the high-speed roll at a position facing each other across the film, and a sufficient amount of heat necessary to uniformly stretch the film was given evenly from both sides of the film. .
  • the film was introduced into a tenter, and stretched 3.9 times in the width direction while heating from 120 ° C to 150 ° C. Further, heat treatment was performed by blowing hot air of 220 ° C. for 30 seconds in the tenter. Thereafter, a 2% relaxation treatment is applied in the width direction while gradually cooling to room temperature over 40 seconds, and a void-containing laminated biaxially oriented solar cell having an apparent density of 1.10 g / cm 3 and a thickness of 250 ⁇ m. An easily adhesive white polyester film was obtained. The evaluation results are shown in Table 4.
  • Example 42 An easy-adhesive white polyester film for solar cells was obtained in the same manner as in Example 41 except that the polyurethane resin was changed to the polyurethane resin (A-2).
  • Example 43 An easy-adhesive white polyester film for solar cells was obtained in the same manner as in Example 41 except that the polyurethane resin was changed to the polyurethane resin (A-3).
  • Example 44 An easy-adhesive white polyester film for solar cells was obtained in the same manner as in Example 41 except that the polyurethane resin was changed to a silanol group-containing polyurethane resin (A-4).
  • Example 45 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 41 except that the polyurethane resin was changed to the polyurethane resin (A-9).
  • Example 46 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 41 except that the polyurethane resin was changed to polyurethane resin (A-10).
  • the easily adhesive polyester film for solar cells of the present invention is excellent in adhesiveness with a sealing material and adhesiveness (moisture and heat resistance) under high temperature and high humidity, it is used as an innermost base film of a solar cell backsheet. Is preferred.

Abstract

Provided are: a readily bondable polyester film for solar cells which exhibits excellent adhesiveness; and a back sheet using the same. A polyester film which bears a coating layer on at least one surface thereof and which has a base sheet thickness of 20 to 500μm, wherein the coating layer comprises, as the main component, a urethane resin containing an aliphatic polycarbonate polyol as a constituent component, and exhibits, in the infrared spectroscopy, a ratio of absorbance in the vicinity of 1460cm-1 to that in the vicinity of 1530cm-1 of 0.70 to 1.60, the former absorbance being assignable to the aliphatic polycarbonate component and the latter absorbance being assignable to the urethane component.

