WO2010079798A1 - Polyester film for solar cell back surface protection film - Google Patents

Polyester film for solar cell back surface protection film Download PDF

Info

Publication number
WO2010079798A1
WO2010079798A1 PCT/JP2010/050084 JP2010050084W WO2010079798A1 WO 2010079798 A1 WO2010079798 A1 WO 2010079798A1 JP 2010050084 W JP2010050084 W JP 2010050084W WO 2010079798 A1 WO2010079798 A1 WO 2010079798A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
solar cell
back surface
mass
Prior art date
Application number
PCT/JP2010/050084
Other languages
French (fr)
Japanese (ja)
Inventor
勝也 伊藤
潤 稲垣
睦夫 西
史朗 濱本
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009001489A external-priority patent/JP5114681B2/en
Priority claimed from JP2009002369A external-priority patent/JP5572949B2/en
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Publication of WO2010079798A1 publication Critical patent/WO2010079798A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • This invention relates to the polyester film for solar cell back surface protective films.
  • a solar cell module generally has a plurality of plate-like solar cell elements sandwiched between a glass substrate on a light receiving side and a back surface protective film, It takes a structure in which the internal gap is filled with sealing resin.
  • a plastic film having excellent mechanical properties, heat resistance and moisture resistance is used for the back surface protective film.
  • Japanese Patent Laid-Open Nos. 2002-26354 and 2003-60218 propose a back surface protective film using a polyethylene terephthalate film.
  • a white back surface protective film may be used for the purpose of improving the power generation efficiency of a solar cell.
  • JP 2002-26354 A Japanese Patent Laid-Open No. 2003-60218 JP-A-60-250946 JP 2004-247390 A JP 2002-134771 A JP 2007-208179 A JP 2008-85270 A
  • a white polyester film By using a white polyester film, it is possible to reflect sunlight and increase power generation efficiency.
  • a white polyester film needs to add a large amount of particles to a polyester substrate. Therefore, in order to improve their dispersibility and mixing state, the raw material is preliminarily mixed with two or more kinds of materials, and the resin is deteriorated because the melting time is increased even in a normal extrusion process. Easy to do. Therefore, when used as a solar cell under high temperature and high humidity, it has been a problem that durability is poor.
  • the present invention relates to the above-mentioned problem, that is, a polyester film for a solar cell back surface protective film having good durability under high temperature and high humidity.
  • the present invention relates to a polyester film for a solar cell back surface protective film having good adhesion to EVA resin.
  • the present invention relates to a polyester film for a solar cell back surface protective film having good durability under light irradiation.
  • the first invention contains 3 to 50% by mass of fine particles having a whiteness of 50 or more and an average particle size of 0.1 to 3 ⁇ m, and the acid value of the film is 1 (eq / ton) to 30 (eq / ton)
  • It is a polyester film for solar cell back surface protective film characterized by the following.
  • 2nd invention is the said polyester film for solar cell back surface protective films which has a coating layer which has at least 1 sort (s) of a polyester resin, a polyurethane resin, or a polyacryl resin as a main component at least on one side.
  • a third invention is the above-mentioned polyester film for a solar cell backside protective film, characterized by having a thermal adhesive layer having a thickness of 1.0 to 40 ⁇ m mainly composed of an amorphous polyester resin on at least one side.
  • a fourth invention is the polyester film for a solar cell back surface protective film, wherein the fine particles are titanium dioxide fine particles mainly composed of a rutile type and contain 3 to 50% by mass of the fine particles.
  • 5th invention is the said polyester film for solar cell back surface protective films characterized by having an apparent specific gravity of 0.7 or more and 1.3 or less by having many fine cavities inside a film.
  • the sixth invention contains a polyester layer (skin layer) containing many cavities derived from fine particles having an average particle size of 0.1 to 3 ⁇ m, and contains many cavities derived from a thermoplastic resin incompatible with polyester.
  • 7th invention is the polyester film for solar cell back surface protective films characterized by the acid value of polyester used as a film raw material being 1 (eq / ton) or more and 30 (eq / ton) or less.