Description

太陽電池用易接着性ポリエステルフィルムEasy-adhesive polyester film for solar cells
 本発明は、太陽電池用易接着性ポリエステルフィルムに関する。詳しくは、高温高湿下においても封止剤との接着に優れたポリエステルフィルムである。 The present invention relates to an easily adhesive polyester film for solar cells. Specifically, it is a polyester film excellent in adhesion with a sealant even under high temperature and high humidity.
 近年、地球温暖化の原因となる石油エネルギーに代わる、エネルギー手段として、太陽電池が注目を浴びている。太陽電池は太陽光のエネルギーを直接電気に換える太陽光発電システムである。太陽電池素子として、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどの半導体や、化合物系、あるいは有機物系色素などが使用されている。太陽電池素子は一般的に数枚~数十枚を直列、並列に配線し、長期間(約20年以上)に亘って素子を保護するため種々のパーケージングが行われる。このパッケージに組み込まれたユニットを太陽電池モジュールと呼ぶ。 In recent years, solar cells have attracted attention as an energy alternative to petroleum energy, which causes global warming. A solar cell is a photovoltaic power generation system that directly converts sunlight energy into electricity. As solar cell elements, semiconductors such as single crystal silicon, polycrystalline silicon, and amorphous silicon, compound-based, or organic dyes are used. In general, several to several tens of solar cell elements are wired in series and in parallel, and various types of packaging are performed to protect the elements over a long period of time (about 20 years or more). A unit incorporated in this package is called a solar cell module.
 太陽電池モジュールは、一般的に太陽光が当たる面をガラスで覆い、太陽電池素子を封止材で間隙を埋め、裏面をバックシートと呼ばれる耐熱、耐候性プラスチック材料などの複数の層構成からなる保護シートで保護された構成になっている。太陽電池素子を充填する封止材としてはエチレン・酢酸ビニル共重合体樹脂(以下、EVA)やポリビニルブチラール樹脂(以下、PVB)などのオレフィン系樹脂が用いられる。上記ガラス基板/封止材/太陽電池素子/封止材/バックシートの構成で重ねて真空ラミネーターなどで加熱圧着することによりモジュールが作製される。封止材には、太陽電池素子を接着固定するとともに、外部からの湿気の侵入を防ぎ、太陽電池素子を保護する役割がある。 The solar cell module is generally composed of a plurality of layers such as a surface that is exposed to sunlight with glass, the solar cell element is filled with a sealing material, and the back surface is called a back sheet, such as a heat-resistant, weather-resistant plastic material. The structure is protected by a protective sheet. As a sealing material filling the solar cell element, an olefin resin such as ethylene / vinyl acetate copolymer resin (hereinafter EVA) or polyvinyl butyral resin (hereinafter PVB) is used. A module is produced by stacking the above glass substrate / sealing material / solar cell element / sealing material / back sheet and heat-pressing with a vacuum laminator or the like. The sealing material has a role of adhering and fixing the solar cell element, preventing moisture from entering from the outside, and protecting the solar cell element.
 太陽電池用バックシートとしては、太陽電池素子側(封止材側)からポリエステルフィルム/接着剤/ポリエステルフィルム(着色)/金属、または、金属酸化物系薄膜層(防湿層)/接着剤/フッ素フィルム(防汚層)などの積層構成が提案されている。バックシートには太陽電池素子を外部の湿気や汚染から長期にわたり、保護する役目がある。そのため、封止材と直接接する太陽電池素子側のポリエステルフィルムと封止材との接着性は重要である。しかしながら、表面処理が施されていないポリエステルフィルムでは、十分な接着性が得られず、改善することが求められている。ポリエステルフィルムの接着性を改善させる方法として、樹脂や架橋剤を含む接着層を設けることが提案されている(特許文献1~4)。 As a solar cell backsheet, from the solar cell element side (encapsulant side) to polyester film / adhesive / polyester film (colored) / metal or metal oxide thin film layer (moisture-proof layer) / adhesive / fluorine A laminated structure such as a film (antifouling layer) has been proposed. The backsheet serves to protect the solar cell element from external moisture and contamination over a long period of time. Therefore, the adhesiveness between the sealing material and the polyester film on the solar cell element side that is in direct contact with the sealing material is important. However, a polyester film that has not been subjected to a surface treatment cannot obtain sufficient adhesiveness and is required to be improved. As a method for improving the adhesion of the polyester film, it has been proposed to provide an adhesive layer containing a resin or a crosslinking agent (Patent Documents 1 to 4).
特開2006-152013号公報JP 2006-152013 A 特開2006-332091号公報JP 2006-332091 A 特開2007-48944号公報JP 2007-48944 A 特開2007-136911号公報JP 2007-136911 A
 屋外で過酷な環境条件下で使用される太陽電池モジュールは、20年以上の長寿命化が期待されている。そのため、部材として用いられる封止材易接着フィルムにおいても、初期接着性だけでなく、高温高湿下でも長期間、接着性を保持することが必要である。しかしながら、上記特許文献に開示されるような太陽電池用易接着性ポリエステルフィルムは、いまだ接着性が不十分であり、特に高温高湿下の長期間の使用においては接着強度の低下は避けられないものであった。 Solar cell modules used outdoors under harsh environmental conditions are expected to have a long service life of 20 years or more. For this reason, not only the initial adhesiveness but also the high adhesiveness of the sealing material easy-adhesive film used as a member must be maintained for a long period of time even under high temperature and high humidity. However, the easy-adhesive polyester film for solar cells as disclosed in the above patent document still has insufficient adhesiveness, and a decrease in adhesive strength is unavoidable particularly in long-term use under high temperature and high humidity. It was a thing.
 加えて、封止材には、生産性の向上や劣化防止の観点から架橋剤、紫外線吸収剤などの添加剤を含む多様な組成物種が用いられるようになってきた。そのため、多様な封止材に対しても同程度の接着性を示す汎用性の高い易接着性フィルムが求められている。 In addition, various kinds of compositions including additives such as a crosslinking agent and an ultraviolet absorber have come to be used for the sealing material from the viewpoint of improving productivity and preventing deterioration. Therefore, there is a demand for a highly versatile and easy-to-adhere film that exhibits the same degree of adhesion to various sealing materials.
 本発明は上記課題に鑑み、過酷な環境下にも耐え得る強度な接着性を有し、従来避けられないと考えられてきた高温高湿下における接着性の低下をほとんど引き起こさず、多様な封止材に対しても良好な接着性を有する太陽電池用易接着性ポリエステルフィルムを提供するものである。 In view of the above problems, the present invention has strong adhesiveness that can withstand harsh environments, hardly causes deterioration of adhesiveness under high temperature and high humidity, which has been conventionally considered to be unavoidable, and has various sealing properties. It is an object of the present invention to provide an easily adhesive polyester film for solar cells that has good adhesion to a stopper.
 本発明者は上記課題を解決するため鋭意検討を行った結果、少なくとも片面に塗布層を有するポリエステルフィルムであって、塗布層に脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を含み、特に脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を主成分とする場合は、赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)との比率(A1460/A1530)が0.70~1.60である塗布層を用いることにより、過酷な環境下にも耐え得る強度な接着性を奏し、高温高湿下でも優れた接着性を奏することを見出し、本発明に至ったものである。
 また、塗布層として脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とする場合は、赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)との比率(A1460/A1530)が0.50~1.55とすることにより、各種の封止材に対しても、高温高湿下でも優れた接着性を奏することを見出し、本発明に至ったものである。
As a result of intensive studies to solve the above problems, the present inventor has found that the polyester film has a coating layer on at least one surface, and the coating layer includes a urethane resin having an aliphatic polycarbonate polyol as a constituent component, In the case where the main component is a urethane resin having an aromatic polycarbonate polyol as a constituent component, the absorbance (A 1460 ) around 1460 cm −1 derived from the aliphatic polycarbonate component and the vicinity of 1530 cm −1 derived from the urethane component in the infrared spectrum. By using a coating layer having a ratio (A 1460 / A 1530 ) to the absorbance (A 1530 ) of 0.70 to 1.60, strong adhesiveness that can withstand even harsh environments can be achieved. The present inventors have found that excellent adhesiveness can be obtained even under humidity, and have reached the present invention.
Further, when the coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a cross-linking agent as main components, the absorbance in the vicinity of 1460 cm −1 derived from the aliphatic polycarbonate component (A 1460 ) in the infrared spectrum. and 1530 cm -1 near the absorbance derived from urethane component by the ratio of (a 1530) (a 1460 / a 1530) is to 0.50 to 1.55, even for various sealant, high temperature and high The present inventors have found that excellent adhesiveness can be obtained even under humidity, and have reached the present invention.
 前記の課題は、以下の解決手段により達成することができる。
(1)少なくとも片面に塗布層を有する基材厚みが20~500μmのポリエステルフィルムであり、前記塗布層が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を含む、太陽電池用易接着性ポリエステルフィルム。
(2)前記塗布層が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を主成分とし、前記塗布層の赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)との比率(A1460/A1530)が0.70~1.60である、前記太陽電池用易接着性ポリエステルフィルム。
(3)前記塗布層が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とし、前記塗布層の赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)との比率(A1460/A1530)が0.50~1.55である、前記太陽電池用易接着性ポリエステルフィルム。
(4)前記架橋剤が、メラミン系架橋剤、イソシアネート系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤から選ばれた少なくとも1種の架橋剤である、前記太陽電池用易接着性ポリエステルフィルム。
(5)前記塗布層中の前記架橋剤の含有量が、ウレタン樹脂に対して、5質量%以上90質量%以下である、前記太陽電池用易接着性ポリエステルフィルム。
(6)前記ポリエステルフィルムは白色ポリエステルフィルムである、前記太陽電池用易接着性ポリエステルフィルム。
(7)前記太陽電池用易接着性ポリエステルフィルムを積層した太陽電池用バックシート。
The above-described problem can be achieved by the following solution means.
(1) An easily adhesive polyester for solar cells, which is a polyester film having a substrate thickness of 20 to 500 μm having an application layer on at least one surface, and the application layer contains a urethane resin containing an aliphatic polycarbonate polyol as a constituent component the film.
(2) The coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component, and the absorbance in the vicinity of 1460 cm −1 derived from the aliphatic polycarbonate component (A 1460) in the infrared spectrum of the coating layer. ) And the absorbance (A 1530 ) in the vicinity of 1530 cm −1 derived from the urethane component (A 1460 / A 1530 ) is 0.70 to 1.60.
(3) The coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a cross-linking agent, and the absorbance around 1460 cm −1 derived from the aliphatic polycarbonate component in the infrared spectrum of the coating layer. (a 1460) and 1530 cm -1 near the absorbance derived from urethane component ratio of (a 1530) (a 1460 / a 1530) is 0.50 to 1.55 the sun highly adhesive polyester film for batteries.
(4) The solar cell easily adhesive polyester film, wherein the crosslinking agent is at least one crosslinking agent selected from a melamine crosslinking agent, an isocyanate crosslinking agent, a carbodiimide crosslinking agent, and an oxazoline crosslinking agent.
(5) The said easily adhesive polyester film for solar cells whose content of the said crosslinking agent in the said application layer is 5 to 90 mass% with respect to urethane resin.
(6) The said polyester film is a white polyester film, The said easily adhesive polyester film for solar cells.
(7) A solar cell backsheet in which the solar cell easy-adhesive polyester film is laminated.
 本発明の太陽電池用易接着性ポリエステルフィルムは強固な接着性を奏し、特に、高温高湿下での接着性(耐湿熱性)に優れる。そのため、好ましい実施態様としては、上記高温、高湿処理での接着性が、当初の接着性と同等に維持される。また、本発明の好ましい実施態様としては、本発明の太陽電池用易接着性ポリエステルフィルムをバックシートの部材として用いた場合、封止材との接着性が良好である。 The easily-adhesive polyester film for solar cells of the present invention exhibits strong adhesion, and is particularly excellent in adhesion (humidity heat resistance) under high temperature and high humidity. Therefore, as a preferred embodiment, the adhesiveness at the high temperature and high humidity treatment is maintained at the same level as the initial adhesiveness. Moreover, as a preferable embodiment of the present invention, when the easily adhesive polyester film for solar cell of the present invention is used as a member of a back sheet, the adhesiveness with a sealing material is good.
(ポリエステルフィルム)
 本発明で基材を構成するポリエステル樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリメチレンテレフタレート、および共重合成分として、例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを共重合したポリエステル樹脂などを用いることができる。
(Polyester film)
The polyester resin constituting the substrate in the present invention includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polymethylene terephthalate, and copolymerization components such as diethylene glycol, neopentyl glycol, polyalkylene glycol, etc. Polyester resins obtained by copolymerizing diol components, dicarboxylic acid components such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid can be used.
 本発明で好適に用いられるポリエステル樹脂は、主に、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートの少なくとも1種を構成成分とする。これらのポリエステル樹脂の中でも、物性とコストのバランスからポリエチレンテレフタレートが最も好ましい。また、これらのポリエステルフィルムは二軸延伸することで耐薬品性、耐熱性、機械的強度などを向上させることができる。 The polyester resin suitably used in the present invention mainly contains at least one of polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate as a constituent component. Among these polyester resins, polyethylene terephthalate is most preferable from the balance between physical properties and cost. Moreover, these polyester films can improve chemical resistance, heat resistance, mechanical strength, etc. by biaxially stretching.
 また、本発明のポリエステルフィルムは、単層のポリエステルフィルムであっても良いし、最外層と中心層を有する少なくとも3層からなるポリエステルフィルムであっても良い。 The polyester film of the present invention may be a single-layer polyester film or a polyester film composed of at least three layers having an outermost layer and a center layer.
 本発明において3層構成とする場合、最外層(上記2種3層の場合はA層)に粒子を含有し、中心層(上記2種3層の場合はB層)には実質的に粒子を含まなくてもよい。A層に粒子を含有させるのが好ましいとした理由は、本発明のポリエステルフィルムを太陽電池用の部材とした場合、金属、または、金属酸化物系薄膜層や塗布層等の防湿機能層、防汚機能層などを積層するなど後加工工程でのハンドリング性を向上させるためである。最外層に粒子を添加する場合は、加工性に適した十分なハンドリング性が得られる。 In the case of the three-layer structure in the present invention, particles are contained in the outermost layer (A layer in the case of the above-mentioned two types and three layers), and particles are substantially contained in the central layer (B layer in the case of the above two types and three layers). May not be included. The reason why it is preferable to include particles in the A layer is that when the polyester film of the present invention is used as a member for a solar cell, a metal or a moisture-proof functional layer such as a metal oxide thin film layer or a coating layer, This is for improving the handling property in the post-processing step such as laminating a fouling functional layer. When particles are added to the outermost layer, sufficient handling properties suitable for processability can be obtained.
 また、B層には実質的に粒子を含まないことが好ましいとした理由は、滑剤粒子、特に無機粒子の凝集体による突起の生成確率を低減させるためである。また係る構成をとることで、透明性の高いフィルムを得ることができ、シースルー型太陽電池など透明性が求められる分野にも好適である。 The reason why it is preferable that the B layer substantially does not contain particles is to reduce the probability of formation of protrusions due to aggregates of lubricant particles, particularly inorganic particles. Further, by adopting such a configuration, a highly transparent film can be obtained, which is suitable for a field requiring transparency, such as a see-through solar cell.
 なお、「不活性粒子が実質上含有されていない」とは、例えば、無機粒子の場合、蛍光X線分析で粒子に由来する元素を定量分析した際に、50ppm未満、好ましくは10ppm未満、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に粒子を添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。 Note that “substantially free of inert particles” means, for example, in the case of inorganic particles, when the element derived from the particles is quantitatively analyzed by fluorescent X-ray analysis, it is less than 50 ppm, preferably less than 10 ppm. Preferably, the content is below the detection limit. This is because even if particles are not added positively, contaminants derived from foreign substances and raw material resin or dirt attached to the line or equipment in the film manufacturing process may be peeled off and mixed into the film. It is.
 これらの各層には、必要に応じて、ポリエステル中に各種添加剤を含有させることができる。添加剤としては、例えば、酸化防止剤、耐光剤、ゲル化防止剤、有機湿潤剤、帯電防止剤、紫外線吸収剤、界面活性剤などが挙げられる。 These layers can contain various additives in the polyester, if necessary. Examples of the additive include an antioxidant, a light resistance agent, an antigelling agent, an organic wetting agent, an antistatic agent, an ultraviolet absorber, and a surfactant.
 最外層に含まれる粒子の種類及び含有量は、無機粒子であっても、有機粒子であってもよく、特に限定されるものではない。例えば、シリカ、二酸化チタン、タルク、カオリナイト等の金属酸化物、炭酸カルシウム、リン酸カルシウム、硫酸バリウムなどのポリエステルに対し不活性な無機粒子が例示される。これらの不活性な無機粒子は、いずれか一種を単独で用いてもよく、また2種以上を併用してもよい。 The type and content of the particles contained in the outermost layer may be inorganic particles or organic particles, and are not particularly limited. Examples thereof include inorganic particles that are inert to metal oxides such as silica, titanium dioxide, talc, and kaolinite, and polyesters such as calcium carbonate, calcium phosphate, and barium sulfate. Any one of these inert inorganic particles may be used alone, or two or more thereof may be used in combination.
 前記の粒子は、平均粒子径が0.1~3.5μmであることが好ましい。前記平均粒子径の下限は、0.5μmがより好ましく、0.8μmがさらに好ましく、1.0μmがよりさらに好ましい。また、前記平均粒子の上限は、3.0μmであることがより好ましく、2.8μmであることがよりさらに好ましい。平均粒子径が0.1μm未満では十分なハンドリング性が得られない。3.5μmを越えると粗大突起が生成しやすくなる。 The above particles preferably have an average particle size of 0.1 to 3.5 μm. The lower limit of the average particle diameter is more preferably 0.5 μm, further preferably 0.8 μm, and still more preferably 1.0 μm. Further, the upper limit of the average particle is more preferably 3.0 μm, still more preferably 2.8 μm. If the average particle size is less than 0.1 μm, sufficient handling properties cannot be obtained. When it exceeds 3.5 μm, coarse protrusions are likely to be generated.
 また、これらの粒子は多孔質粒子、特に多孔質シリカが好ましい。多孔質粒子はフィルム製膜工程での延伸時に扁平型に変型しやすく、透明性の低下が小さいため、好ましい。 These particles are preferably porous particles, particularly porous silica. The porous particles are preferable because they are easily deformed into a flat shape when stretched in the film forming process and the decrease in transparency is small.
 最外層の無機粒子の含有量は最外層を構成するポリエステルに対し、0.01~0.20質量%であることが好ましい。前記濃度の下限は、0.02質量%がより好ましく、0.03質量%がさらに好ましい。また前記濃度の上限は、0.15質量%がより好ましく、0.10質量%がさらに好ましい。0.01質量%未満では十分なハンドリング性が得られない。0.2質量%を越えると透明性が低下し、好ましくない。 The content of the inorganic particles in the outermost layer is preferably 0.01 to 0.20% by mass with respect to the polyester constituting the outermost layer. The lower limit of the concentration is more preferably 0.02% by mass, and further preferably 0.03% by mass. Further, the upper limit of the concentration is more preferably 0.15% by mass, and further preferably 0.10% by mass. If it is less than 0.01% by mass, sufficient handling properties cannot be obtained. If it exceeds 0.2% by mass, the transparency is lowered, which is not preferable.
 前記粒子の平均粒子径の測定は下記方法によって求めることができる。
 粒子を電子顕微鏡または光学顕微鏡で写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径(多孔質シリカの場合は凝集体の粒径)を測定し、その平均値を平均粒子径とする。また、積層フィルムの被覆層中の粒子の平均粒子径を求める場合は、透過型電子顕微鏡(TEM)を用いて、倍率12万倍で積層フィルムの断面を撮影し、粒子の最大径を求めることができる。
The average particle diameter of the particles can be measured by the following method.
Take a photograph of the particles with an electron microscope or an optical microscope and at a magnification such that the size of one smallest particle is 2 to 5 mm, the maximum diameter of 300 to 500 particles (in the case of porous silica, Particle diameter) is measured, and the average value is taken as the average particle diameter. Moreover, when calculating | requiring the average particle diameter of the particle | grains in the coating layer of a laminated film, the cross section of a laminated film is image | photographed by 120,000 times magnification using a transmission electron microscope (TEM), and the largest diameter of a particle | grain is calculated | required. Can do.
 ポリエステルに上記粒子を配合する方法としては、公知の方法を採用し得る。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めてもよい。またベント付き混練押出機を用いエチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行うことができる。 As a method of blending the above particles with polyester, a known method can be adopted. For example, it can be added at any stage for producing the polyester, but it is preferably added as a slurry dispersed in ethylene glycol or the like at the stage of esterification or after the end of the ester exchange reaction and before the start of the polycondensation reaction. The polycondensation reaction may proceed. Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a method of blending dried particles and a polyester raw material using a kneading extruder It can be carried out.
 本発明のフィルムは、太陽電池の光電変換効率の向上の点から、反射光を利用しうるようにポリエステルフィルムとして白色ポリエステルフィルムを用いることも好ましい。効果的な光反射性を奏するために、白色ポリエステルフィルムのL値は85.0~100、a値はー10.0~+10.0、b値はー10.0~+10.0であることが好ましい。この範囲であれば、光の反射率が高くなり、好ましい。 The film of the present invention preferably uses a white polyester film as a polyester film so that reflected light can be used from the viewpoint of improving the photoelectric conversion efficiency of the solar cell. In order to provide effective light reflectivity, the white polyester film should have an L value of 85.0 to 100, an a value of -10.0 to +10.0, and a b value of -10.0 to +10.0. Is preferred. If it is this range, the reflectance of light becomes high and is preferable.
 上記のように基材のポリエステルフィルムに白色性や隠ぺい性を付与し、光反射性を向上させる点から、基材には白色顔料および/または無機粒子を含有させることが好ましい。 As described above, it is preferable that the base material contains a white pigment and / or inorganic particles from the viewpoint of imparting whiteness or hiding property to the polyester film of the base material and improving light reflectivity.
 白色ポリエステルフィルムに用いる白色顔料としては、酸化チタン、硫酸バリウム、酸化亜鉛、硫化亜鉛、炭酸カルシウムなどを用いることができる。また、前記白色顔料には、分散性向上等の目的のため各種有機、無機表面処理を施すことができる。特に、白色顔料の中でも酸化チタンは、高い屈折率を有し、少量で高い白色性を発現させることが可能であるため好ましい。さらに、蛍光増白剤を併用するとさらに白色性を高めることができ好ましい。 As the white pigment used for the white polyester film, titanium oxide, barium sulfate, zinc oxide, zinc sulfide, calcium carbonate and the like can be used. The white pigment can be subjected to various organic and inorganic surface treatments for the purpose of improving dispersibility. In particular, titanium oxide is preferable among white pigments because it has a high refractive index and can exhibit high whiteness in a small amount. Further, it is preferable to use a fluorescent brightening agent in combination because the whiteness can be further improved.
 白色ポリエステルフィルムにおける白色顔料の含有量は、光反射性の点から、下限が5質量%であることが好ましく、特に好ましくは8質量%である。また、前記白色顔料の含有量は、製膜安定性の点から、上限が30質量%であることが好ましく、さらに好ましくは25質量%であり、特に好ましくは20質量%である。 The lower limit of the content of the white pigment in the white polyester film is preferably 5% by mass, particularly preferably 8% by mass, from the viewpoint of light reflectivity. The upper limit of the white pigment content is preferably 30% by mass, more preferably 25% by mass, and particularly preferably 20% by mass from the viewpoint of film formation stability.
 また、白色度をさらに高めるために、基材の中に白色顔料以外に蛍光増白剤を併用する場合、白色顔料が30質量%を超えると、白色顔料の紫外線吸収量が増えるため、蛍光増白剤が効果を発揮するに必要な紫外線が減少し、蛍光増白効果を著しく阻害し、白色度が低下するため好ましくない。 In addition, in order to further increase the whiteness, when a fluorescent whitening agent is used in addition to the white pigment in the base material, if the white pigment exceeds 30% by mass, the ultraviolet absorption amount of the white pigment increases. Ultraviolet rays necessary for the whitening agent to exert its effect are reduced, the fluorescent whitening effect is remarkably inhibited, and the whiteness is lowered.
 また、白色ポリエステルフィルムに他の機能を付与するために、基材中に、白色顔料よりも平均粒子径の小さい無機粒子、耐熱性有機粒子、酸化防止剤、架橋剤、紫外線吸収剤、可塑剤などを必要に応じて含有させることができる。 In addition, in order to impart other functions to the white polyester film, inorganic particles, heat-resistant organic particles, antioxidants, crosslinking agents, ultraviolet absorbers, plasticizers having an average particle size smaller than that of the white pigment in the base material Etc. can be contained as needed.
 また、白色ポリエステルフィルムには白色顔料と該白色顔料より平均粒子径が大きい少なくとも1種の無機粒子を含有させることも望ましい。無機粒子としては、酸化チタン、硫酸バリウム、酸化亜鉛、硫化亜鉛、炭酸カルシウムなどの白色顔料でもよいし、シリカなどのようなポリエステルとの屈折率の差が小さい無機粒子でもかまわない。また、2種類の平均粒径の異なる白色顔料を用いる場合、該白色顔料は同種でも良いし、異種でもかまわない。要するに、平均粒子径の異なる2種類の無機粒子を用い、平均粒子径の小さい無機粒子が白色顔料であることが、光反射性とハンドリング性の点から望ましい態様である。平均粒子径の大きな無機粒子としては、コストや取り扱い性の点からシリカが好ましい。 It is also desirable that the white polyester film contains a white pigment and at least one inorganic particle having an average particle size larger than that of the white pigment. As the inorganic particles, white pigments such as titanium oxide, barium sulfate, zinc oxide, zinc sulfide, and calcium carbonate may be used, or inorganic particles having a small difference in refractive index from polyester such as silica may be used. When two types of white pigments having different average particle diameters are used, the white pigments may be the same type or different types. In short, it is desirable from the viewpoint of light reflectivity and handling properties that two types of inorganic particles having different average particle sizes are used and the inorganic particles having a small average particle size are white pigments. As the inorganic particles having a large average particle size, silica is preferable from the viewpoints of cost and handleability.
 白色ポリエステルフィルム中に含有させる無機粒子の平均粒子径の上限値は、後加工で外観性の点から、5.0μmであることが重要であり、好ましくは3.0μm、特に好ましくは2.0μmである。また、前記基材フィルム中に含有させる無機粒子の平均粒子径の下限値は、フィルム製造工程及び後加工工程での滑り性の点から、0.5μmであることが好ましく、特に好ましくは0.7μmである。 The upper limit value of the average particle diameter of the inorganic particles contained in the white polyester film is important to be 5.0 μm from the viewpoint of appearance in post-processing, preferably 3.0 μm, particularly preferably 2.0 μm. It is. Further, the lower limit of the average particle diameter of the inorganic particles contained in the base film is preferably 0.5 μm, particularly preferably from the viewpoint of slipperiness in the film production process and the post-processing process. 7 μm.