  • the present invention has light reflection efficiency and excellent durability under high temperature and high humidity. Furthermore, the preferable aspect of this invention has favorable adhesiveness with EVA resin in addition to the said effect. Furthermore, the preferable aspect of this invention has the outstanding durability under light irradiation in addition to the said effect. Therefore, it is useful in solar cells, particularly thin film silicon solar cells.
  • the polyester in the present invention is a polycondensation of an aromatic dicarboxylic acid or its ester such as terephthalic acid, isophthalic acid or naphthalenedicarboxylic acid with a glycol such as ethylene glycol, diethylene glycol, 1,4-butanediol or neopentyl glycol.
  • Polyester produced In addition to the method of directly reacting aromatic dicarboxylic acid and glycol, these polyesters can be polycondensed by transesterification of alkyl ester of aromatic dicarboxylic acid and glycol, or diglycol ester of aromatic dicarboxylic acid. Can be produced by a method such as polycondensation.
  • polyesters include polyethylene terephthalate, polyethylene butylene terephthalate, polyethylene-2,6-naphthalate and the like.
  • This polyester may be a homopolymer or a copolymer of a third component.
  • a polyester having an ethylene terephthalate unit, a butylene terephthalate unit or an ethylene-2,6-naphthalate unit of 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more is preferable. .
  • the polyester used as the film raw material preferably has an acid value of 1 (eq / ton) to 30 (eq / ton), more preferably 2 (eq / ton) to 20 (eq / ton), Preferably they are 2 (eq / ton) or more and 16 (eq / ton) or less. If it exceeds 30 (eq / ton), a film having good hydrolysis resistance cannot be obtained. Polyesters of less than 1 (eq / ton) are difficult to produce industrially.
  • the white polyester film substrate used in the present invention is preferably a white polyester film having a whiteness of 50 or more.
  • the white polyester film substrate used in the present invention is preferably a white polyester film having a thickness of 38 to 1000 ⁇ m, more preferably 50 to 250 ⁇ m, and further preferably 75 to 188 ⁇ m.
  • the thickness of the substrate is less than 38 ⁇ m, the rigidity as a support becomes insufficient, and when it exceeds 1000 ⁇ m, it is not preferable because processing such as cutting becomes difficult.
  • the film of the present invention contains fine particles having an average particle diameter of 0.1 to 3 ⁇ m in an amount of 3 to 50% by mass, preferably 4 to 25% by mass, based on the total mass of the film. If it is 0.1 ⁇ m or less or exceeds 3 ⁇ m, it is difficult to make the whiteness of the film 50 or more even if the addition amount is increased. Moreover, if it is less than 3 mass%, it will become difficult to make whiteness into 50 or more. If it exceeds 50% by mass, the film weight increases, making it difficult to handle it during processing.
  • the average particle diameter of this invention is calculated
  • inorganic or organic particles can be used as the fine particles of the present invention.
  • these fine particles include silica, kaolinite, talc, calcium carbonate, zeolite, alumina, barium sulfate, carbon black, acid value zinc, titanium oxide, zinc sulfide, and organic white pigment, but are not particularly limited. Absent. From the viewpoint of improving whiteness and productivity, titanium oxide or barium sulfate is preferable, and titanium oxide is more preferable. The titanium oxide may be either anatase type or rutile type. Further, the surface of the fine particles may be subjected to an inorganic treatment such as alumina or silica, or may be subjected to an organic treatment such as silicon or alcohol.
  • the addition of fine particles into the film is possible by using a known method, but a master batch method (MB method) in which a polyester resin and fine particles are mixed in an extruder in advance is preferable. Further, it is possible to adopt a method in which a polyester resin and fine particles which have not been dried in advance are put into an extruder and MB is produced while moisture and air are deaerated. Furthermore, it is preferable to prepare an MB using a polyester resin that has been slightly dried in advance to suppress an increase in the acid value of the polyester. In this case, a method of extruding while degassing, a method of extruding without deaeration with a sufficiently dried polyester resin, and the like can be mentioned.
  • the UV irradiation when excellent durability is required even under light irradiation, specifically, when the UV irradiation is performed at 63 ° C., 50% Rh, irradiation intensity of 100 mW / cm 2 for 100 hours, the elongation at break is maintained.
  • the rate is preferably 35% or more, more preferably 40% or more.
  • titanium dioxide mainly composed of rutile type As fine particles to the film of the present invention.