 白色ポリエステルフィルムは、単層であっても多層であっても構わない。例えば、上記白色顔料および/または無機粒子を含有する層をA層とし、他の層をB層、C層とした場合、A/B/A、A/B/C、C/A/B/A、C/A/B/A/C、C/A/B、などの層構成を選択することができる。特に、B/A/B層の二種三層構成を有する場合は、B層には粒子を含有させなくてもよいし、光反射性をさらに向上させるために、A層と同様に白色顔料、無機粒子や耐熱性有機粒子などを含有させてもよい。さらに、白色性をさらに向上させるために、本発明の効果を阻害しない範囲で、B層に蛍光増白剤を含有させてもよい。 The white polyester film may be a single layer or a multilayer. For example, when the layer containing the white pigment and / or inorganic particles is an A layer and the other layers are a B layer and a C layer, A / B / A, A / B / C, C / A / B / Layer configurations such as A, C / A / B / A / C, C / A / B, etc. can be selected. In particular, when the B / A / B layer has a two-type / three-layer structure, the B layer may not contain particles, and in order to further improve the light reflectivity, a white pigment is used in the same manner as the A layer. In addition, inorganic particles, heat-resistant organic particles, or the like may be included. Furthermore, in order to further improve the whiteness, a fluorescent whitening agent may be contained in the B layer as long as the effects of the present invention are not impaired.
 加えて、白色ポリエステルフィルムは、ポリエステル樹脂と該ポリエステル樹脂に非相溶の熱可塑性樹脂を空洞形成剤として含有させ、次いで少なくとも一方向に延伸することによって空洞を形成させた空洞含有フィルムが好ましい。 In addition, the white polyester film is preferably a cavity-containing film in which a polyester resin and a thermoplastic resin incompatible with the polyester resin are contained as a cavity-forming agent and then a cavity is formed by stretching in at least one direction.
 本発明の基材となるポリエステルフィルムの厚みは20~500μmであり、より好ましくは25~450μmであり、さらに好ましくは30~300μmである。基材厚みが薄いと、熱収縮の影響が大きく、高温高湿処理後の接着性が低下する場合がある。厚いとロールとして巻き取りができなくなってしまう。 The thickness of the polyester film serving as the substrate of the present invention is 20 to 500 μm, more preferably 25 to 450 μm, and still more preferably 30 to 300 μm. When the substrate thickness is thin, the influence of heat shrinkage is large, and the adhesiveness after high temperature and high humidity treatment may be reduced. If it is thick, it cannot be wound as a roll.
(塗布層)
 本発明の太陽電池用易接着性ポリエステルフィルムには、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を含むことを特徴とする。
 特に、塗布層として脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を主成分とする場合は、赤外分光法による測定で、脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)の比率(A1460/A1530)が0.70~1.60であることが重要である。また、塗布層として脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とする場合は、赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)との比率(A1460/A1530)が0.50~1.55であることが重要である。ここで、「主成分」とは、塗布層に含まれる全固形成分中として50質量%以上、より好ましくは70質量%以上含有することを意味する。
(Coating layer)
The easily adhesive polyester film for solar cells of the present invention is characterized by containing a urethane resin containing an aliphatic polycarbonate polyol as a constituent component.
In particular, when a urethane resin containing an aliphatic polycarbonate polyol as a main component is used as a coating layer as a coating layer, an absorbance around 1460 cm −1 derived from an aliphatic polycarbonate component (A 1460 ) as measured by infrared spectroscopy. It is important that the ratio (A 1460 / A 1530 ) of the absorbance (A 1530 ) near 1530 cm −1 derived from the urethane component is 0.70 to 1.60. Further, when the coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a cross-linking agent as main components, the absorbance in the vicinity of 1460 cm −1 derived from the aliphatic polycarbonate component (A 1460 ) in the infrared spectrum. It is important that the ratio (A 1460 / A 1530 ) between the light absorption and the absorbance (A 1530 ) near 1530 cm −1 derived from the urethane component is 0.50 to 1.55. Here, the “main component” means that it is contained in an amount of 50% by mass or more, more preferably 70% by mass or more as the total solid component contained in the coating layer.
 上記特許文献1~4のように、従来の技術常識では塗布層の耐久性を向上させる点からは塗布層形成において架橋構造を積極的に導入し、剛直で強硬な塗布層にすることが望ましいと考えられていた。しかし、本発明では脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂を赤外分光法による吸光度を一定の範囲に制御することで、強固な接着性を奏し、かつ高温高湿熱下での接着性を向上させるという顕著な効果を見出し、本発明に至った。このような構成により、接着性を向上させることの機序はよくわからないが、本発明者は次のように考えている。 As in the above-mentioned patent documents 1 to 4, it is desirable that the conventional technical common sense positively introduces a cross-linking structure in forming the coating layer to make the coating layer rigid and strong, in order to improve the durability of the coating layer. It was thought. However, in the present invention, the polyurethane resin comprising an aliphatic polycarbonate polyol as a constituent component controls the absorbance by infrared spectroscopy within a certain range, thereby exhibiting strong adhesion and adhesion under high temperature and high humidity heat. As a result, the inventors have found a remarkable effect of improving the quality of the present invention and have reached the present invention. Although the mechanism of improving adhesiveness with such a configuration is not well understood, the present inventor thinks as follows.
 例えば、モジュールのパッケージングに際して、ガラス基板/封止材/塗布層を有するポリエステルフィルム(塗布層)を積層した構成で高温で加熱圧着が行われる。この際、高温接着時のポリエステルフィルムの熱収縮により、ポリエステルフィルム(塗布層)と封止材の間に応力が生じる。特に、係る応力の発生も多様な封止材の種類・接着条件によって変化しうる。その結果、上記応力が緩和し切れず、封止材との接着性が低下すると考えられた。さらに、係る積層体を高温高湿下においた場合、加水分解により、塗布層の劣化が進行する。その結果、上記応力に耐え切れず、封止材が剥離し、高温高湿下での接着性が低下すると考えられた。そのため、封止材との強固な密着性や高温高湿下での接着性を高度に保持するためには、単に塗布層を強固に架橋することで耐久性を付与するのではなく、耐熱、耐加水分解性を保持した成分で、かつ、上記応力に耐えうる柔軟性を備えることが望ましいと考えられる。しかし、単に柔軟性を有するだけでは、塗膜強度に問題がある。そのためこれら相反する特性を両立させることが最も望ましい。 For example, when a module is packaged, thermocompression bonding is performed at a high temperature in a configuration in which a polyester film (coating layer) having a glass substrate / sealing material / coating layer is laminated. Under the present circumstances, stress arises between a polyester film (coating layer) and a sealing material by the thermal contraction of the polyester film at the time of high temperature adhesion. In particular, the generation of such stress can also vary depending on various kinds of sealing materials and bonding conditions. As a result, it was considered that the stress could not be alleviated and the adhesiveness with the sealing material was lowered. Furthermore, when such a laminated body is placed under high temperature and high humidity, degradation of the coating layer proceeds due to hydrolysis. As a result, it was considered that the above stress could not be endured, the sealing material was peeled off, and the adhesiveness under high temperature and high humidity was lowered. Therefore, in order to maintain high adhesion to the sealing material and high adhesiveness under high temperature and high humidity, instead of simply imparting durability by firmly crosslinking the coating layer, heat resistance, It is considered desirable to have a component that retains hydrolysis resistance and to be flexible enough to withstand the stress. However, merely having flexibility has a problem in coating strength. Therefore, it is most desirable to make these conflicting characteristics compatible.
 本発明では、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を主成分とする塗布層であって、赤外分光法による測定される脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)の比率(A1460/A1530)が0.70~1.60とすることで、上記特性を両立させるものである。すなわち、耐加水分解性を有する脂肪族ポリカーボネート成分と、強硬性を奏するウレタン成分を所定の割合で共存させることで、上記特性の両立を図るものである。これにより、高温での熱接着時のポリエステルフィルムの熱収縮による応力を緩和することができるため、封止材との強固な接着性を得ることができ、その後の高温高湿の環境下でも、耐熱、耐加水分解性を保持しているため、塗布層の劣化を防止できると考えている。 In the present invention, a coating layer mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component, and an absorbance around 1460 cm −1 derived from an aliphatic polycarbonate component measured by infrared spectroscopy (A 1460 ) and the absorbance (A 1530 ) in the vicinity of 1530 cm −1 derived from the urethane component (A 1460 / A 1530 ) are 0.70 to 1.60, so that the above characteristics can be achieved. That is, the above-mentioned characteristics can be achieved by coexisting an aliphatic polycarbonate component having hydrolysis resistance and a urethane component exhibiting toughness at a predetermined ratio. Thereby, since the stress due to thermal shrinkage of the polyester film at the time of thermal bonding at high temperature can be relieved, it is possible to obtain a strong adhesiveness with the sealing material, even in a subsequent environment of high temperature and high humidity, Since heat resistance and hydrolysis resistance are maintained, it is considered that deterioration of the coating layer can be prevented.
 ここで、1460cm-1付近の吸光度(A1460)は、脂肪族系ポリカーボネート成分に含まれるメチレン基にC-H結合に特有の変角振動に由来する。よって、1460cm-1付近の吸光度(A1460)の大きさは塗布層に存在するウレタン樹脂を構成する脂肪族系ポリカーボネートポリオール成分量に依存する。一方、1530cm-1付近の吸光度(A1530)は、ウレタン成分に含まれるN-H結合に特有の変角振動に由来する。よって、1530cm-1付近の吸光度(A1530)の大きさは塗布層に存在するウレタン樹脂を構成するウレタン成分量に依存する。そのため、これらの吸光度比率(A1460/A1530)は、それぞれ異なる特性を有する両成分を特定の割合で共存していることを示すものである。本発明では、前記比率(A1460/A1530)が0.70~1.60であるが、前記比率(A1460/A1530)の下限は好ましくは0.75であり、より好ましくは0.80である。また、前記比率(A1460/A1530)の上限は好ましくは1.50であり、より好ましくは1.45であり、さらに好ましくは1.40である。前記比率(A1460/A1530)が、0.70未満の場合は、強硬なウレタン成分が多くなりすぎ、塗布層の応力緩和が低下するため耐湿熱性が低下する。また、前記比率(A1460/A1530)が、1.55を越える場合は、柔軟な脂肪族系ポリカーボネートの脂肪族成分が多くなりすぎ、塗布層の強度が低下するため塗膜強度や耐湿熱性が低下する。 Here, the absorbance (A 1460 ) in the vicinity of 1460 cm −1 is derived from the bending vibration specific to the C—H bond in the methylene group contained in the aliphatic polycarbonate component. Therefore, the absorbance (A 1460 ) in the vicinity of 1460 cm −1 depends on the amount of the aliphatic polycarbonate polyol component constituting the urethane resin present in the coating layer. On the other hand, the absorbance around 1530 cm −1 (A 1530 ) originates from the variable vibration that is characteristic of the N—H bond contained in the urethane component. Therefore, the magnitude of absorbance (A 1530 ) near 1530 cm −1 depends on the amount of the urethane component constituting the urethane resin present in the coating layer. Therefore, these absorbance ratios (A 1460 / A 1530 ) indicate that both components having different characteristics coexist in a specific ratio. In the present invention, the ratio (A 1460 / A 1530 ) is 0.70 to 1.60, but the lower limit of the ratio (A 1460 / A 1530 ) is preferably 0.75, more preferably 0.00. 80. Moreover, the upper limit of the ratio (A 1460 / A 1530 ) is preferably 1.50, more preferably 1.45, and even more preferably 1.40. When the ratio (A 1460 / A 1530 ) is less than 0.70, the amount of the hard urethane component is excessive, and the stress relaxation of the coating layer is lowered, so that the heat and moisture resistance is lowered. In addition, when the ratio (A 1460 / A 1530 ) exceeds 1.55, the aliphatic component of the flexible aliphatic polycarbonate is excessively increased, and the strength of the coating layer is lowered, so that the coating strength and moisture and heat resistance are reduced. Decreases.
 本発明は、上記態様により、封止材との強度な接着性を奏し、高温高湿下での接着性(耐湿熱性)を向上させることができる。さらに、本発明の構成を以下に詳細する。 According to the above aspect, the present invention can exhibit strong adhesiveness with the sealing material and can improve the adhesiveness (humidity heat resistance) under high temperature and high humidity. Further, the configuration of the present invention will be described in detail below.
 さらに、塗布層として脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とする場合は、赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)との比率(A1460/A1530)が0.50~1.55とすることで、上記特性を両立させることに加え、各種封止材に対しても広く適用可能な汎用性を奏するものである。 Further, when the coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a cross-linking agent, absorbance in the vicinity of 1460 cm −1 derived from the aliphatic polycarbonate component in the infrared spectrum (A 1460 ). When the ratio (A 1460 / A 1530 ) of the light absorbency (A 1530 ) in the vicinity of 1530 cm −1 derived from the urethane component is 0.50 to 1.55, in addition to satisfying the above characteristics, various sealing It has versatility that can be widely applied to materials.
 封止材には、生産性の向上や劣化防止の観点から架橋剤、紫外線吸収剤などの添加剤を含む多様な組成物種が用いられるようになってきた。例えば、スタンダードキュアタイプとされる封止材では、加熱圧着(例えば90~130℃で5~10分)の仮接着後に熱処理(例えば140~160℃で30~50分)を行い、ゆっくりと封止材を硬化させる接着条件が採用される。一方、ファストキュアタイプとされる封止材では、短時間で加熱圧着(例えば140~160℃で15~20分)を行い、急速に封止材を硬化させる接着条件が採用される。そのため、多様な封止材に対しても同程度の接着性を示す汎用性の高さだけでなく、多様な接着条件にも対応し得る汎用性の高い易接着性フィルムが求められている。一方、加熱圧着の際に生じる、フィルムの熱収縮に伴う応力の発生も多様な封止材の種類・接着条件によって変化しうる。特に、高い温度が長時間かかるスタンダードキュアタイプでは熱収縮に伴う応力変化が大きくなる。その結果、各種封止材を適用する場合は、上記応力が緩和し切れず、封止材との接着性が低下する場合がある。特に、ファストキュアタイプのように短時間で高温加熱圧着させる場合、塗布層に部分的に溶解した封止材が侵食し、特に高温高湿処理後のフィルム基材との接着性が低下すると考えられる。そのため架橋剤により塗布層の架橋構造をより強くするとともに、これら相反する特性を両立させることが望ましい。 Various composition types including additives such as a crosslinking agent and an ultraviolet absorber have come to be used for the sealing material from the viewpoint of improving productivity and preventing deterioration. For example, in the case of a sealing material of standard cure type, heat treatment (for example, 30 to 50 minutes at 140 to 160 ° C.) is performed after temporary bonding by thermocompression bonding (for example, 90 to 130 ° C. for 5 to 10 minutes), and sealing is performed slowly. Adhesive conditions for curing the stop material are employed. On the other hand, in the case of a fast-cure type sealing material, an adhesive condition is employed in which heat-pressure bonding (for example, 15 to 20 minutes at 140 to 160 ° C.) is performed in a short time and the sealing material is rapidly cured. Therefore, there is a demand for a highly versatile and easy-to-adhere film that can cope with various bonding conditions as well as high versatility that exhibits the same level of adhesion to various sealing materials. On the other hand, the generation of stress accompanying thermal contraction of the film that occurs during thermocompression bonding can also vary depending on various types of sealing materials and bonding conditions. In particular, in the standard cure type that takes a high temperature for a long time, the stress change accompanying the thermal contraction becomes large. As a result, when various sealing materials are applied, the stress may not be alleviated, and adhesion with the sealing material may be reduced. In particular, in the case of high-temperature thermocompression bonding in a short time like the fast cure type, it is considered that the sealing material partially dissolved in the coating layer is eroded, and the adhesiveness with the film substrate after the high-temperature and high-humidity treatment is deteriorated. It is done. Therefore, it is desirable to make the cross-linking structure of the coating layer stronger with the cross-linking agent and to make these conflicting properties compatible.
 本発明では、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とする塗布層であって、赤外分光法による測定される脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)の比率(A1460/A1530)が0.50~1.55とすることで、上記特性を両立させるものである。前記比率(A1460/A1530)が0.50~1.55であるが、前記比率(A1460/A1530)の下限は好ましくは0.60であり、より好ましくは0.70である。また、前記比率(A1460/A1530)の上限は好ましくは1.45であり、より好ましくは1.35であり、さらに好ましくは1.25である。これにより、高温での熱接着時のフィルムの熱収縮による応力を緩和することができるため、様々な封止材・接着条件であっても強固な接着性を得ることができ、その後の高温高湿の環境下でも、耐熱、耐加水分解性を保持しているため、塗布層の劣化を防止できると考えている。架橋剤に前記好ましい比率範囲がシフトする理由としては、架橋剤による架橋ポイントの増加によるものと考えている。 In the present invention, it is a coating layer mainly composed of a urethane resin having a aliphatic polycarbonate polyol as a constituent component and a cross-linking agent, and has a wavelength of about 1460 cm −1 derived from the aliphatic polycarbonate component measured by infrared spectroscopy. When the ratio of the absorbance (A 1460 ) to the absorbance (A 1530 ) in the vicinity of 1530 cm −1 derived from the urethane component (A 1460 / A 1530 ) is 0.50 to 1.55, the above characteristics are compatible. . The ratio (A 1460 / A 1530 ) is 0.50 to 1.55, and the lower limit of the ratio (A 1460 / A 1530 ) is preferably 0.60, and more preferably 0.70. The upper limit of the ratio (A 1460 / A 1530 ) is preferably 1.45, more preferably 1.35, and even more preferably 1.25. This makes it possible to relieve stress due to thermal shrinkage of the film during thermal bonding at high temperatures, so that strong adhesiveness can be obtained even under various sealing materials and bonding conditions. It is believed that the coating layer can be prevented from deteriorating because it retains heat resistance and hydrolysis resistance even in a humid environment. The reason why the preferable ratio range shifts to the crosslinking agent is considered to be due to an increase in crosslinking points by the crosslinking agent.
(ウレタン樹脂)
 本発明のウレタン樹脂は、構成成分として、少なくともポリオール成分、ポリイソシアネート成分を含み、さらに必要に応じて鎖延長剤を含む。本発明のウレタン樹脂は、これら構成成分が主としてウレタン結合により共重合された高分子化合物である。本発明では、ウレタン樹脂の構成成分として脂肪族系ポリカーボネートポリオールを有することを特徴とする。本発明の塗布層に脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を含有させることで、耐湿熱性を向上させることができる。なお、これらウレタン樹脂の構成成分は、核磁気共鳴分析などにより特定することが可能である。
(Urethane resin)
The urethane resin of the present invention includes at least a polyol component and a polyisocyanate component as constituent components, and further includes a chain extender as necessary. The urethane resin of the present invention is a polymer compound in which these constituent components are mainly copolymerized by urethane bonds. In this invention, it has an aliphatic polycarbonate polyol as a structural component of a urethane resin. Heat-moisture resistance can be improved by including a urethane resin containing an aliphatic polycarbonate polyol as a constituent component in the coating layer of the present invention. The components of these urethane resins can be specified by nuclear magnetic resonance analysis or the like.
 本発明のウレタン樹脂の構成成分であるジオール成分には、耐熱、耐加水分解性に優れる脂肪族系ポリカーボネートポリオールを含有させる必要がある。本発明の太陽光による黄変防止の点から脂肪族系ポリカーボネートポリオールを用いることが好ましい。 The diol component, which is a constituent component of the urethane resin of the present invention, needs to contain an aliphatic polycarbonate polyol having excellent heat resistance and hydrolysis resistance. From the viewpoint of preventing yellowing by sunlight of the present invention, it is preferable to use an aliphatic polycarbonate polyol.
 脂肪族系ポリカーボネートポリオールとしては、脂肪族系ポリカーボネートジオール、脂肪族系ポリカーボネートトリオールなどが挙げられるが、好適には脂肪族系ポリカーボネートジオールを用いることができる。本発明のウレタン樹脂の構成成分である脂肪族系ポリカーボネートジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,8-ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどのジオール類の1種または2種以上と、例えば、ジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、ホスゲンなどのカーボネート類とを反応させることにより得られる脂肪族系ポリカーボネートジオールなどが挙げられる。脂肪族系ポリカーボネートジオールの数平均分子量としては、好ましくは1500~4000であり、より好ましくは2000~3000である。脂肪族系ポリカーボネートジオールの数平均分子量が小さい場合は、相対的にウレタン樹脂を構成する脂肪族系ポリカーボネート成分の比率が小さくなる。そのため、前記比率(A1460/A1530)を前述の範囲にするためには、脂肪族系ポリカーボネートジオールの数平均分子量を上記範囲で制御することが好ましい。脂肪族系ポリカーボネートジオールの数平均分子量が大きいと、脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)が増加し、脂肪族成分が増加してしまうため、接着性や高温高湿処理後の強度が低下する場合がある。脂肪族系ポリカーボネートジオールの数平均分子量が小さいと強硬なウレタン成分が増加し、基材の熱収縮による応力を緩和できなくなり、接着性が低下する場合がある。 Examples of the aliphatic polycarbonate polyol include aliphatic polycarbonate diols and aliphatic polycarbonate triols, and aliphatic polycarbonate diols can be preferably used. Examples of the aliphatic polycarbonate diol that is a component of the urethane resin of the present invention include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl. -1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanediol, 1,4- Aliphatic polycarbonate diols obtained by reacting one or more diols such as cyclohexanedimethanol with carbonates such as dimethyl carbonate, diphenyl carbonate, ethylene carbonate, and phosgene. It is below. The number average molecular weight of the aliphatic polycarbonate diol is preferably 1500 to 4000, more preferably 2000 to 3000. When the number average molecular weight of the aliphatic polycarbonate diol is small, the ratio of the aliphatic polycarbonate component constituting the urethane resin is relatively small. Therefore, in order to make the ratio (A 1460 / A 1530 ) within the above range, it is preferable to control the number average molecular weight of the aliphatic polycarbonate diol within the above range. When the number average molecular weight of the aliphatic polycarbonate diol is large, the absorbance (A 1460 ) near 1460 cm −1 derived from the aliphatic polycarbonate component increases and the aliphatic component increases. The strength after processing may be reduced. When the number average molecular weight of the aliphatic polycarbonate diol is small, a strong urethane component increases, and stress due to thermal shrinkage of the base material cannot be relieved, and adhesiveness may be lowered.
 本発明のウレタン樹脂の構成成分であるポリイソシアネートとしては、例えば、キシリレンジイソシアネート等の芳香族脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類、あるいはこれらの化合物を単一あるいは複数でトリメチロールプロパン等とあらかじめ付加させたポリイソシアネート類が挙げられる。芳香族イソシアネートを使用した場合、黄変の問題があり、好ましくない場合がある。また、脂肪族系と比較して、強硬な塗膜になるため、基材の熱収縮による応力を緩和できなくなり、接着性が低下する場合がある。 Examples of the polyisocyanate that is a constituent of the urethane resin of the present invention include aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane. Polyaliphatic diisocyanates such as hexamethylene diisocyanate and aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate, or a poly (polysiloxane) obtained by adding one or more of these compounds with trimethylolpropane or the like in advance. Isocyanates. When aromatic isocyanate is used, there is a problem of yellowing, which may not be preferable. Moreover, since it becomes a hard coating film compared with an aliphatic type | system | group, it becomes impossible to relieve | moderate the stress by the heat shrink of a base material, and adhesiveness may fall.
 鎖延長剤としては、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール及び1,6-ヘキサンジオール等のグリコール類、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等の多価アルコール類、エチレンジアミン、ヘキサメチレンジアミン、およびピペラジン等のジアミン類、モノエタノールアミンおよびジエタノールアミン等のアミノアルコール類、チオジエチレングルコール等のチオジグリコール類、あるいは水が挙げられる。ただし、主鎖の短い鎖延長剤を用いると、ウレタン成分由来の1530cm-1付近の吸光度(A1530)が増し、塗布層の柔軟性が低下する場合がある。よって、鎖延長剤としては主鎖の長いものが好ましい。また、塗布層の柔軟性を付与する点では、脂肪族系で主鎖の炭素数が4~10の長さのジオールやジアミンの鎖延長剤が好ましい。これらの点から、本発明に用いる鎖延長剤としては、1,4-ブタンジオール、1,6-ヘキサンジオール、ヘキサメチレンジアミンなどが好適である。すなわち、ウレタン成分由来の1530cm-1付近の吸光度の低下を防ぎ、柔軟性を付与するために、1,4-ブタンジオール、1,6-ヘキサンジオール、ヘキサメチレンジアミンなどの直鎖で分子量の大きいものが好ましい。 Chain extenders include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol, ethylenediamine Diamines such as hexamethylenediamine and piperazine, aminoalcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, and water. However, when a chain extender having a short main chain is used, the absorbance (A 1530 ) in the vicinity of 1530 cm −1 derived from the urethane component increases, and the flexibility of the coating layer may decrease. Therefore, a chain extender having a long main chain is preferable. From the viewpoint of imparting the flexibility of the coating layer, an aliphatic diol or diamine chain extender having a length of 4 to 10 carbon atoms in the main chain is preferred. From these points, 1,4-butanediol, 1,6-hexanediol, hexamethylenediamine and the like are preferable as the chain extender used in the present invention. That is, in order to prevent a decrease in absorbance around 1530 cm −1 derived from the urethane component and to provide flexibility, it is a straight chain such as 1,4-butanediol, 1,6-hexanediol, hexamethylenediamine, etc. and has a large molecular weight. Those are preferred.
 本発明の塗布層の塗布方法は特に限定されず、各種のオフラインコート法やインラインコート法を採用することができる。ただし、生産性や環境保護の点からは、本発明の塗布層は、水系の塗布液を用い後述のインラインコート法により設けることが好ましい。この場合、本発明のウレタン樹脂は水溶性であることが望ましい。なお、前記の「水溶性」とは、水、または水溶性の有機溶剤を50質量%未満含む水溶液に対して溶解することを意味する。 The coating method of the coating layer of the present invention is not particularly limited, and various off-line coating methods and in-line coating methods can be employed. However, from the viewpoint of productivity and environmental protection, the coating layer of the present invention is preferably provided by an in-line coating method described later using an aqueous coating solution. In this case, it is desirable that the urethane resin of the present invention is water-soluble. The “water-soluble” means that it dissolves in water or an aqueous solution containing less than 50% by mass of a water-soluble organic solvent.
 ウレタン樹脂に水溶性を付与させるためには、ウレタン分子骨格中にスルホン酸(塩)基又はカルボン酸(塩)基を導入(共重合)することができる。スルホン酸(塩)基は強酸性であり、その吸湿性能により耐湿性を維持するのが困難な場合があるので、弱酸性であるカルボン酸(塩)基を導入するのが好適である。また、ポリオキシアルキレン基などのノニオン性基を導入することもできる。 In order to impart water solubility to the urethane resin, a sulfonic acid (salt) group or a carboxylic acid (salt) group can be introduced (copolymerized) into the urethane molecular skeleton. Since the sulfonic acid (salt) group is strongly acidic and it may be difficult to maintain moisture resistance due to its hygroscopic performance, it is preferable to introduce a weakly acidic carboxylic acid (salt) group. Moreover, nonionic groups, such as a polyoxyalkylene group, can also be introduced.
 ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸などのカルボン酸基を有するポリオール化合物を共重合成分として導入し、塩形成剤により中和する。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミンなどのトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリンなどのN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミンなどのN-ジアルキルアルカノールアミン類が挙げられる。これらは単独で使用できるし、2種以上併用することもできる。 In order to introduce a carboxylic acid (salt) group into a urethane resin, for example, as a polyol component, a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid is introduced as a copolymer component to form a salt. Neutralize with an agent. Specific examples of the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, and tri-n-butylamine, N such as N-methylmorpholine and N-ethylmorpholine. -N-dialkylalkanolamines such as alkylmorpholines, N-dimethylethanolamine and N-diethylethanolamine. These can be used alone or in combination of two or more.
 水溶性を付与するために、カルボン酸(塩)基を有するポリオール化合物を共重合成分として用いる場合は、ウレタン樹脂中のカルボン酸(塩)基を有するポリオール化合物の組成モル比は、ウレタン樹脂の全ポリイソシアネート成分を100モル%としたときに、3~60モル%であることが好ましく、5~40モル%であることが好ましい。前記組成モル比が3モル%未満の場合は、水分散性が困難になる場合がある。また、前記組成モル比が60モル%を超える場合は、耐水性が低下するため耐湿熱性が低下する場合がある。 In order to impart water solubility, when a polyol compound having a carboxylic acid (salt) group is used as a copolymerization component, the composition molar ratio of the polyol compound having a carboxylic acid (salt) group in the urethane resin is the same as that of the urethane resin. When the total polyisocyanate component is 100 mol%, it is preferably 3 to 60 mol%, more preferably 5 to 40 mol%. If the composition molar ratio is less than 3 mol%, water dispersibility may be difficult. Moreover, when the said composition molar ratio exceeds 60 mol%, since water resistance falls, moist heat resistance may fall.
 本発明のウレタン樹脂のガラス転移点温度は0℃未満が好ましく、より好ましくは-5℃未満である。ガラス転移点温度が0℃未満の場合は、加圧接着の際に部分的に溶融したEVAやPVBなどのオレフィン樹脂と粘度が近くなり、部分的混合による強固な接着性の向上に寄与し、塗布層の応力緩和の点から好適な柔軟性を奏しやすく好ましい。 The glass transition temperature of the urethane resin of the present invention is preferably less than 0 ° C, more preferably less than -5 ° C. When the glass transition temperature is less than 0 ° C., the viscosity is close to that of partially melted olefin resin such as EVA or PVB at the time of pressure bonding, contributing to the improvement of strong adhesiveness by partial mixing, From the viewpoint of stress relaxation of the coating layer, it is preferable because it is easy to achieve suitable flexibility.
 本発明のウレタン樹脂には高温高湿後の接着性を向上させるために、樹脂自体に架橋基を導入しても良い。塗液の経時安定性や架橋密度向上効果からシラノール基が好ましい。 In the urethane resin of the present invention, a crosslinking group may be introduced into the resin itself in order to improve adhesion after high temperature and high humidity. A silanol group is preferred from the viewpoint of the stability over time of the coating solution and the effect of improving the crosslinking density.
 本発明のウレタン樹脂以外の樹脂でも、接着性を向上させるために含有させても良い。例えば、ポリエーテル、または、ポリエステルを構成成分とするウレタン樹脂、アクリル樹脂、ポリエステル樹脂などが挙げられる。 A resin other than the urethane resin of the present invention may be contained in order to improve adhesiveness. For example, a urethane resin, an acrylic resin, a polyester resin, or the like containing polyether or polyester as a constituent component can be used.
(添加剤)
 本発明は、塗布層として前記ウレタン樹脂とともに架橋剤を主成分とするとができる。架橋剤を含有させることにより、高温高湿下での接着性を更に向上させることが可能になる。また、短時間で高温加熱圧着させる場合にEVAの侵食による基材密着性の低下を防ぐことができる。そのため、各種の接着条件においても対応可能な汎用性の高い易接着性を奏することができる。架橋剤としては、カルボン酸基、水酸基、アミノ基などと反応して、アミド結合、ウレタン結合、ウレア結合を形成するものが高温高湿処理で劣化しにくいため好ましい。逆に、エステル結合、エーテル結合を伴う場合は加水分解性を有する場合があり好ましくない。本発明で好適に用いられる架橋剤としては、メラミン系、イソシアネート系、カルボジイミド系、オキサゾリン系等が挙げられる。これらの中で、塗液の経時安定性、高温高湿処理下の接着性向上効果からイソシアネート系、カルボジイミド系、が好ましい。さらに、塗布層に適度な柔軟性を奏し、塗布層の応力緩和作用を好適に付与する点で、イソシアネート系架橋剤を用いることが特に好ましい。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用される。
(Additive)
In the present invention, the coating layer can contain a crosslinking agent as a main component together with the urethane resin. By including a crosslinking agent, it becomes possible to further improve the adhesiveness under high temperature and high humidity. Moreover, when making it heat-press by high temperature for a short time, the fall of the base-material adhesiveness by EVA erosion can be prevented. Therefore, highly versatile and easy-to-adhere that can be applied under various bonding conditions. As the crosslinking agent, those that react with a carboxylic acid group, a hydroxyl group, an amino group, etc. to form an amide bond, a urethane bond, or a urea bond are preferable because they are not easily deteriorated by high-temperature and high-humidity treatment. Conversely, when an ester bond or an ether bond is involved, it may be hydrolyzable, which is not preferable. Examples of the crosslinking agent suitably used in the present invention include melamine-based, isocyanate-based, carbodiimide-based, and oxazoline-based. Among these, an isocyanate type and a carbodiimide type are preferable from the viewpoint of the stability over time of the coating liquid and the effect of improving the adhesiveness under high temperature and high humidity treatment. Furthermore, it is particularly preferable to use an isocyanate-based crosslinking agent from the viewpoint that the coating layer has appropriate flexibility and suitably imparts the stress relaxation action of the coating layer. Moreover, in order to promote a crosslinking reaction, a catalyst etc. are used suitably as needed.
 架橋剤の含有量としては、ウレタン樹脂に対して、5質量%以上90質量%以下が好ましい。より好ましくは、10質量%以上50質量%以下である。少ない場合には、塗布層の高温高湿下での強度が低下し、接着性が低下する場合があり、多い場合には、塗布層の樹脂の柔軟性が低下し、常温、高温高湿下での接着性が低下する場合がある。 As content of a crosslinking agent, 5 mass% or more and 90 mass% or less are preferable with respect to urethane resin. More preferably, it is 10 mass% or more and 50 mass% or less. If the amount is small, the strength of the coating layer under high temperature and high humidity may decrease, and the adhesiveness may decrease. Adhesiveness may be reduced.
 本発明において、塗膜強度を向上させるために、2種類の架橋剤を混合させても良い。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用される。 In the present invention, two kinds of crosslinking agents may be mixed in order to improve the coating film strength. Moreover, in order to promote a crosslinking reaction, a catalyst etc. are used suitably as needed.
 本発明において、塗布層中に粒子を含有させることもできる。粒子は(1)シリカ、カオリナイト、タルク、軽質炭酸カルシウム、重質炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、硫酸亜鉛、炭酸亜鉛、二酸化チタン、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、水酸化アルミニウム、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム、等の無機粒子、(2)アクリルあるいはメタアクリル系、塩化ビニル系、酢酸ビニル系、ナイロン、スチレン/アクリル系、スチレン/ブタジエン系、ポリスチレン/アクリル系、ポリスチレン/イソプレン系、ポリスチレン/イソプレン系、メチルメタアクリレート/ブチルメタアクリレート系、メラミン系、ポリカーボネート系、尿素系、エポキシ系、ウレタン系、フェノール系、ジアリルフタレート系、ポリエステル系等の有機粒子が挙げられる。 In the present invention, particles may be contained in the coating layer. Particles are (1) silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, barium sulfate, carbon black, zinc oxide, zinc sulfate, zinc carbonate, titanium dioxide, satin white, aluminum silicate, diatomaceous earth Inorganic particles such as soil, calcium silicate, aluminum hydroxide, hydrous halloysite, magnesium carbonate, magnesium hydroxide, (2) acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene / acrylic, styrene / Butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / isoprene, methyl methacrylate / butyl methacrylate, melamine, polycarbonate, urea, epoxy, urethane, phenol, di Rirufutareto systems include organic particles of polyester or the like.
 前記粒子は、平均粒径が1~500nmのものが好適である。平均粒子径は特に限定されないが、フィルムの透明性を維持する点から1~100nmであれば好ましい。 The particles preferably have an average particle diameter of 1 to 500 nm. The average particle size is not particularly limited, but is preferably 1 to 100 nm from the viewpoint of maintaining the transparency of the film.
 前記粒子は、平均粒径の異なる粒子を2種類以上含有させても良い。 The particles may contain two or more kinds of particles having different average particle diameters.
 なお、上記の平均粒径は、透過型電子顕微鏡(TEM)を用いて、倍率12万倍で積層フィルムの断面を撮影し、塗布層の断面に存在する10ヶ以上の粒子の最大径を測定し、それらの平均値として求めることができる。 In addition, said average particle diameter measures the maximum diameter of the 10 or more particle | grains which exist in the cross section of a coating layer by image | photographing the cross section of a laminated film at a magnification of 120,000 times using a transmission electron microscope (TEM). And can be obtained as an average value of them.
 粒子の含有量としては、0.5質量%以上20質量%以下が好ましい。少ない場合は、十分な耐ブロッキング性を得ることができない。また、対スクラッチ性が悪化してしまう。多い場合は、塗膜強度が低下する。 The particle content is preferably 0.5% by mass or more and 20% by mass or less. When the amount is small, sufficient blocking resistance cannot be obtained. Further, scratch resistance is deteriorated. When the amount is large, the coating film strength decreases.
 塗布層には、コート時のレベリング性の向上、コート液の脱泡を目的に界面活性剤を含有させることもできる。界面活性剤は、カチオン系、アニオン系、ノニオン系などいずれのものでも構わないが、シリコン系、アセチレングリコール系又はフッ素系界面活性剤が好ましい。これらの界面活性剤は、封止材との接着性を損なわない程度の範囲、例えば、塗布液中に0.005~0.5質量%の範囲で含有させることも好ましい。 The coating layer may contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating solution. The surfactant may be any of cationic, anionic and nonionic surfactants, but is preferably a silicon-based, acetylene glycol-based or fluorine-based surfactant. These surfactants are preferably contained in a range that does not impair the adhesion to the sealing material, for example, in the range of 0.005 to 0.5 mass% in the coating solution.
 塗布層に他の機能性を付与するために、封止材との接着性を損なわない程度の範囲で、各種の添加剤を含有させても構わない。前記添加剤としては、例えば、蛍光染料、蛍光増白剤、可塑剤、紫外線吸収剤、顔料分散剤、抑泡剤、消泡剤、防腐剤、帯電防止剤等が挙げられる。 In order to impart other functionality to the coating layer, various additives may be contained within a range that does not impair the adhesion with the sealing material. Examples of the additive include fluorescent dyes, fluorescent brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, foam suppressors, antifoaming agents, preservatives, and antistatic agents.
 本発明において、ポリエステルフィルム上に塗布層を設ける方法としては、溶媒、粒子、樹脂を含有する塗布液をポリエステルフィルムに塗布、乾燥する方法が挙げられる。溶媒として、トルエン等の有機溶剤、水、あるいは水と水溶性の有機溶剤の混合系が挙げられるが、好ましくは、環境問題の点から水単独あるいは水に水溶性の有機溶剤を混合したものが好ましい。 In the present invention, as a method of providing a coating layer on a polyester film, a method of coating and drying a coating solution containing a solvent, particles and a resin on the polyester film can be mentioned. Examples of the solvent include organic solvents such as toluene, water, or a mixed system of water and a water-soluble organic solvent. Preferably, water alone or a mixture of a water-soluble organic solvent and water is used from the viewpoint of environmental problems. preferable.
(太陽電池用易接着性ポリエステルフィルムの製造)
 本発明の光学用易接着性ポリエステルフィルムの製造方法について、ポリエチレンテレフタレート(以下、PETと略記する)フィルムを例にして説明するが、当然これに限定されるものではない。
(Manufacture of easily adhesive polyester film for solar cells)
The method for producing an optically easy-adhesive polyester film of the present invention will be described using a polyethylene terephthalate (hereinafter abbreviated as PET) film as an example, but is not limited to this.
 PET樹脂を十分に真空乾燥した後、押出し機に供給し、Tダイから約280℃の溶融PET樹脂を回転冷却ロールにシート状に溶融押出しし、静電印加法により冷却固化せしめて未延伸PETシートを得る。前記未延伸PETシートは、単層構成でもよいし、共押出し法による複層構成であってもよい。 After sufficiently drying the PET resin in a vacuum, it is supplied to an extruder, melted and extruded at about 280 ° C. from a T-die into a rotating cooling roll into a sheet, cooled and solidified by an electrostatic application method, and unstretched PET. Get a sheet. The unstretched PET sheet may have a single layer structure or a multilayer structure by a coextrusion method.
 得られた未延伸PETシートを、80~120℃に加熱したロールで長手方向に2.5~5.0倍に延伸して、一軸延伸PETフィルムを得る。さらに、フィルムの端部をクリップで把持して、70~140℃に加熱された熱風ゾーンに導き、幅方向に2.5~5.0倍に延伸する。引き続き、160~240℃の熱処理ゾーンに導き、1~60秒間の熱処理を行ない、結晶配向を完了させる。 The obtained unstretched PET sheet is stretched 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially stretched PET film. Further, the end of the film is gripped with a clip, led to a hot air zone heated to 70 to 140 ° C., and stretched 2.5 to 5.0 times in the width direction. Subsequently, the film is guided to a heat treatment zone of 160 to 240 ° C., and heat treatment is performed for 1 to 60 seconds to complete crystal orientation.
 このフィルム製造工程の任意の段階で、PETフィルムの少なくとも片面に、塗布液を塗布し、前記塗布層を形成する。塗布層はPETフィルムの両面に形成させても特に問題はない。塗布液中の樹脂組成物の固形分濃度は、2~35重量%であることが好ましく、特に好ましくは4~15重量%である。 In any stage of the film manufacturing process, a coating solution is applied to at least one surface of the PET film to form the coating layer. There is no particular problem even if the coating layer is formed on both sides of the PET film. The solid concentration of the resin composition in the coating solution is preferably 2 to 35% by weight, particularly preferably 4 to 15% by weight.
 この塗布液をPETフィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗工する。 Any known method can be used as a method for applying this coating solution to the PET film. For example, reverse roll coating method, gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. It is done. These methods are applied alone or in combination.
 本発明においては、塗布層は未延伸あるいは一軸延伸後のPETフィルムに前記塗布液を塗布、乾燥した後、少なくとも一軸方向に延伸し、次いで熱処理を行って形成させる。フィルム製膜時に塗布層を形成するインラインコート法により塗布層とポリエステルフィルム基材との密着性はより向上するため高温高湿後の封止材と密着性を向上させる点で好ましい。 In the present invention, the coating layer is formed by applying the coating solution to an unstretched or uniaxially stretched PET film, drying it, stretching it at least in a uniaxial direction, and then performing a heat treatment. Since the adhesion between the coating layer and the polyester film substrate is further improved by the in-line coating method for forming the coating layer during film formation, it is preferable in terms of improving the adhesion with the sealing material after high temperature and high humidity.
 本発明において、最終的に得られる塗布層の厚みは好ましくは10~3000nm、より好ましくは10~1000nm、さらに好ましくは10~500nm、よりさらに好ましくは10~400nmである。また、塗布層の乾燥後の塗布量は、好ましくは0.01~3g/m、より好ましくは0.01~1g/m、さらに好ましくは0.01~0.5g/m、よりさらに好ましくは0.01~0.4g/mである。塗布層の塗布量が0.01g/m未満であると、接着性に対する効果がほとんどなくなる。一方、塗布量が3g/mを越えると、耐ブロッキング性が低下してしまう。 In the present invention, the thickness of the finally obtained coating layer is preferably 10 to 3000 nm, more preferably 10 to 1000 nm, still more preferably 10 to 500 nm, and still more preferably 10 to 400 nm. Further, the coating amount after drying of the coating layer is preferably 0.01 to 3 g / m 2 , more preferably 0.01 to 1 g / m 2 , further preferably 0.01 to 0.5 g / m 2 , and more. More preferably, it is 0.01 to 0.4 g / m 2 . When the coating amount of the coating layer is less than 0.01 g / m 2 , the effect on adhesiveness is almost lost. On the other hand, when the coating amount exceeds 3 g / m 2 , the blocking resistance is lowered.
(太陽電池用バックシート)
 本発明の太陽電池用バックシートは前記塗布層を有するポリエステルフィルムを構成部材とする。特に、封止材と直接的に接する最表層に用いることが好ましい。係る構成により本発明の太陽電池用バックシートは封止材との強固な密着性を奏することができ、長期にわたる過酷な環境下においても良好な密着性を奏する。そのため、太陽電池素子の防湿性保持やバリア性向上に寄与しうる。
(Back sheet for solar cell)
The back sheet for solar cell of the present invention comprises a polyester film having the coating layer as a constituent member. In particular, it is preferably used for the outermost layer that is in direct contact with the sealing material. With such a configuration, the solar cell backsheet of the present invention can exhibit strong adhesion to the encapsulant, and can exhibit good adhesion even under harsh environments over a long period of time. Therefore, it can contribute to moisture proof maintenance and barrier property improvement of the solar cell element.
 本発明の太陽電池用バックシートの態様としては、例えば、前記塗布層を有するポリエステルフィルム/接着剤/金属箔又は金属系薄膜層を有するフィルム/接着剤/ポリフッ化ビニルフイルム又はポリエステル系高耐久防湿フィルムといった構成が例示される。また本発明のポリエステルフィルムは両面に前記塗布層を有する構成であっても構わない。本発明の塗布層は封止材以外の構成とも良好な接着性を奏しうる。ここで金属箔又は金属系薄膜層を有するフィルムとしては、水蒸気バリア性を有するものが好適に用いることができる。 As an aspect of the back sheet for solar cells of the present invention, for example, a polyester film / adhesive / metal foil having a coating layer or a film / adhesive / polyvinyl fluoride film having a metal-based thin film layer or a polyester-based highly durable moisture-proof A configuration such as a film is exemplified. Further, the polyester film of the present invention may have a configuration having the coating layer on both sides. The coating layer of the present invention can exhibit good adhesiveness with configurations other than the sealing material. Here, as the film having a metal foil or a metal thin film layer, a film having a water vapor barrier property can be suitably used.
 前記金属の種類としてはアルミニウム、錫、マグネシウム、銀、ステンレスなどが挙げられるが中でもアルミニウム、銀が比較的高い反射率を有し、工業的に入手しやすいため好適である。金属層は金属箔をして使用しても良いし、ポリエステルフィルム等に薄膜として積層してもよい。これら金属を薄膜として積層する方法としては真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマ気相成長法(CVD)等を用いることができる。 Examples of the metal include aluminum, tin, magnesium, silver, and stainless steel. Among them, aluminum and silver are preferable because they have a relatively high reflectance and are easily available industrially. The metal layer may be used as a metal foil, or may be laminated as a thin film on a polyester film or the like. As a method of laminating these metals as a thin film, a vacuum deposition method, a sputtering method, an ion plating method, a plasma vapor deposition method (CVD), or the like can be used.
 本発明においては前記塗布層を有するポリエステルフィルム、金属箔又は金属系薄膜層を有するフィルム、ポリフッ化ビニルフイルム又はポリエステル系高耐久防湿フィルムの各層間を、真空吸引等により一体化して加熱圧着するラミネ-ション法等の通常の成形法を利用し、上記の各層を一体成形体として加熱圧着成形して、太陽電池用バックシートを製造することができる。上記において、各フィルム間の接着性等を高めるために、接着剤を介して積層するのが好ましい。接着剤としては例えば(メタ)アクリル系樹脂、オレフィン系樹脂、ビニル系樹脂、その他等の樹脂をビヒクルの主成分とする加熱溶融型接着剤、溶剤型接着剤、光硬化型接着剤等が挙げられる。 In the present invention, each layer of the polyester film having the coating layer, the metal foil or the metal-based thin film layer, the polyvinyl fluoride film or the polyester-based high durability moisture-proof film is integrally laminated by vacuum suction or the like and heat-pressed. A solar cell backsheet can be produced by thermocompression-bonding each of the above-mentioned layers as an integral molded body using a normal molding method such as the cation method. In the above, in order to improve the adhesiveness etc. between each film, it is preferable to laminate | stack via an adhesive agent. Examples of the adhesive include (meth) acrylic resins, olefinic resins, vinyl resins, and other heat melting adhesives, solvent-based adhesives, photo-curing adhesives, etc. whose main component is a vehicle. It is done.
 ここで、高耐久防湿フィルムとは耐候性を向上させる目的で積層されるものであり、高耐久防湿フィルムとしては、例えばポリテトラフロロエチレン(PTFE)、4-フッ化エチレン-パークロロアルコキシ共重合体(PFA)、4-フッ化エチレン-6-フッ化プロピレン共重合体(FEP)、2-エチレン-4フッ化エチレン共重合体(ETFE)、ポリ3-フッ化エチレン(PCTFE)、ポリフッ化ビニデン(PVDF)、もしくはポリフッカビニル(PVF)等のフッ素樹脂フィルム、あるいはポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、アクリル等の樹脂に紫外線吸収剤を練り混んだ樹脂組成物からなるフィルムが挙げられる。 Here, the high durability moisture-proof film is laminated for the purpose of improving the weather resistance. Examples of the high durability moisture-proof film include polytetrafluoroethylene (PTFE), 4-fluoroethylene-perchloroalkoxy copolymer. Polymer (PFA), 4-Fluoroethylene-6-Fluoropropylene Copolymer (FEP), 2-Ethylene-4 Fluoroethylene Copolymer (ETFE), Poly-3-Fluoroethylene (PCTFE), Polyfluoride Fluorine resin film such as vinylidene (PVDF) or polyfuca vinyl (PVF), or UV absorber for resin such as polycarbonate, polymethyl methacrylate, polyacrylate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), acrylic A film made of a kneaded resin composition It is.
(太陽電池モジュール)
 太陽電池モジュールは、例えば、ガラス基板と、配線を配設した光起電力素子としての太陽電池素子と、太陽電池素子を挟むように介在する封止材と、本発明の太陽電池バックシートを用いて構成される。封止剤としては、エチレン・酢酸ビニル共重合体やポリビニルブチラール樹脂などのオレフィン樹脂が好適に用いられる。特に、本発明の塗布層は上記のような柔軟性を有しているためエチレン・酢酸ビニル共重合体やポリビニルブチラール樹脂といった封止材と良好な接着性を奏することができる。
(Solar cell module)
The solar cell module uses, for example, a glass substrate, a solar cell element as a photovoltaic element provided with wiring, a sealing material interposed so as to sandwich the solar cell element, and the solar cell backsheet of the present invention. Configured. As the sealant, an olefin resin such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin is preferably used. In particular, since the coating layer of the present invention has such flexibility, it can exhibit good adhesiveness with a sealing material such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin.
 封止材としては、ラミネート工程による加熱圧着後に別ラインに設けたオーブンでのキュア工程により硬化反応をさせるスタンダードキュアタイプと、ラミネート工程でのラミネーター内部で硬化反応をさせるファストキュアタイプとに分類されるが、いずれも適用しうる。封止材の主成分としては、エチレン・酢酸ビニル共重合体やポリビニルブチラール樹脂などのオレフィン樹脂が用いられる。なお、ここで、「主成分」とは、封止剤のうち50質量%以上、より好ましくは70質量%以上含有することを意味する。例えば、架橋反応を進行させるための架橋剤や反応開始材などが添加される。例えば、熱架橋を行う場合は、2,5-ジメチルヘキサン-2,5-ジハイドロキシパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンなどの有機過酸化物が用いられる。また、光硬化を行う場合には、ベンゾフェノン、オルソベンゾイル安息香酸メチルやベンゾインエーテルなどの光増感剤が用いられる。さらに、ガラス基板との接着を考慮してシランカップリング剤も配合しても良い。接着性及び硬化を促進する目的でを配合されている場合もあり、エポキシ基含有化合物としては、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、アクリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテルなどのエポキシ基含有化合物が用いられる。 Sealing materials are classified into a standard cure type that cures by a curing process in an oven provided in a separate line after thermocompression bonding in the laminating process, and a fast cure type that cures inside the laminator in the laminating process. However, either can be applied. As the main component of the sealing material, an olefin resin such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin is used. Here, the “main component” means that 50% by mass or more, more preferably 70% by mass or more of the sealant is contained. For example, a crosslinking agent or a reaction initiator for causing the crosslinking reaction to proceed is added. For example, when thermal crosslinking is performed, 2,5-dimethylhexane-2,5-dihydroxyperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, di-t Organic peroxides such as -butyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane are used. When photocuring is performed, a photosensitizer such as benzophenone, methyl orthobenzoylbenzoate or benzoin ether is used. Furthermore, a silane coupling agent may be blended in consideration of adhesion to the glass substrate. In some cases, an epoxy group-containing compound is added for the purpose of promoting adhesion and curing. Examples of the epoxy group-containing compound include triglycidyl tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, and 1,6-hexanediol. Epoxy group-containing compounds such as diglycidyl ether, acrylic glycidyl ether, and 2-ethylhexyl glycidyl ether are used.
 次に、実施例および比較例を用いて本発明を詳細に説明するが、本発明は当然以下の実施例に限定されるものではない。また、本発明で用いた評価方法は以下の通りである。 Next, the present invention will be described in detail using examples and comparative examples, but the present invention is not limited to the following examples. The evaluation method used in the present invention is as follows.
(1)固有粘度
 JIS K 7367-5に準拠し、溶媒としてフェノール(60質量%)と1,1,2,2-テトラクロロエタン(40質量%)の混合溶媒を用い、30℃で測定した。
(1) Intrinsic viscosity Based on JIS K 7367-5, a mixed solvent of phenol (60% by mass) and 1,1,2,2-tetrachloroethane (40% by mass) was used as a solvent and measured at 30 ° C.
(2)フィルムの見かけ密度
 フィルムを5cm角の正方形に4枚切り出して試料とした。これを4枚重ねにして、その厚みをマイクロメーターにより場所を変え任意の10箇所を有効数字4桁で測定し、重ね厚みの平均値を求めた。この平均値を4で除して有効数字3桁に丸め、一枚あたりの平均厚み(t:μm)とした。同試料4枚の質量(w:g)を有効数字4桁で自動上皿天秤を用いて測定し、次式より見かけ密度を求めた。なお、見かけ密度は有効数字3桁に丸めた。
 見かけ密度(g/cm)=(w×10)/(5.00×5.00×4×t)
(2) Apparent density of film Four films were cut into 5 cm squares and used as samples. Four of these were overlapped, the thickness was changed with a micrometer, and arbitrary 10 locations were measured with four significant figures, and the average value of the stacked thickness was obtained. The average value was divided by 4 and rounded to 3 significant figures to obtain an average thickness per sheet (t: μm). The mass (w: g) of the four samples was measured using an automatic upper pan balance with four significant digits, and the apparent density was determined from the following equation. The apparent density was rounded to 3 significant figures.
Apparent density (g / cm 3 ) = (w × 10 4 ) / (5.00 × 5.00 × 4 × t)
(3)色調
 フィルムを5cm角の正方形に切り出し、250μm以上になるように重ね合わせ、Lab表示系のL値、a値およびb値を求めた。
(測定条件)
装置:色差計 日本電色工業社製 ZE-2000
測定方法:反射
標準光:C光源
視野角:2度
(3) Color tone Films were cut into 5 cm squares and overlaid so as to be 250 μm or more, and L value, a value, and b value of the Lab display system were obtained.
(Measurement condition)
Apparatus: Color difference meter ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
Measurement method: Reflected standard light: C light source Viewing angle: 2 degrees
(4)ガラス転移点温度
 JIS K7121に準拠し、示差走査熱量計(セイコーインスツルメンツ株式会社製、DSC6200)を使用して、DSC曲線からガラス転移開始温度を求めた。
(4) Glass transition temperature Based on JIS K7121, the glass transition start temperature was calculated | required from the DSC curve using the differential scanning calorimeter (The Seiko Instruments Inc. make, DSC6200).
(5)赤外分光法による吸光度測定
 得られた太陽電池用易接着性ポリエステルフィルムについて塗布層を削り取り、約1mgの試料を採取した。採取した試料に圧力をかけ、厚み約1μmのフィルム状に成型した塗布層試料片(大きさ:約50μm×約50μm)を作成した。さらに、ブランク試料として基材フィルムと同質のPET樹脂についても前記手順と同様にして試料片(ブランク試料片)を作成した。
 作成した試料片をKBr板上に載せ、下記条件の顕微透過法により赤外吸収スペクトルを測定した。塗布層の赤外分光スペクトルは、塗布層試料片から得た赤外分光スペクトルとブランク試料片のスペクトルとの差スペクトルとして求めた。
 脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)は1460±10cm-1の領域に吸収極大をもつ吸収ピーク高さの値とし、ウレタン成分由来の1530cm-1付近の吸光度(A1530)は1530±10cm-1の領域に吸収極大をもつ吸収ピーク高さの値とした。なお、ベースラインはそれぞれの極大吸収のピークの両側の裾を結ぶ線とした。得られた吸光度から下記式により吸光度比率を求めた。
(吸光度比率)=A1460/A1530
(5) Absorbance measurement by infrared spectroscopy About the obtained easily adhesive polyester film for solar cells, the coating layer was scraped off and about 1 mg of a sample was collected. A pressure was applied to the collected sample to prepare a coating layer sample piece (size: about 50 μm × about 50 μm) molded into a film having a thickness of about 1 μm. Further, a sample piece (blank sample piece) was prepared in the same manner as described above for a PET resin having the same quality as the base film as a blank sample.
The prepared sample piece was placed on a KBr plate, and an infrared absorption spectrum was measured by a microscopic transmission method under the following conditions. The infrared spectrum of the coating layer was determined as the difference spectrum between the infrared spectrum obtained from the coating layer sample piece and the spectrum of the blank sample piece.
Absorbance around 1460 cm -1 derived from an aliphatic polycarbonate component (A 1460) is 1460 and the value of the absorption peak height having an absorption maximum in the region of ± 10 cm -1, the absorbance in the vicinity of 1530 cm -1 derived from urethane component (A 1530 ) is the value of the absorption peak height having an absorption maximum in the region of 1530 ± 10 cm −1 . The baseline was a line connecting the hems on both sides of each maximum absorption peak. The absorbance ratio was determined from the obtained absorbance by the following formula.
(Absorbance ratio) = A 1460 / A 1530
(測定条件)
装置:FT-IR分析装置SPECTRA TECH社製 IRμs/SIRM
検出器:MCT
分解能:4cm-1
積算回数:128回
(Measurement condition)
Apparatus: FT-IR analyzer SPECTRA TECH IRμs / SIRM
Detector: MCT
Resolution: 4cm -1
Integration count: 128 times
(6)接着性
 得られた太陽電池用易接着性白色ポリエステルフィルムを100mm幅×100mm長、EVAシートを70mm幅×90mm長に切り出したもの用意し、フィルム(塗布層面)/下記記載のEVA/(塗布層面)フィルムの構成で重ね、真空ラミネーターで下記記載の接着条件で加熱圧着し、サンプルを作成した。作成したサンプルを20mm幅×100mm長に切り出した後、SUS板に貼りつけ、下記記載の条件で引張り試験機でフィルム層とEVA層の剥離強度を測定した。剥離強度は極大点を越えた後に安定して剥離している部分の平均値として求めた。下記の基準でランク分けした。
   ◎:100N/20mm以上、または、フィルムの材破
   ○:75N/20mm以上、100N/20mm未満