  • Titanium oxide is mainly known in two crystalline forms, rutile and anatase.
  • the anatase has a very high spectral reflectance of ultraviolet rays
  • the rutile type has a high absorption rate of ultraviolet rays (spectral spectroscopy). (Reflectance is small).
  • the present inventor paid attention to such a difference in spectral characteristics in the crystal form of titanium dioxide, and by using the rutile-type ultraviolet absorption performance, in the polyester film for protecting the back surface of the solar cell, the light resistance was improved. is there.
  • the present invention is excellent in film durability under light irradiation even when other ultraviolet absorbers are not substantially added. For this reason, problems such as contamination due to bleeding out of the ultraviolet absorber and a decrease in adhesion are unlikely to occur.
  • the titanium dioxide particle in the preferable aspect of this invention has a rutile type as a main body.
  • “main body” means that the amount of rutile titanium dioxide in all titanium dioxide particles exceeds 50% by mass.
  • the amount of anatase type titanium dioxide in all the titanium dioxide particles is 10 mass% or less. More preferably, it is 5 mass% or less, Most preferably, it is 0 mass% or less. If the content of anatase type titanium dioxide exceeds the above upper limit, the amount of rutile type titanium dioxide in the total titanium dioxide particles may be reduced, resulting in insufficient ultraviolet absorption performance. Since the photocatalytic action is strong, the light resistance tends to be lowered by this action.
  • Rutile titanium dioxide and anatase titanium dioxide can be distinguished by X-ray structure diffraction and spectral absorption characteristics.
  • titanium dioxide fine particles having an average particle diameter of 0.1 to 3 ⁇ m are contained in the film of the present invention in an amount of 3 to 50% by mass, preferably 4 to 4% by mass. 25% by mass is contained. If it is 0.1 ⁇ m or less or exceeds 3 ⁇ m, it is difficult to make the whiteness of the film 50 or more even if the addition amount is increased. Moreover, if it is less than 3 mass%, durability under light irradiation may fall. If it exceeds 50% by mass, the film weight increases, making it difficult to handle it during processing.
  • fine particles other than titanium dioxide when fine particles other than titanium dioxide are contained, even when the average particle size and the added amount of the fine particles are within the above ranges, durability under light irradiation is lowered.
  • fine particles other than rutile type titanium oxide fine particles such as silica, kaolinite, talc, calcium carbonate, zeolite, alumina, barium sulfate, carbon black, acid value zinc, zinc sulfide, organic white pigment, etc. in addition to anatase type titanium dioxide Is exemplified.
  • the rutile titanium dioxide fine particles described above may be subjected to inorganic treatment such as alumina or silica on the fine particle surface, or may be subjected to organic treatment such as silicon or alcohol.
  • Rutile titanium dioxide may be subjected to particle size adjustment and coarse particle removal using a purification process before blending with the polyester composition.
  • a purification process for example, a jet mill or a ball mill can be applied as a pulverizing means, and as a classification means, for example, dry or wet centrifugation can be applied.
  • the film of the present invention may contain many fine cavities inside.
  • the apparent specific gravity is 0.7 or more and 1.3 or less, preferably 0.9 or more and 1.3 or less, more preferably 1.05 or more and 1.2 or less. If it is less than 0.7, the film is not elastic and processing at the time of producing the solar cell module becomes difficult. Even if the film exceeds 1.3, it is within the range of the film of the present invention. However, if the film exceeds 1.3, the film weight is so large that it may become an obstacle when considering the reduction in weight of solar cells. There is.
  • the fine cavities can be formed from a thermoplastic resin that is incompatible with the fine particles and / or polyester described below.
  • the term “cavity derived from a thermoplastic resin that is incompatible with fine particles or polyester” means that there are voids around the fine particles or the thermoplastic resin. For example, confirm with a cross-sectional photograph of the film by an electron microscope. Can do.
  • the polyester used in the present invention can be optionally added with an incompatible thermoplastic resin, and is not particularly limited as long as it is incompatible with the polyester.
  • an incompatible thermoplastic resin includes polystyrene resins, polyolefin resins, polyacrylic resins, polycarbonate resins, polysulfone resins, and cellulose resins.