   △:50N/20mm以上、75N/20mm未満
   ×:50N/20mm未満
(6) Adhesiveness The prepared easy-adhesive white polyester film for solar cells was prepared by cutting out a 100 mm width × 100 mm length and an EVA sheet 70 mm width × 90 mm length, and the film (coating layer surface) / EVA / (Coating layer surface) A sample was prepared by stacking with a film structure and heat-pressing with a vacuum laminator under the bonding conditions described below. The prepared sample was cut out into a width of 20 mm and a length of 100 mm, attached to a SUS plate, and the peel strength between the film layer and the EVA layer was measured with a tensile tester under the conditions described below. The peel strength was determined as the average value of the portions that peeled stably after exceeding the maximum point. The ranking was based on the following criteria.
◎: 100 N / 20 mm or more, or film breakage of film ○: 75 N / 20 mm or more, less than 100 N / 20 mm Δ: 50 N / 20 mm or more, less than 75 N / 20 mm ×: less than 50 N / 20 mm
(サンプル作成条件)
装置:真空ラミネーター エヌ・ピー・シー社製 LM-30×30型
加圧:1気圧
EVA:
 A.スタンダードキュアタイプ
  I.サンビック製 Urtla Pearl PV(0.4μm)
    ラミネート工程:100℃(真空5分、真空加圧5分)
    キュア工程:熱処理150℃(常圧45分)
  II.三井ファブロ製 ソーラーエバ SC4(0.4μm)
    ラミネート工程:130℃(真空5分、真空加圧5分)
    キュア工程:150℃(常圧45分)
 B.ファストキュアタイプ
  I.サンビック製 Urtla Pearl PV(0.45μm)
    ラミネート工程:135℃(真空5分、真空加圧15分)
  II.三井ファブロ製 ソーラーエバ RC02B(0.45μm)
    ラミネート工程:150℃(真空5分、真空加圧15分)
(Sample creation conditions)
Apparatus: Vacuum laminator NP-30, LM-30 × 30 pressurization: 1 atm EVA:
A. Standard cure type Sunvik Ultra Pearl PV (0.4μm)
Lamination process: 100 ° C. (vacuum 5 minutes, vacuum pressurization 5 minutes)
Cure process: Heat treatment 150 ° C (normal pressure 45 minutes)
II. Mitsui Fabro Solar EVA SC4 (0.4μm)
Lamination process: 130 ° C (vacuum 5 minutes, vacuum pressurization 5 minutes)
Cure process: 150 ° C (45 minutes at normal pressure)
B. Fast cure type Sunvik Ultra Pearl PV (0.45μm)
Lamination process: 135 ° C (vacuum 5 minutes, vacuum pressure 15 minutes)
II. Mitsui Fabro Solar Eva RC02B (0.45μm)
Lamination process: 150 ° C. (vacuum 5 minutes, vacuum pressure 15 minutes)
(測定条件)
装置:テンシロン 東洋BALDWIN社製 RTM-100
剥離速度:200mm/分
剥離角度:180度
(Measurement condition)
Equipment: Tensilon RTM-100 manufactured by Toyo BALDWIN
Peeling speed: 200 mm / min Peeling angle: 180 degrees
(7)耐湿熱性
 得られた太陽電池用易接着性白色ポリエステルフィルムを、高温高湿槽中で85℃、85%RHの環境下1000時間放置した。次いで、太陽電池用易接着性白色ポリエステルフィルムを取りだし、室温常湿で24時間放置した。その後、は、前記(4)と同様の方法で剥離強度を測定し、下記の基準でランク分けをした。
   ◎:100N/20mm以上、または、フィルムの材破
   ○:75N/20mm以上、100N/20mm未満
   △:50N/20mm以上、75N/20mm未満
   ×:50N/20mm未満
(7) Moisture and heat resistance The obtained easily adhesive white polyester film for solar cells was left in an environment of 85 ° C. and 85% RH for 1000 hours in a high-temperature and high-humidity tank. Subsequently, the easily adhesive white polyester film for solar cells was taken out and allowed to stand at room temperature and humidity for 24 hours. Thereafter, the peel strength was measured by the same method as in (4) above, and ranked according to the following criteria.
◎: 100 N / 20 mm or more, or film breakage of film ○: 75 N / 20 mm or more, less than 100 N / 20 mm Δ: 50 N / 20 mm or more, less than 75 N / 20 mm ×: less than 50 N / 20 mm
 (脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-1の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジフェニルメタンジイソシアネート43.75質量部、ジメチロールブタン酸12.85質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂溶液(A-1)を調製した。得られたポリウレタン樹脂(A-1)のガラス転移点温度は-30℃であった。
(Polymerization of urethane resin A-1 containing aliphatic polycarbonate polyol)
In a four-necked flask equipped with a stirrer, Dimroth condenser, nitrogen inlet tube, silica gel drying tube, and thermometer, 43.75 parts by mass of 4,4-diphenylmethane diisocyanate, 12.85 parts by mass of dimethylolbutanoic acid, several 153.41 parts by mass of polyhexamethylene carbonate diol having an average molecular weight of 2000, 0.03 parts by mass of dibutyltin dilaurate, and 84.00 parts by mass of acetone as a solvent were added and stirred at 75 ° C. for 3 hours in a nitrogen atmosphere. It was confirmed that had reached the predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring and adjusted to 25 ° C., while stirring and mixing at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution (A-1) having a solid content of 35%. The obtained polyurethane resin (A-1) had a glass transition temperature of −30 ° C.
 (脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-2の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジフェニルメタンジイソシアネート29.14質量部、ジメチロールブタン酸7.57質量部、数平均分子量3000のポリヘキサメチレンカーボネートジオール173.29質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン5.17質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂溶液(A-2)を調製した。
(Polymerization of urethane resin A-2 containing aliphatic polycarbonate polyol)
In a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer, 29.14 parts by mass of 4,4-diphenylmethane diisocyanate, 7.57 parts by mass of dimethylolbutanoic acid, several An average molecular weight of 3000 polyhexamethylene carbonate diol 173.29 parts by mass, dibutyltin dilaurate 0.03 parts by mass, and 84.00 parts by mass of acetone as a solvent were added, and the mixture was stirred at 75 ° C. for 3 hours in a nitrogen atmosphere. It was confirmed that had reached the predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 5.17 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring and adjusted to 25 ° C., while stirring and mixing at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution (A-2) having a solid content of 35%.
 (脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-3の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジフェニルメタンジイソシアネート43.75質量部、ジメチロールブタン酸11.12質量部、ヘキサンジオール1.97質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール143.40質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂溶液(A-3)を調製した。
(Polymerization of urethane resin A-3 containing aliphatic polycarbonate polyol as a constituent)
In a four-necked flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, and thermometer, 43.75 parts by mass of 4,4-diphenylmethane diisocyanate, 11.12 parts by mass of dimethylolbutanoic acid, hexane 1.97 parts by mass of diol, 143.40 parts by mass of polyhexamethylene carbonate diol having a number average molecular weight of 2000, 0.03 parts by mass of dibutyltin dilaurate, and 84.00 parts by mass of acetone as a solvent were added, and 75 ° C. in a nitrogen atmosphere. The mixture was stirred for 3 hours to confirm that the reaction solution reached a predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring and adjusted to 25 ° C., while stirring and mixing at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution (A-3) having a solid content of 35%.
 (脂肪族系ポリカーボネートポリオールを構成成分とするシラノール基含有ウレタン樹脂A-4の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、イソホロンジイソシアネート38.41質量部、ジメチロールプロパン酸6.95質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール158.99質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン4.37質量部を添加し、ポリウレタンプレポリマー溶液を得た。次にγ―(アミノエチル)アミノプロピルトリエトキシシラン3.84質量部、2-[(2-アミノエチル)アミノ]エタノール1.80質量部と水450gを添加して、ポリウレタンプレポリマー溶液を滴下して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分30%の水溶性シラノール基含有ポリウレタン樹脂溶液(A-4)を調製した。
(Polymerization of silanol group-containing urethane resin A-4 containing aliphatic polycarbonate polyol as a constituent)
In a four-necked flask equipped with a stirrer, a Dimroth cooler, a nitrogen inlet tube, a silica gel drying tube, and a thermometer, 38.41 parts by mass of isophorone diisocyanate, 6.95 parts by mass of dimethylolpropanoic acid, and a number average molecular weight of 2000 Polyhexamethylene carbonate diol 158.999 parts by mass, dibutyltin dilaurate 0.03 parts by mass, and acetone 84.00 parts by mass as a solvent were added and stirred at 75 ° C. for 3 hours in a nitrogen atmosphere. It was confirmed that the equivalent amount was reached. Next, after cooling this reaction liquid to 40 degreeC, 4.37 mass parts of triethylamine was added, and the polyurethane prepolymer solution was obtained. Next, 3.84 parts by mass of γ- (aminoethyl) aminopropyltriethoxysilane, 1.80 parts by mass of 2-[(2-aminoethyl) amino] ethanol and 450 g of water are added, and the polyurethane prepolymer solution is dropped. And dispersed in water. Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble silanol group-containing polyurethane resin solution (A-4) having a solid content of 30%.
 (脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-5の重合)
 水溶性ポリウレタン樹脂(A-1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量1000のポリヘキサメチレンカーボネートジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂溶液(A-5)を得た。
(Polymerization of urethane resin A-5 containing aliphatic polycarbonate polyol as a constituent)
A water-soluble polyurethane resin having a solid content of 35% was obtained in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) was changed to a polyhexamethylene carbonate diol having a number average molecular weight of 1000. A solution (A-5) was obtained.
 (脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-6の重合)
 水溶性ポリウレタン樹脂(A-1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量5000のポリヘキサメチレンカーボネートジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂溶液(A-6)を得た。
(Polymerization of urethane resin A-6 containing aliphatic polycarbonate polyol as a constituent)
A water-soluble polyurethane resin having a solid content of 35% was obtained in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) was changed to a polyhexamethylene carbonate diol having a number average molecular weight of 5000. A solution (A-6) was obtained.
 (ポリエステルポリオールを構成成分とするウレタン樹脂の重合A-7)
 水溶性ポリウレタン樹脂(A-1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量2000のポリエステルジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂溶液(A-7)を得た。
(Polymerization of urethane resin containing polyester polyol as component A-7)
A water-soluble polyurethane resin solution (A) having a solid content of 35% was prepared in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) was changed to a polyester diol having a number average molecular weight of 2000. -7) was obtained.
 (ポリエーテルポリオールを構成成分とするウレタン樹脂の重合A-8)
 水溶性ポリウレタン樹脂(A-1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量2000のポリエーテルジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂溶液(A-8)を得た。
(Polymerization polymerization of polyether resin with polyether polyol A-8)
A water-soluble polyurethane resin solution (with a solid content of 35%) was prepared in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) was changed to a polyether diol having a number average molecular weight of 2000. A-8) was obtained.
 (脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-9の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、1,3-ビス(イソシアナトメチル)シクロヘキサン32.39質量部、ジメチロールブタン酸13.09質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール156.74質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン80.89質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂溶液(A-9)を調製した。得られたポリウレタン樹脂(A-9)のガラス転移点温度は-30℃であった。
(Polymerization of urethane resin A-9 containing aliphatic polycarbonate polyol as a constituent)
In a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer, 32.39 parts by mass of 1,3-bis (isocyanatomethyl) cyclohexane, dimethylolbutanoic acid 13. 09 parts by mass, 156.74 parts by mass of polyhexamethylene carbonate diol having a number average molecular weight of 2000, 0.03 parts by mass of dibutyltin dilaurate, and 80.89 parts by mass of acetone as a solvent, and 3 hours at 75 ° C. in a nitrogen atmosphere The mixture was stirred and it was confirmed that the reaction solution reached a predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring and adjusted to 25 ° C., while stirring and mixing at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution (A-9) having a solid content of 35%. The resulting polyurethane resin (A-9) had a glass transition temperature of −30 ° C.
 (脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-10の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルジイソシアネート45.93質量部、ジメチロールブタン酸13.09質量部、数平均分子量3000のポリヘキサメチレンカーボネートジオール235.11質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン117.66質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂溶液(A-10)を調製した。得られたポリウレタン樹脂(A-10)のガラス転移点温度は-40℃であった。
(Polymerization of urethane resin A-10 containing aliphatic polycarbonate polyol as a constituent)
In a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer, 45.93 parts by mass of 4,4-dicyclohexyl diisocyanate, 13.09 parts by mass of dimethylolbutanoic acid, several An average molecular weight of 3000 polyhexamethylene carbonate diol (235.11 parts by mass), dibutyltin dilaurate (0.03 parts by mass), and acetone (117.66 parts by mass) as a solvent were added, and the mixture was stirred at 75 ° C. for 3 hours in a nitrogen atmosphere. It was confirmed that had reached the predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring and adjusted to 25 ° C., while stirring and mixing at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution (A-10) having a solid content of 35%. The obtained polyurethane resin (A-10) had a glass transition temperature of −40 ° C.
 (ブロックポリイソシアネート架橋剤の重合) 
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA)100質量部、プロピレングリコールモノメチルエーテルアセテート55質量部、ポリエチレングリコールモノメチルエーテル(平均分子量
750)30質量部を仕込み、窒素雰囲気下、70℃で4時間保持した。その後、反応液温度を50℃に下げ、メチルエチルケトオキシム47質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認し、固形分75質量%のブロックポリイソシアネート水分散液(B)を得た。
(Polymerization of block polyisocyanate crosslinking agent)
100 parts by mass of a polyisocyanate compound having an isocyanurate structure using hexamethylene diisocyanate as a raw material (manufactured by Asahi Kasei Chemicals, Duranate TPA) in a flask equipped with a stirrer, a thermometer and a reflux condenser, 55 parts by mass of propylene glycol monomethyl ether acetate, 30 parts by mass of polyethylene glycol monomethyl ether (average molecular weight 750) was charged and held at 70 ° C. for 4 hours in a nitrogen atmosphere. Thereafter, the reaction solution temperature was lowered to 50 ° C., and 47 parts by mass of methyl ethyl ketoxime was added dropwise. The infrared spectrum of the reaction solution was measured to confirm that the absorption of the isocyanate group had disappeared, and a block polyisocyanate aqueous dispersion (B) having a solid content of 75% by mass was obtained.
(オキサゾリン系架橋剤の重合)
 温度計、窒素ガス導入管、還流冷却器、滴下ロート、および攪拌機を備えたフラスコに水性媒体としてのイオン交換水58質量部とイソプロパノール58質量部との混合物、および、重合開始剤(2,2’-アゾビス(2-アミジノプロパン)・二塩酸塩)4質量部を投入した。一方、滴下ロートに、オキサゾリン基を有する重合性不飽和単量体としての2-イソプロペニル-2-オキサゾリン16質量部、メトキシポリエチレングリコールアクリレート(エチレングリコールの平均付加モル数・9モル、新中村化学製)32質量部、およびメタクリル酸メチル32質量部の混合物を投入し、窒素雰囲気下、70℃において1時間にわたり滴下した。滴下終了後、反応溶液を9時間攪拌し、冷却することで固形分濃度40質量%のオキサゾリン基を有する水溶性樹脂溶液(C)を得た。
(Polymerization of oxazoline crosslinking agent)
A mixture of 58 parts by mass of ion-exchanged water and 58 parts by mass of isopropanol as an aqueous medium in a flask equipped with a thermometer, a nitrogen gas introduction tube, a reflux condenser, a dropping funnel, and a stirrer, and a polymerization initiator (2, 2 4 parts by mass of '-azobis (2-amidinopropane) dihydrochloride) was added. Meanwhile, in a dropping funnel, 16 parts by mass of 2-isopropenyl-2-oxazoline as a polymerizable unsaturated monomer having an oxazoline group, methoxypolyethylene glycol acrylate (average number of moles of ethylene glycol added: 9 moles, Shin Nakamura Chemical) A mixture of 32 parts by mass and 32 parts by mass of methyl methacrylate was added, and the mixture was added dropwise at 70 ° C. for 1 hour in a nitrogen atmosphere. After completion of dropping, the reaction solution was stirred for 9 hours and cooled to obtain a water-soluble resin solution (C) having an oxazoline group having a solid content concentration of 40% by mass.
(カルボジイミド系架橋剤の重合) 
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネート168質量部とポリエチレングリコールモノメチルエーテル(M400、平均分子量400)220質量部を仕込み、120℃で1時間、撹拌し、更に4,4’-ジシクロヘキシルメタンジイソシアネート26質量部とカルボジイミド化触媒として3-メチル-1-フェニル-2-フォスフォレン-1-オキシド3.8質量部(全イソシイアネートに対し2重量%)を加え、窒素気流下185℃で更に5時間撹拌した。反応液の赤外スペクトルを測定し、波長2200~2300cm-1の吸収が消失したことを確認した。60℃まで放冷し、イオン交換水を567質量部加え、固形分40質量%のカルボジイミド水溶性樹脂溶液(D)を得た。
(Polymerization of carbodiimide crosslinking agent)
A flask equipped with a stirrer, thermometer and reflux condenser was charged with 168 parts by mass of hexamethylene diisocyanate and 220 parts by mass of polyethylene glycol monomethyl ether (M400, average molecular weight 400), stirred at 120 ° C. for 1 hour, 26 parts by mass of 4′-dicyclohexylmethane diisocyanate and 3.8 parts by mass of 3-methyl-1-phenyl-2-phospholene-1-oxide (2% by weight based on the total isocyanate) as a carbodiimidization catalyst were added, and 185 under a nitrogen stream. Stir at 5 ° C. for a further 5 hours. An infrared spectrum of the reaction solution was measured, and it was confirmed that absorption at a wavelength of 2200 to 2300 cm −1 disappeared. It stood to cool to 60 degreeC, 567 mass parts of ion-exchange water was added, and the carbodiimide water-soluble resin solution (D) of 40 mass% of solid content was obtained.
実施例1
(1)塗布液の調整
 下記の塗剤を混合し、塗布液を作成した。
水                       55.86質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)         13.52質量%
粒子                          0.59質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
Example 1
(1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created.
Water 55.86% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 13.52% by mass
0.59% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
(2)太陽電池用易接着性ポリエステルフィルムの製造
 フィルム原料ポリマーとして平均粒径2.5μmのシリカ粒子を0.03質量%含有するPET樹脂ペレット(固有粘度が0.62dl/g)を、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約285℃で溶解した。このPET樹脂を、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、シート状に溶融押し出した。表面温度30℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(2) Manufacture of easy-adhesive polyester film for solar cell A PET resin pellet (inherent viscosity is 0.62 dl / g) containing 0.03% by mass of silica particles having an average particle diameter of 2.5 μm as a film raw material polymer is 133 Pa. For 6 hours at 135 ° C. under reduced pressure. Then, it supplied to the extruder and melt | dissolved at about 285 degreeC. Each of the PET resins was filtered through a stainless steel filter medium (nominal filtration accuracy: 10 μm particle 95% cut) and melt extruded into a sheet. It was quenched and solidified on a rotating cooling metal roll maintained at a surface temperature of 30 ° C. to obtain an unstretched PET sheet.
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 The unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.
 次いで、前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/m(乾燥後の塗布層厚み150nm)になるように調整した。引続いてテンターで、120℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で0.5秒間加熱し、さらに100℃で10秒間3%の幅方向の弛緩処理を行ない、250μmの太陽電池用易接着性ポリエステルフィルムを得た。評価結果を表1に示す。 Subsequently, after apply | coating the said coating liquid on the single side | surface of PET film by the roll coat method, it dried at 80 degreeC for 20 second. The final coating amount after drying (after biaxial stretching) was adjusted to 0.15 g / m 2 (the coating layer thickness after drying was 150 nm). Subsequently, the film was stretched 4.0 times in the width direction at 120 ° C. with a tenter, and heated at 230 ° C. for 0.5 seconds with the length in the width direction fixed, and further at 100 ° C. for 10 seconds for 3 seconds. % Relaxation treatment in the width direction was performed to obtain a 250 μm easily adhesive polyester film for solar cells. The evaluation results are shown in Table 1.
実験例1
 ポリウレタン樹脂をポリウレタン樹脂(A-5)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Experimental example 1
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-5).
実験例2
 ポリウレタン樹脂をポリウレタン樹脂(A-6)に変更した以外は実施例1と同様にして太陽電池用リエステルフィルムを得た。
Experimental example 2
A reester film for a solar cell was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-6).
比較例1
 ポリウレタン樹脂をポリウレタン樹脂(A-7)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Comparative Example 1
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to polyurethane resin (A-7).
比較例2
 ポリウレタン樹脂をポリウレタン樹脂(A-8)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Comparative Example 2
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-8).
比較例3
 太陽電池用易接着性ポリエステルフィルムの基材厚みを5μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Comparative Example 3
A solar cell easy-adhesive polyester film was obtained in the same manner as in Example 1 except that the substrate thickness of the solar cell easy-adhesive polyester film was changed to 5 μm.
実施例2
 ポリウレタン樹脂をポリウレタン樹脂(A-2)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 2
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-2).
実施例3
 ポリウレタン樹脂をポリウレタン樹脂(A-3)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 3
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-3).
実施例4
 ポリウレタン樹脂をシラノール基含有ポリウレタン樹脂(A-4)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 4
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to a silanol group-containing polyurethane resin (A-4).
実施例5
 太陽電池用易接着性ポリエステルフィルムの基材厚みを50μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 5
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the substrate thickness of the easy-adhesive polyester film for solar cells was changed to 50 μm.
実施例6
 太陽電池用易接着性ポリエステルフィルムの基材厚みを100μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 6
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the substrate thickness of the easy-adhesive polyester film for solar cells was changed to 100 μm.
実施例7
 太陽電池用易接着性ポリエステルフィルムの基材厚みを350μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 7
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the substrate thickness of the easy-adhesive polyester film for solar cells was changed to 350 μm.
実施例8
 塗布液を下記に変更したこと以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水                       61.51質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          8.11質量%
粒子                          0.35質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
Example 8
Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for solar cells.
61.51% by mass of water
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 8.11% by mass
0.35% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
実施例9
 塗布液を下記に変更したこと以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水                       41.71質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)         27.05質量%
粒子                          1.18質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.06質量%
 (シリコン系、固形分濃度100質量%)
Example 9
Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for solar cells.
Water 41.71% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 27.05% by mass
1.18% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.06% by mass
(Silicon, solid content concentration of 100% by mass)
実施例10
(3)太陽電池用バックシートの製造
 実施例1の太陽電池用易接着性ポリエステルフィルム/白色ポリエステルフィルム(50μm)/アルミ箔(30μm)/ポリフッ化ビニルフィルム(38μm)の構成でドライラミネート法で接着し、太陽電池用バックシートを得た。
ドライラミネート用接着剤
 タケラックA-315(三井化学製)/タケネートA-10(三井化学製)=9/1(固形分比)
Example 10
(3) Manufacture of solar cell backsheet A dry laminate method with a configuration of easy-adhesive polyester film for solar cell / white polyester film (50 μm) / aluminum foil (30 μm) / polyvinyl fluoride film (38 μm) in Example 1. The solar cell back sheet was obtained by bonding.
Adhesive for dry lamination Takelac A-315 (Mitsui Chemicals) / Takenate A-10 (Mitsui Chemicals) = 9/1 (solid content ratio)
実施例11
 ポリウレタン樹脂をポリウレタン樹脂(A-9)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 11
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-9).
実施例12
 ポリウレタン樹脂をポリウレタン樹脂(A-10)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 12
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-10).
実施例13
(3)太陽電池用バックシートの製造
 実施例11の太陽電池用易接着性ポリエステルフィルム/白色ポリエステルフィルム(50μm)/アルミ箔(30μm)/ポリフッ化ビニルフィルム(38μm)の構成でドライラミネート法で接着し、太陽電池用バックシートを得た。
ドライラミネート用接着剤
 タケラックA-315(三井化学製)/タケネートA-10(三井化学製)=9/1(固形分比)
Example 13
(3) Manufacture of solar cell backsheet The dry-lamination method used in Example 11 was an adhesive polyester film for solar cell / white polyester film (50 μm) / aluminum foil (30 μm) / polyvinyl fluoride film (38 μm). The solar cell back sheet was obtained by bonding.
Adhesive for dry lamination Takelac A-315 (Mitsui Chemicals) / Takenate A-10 (Mitsui Chemicals) = 9/1 (solid content ratio)
 実施例10、および実施例13の太陽電池用バックシートについて太陽電池用易接着性ポリエステルフィルム面を照射面として岩崎電気株式会社製アイ スーパーUVテスターSUV-W151を用い、63℃、50%Rh、照射強度100mW/cmで100時間の連続UV照射処理を行った。UV照射後の太陽電池バックシートを蛍光灯下で目視確認した結果、実施例10の太陽電池用バックシートでは僅かに黄変が認められたものの、実施例13の太陽電池用バックシートでは全面において色の変化がなく、良好な外観を保持していた。 About the back sheet for solar cells of Example 10 and Example 13, using an I-super UV tester SUV-W151 manufactured by Iwasaki Electric Co., Ltd. with an easily adhesive polyester film surface for solar cells as an irradiation surface, 63 ° C., 50% Rh, Continuous UV irradiation treatment was performed for 100 hours at an irradiation intensity of 100 mW / cm 2 . As a result of visually confirming the solar cell backsheet after UV irradiation under a fluorescent lamp, the solar cell backsheet of Example 10 was slightly yellowed, but the solar cell backsheet of Example 13 was entirely exposed. There was no change in color, and a good appearance was maintained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例14
(1)塗布液の調整
 下記の塗剤を混合し、塗布液を作成した。
水                       55.86質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)         13.52質量%
粒子                          0.59質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
Example 14
(1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created.
Water 55.86% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 13.52% by mass
0.59% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
(2)太陽電池用易接着性白色ポリエステルフィルムの製造
 (空洞発現材a) 
 ポリメチルペンテン樹脂60質量%、ポリプロピレン樹脂20質量%及びポリスチレン樹脂20質量%をペレット混合して、285℃に温調したベント式二軸押出機に供給、混練して空洞形成剤(原料a)を製造した。
(2) Manufacture of easily adhesive white polyester film for solar cells
Cavity forming agent (raw material a): 60% by mass of polymethylpentene resin, 20% by mass of polypropylene resin, and 20% by mass of polystyrene resin are mixed in pellets and supplied to a vent type twin screw extruder adjusted to 285 ° C. Manufactured.
 (ポリエステルb)
 シリカ粒子含有ポリエチレンテレフタレート樹脂を定法によって重合し、凝集シリカ粒子(平均粒子径2.0μm)を500ppm含有した固有粘度が0.62dl/gのポリエチレンテレフタレート(原料b)を製造した。
(Polyester b)
Silica particle-containing polyethylene terephthalate resin was polymerized by a conventional method to produce polyethylene terephthalate (raw material b) having an intrinsic viscosity of 0.62 dl / g and containing 500 ppm of agglomerated silica particles (average particle diameter of 2.0 μm).
 (酸化チタン粒子含有マスターバッチc) 
 上記のポリエチレンテレフタレート(原料b)と平均粒径
0.2μmのアナターゼ型二酸化チタン粒子(堺化学工業株式会社製)を質量比50/50で混合し、ベント式混練押出機で混練して、二酸化チタン粒子含有マスターバッチ(原料c)を製造した。
(Titanium oxide particle-containing masterbatch c)
The above polyethylene terephthalate (raw material b) and anatase-type titanium dioxide particles (manufactured by Sakai Chemical Industry Co., Ltd.) having an average particle size of 0.2 μm are mixed at a mass ratio of 50/50, kneaded with a vent type kneading extruder, A master batch (raw material c) containing titanium particles was produced.
(フィルムの製造)
 加熱下で真空乾燥を施した前記原料を、a/b/c=8/82/10(質量比)となるように連続計量・連続攪拌してA層の原料とした。次に、この原料を押出機に供給して溶融混練し、フィルターを経由してフィードブロック(共押出し接合器)に供給した。
(Film production)
The raw material vacuum-dried under heating was continuously weighed and continuously stirred so that a / b / c = 8/82/10 (mass ratio) to obtain a raw material for the A layer. Next, this raw material was supplied to an extruder, melted and kneaded, and supplied to a feed block (co-extrusion joint) via a filter.
 一方、B層の原料には前記原料をb/c=80/20(質量比)となるように連続計量したものを用い、ベント式二軸押出し機に供給して溶融混練し、フィルターを経由して前記フィードブロックに供給した。 On the other hand, the raw material of the B layer is obtained by continuously weighing the raw material so that b / c = 80/20 (mass ratio), and is supplied to a vent type twin screw extruder and melt-kneaded, and passed through a filter. And fed to the feed block.
 フィードブロックでは、前記A層の両面に前記B層を同じ厚みとなるように接合した。このとき、延伸前の各層の厚み比率がB/A/B=10/80/10となるように、A層及びB層の樹脂吐出量を制御して供給し、表面温度30℃の冷却ドラム上にキャストして、厚さ2.4mmの未延伸フィルムを製造した。このとき、冷却ドラム上に押出された溶融ポリマーの反対面には、10℃の空気を吹き付けて溶融ポリマーを両面から冷却・固化させた。 In the feed block, the B layer was bonded to both sides of the A layer so as to have the same thickness. At this time, the resin discharge amount of the A layer and the B layer is controlled and supplied so that the thickness ratio of each layer before stretching is B / A / B = 10/80/10, and a cooling drum having a surface temperature of 30 ° C. Casted upward to produce an unstretched film with a thickness of 2.4 mm. At this time, 10 degreeC air was sprayed on the opposite surface of the molten polymer extruded on the cooling drum, and the molten polymer was cooled and solidified from both surfaces.
 次に、前記の方法で得られた未延伸フィルムを、加熱ロールを用いて65℃に加熱した後、周速が異なるロール間で3.2倍に延伸した。このとき、低速ロールと高速ロールの中間部に、フィルムを挟んで対向する位置に集光赤外ヒータを設置し、フィルムを均一延伸するために必要十分な熱量をフィルムの両面から均等に与えた。 Next, the unstretched film obtained by the above method was heated to 65 ° C. using a heating roll, and then stretched 3.2 times between rolls having different peripheral speeds. At this time, a condensing infrared heater was installed in the middle of the low-speed roll and the high-speed roll at a position facing each other across the film, and a sufficient amount of heat necessary to uniformly stretch the film was given evenly from both sides of the film. .
 次いで、前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/mになるように調整した。 Subsequently, after apply | coating the said coating liquid on the single side | surface of PET film by the roll coat method, it dried at 80 degreeC for 20 second. The final coating amount (after biaxial stretching) was adjusted so that the coating amount after drying was 0.15 g / m 2 .
 引き続いてテンターに導入し、120℃から150℃に加熱昇温しつつ幅方向に3.9倍の延伸を行った。さらに、テンター内で、220℃の熱風を30秒間吹き付け、熱処理を施した。その後、40秒間をかけて室温まで徐々に冷却しつつ、幅方向に2%の緩和処理を施して、見かけ密度が1.10g/cm3、厚みが250μmの空洞含有積層二軸配向の太陽電池用易接着性白色ポリエステルフィルムを得た。評価結果を表2に示す。 Subsequently, the film was introduced into a tenter, and stretched 3.9 times in the width direction while heating from 120 ° C to 150 ° C. Further, heat treatment was performed by blowing hot air of 220 ° C. for 30 seconds in the tenter. Thereafter, a 2% relaxation treatment is applied in the width direction while gradually cooling to room temperature over 40 seconds, and a void-containing laminated biaxially oriented solar cell having an apparent density of 1.10 g / cm 3 and a thickness of 250 μm. An easily adhesive white polyester film was obtained. The evaluation results are shown in Table 2.
実施例15
 ポリウレタン樹脂をポリウレタン樹脂(A-2)に変更した以外は実施例14と同様にして太陽電池用易接着性白色ポリエステルフィルムを得た。
Example 15
An easy-adhesive white polyester film for solar cells was obtained in the same manner as in Example 14 except that the polyurethane resin was changed to the polyurethane resin (A-2).
実施例16
 ポリウレタン樹脂をポリウレタン樹脂(A-3)に変更した以外は実施例14と同様にして太陽電池用易接着性白色ポリエステルフィルムを得た。
Example 16
An easily adhesive white polyester film for solar cells was obtained in the same manner as in Example 14 except that the polyurethane resin was changed to the polyurethane resin (A-3).
実施例17
 ポリウレタン樹脂をシラノール基含有ポリウレタン樹脂(A-4)に変更した以外は実施例14と同様にして太陽電池用易接着性白色ポリエステルフィルムを得た。
Example 17
An easily adhesive white polyester film for solar cells was obtained in the same manner as in Example 14 except that the polyurethane resin was changed to a silanol group-containing polyurethane resin (A-4).
実施例18
 ポリウレタン樹脂をポリウレタン樹脂(A-9)に変更した以外は実施例14と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 18
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 14 except that the polyurethane resin was changed to polyurethane resin (A-9).
実施例19
 ポリウレタン樹脂をポリウレタン樹脂(A-10)に変更した以外は実施例14と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 19
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 14 except that the polyurethane resin was changed to polyurethane resin (A-10).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例20
(1)塗布液の調整
 下記の塗剤を混合し、塗布液を作成した。
水                       55.62質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)         11.29質量%
ブロックポリイソシアネート水分散液(B)      2.26質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.05質量%
 (シリコン系、固形分濃度100質量%)
Example 20
(1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created.
Water 55.62% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 11.29% by mass
Block polyisocyanate aqueous dispersion (B) 2.26% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
(2)太陽電池用易接着性ポリエステルフィルムの製造
 フィルム原料ポリマーとして平均粒径2.5μmのシリカ粒子を0.03質量%含有するPET樹脂ペレット(固有粘度が0.62dl/g)を、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約285℃で溶解した。このPET樹脂を、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、シート状に溶融押し出した。表面温度30℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(2) Manufacture of easy-adhesive polyester film for solar cell A PET resin pellet (inherent viscosity is 0.62 dl / g) containing 0.03% by mass of silica particles having an average particle diameter of 2.5 μm as a film raw material polymer is 133 Pa. For 6 hours at 135 ° C. under reduced pressure. Then, it supplied to the extruder and melt | dissolved at about 285 degreeC. Each of the PET resins was filtered through a stainless steel filter medium (nominal filtration accuracy: 10 μm particle 95% cut) and melt extruded into a sheet. It was quenched and solidified on a rotating cooling metal roll maintained at a surface temperature of 30 ° C. to obtain an unstretched PET sheet.
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 The unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.
 次いで、前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/m(乾燥後の塗布層厚み150nm)になるように調整した。引続いてテンターで、120℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で0.5秒間加熱し、さらに100℃で10秒間3%の幅方向の弛緩処理を行ない、250μmの太陽電池用易接着性ポリエステルフィルムを得た。評価結果を表3に示す。 Subsequently, after apply | coating the said coating liquid on the single side | surface of PET film by the roll coat method, it dried at 80 degreeC for 20 second. The final coating amount after drying (after biaxial stretching) was adjusted to 0.15 g / m 2 (the coating layer thickness after drying was 150 nm). Subsequently, the film was stretched 4.0 times in the width direction at 120 ° C. with a tenter, and heated at 230 ° C. for 0.5 seconds with the length in the width direction fixed, and further at 100 ° C. for 10 seconds for 3 seconds. % Relaxation treatment in the width direction was performed to obtain a 250 μm easily adhesive polyester film for solar cells. The evaluation results are shown in Table 3.
実験例3
 ポリウレタン樹脂をポリウレタン樹脂(A-5)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Experimental example 3
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-5).
実験例4
 ポリウレタン樹脂をポリウレタン樹脂(A-6)に変更した以外は実施例20と同様にして太陽電池用リエステルフィルムを得た。
Experimental Example 4
A reester film for a solar cell was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to polyurethane resin (A-6).
比較例4
 ポリウレタン樹脂をポリウレタン樹脂(A-7)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Comparative Example 4
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-7).
比較例5
 ポリウレタン樹脂をポリウレタン樹脂(A-8)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Comparative Example 5
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-8).
比較例6
 太陽電池用易接着性ポリエステルフィルムの基材厚みを5μmに変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Comparative Example 6
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the substrate thickness of the easy-adhesive polyester film for solar cells was changed to 5 μm.
実施例21
 塗布液を下記に変更したこと以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水                       58.02質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          9.47質量%
ブロックポリイソシアネート水分散液(B)      1.89質量%
粒子                          0.59質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
Example 21
Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
Water 58.02% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 9.47% by mass
Block polyisocyanate aqueous dispersion (B) 1.89 mass%
0.59% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
実施例22
 塗布液を下記に変更したこと以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水                       54.75質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)         12.99質量%
ブロックポリイソシアネート水分散液(B)      1.52質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
Example 22
Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
54.75% by mass of water
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 12.99% by mass
Block polyisocyanate aqueous dispersion (B) 1.52% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
実施例23
 塗布液を下記に変更したこと以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水                       57.35質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          8.12質量%
ブロックポリイソシアネート水分散液(B)      3.79質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
Example 23
Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
Water 57.35% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 8.12% by mass
Block polyisocyanate aqueous dispersion (B) 3.79% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
実施例24
 塗布液を下記に変更したこと以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水                       59.95質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          3.25質量%
ブロックポリイソシアネート水分散液(B)      6.06質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
Example 24
Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
Water 59.95% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 3.25% by mass
Block polyisocyanate aqueous dispersion (B) 6.06% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
実施例25
 塗布液を下記に変更したこと以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水                       60.82質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          1.62質量%
ブロックポリイソシアネート水分散液(B)      6.82質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
Example 25
Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
60.82% by mass of water
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 1.62% by mass
Block polyisocyanate aqueous dispersion (B) 6.82 mass%
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
実施例26
 ポリウレタン樹脂をポリウレタン樹脂(A-2)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 26
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-2).
実施例27
 ポリウレタン樹脂をポリウレタン樹脂(A-3)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 27
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-3).
実施例28
 ポリウレタン樹脂をシラノール基含有ポリウレタン樹脂(A-4)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 28
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to a silanol group-containing polyurethane resin (A-4).
実施例29
 ブロックポリイソシアネート水分散液(B)をオキサゾリン基を有する水溶性樹脂(C)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 29
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the block polyisocyanate aqueous dispersion (B) was changed to a water-soluble resin (C) having an oxazoline group.
実施例30
 ブロックポリイソシアネート水分散液(C)をカルボジイミド水溶性樹脂(D)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 30
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the block polyisocyanate aqueous dispersion (C) was changed to the carbodiimide water-soluble resin (D).
実施例31
 ブロックポリイソシアネート水分散液(C)をイミノ・メチロールメラミン(固形分濃度70質量%)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 31
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the block polyisocyanate aqueous dispersion (C) was changed to imino / methylolmelamine (solid content concentration: 70% by mass).
実施例32
 太陽電池用易接着性ポリエステルフィルムの基材厚みを50μmに変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 32
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the substrate thickness of the easily adhesive polyester film for solar cells was changed to 50 μm.
実施例33
 太陽電池用易接着性ポリエステルフィルムの基材厚みを100μmに変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 33
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the substrate thickness of the easy-adhesive polyester film for solar cells was changed to 100 μm.
実施例34
 太陽電池用易接着性ポリエステルフィルムの基材厚みを350μmに変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 34
A solar cell easy-adhesive polyester film was obtained in the same manner as in Example 20, except that the substrate thickness of the solar cell easy-adhesive polyester film was changed to 350 μm.
実施例35
 塗布液を下記に変更したこと以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水                       62.82質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          5.67質量%
ブロックポリイソシアネート水分散液(B)      1.13質量%
粒子                          0.35質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
Example 35
Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
62.82% by mass of water
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 5.67% by mass
Block polyisocyanate aqueous dispersion (B) 1.13% by mass
0.35% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03% by mass
(Silicon, solid content concentration of 100% by mass)
実施例36
 塗布液を下記に変更したこと以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水                       45.99質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)         18.99質量%
ブロックポリイソシアネート水分散液(B)      3.80質量%
粒子                          1.19質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
Example 36
Except having changed the coating liquid into the following, it carried out similarly to Example 20, and obtained the easily adhesive polyester film for solar cells.
Water 45.9 mass%
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 18.99% by mass
Block polyisocyanate aqueous dispersion (B) 3.80% by mass
1.19% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
実施例37
(3)太陽電池用バックシートの製造
 実施例20の太陽電池用易接着性ポリエステルフィルム/黒色ポリエステルフィルム(50μm)/アルミ箔(30μm)/ポリフッ化ビニルフィルム(38μm)の構成でドライラミネート法で接着し、太陽電池用バックシートを得た。
ドライラミネート用接着剤
 タケラックA-315(三井化学製)/タケネートA-10(三井化学製)=9/1(固形分比)
Example 37
(3) Manufacture of back sheet for solar cell In the structure of Example 20 easy-adhesive polyester film for solar cell / black polyester film (50 μm) / aluminum foil (30 μm) / polyvinyl fluoride film (38 μm) by the dry laminating method. The solar cell back sheet was obtained by bonding.
Adhesive for dry lamination Takelac A-315 (Mitsui Chemicals) / Takenate A-10 (Mitsui Chemicals) = 9/1 (solid content ratio)
実施例38
 ポリウレタン樹脂をポリウレタン樹脂(A-9)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 38
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to polyurethane resin (A-9).
実施例39
 ポリウレタン樹脂をポリウレタン樹脂(A-10)に変更した以外は実施例20と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 39
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 20 except that the polyurethane resin was changed to the polyurethane resin (A-10).
実施例40
(3)太陽電池用バックシートの製造
 実施例38の太陽電池用易接着性ポリエステルフィルム/黒色ポリエステルフィルム(50μm)/アルミ箔(30μm)/ポリフッ化ビニルフィルム(38μm)の構成でドライラミネート法で接着し、太陽電池用バックシートを得た。
ドライラミネート用接着剤
 タケラックA-315(三井化学製)/タケネートA-10(三井化学製)=9/1(固形分比)
Example 40
(3) Manufacture of solar cell backsheet A dry laminate method with a configuration of easily adhesive polyester film for solar cell / black polyester film (50 μm) / aluminum foil (30 μm) / polyvinyl fluoride film (38 μm) of Example 38. The solar cell back sheet was obtained by bonding.
Adhesive for dry lamination Takelac A-315 (Mitsui Chemicals) / Takenate A-10 (Mitsui Chemicals) = 9/1 (solid content ratio)
 実施例37、および実施例40の太陽電池用バックシートについて太陽電池用易接着性ポリエステルフィルム面を照射面として岩崎電気株式会社製アイ スーパーUVテスターSUV-W151を用い、63℃、50%Rh、照射強度100mW/cmで100時間の連続UV照射処理を行った。UV照射後の太陽電池バックシートを蛍光灯下で目視確認した結果、実施例37の太陽電池用バックシートでは僅かに黄変が認められたものの、実施例40の太陽電池用バックシートでは全面において色の変化がなく、良好な外観を保持していた。 About the solar cell backsheets of Example 37 and Example 40, an ISUZAWA UV Tester SUV-W151 manufactured by Iwasaki Electric Co., Ltd. was used with the easily adhesive polyester film surface for solar cells as an irradiation surface, and a temperature of 63 ° C, 50% Rh Continuous UV irradiation treatment was performed for 100 hours at an irradiation intensity of 100 mW / cm 2 . As a result of visually confirming the solar cell backsheet after UV irradiation under a fluorescent lamp, the solar cell backsheet of Example 37 was slightly yellowed, but on the entire surface of the solar cell backsheet of Example 40. There was no change in color, and a good appearance was maintained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例41
(1)塗布液の調整
 下記の塗剤を混合し、塗布液を作成した。
水                       55.62質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)         11.29質量%
ブロックポリイソシアネート水分散液(B)      2.26質量%
粒子                          0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                          0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.05質量%
 (シリコン系、固形分濃度100質量%)
Example 41
(1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created.
Water 55.62% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 11.29% by mass
Block polyisocyanate aqueous dispersion (B) 2.26% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
(2)太陽電池用易接着性白色ポリエステルフィルムの製造
(空洞発現材a)
  ポリメチルペンテン樹脂60質量%、ポリプロピレン樹脂20質量%及びポリスチレン樹脂20質量%をペレット混合して、285℃に温調したベント式二軸押出機に供給、混練して空洞形成剤(原料a)を製造した。
(2) Manufacture of an easily adhesive white polyester film for solar cells (cavity expressing material a)
Cavity forming agent (raw material a): 60% by mass of polymethylpentene resin, 20% by mass of polypropylene resin, and 20% by mass of polystyrene resin are mixed in pellets and supplied to a vent type twin screw extruder adjusted to 285 ° C. Manufactured.
(ポリエステルb)
 シリカ粒子含有ポリエチレンテレフタレート樹脂を定法によって重合し、凝集シリカ粒子(平均粒子径2.0μm)を500ppm含有した固有粘度が0.62dl/gのポリエチレンテレフタレート(原料b)を製造した。
(Polyester b)
Silica particle-containing polyethylene terephthalate resin was polymerized by a conventional method to produce polyethylene terephthalate (raw material b) having an intrinsic viscosity of 0.62 dl / g and containing 500 ppm of agglomerated silica particles (average particle diameter of 2.0 μm).
(酸化チタン粒子含有マスターバッチc)
 上記のポリエチレンテレフタレート(原料b)と平均粒径
0.2μmのアナターゼ型二酸化チタン粒子(堺化学工業株式会社製)を質量比50/50で混合し、ベント式混練押出機で混練して、二酸化チタン粒子含有マスターバッチ(原料c)を製造した。
(Titanium oxide particle-containing masterbatch c)
The above polyethylene terephthalate (raw material b) and anatase-type titanium dioxide particles (manufactured by Sakai Chemical Industry Co., Ltd.) having an average particle size of 0.2 μm are mixed at a mass ratio of 50/50, kneaded with a vent type kneading extruder, A master batch (raw material c) containing titanium particles was produced.
(フィルムの製造)
 加熱下で真空乾燥を施した前記原料を、a/b/c=8/82/10(質量比)となるように連続計量・連続攪拌してA層の原料とした。次に、この原料を押出機に供給して溶融混練し、フィルターを経由してフィードブロック(共押出し接合器)に供給した。
(Film production)
The raw material vacuum-dried under heating was continuously weighed and continuously stirred so that a / b / c = 8/82/10 (mass ratio) to obtain a raw material for the A layer. Next, this raw material was supplied to an extruder, melted and kneaded, and supplied to a feed block (co-extrusion joint) via a filter.
 一方、B層の原料には前記原料をb/c=80/20(質量比)となるように連続計量したものを用い、ベント式二軸押出し機に供給して溶融混練し、フィルターを経由して前記フィードブロックに供給した。 On the other hand, the raw material of the B layer is obtained by continuously weighing the raw material so that b / c = 80/20 (mass ratio), and is supplied to a vent type twin screw extruder and melt-kneaded, and passed through a filter. And fed to the feed block.
 フィードブロックでは、前記A層の両面に前記B層を同じ厚みとなるように接合した。このとき、延伸前の各層の厚み比率がB/A/B=10/80/10となるように、A層及びB層の樹脂吐出量を制御して供給し、表面温度30℃の冷却ドラム上にキャストして、厚さ2.4mmの未延伸フィルムを製造した。このとき、冷却ドラム上に押出された溶融ポリマーの反対面には、10℃の空気を吹き付けて溶融ポリマーを両面から冷却・固化させた。 In the feed block, the B layer was bonded to both sides of the A layer so as to have the same thickness. At this time, the resin discharge amount of the A layer and the B layer is controlled and supplied so that the thickness ratio of each layer before stretching is B / A / B = 10/80/10, and a cooling drum having a surface temperature of 30 ° C. Casted upward to produce an unstretched film with a thickness of 2.4 mm. At this time, 10 degreeC air was sprayed on the opposite surface of the molten polymer extruded on the cooling drum, and the molten polymer was cooled and solidified from both surfaces.
 次に、前記の方法で得られた未延伸フィルムを、加熱ロールを用いて65℃に加熱した後、周速が異なるロール間で3.2倍に延伸した。このとき、低速ロールと高速ロールの中間部に、フィルムを挟んで対向する位置に集光赤外ヒータを設置し、フィルムを均一延伸するために必要十分な熱量をフィルムの両面から均等に与えた。 Next, the unstretched film obtained by the above method was heated to 65 ° C. using a heating roll, and then stretched 3.2 times between rolls having different peripheral speeds. At this time, a condensing infrared heater was installed in the middle of the low-speed roll and the high-speed roll at a position facing each other across the film, and a sufficient amount of heat necessary to uniformly stretch the film was given evenly from both sides of the film. .
 次いで、前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/m(乾燥後の塗布層厚み150nm)になるように調整した。 Subsequently, after apply | coating the said coating liquid on the single side | surface of PET film by the roll coat method, it dried at 80 degreeC for 20 second. The final coating amount after drying (after biaxial stretching) was adjusted to 0.15 g / m 2 (the coating layer thickness after drying was 150 nm).
 引き続いてテンターに導入し、120℃から150℃に加熱昇温しつつ幅方向に3.9倍の延伸を行った。さらに、テンター内で、220℃の熱風を30秒間吹き付け、熱処理を施した。その後、40秒間をかけて室温まで徐々に冷却しつつ、幅方向に2%の緩和処理を施して、見かけ密度が1.10g/cm3、厚みが250μmの空洞含有積層二軸配向の太陽電池用易接着性白色ポリエステルフィルムを得た。評価結果を表4に示す。 Subsequently, the film was introduced into a tenter, and stretched 3.9 times in the width direction while heating from 120 ° C to 150 ° C. Further, heat treatment was performed by blowing hot air of 220 ° C. for 30 seconds in the tenter. Thereafter, a 2% relaxation treatment is applied in the width direction while gradually cooling to room temperature over 40 seconds, and a void-containing laminated biaxially oriented solar cell having an apparent density of 1.10 g / cm 3 and a thickness of 250 μm. An easily adhesive white polyester film was obtained. The evaluation results are shown in Table 4.
実施例42
 ポリウレタン樹脂をポリウレタン樹脂(A-2)に変更した以外は実施例41と同様にして太陽電池用易接着性白色ポリエステルフィルムを得た。
Example 42
An easy-adhesive white polyester film for solar cells was obtained in the same manner as in Example 41 except that the polyurethane resin was changed to the polyurethane resin (A-2).
実施例43
 ポリウレタン樹脂をポリウレタン樹脂(A-3)に変更した以外は実施例41と同様にして太陽電池用易接着性白色ポリエステルフィルムを得た。
Example 43
An easy-adhesive white polyester film for solar cells was obtained in the same manner as in Example 41 except that the polyurethane resin was changed to the polyurethane resin (A-3).
実施例44
 ポリウレタン樹脂をシラノール基含有ポリウレタン樹脂(A-4)に変更した以外は実施例41と同様にして太陽電池用易接着性白色ポリエステルフィルムを得た。
Example 44
An easy-adhesive white polyester film for solar cells was obtained in the same manner as in Example 41 except that the polyurethane resin was changed to a silanol group-containing polyurethane resin (A-4).
実施例45
 ポリウレタン樹脂をポリウレタン樹脂(A-9)に変更した以外は実施例41と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 45
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 41 except that the polyurethane resin was changed to the polyurethane resin (A-9).
実施例46
 ポリウレタン樹脂をポリウレタン樹脂(A-10)に変更した以外は実施例41と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
Example 46
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Example 41 except that the polyurethane resin was changed to polyurethane resin (A-10).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の太陽電池用易接着性ポリエステルフィルムは、封止材との接着性及び高温高湿下での接着性(耐湿熱性)に優れるため、太陽電池用バックシートの最内装の基材フィルムとして好適である。 Since the easily adhesive polyester film for solar cells of the present invention is excellent in adhesiveness with a sealing material and adhesiveness (moisture and heat resistance) under high temperature and high humidity, it is used as an innermost base film of a solar cell backsheet. Is preferred.