  • polystyrene resins or polyolefin resins such as polymethylpentene and polypropylene are preferably used.
  • the mixing amount of these void forming agents that is, the thermoplastic resin incompatible with the polyester, with respect to the polyester varies depending on the amount of the target void, but may be in the range of 3 to 20% by mass with respect to the entire film. More preferably, it is 5 to 18% by mass. And if it is less than 3 mass%, there exists a limit in increasing the production amount of a cavity. On the other hand, if it is 20% by mass or more, the stretchability of the film is remarkably impaired, and the heat resistance, strength, and waist strength are impaired.
  • the polyester film for a solar cell back surface protective film of the present invention can be a void-containing polyester film.
  • the polyester film of the present invention may have a single layer or a laminated structure composed of two or more layers.
  • the laminated structure includes a skin layer composed of a polyester layer containing many cavities derived from fine particles having an average particle diameter of 0.1 to 3 ⁇ m, and a polyester containing many cavities derived from a thermoplastic resin incompatible with polyester. It is also a preferred embodiment of the present invention to have a core layer composed of layers.
  • the manufacturing method is arbitrary and is not particularly limited, for example, it can be manufactured as follows.
  • Each raw material is mixed, put into an extruder, melted, extruded from a T-die, and adhered to a cooling roll to obtain an unstretched sheet.
  • the unstretched sheet is further expanded by stretching between rolls having a speed difference (roll stretching), stretching by gripping and expanding by a clip (tenter stretching), stretching by expanding with air pressure (inflation stretching), and the like.
  • Axial orientation treatment By performing the orientation treatment, interfacial peeling occurs between the polyester / incompatible thermoplastic resin and between the polyester / fine particles, and many fine cavities appear. Therefore, the conditions for stretching / orienting the unstretched sheet are closely related to the formation of cavities.
  • the first-stage longitudinal stretching process is the most important process for forming many fine cavities inside the film.
  • stretching is performed between two or many rolls having different peripheral speeds.
  • a heating means at this time a method using a heating roll or a method using a non-contact heating method may be used, or they may be used in combination.
  • the most preferable stretching method is a method using both roll heating and non-contact heating.
  • the film is first preheated to a temperature of 50 ° C. to the glass transition point of polyester using a heating roll, and then heated with an infrared heater.
  • the uniaxially stretched film thus obtained is introduced into a tenter and stretched 2.5 to 5 times in the width direction.
  • a preferred stretching temperature at this time is 100 ° C. to 200 ° C.
  • the biaxially stretched film thus obtained is subjected to heat treatment as necessary.
  • the heat treatment is preferably carried out in a tenter, preferably in the range of the melting point Tm-50 ° C. to Tm of the polyester.
  • the coating solution used for forming the coating layer of the present invention is preferably an aqueous coating solution containing at least one of water-soluble or water-dispersible copolymerized polyester resin, acrylic resin and polyurethane resin.
  • these coating liquids include water-soluble or water-dispersible copolyester resin solutions, acrylic resin solutions, polyurethane resin solutions disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, and the like. Etc.
  • the coating layer can be obtained by applying the coating liquid on one or both sides of a uniaxially stretched film in the longitudinal direction, drying at 100 to 150 ° C., and stretching in the transverse direction.
  • the final coating amount of the coating layer is preferably controlled to 0.05 to 0.20 g / m 2 . If the coating amount is less than 0.05 g / m 2 , adhesion with the resulting EVA resin may be insufficient. On the other hand, when the coating amount exceeds 0.20 g / m 2 , blocking resistance may be lowered.
  • the coating amounts of the coating layers on both sides may be the same or different, and can be independently set within the above range.
  • the particles to be included in the coating layer include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide, barium sulfate, calcium fluoride, and fluoride.
  • Inorganic particles such as lithium, zeolite, molybdenum sulfide and mica, crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate resin particles, benzoguanamine / formaldehyde condensate particles, melamine / formaldehyde condensate particles, polytetrafluoroethylene particles And heat resistant polymer particles.
  • silica particles having a relatively close refractive index to the resin component of the coating layer are preferable.
  • a known method can be used as a method for applying the coating solution.
  • reverse roll coating method gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, etc.
  • spray coating method air knife coating method, wire bar coating method, pipe doctor method, etc.