Claims (7)

  1.  少なくとも片面に塗布層を有する基材厚みが20~500μmのポリエステルフィルムであり、
     前記塗布層が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を含む、太陽電池用易接着性ポリエステルフィルム。
    A polyester film having a substrate thickness of 20 to 500 μm and having a coating layer on at least one surface;
    The easily adhesive polyester film for solar cells, wherein the coating layer contains a urethane resin containing an aliphatic polycarbonate polyol as a constituent component.
  2.  前記塗布層が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を主成分とし、
     前記塗布層の赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)との比率(A1460/A1530)が0.70~1.60である、請求項1記載の太陽電池用易接着性ポリエステルフィルム。
    The coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component,
    The ratio (A 1460 / A 1530 ) of the absorbance (A 1460 ) near 1460 cm −1 derived from the aliphatic polycarbonate component and the absorbance (A 1530 ) near 1530 cm −1 derived from the urethane component in the infrared spectrum of the coating layer. The easily adhesive polyester film for a solar cell according to claim 1, wherein the) is 0.70 to 1.60.
  3.  前記塗布層が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とし、
     前記塗布層の赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)との比率(A1460/A1530)が0.50~1.55である、請求項1に記載の太陽電池用易接着性ポリエステルフィルム。
    The coating layer is mainly composed of a urethane resin and a cross-linking agent having aliphatic polycarbonate polyol as constituent components,
    The ratio (A 1460 / A 1530 ) of the absorbance (A 1460 ) near 1460 cm −1 derived from the aliphatic polycarbonate component and the absorbance (A 1530 ) near 1530 cm −1 derived from the urethane component in the infrared spectrum of the coating layer. The easy-adhesive polyester film for solar cells according to claim 1, wherein) is 0.50 to 1.55.
  4.  前記架橋剤が、メラミン系架橋剤、イソシアネート系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤から選ばれた少なくとも1種の架橋剤である、請求項3に記載の太陽電池用易接着性ポリエステルフィルム。 The easily adhesive polyester for solar cells according to claim 3, wherein the crosslinking agent is at least one crosslinking agent selected from a melamine crosslinking agent, an isocyanate crosslinking agent, a carbodiimide crosslinking agent, and an oxazoline crosslinking agent. the film.
  5.  前記塗布層中の前記架橋剤の含有量が、ウレタン樹脂に対して、5質量%以上90質量%以下である、請求項3に記載の太陽電池用易接着性ポリエステルフィルム。 The easily adhesive polyester film for solar cells according to claim 3, wherein the content of the crosslinking agent in the coating layer is 5% by mass or more and 90% by mass or less with respect to the urethane resin.
  6.  前記ポリエステルフィルムは白色ポリエステルフィルムである、請求項1~5のいずれかに記載の太陽電池用易接着性ポリエステルフィルム。 The easily adhesive polyester film for solar cells according to any one of claims 1 to 5, wherein the polyester film is a white polyester film.
  7.  請求項1~6に記載の太陽電池用易接着性ポリエステルフィルムを積層した太陽電池用バックシート。 A solar cell backsheet comprising the solar cell easy-adhesive polyester film according to claim 1 laminated thereon.
PCT/JP2010/071513 2009-12-02 2010-12-01 Readily bondable polyester film for solar cells WO2011068132A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127015519A KR101421360B1 (en) 2009-12-02 2010-12-01 Readily bondable polyester film for solar cells
CN201080054340.2A CN102639615B (en) 2009-12-02 2010-12-01 Readily bondable polyester film for solar cells