  • wire bar coating method wire bar coating method
  • pipe doctor method etc.
  • thermo adhesive layer in order to improve the adhesiveness with the EVA resin, it is also preferable to laminate a thermal adhesive layer mainly composed of an amorphous polyester resin on at least one surface of the white polyester film substrate.
  • main component as used herein means that the amorphous polyester resin is 50% by mass or more based on the mass of the entire thermal bonding layer.
  • the thermal adhesive layer here is a layer that can be thermally bonded to the EVA resin under heating conditions. By laminating this thermal adhesive layer on the white polyester film substrate, it is possible to adhere to the EVA resin without providing an adhesive layer. It is important that the thickness of the thermal adhesive layer is 1 to 40 ⁇ m per layer.
  • the thickness of the thermal adhesive layer is preferably 3 to 30 ⁇ m, more preferably 5 to 25 ⁇ m, and particularly preferably 10 to 20 ⁇ m for the above reasons.
  • the means for providing the thermal adhesive layer on the surface of the white polyester film substrate is not particularly limited, but an unstretched sheet is produced using a method in which two kinds of resins are coextruded and laminated in a melt extrusion process, a so-called coextrusion method. It is preferable. Moreover, it is preferable to laminate
  • the thermal adhesive layer in the present invention is mainly composed of an amorphous polyester resin, and has a thermal expansion coefficient greatly different from that of a base material layer mainly composed of a crystalline polyester resin. For this reason, when a thermal adhesive layer is provided only on one side of the substrate, it may curl like a bimetal depending on processing conditions and use conditions, and there is a concern about poor flatness and handling properties.
  • the thermal adhesive layers are provided on both surfaces of the substrate, the thickness ratio of the front and back thermal adhesive layers is preferably 0.5 to 2.0. When it is out of this range, curling may occur due to the above reason.
  • the curl value after heating at 110 ° C. for 30 minutes in a no-load state is 5 mm or less, there will be no substantial hindrance to handling properties. It is preferably 3 mm or less, and more preferably 1 mm or less.
  • the thermal adhesive layer in the present invention is important for the thermal adhesive layer in the present invention to use an amorphous polyester resin as a main component occupying 50% by mass or more of the layer.
  • the amorphous polyester resin here is a polyester resin having a heat of fusion of 20 J / g or less.
  • the heat of fusion is measured by heating at a rate of 10 ° C./min in a nitrogen atmosphere using a DSC apparatus according to “Method for measuring the heat of transition of plastic” described in JIS − K7122.
  • the heat of fusion is preferably 10 J / g or less, and more preferably 5 J / g or less. When the amount of heat of fusion exceeds 20 J / g, sufficient heat adhesion cannot be obtained.
  • the amorphous polyester resin preferably has a glass transition temperature of 50 ° C. or higher and 100 ° C. or lower.
  • This glass transition temperature is a DSC curve obtained by heating at a rate of 10 ° C./min in a nitrogen atmosphere using a DSC apparatus according to “Method for measuring plastic transition temperature” described in JIS − K7121. Is the midpoint glass transition temperature (Tmg) determined based on
  • the glass transition temperature of the amorphous polyester resin A is preferably 60 to 90 ° C, more preferably 70 to 85 ° C.
  • the glass transition temperature is less than 50 ° C., the heat adhesion is insufficient and deforms, or the thermal adhesive layer peels off again due to the temperature rise during use.
  • the glass transition temperature exceeds 100 ° C., it is necessary to heat the solar cell panel at a higher temperature, which increases the burden on the electric circuit and the like.
  • the kind of the amorphous polyester resin is not particularly limited, but from the viewpoint of versatility, cost, durability, or thermal adhesiveness, those in which various copolymerization components are introduced into the molecular skeleton of the aromatic polyester resin are preferable.
  • the copolymer components to be introduced include ethylene glycol, diethylene glycol, neopentyl glycol (NPG), cyclohexanedimethanol (CHDM), propanediol, butanediol, and the acid components include terephthalic acid, isophthalic acid, and naphthalene. Dicarboxylic acid and the like are preferably used.
  • a copolymer polyester resin in which isophthalic acid, CHDM, and / or NPG is introduced into the molecular skeleton of a polyethylene terephthalate resin is preferable from the viewpoint of processability, and one in which NPG is introduced is more preferable.
  • the thermal adhesive layer in the present invention preferably contains a thermoplastic resin that is incompatible with the amorphous polyester resin.
  • a thermoplastic resin that is incompatible with the amorphous polyester resin.
  • thermoplastic resin that is incompatible with the amorphous polyester resin is not particularly limited, but as a highly versatile resin, polystyrene, polycarbonate, acrylic, cyclic polyolefin and copolymers thereof, crystalline polyolefin such as polypropylene and polyethylene, etc. And copolymers thereof.
  • polystyrene, polyolefin, or a copolymer thereof is preferable, and polystyrene, polypropylene, or polyethylene is more preferable.
  • the amount of the thermoplastic resin contained in the thermal adhesive layer is 1 to 30% by mass with respect to the material constituting the thermal adhesive layer. 3 to 25% by mass is preferable, and 5 to 20% by mass is more preferable.
  • the content of the thermoplastic resin is less than 1% by mass, the necessary slip properties cannot be obtained.
  • it exceeds 30% by mass the thermal adhesiveness is inhibited.
  • the above-mentioned fine particles are contained in the heat-adhesive layer as long as the heat-adhesive property is not impaired.
  • the fine particles white pigments, that is, titanium oxide or barium sulfate and composite particles thereof are preferable, and titanium oxide is more preferably used from the viewpoint of concealment effect.
  • These white pigments are preferably contained in the heat bonding layer in an amount of 30% by mass or less, and more preferably 15% by mass or less. If added beyond the above range, the thermal adhesiveness may be inhibited.
  • the film of the present invention has an acid value of 1 (eq / ton) to 30 (eq / ton), preferably 2 (eq / ton) to 20 (eq / ton), more preferably 2 (eq / ton). ton) to 16 (eq / ton). If it exceeds 30 (eq / ton), a film having good hydrolysis resistance cannot be obtained. A film of less than 1 (eq / ton) is difficult to produce industrially.
  • the film of the present invention has a breaking elongation retention ratio of 60% or more, preferably 70% or more, more preferably 80% or more, which is an evaluation of hydrolysis resistance. If it is less than 60%, the durability as a solar cell back surface protective film is low and cannot be used.
  • sample A film or a raw material polyester resin is pulverized and vacuum-dried at 70 ° C. for 24 hours, and then weighed in a range of 0.20 ⁇ 0.0005 g using a balance. The mass at that time is defined as W (g).
  • a sample weighed with 10 ml of benzyl alcohol is added to a test tube, the test tube is immersed in a benzyl alcohol bath heated to 205 ° C., and the sample is dissolved while stirring with a glass rod. Samples with dissolution times of 3 minutes, 5 minutes, and 7 minutes are designated as A, B, and C, respectively.
  • the titration amounts of samples a, b, and c are Xa, Xb, and Xc (ml).
  • Carboxyl terminal concentration (eq / ton) [(V ⁇ V0) ⁇ 0.04 ⁇ NF ⁇ 1000] / W NF: factor W of 0.04 mol / l potassium hydroxide solution: sample mass (g)
  • thermocompression-bonded sample at 23 ° C and 50% RH in accordance with JIS-Z0237 with the unattached film sandwiched between the upper and lower clips at a peel angle of 180 ° and a pulling speed of 100 mm / min. did.
  • EVA is an abbreviation for ethylene-vinyl acetate copolymer.
  • Example 1 (Preparation of fine particle-containing masterbatch) The average particle size was 50% by mass of polyethylene terephthalate resin (PET-I) having an intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton), which was dried at 120 ° C. under 10 ⁇ 3 torr for about 8 hours in advance.
  • PET-I polyethylene terephthalate resin
  • a mixture of 50% by mass of rutile titanium dioxide with a diameter of 0.3 ⁇ m (electron microscopic method) is supplied to a vent type twin screw extruder, kneaded and extruded at 275 ° C while degassing to produce fine particles (titanium oxide) Containing masterbatch (MB-I) pellets were prepared.
  • the acid value of this pellet was 8.6 (eq / ton).