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009274530 2009-12-02
JP2009-274530 2009-12-02
JP2009274533 2009-12-02
JP2009274531 2009-12-02
JP2009-274533 2009-12-02
JP2009-274531 2009-12-02
JP2009-274532 2009-12-02
JP2009274532 2009-12-02

Publications (1)

Publication Number Publication Date
WO2011068132A1 true WO2011068132A1 (en) 2011-06-09

Family

ID=44114978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071513 WO2011068132A1 (en) 2009-12-02 2010-12-01 Readily bondable polyester film for solar cells

Country Status (4)

Country Link
KR (1) KR101421360B1 (en)
CN (1) CN102639615B (en)
TW (1) TWI409171B (en)
WO (1) WO2011068132A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008883A (en) * 2011-06-27 2013-01-10 Mitsubishi Plastics Inc Polyester film for solar cell backside sealing material
JP2013021273A (en) * 2011-07-14 2013-01-31 Fujifilm Corp Back sheet for solar cell, and solar cell module
JP2013253189A (en) * 2012-06-08 2013-12-19 Toyobo Co Ltd Easily adhesive film and method for producing the same
US20150068601A1 (en) * 2012-03-14 2015-03-12 Toyobo Co., Ltd. Sealing sheet for back surface of solar cell, and solar cell module
WO2016146982A1 (en) * 2015-03-13 2016-09-22 Dupont Teijin Films U.S. Limited Partnership Pv cells and backsheet polyester films

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065851A1 (en) * 2011-11-04 2013-05-10 ダイキン工業株式会社 Coating material, coating film, backsheet for solar cell module, and solar cell module
JP6016528B2 (en) * 2012-08-24 2016-10-26 東洋アルミニウム株式会社 Solar cell back surface protection sheet
JP6036832B2 (en) * 2013-06-11 2016-11-30 東洋紡株式会社 Heat-shrinkable polyester film and package
CN103456843A (en) * 2013-09-17 2013-12-18 连云港神舟新能源有限公司 Method for manufacturing back contact type crystalline silicon solar cell component
AU2016275276A1 (en) * 2015-06-09 2018-02-01 P2I Ltd Method for forming a coating on an electronic or electrical device
CN107903860B (en) * 2017-09-12 2020-10-09 苏州固泰新材股份有限公司 Binder for solar cell back protective film and application thereof
CN109994566B (en) * 2017-12-28 2021-07-27 宁波长阳科技股份有限公司 Solar back panel film and preparation method thereof
CN108565305A (en) * 2018-04-26 2018-09-21 徐州日托光伏科技有限公司 The manufacturing method of back contact solar cell
WO2020166297A1 (en) * 2019-02-13 2020-08-20 東洋紡株式会社 Laminated polyester film
WO2021182150A1 (en) * 2020-03-09 2021-09-16 東洋紡株式会社 White easy-adhesive polyester film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158633A (en) * 1988-12-12 1990-06-19 Diafoil Co Ltd Laminated film
JP2008025023A (en) * 2006-06-23 2008-02-07 Nippon Steel Corp Surface-treated metal material and metal surface treatment agent
JP2008030459A (en) * 2006-07-07 2008-02-14 Toray Ind Inc White laminated polyester film for reflective sheet
JP2008147530A (en) * 2006-12-13 2008-06-26 Tomoegawa Paper Co Ltd Back sheet for solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104481C (en) * 1996-09-24 2003-04-02 日本聚氨酯工业株式会社 Reactive hotmelt adhesive
JP2006152013A (en) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd Easily adhesive polyester film for solar cell back surface-protecting film and solar cell back surface-protecting film obtained using the same
JP2007136911A (en) * 2005-11-21 2007-06-07 Toray Ind Inc Sheet for sealing rear face of solar cell
JP2008004691A (en) * 2006-06-21 2008-01-10 Toppan Printing Co Ltd Sheet for sealing backside of solar battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158633A (en) * 1988-12-12 1990-06-19 Diafoil Co Ltd Laminated film
JP2008025023A (en) * 2006-06-23 2008-02-07 Nippon Steel Corp Surface-treated metal material and metal surface treatment agent
JP2008030459A (en) * 2006-07-07 2008-02-14 Toray Ind Inc White laminated polyester film for reflective sheet
JP2008147530A (en) * 2006-12-13 2008-06-26 Tomoegawa Paper Co Ltd Back sheet for solar cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008883A (en) * 2011-06-27 2013-01-10 Mitsubishi Plastics Inc Polyester film for solar cell backside sealing material
JP2013021273A (en) * 2011-07-14 2013-01-31 Fujifilm Corp Back sheet for solar cell, and solar cell module
US20150068601A1 (en) * 2012-03-14 2015-03-12 Toyobo Co., Ltd. Sealing sheet for back surface of solar cell, and solar cell module
US10896987B2 (en) * 2012-03-14 2021-01-19 Toyobo Co., Ltd. Sealing sheet for back surface of solar cell, and solar cell module
JP2013253189A (en) * 2012-06-08 2013-12-19 Toyobo Co Ltd Easily adhesive film and method for producing the same
WO2016146982A1 (en) * 2015-03-13 2016-09-22 Dupont Teijin Films U.S. Limited Partnership Pv cells and backsheet polyester films
US11646385B2 (en) 2015-03-13 2023-05-09 Dupont Teijin Films U.S. Limited Partnership PV cells and backsheet polyester films

Also Published As

Publication number Publication date
CN102639615B (en) 2014-12-03
KR101421360B1 (en) 2014-07-24
CN102639615A (en) 2012-08-15
KR20120098786A (en) 2012-09-05
TW201132499A (en) 2011-10-01
TWI409171B (en) 2013-09-21

Similar Documents

Publication Publication Date Title
WO2011068132A1 (en) Readily bondable polyester film for solar cells
JP6241414B2 (en) Solar cell backside sealing sheet and solar cell module
EP2565936B1 (en) Laminated polyester film as protective material for rear surface of solar cell
JP5949980B2 (en) Easy-adhesive polyester film for solar cell and front sheet using the same
JP6056917B2 (en) Easy-adhesive polyester film for solar cell and back sheet using the same
JP6068802B2 (en) Polyester film for solar cell, easily adhesive polyester film for solar cell, and front sheet using the same
WO2012043000A1 (en) Polyester film for protective material for back surface of solar battery
JP5288068B1 (en) White polyester film for solar cell, solar cell back surface sealing sheet and solar cell module using the same
JP5594082B2 (en) Easy-adhesive white polyester film for solar cell and back sheet using the same
JP2011139036A (en) Easily bondable white polyester film for solar cell, and back sheet using the same
JP2011139035A (en) Easily bondable polyester film for solar cell, and back sheet using the same
JP4803317B2 (en) Easy-adhesive polyester film for solar cell and back sheet using the same
JP2012064927A (en) Easily adhesive black polyester film for solar battery and back sheet using the same
JP6372194B2 (en) Easy-adhesive polyester film for solar cell and back sheet using the same
JP2012064926A (en) Easily adhesive black polyester film for solar battery and back sheet using the same
JP6111525B2 (en) Solar cell backside sealing sheet and solar cell module
JP5679021B2 (en) Laminated polyester film for solar cell back surface protective material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054340.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127015519

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10834582

Country of ref document: EP

Kind code of ref document: A1