  • the raw material of the layer (A) in which 50% by mass of polyethylene terephthalate resin (PET-I) and 50% by mass of the previously prepared MB-I were mixed, 90% by mass of PET-I and MB-I were 10% by mass is used as a raw material for the layer (B), put into separate extruders, mixed and melted at 280 ° C., and then, using a feed block, the layer B is joined to one side of the layer A in a molten state. .
  • the discharge rate ratio of the A layer and the B layer was controlled using a gear pump.
  • the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to prepare an unstretched sheet so as to be an A / B / A layer.
  • the obtained unstretched sheet was uniformly heated to 70 ° C. using a heating roll, and 3.3-fold roll stretching was performed at 90 ° C.
  • the obtained uniaxially stretched film was led to a tenter, heated to 140 ° C. and transversely stretched 3.7 times, fixed in width and subjected to heat treatment at 220 ° C. for 5 seconds, and further at 220 ° C. in the width direction of 4%.
  • a plastic film for a solar cell back surface protective film having a thickness of 188 ⁇ m (19/150/19) was obtained.
  • Example 2 Preparation of cavity forming agent
  • 20% by mass of polystyrene with a melt flow rate of 1.5 manufactured by Nippon Polystyrene Co., Ltd., G797N
  • 20% by mass of vapor phase polymerization polypropylene with a melt flow rate of 3.0 melt flow rate of 3.0
  • melt flow 60% by mass pellet of polymethylpentene having a rate of 180 Mitsubishi Chemicals Co., Ltd .: TPX DX-820 was supplied to a twin screw extruder and kneaded sufficiently to prepare a cavity forming agent (MB-II).
  • a plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 1 except that PET-I: MB-I: MB-II was changed to 82: 10: 8 (mass%) as a raw material for the B layer. It was.
  • Example 3 Example 4, Comparative Example 1 Except that the acid value of polyethylene terephthalate resin as a film raw material was 10.1, 19.5, 30.2 (PET-II, PET-III, PET-IV, respectively) A plastic film for the battery back surface protective film was obtained.
  • Comparative Example 2 In the preparation of a master batch containing fine particles, a polyethylene terephthalate resin having an undried intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton) stored in a paper bag as a raw material in a place where temperature and humidity are not controlled (PET-I) 50 mass% mixed with 50 mass% rutile type titanium dioxide having an average particle size of 0.3 ⁇ m (electron microscopic method) is supplied to a vent type twin screw extruder and kneaded to 305 ° C. A masterbatch (MB-III) pellet containing fine particles (titanium oxide) was prepared while degassing with a. The acid value of this pellet was 38.4 (eq / ton). Other than that obtained the plastic film for solar cell back surface protective films by the method similar to Example 2.
  • Example 5 In the production of the master batch containing fine particles, barium sulfate having an average particle size of 0.6 ⁇ m was used instead of rutile titanium dioxide (MB-IV), and it was used instead of MB-I as a raw material for the A layer.
  • MB-IV rutile titanium dioxide
  • a plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 2.
  • Example 6 (Preparation of fine particle-containing masterbatch) The average particle size was 50% by mass of polyethylene terephthalate resin (PET-I) having an intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton), which was dried at 120 ° C. under 10 ⁇ 3 torr for about 8 hours in advance.
  • PET-I polyethylene terephthalate resin
  • a mixture of 50% by mass of rutile titanium dioxide with a diameter of 0.3 ⁇ m (electron microscopic method) is supplied to a vent type twin screw extruder, kneaded and extruded at 275 ° C while degassing to produce fine particles (titanium oxide) Containing masterbatch (MB-I) pellets were prepared.
  • the acid value of this pellet was 8.6 (eq / ton).
  • a transesterification reaction and a polycondensation reaction were carried out by a conventional method, and as a dicarboxylic acid component (based on the total dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal base-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as a glycol component (based on the entire glycol component) was prepared.
  • the raw material of the layer (A) in which 50% by mass of polyethylene terephthalate resin (PET-I) and 50% by mass of the previously prepared MB-I were mixed, 90% by mass of PET-I and MB-I were 10% by mass is used as a raw material for the layer (B), put into separate extruders, mixed and melted at 280 ° C., and then, using a feed block, the layer B is joined to one side of the layer A in a molten state. .
  • the discharge rate ratio of the A layer and the B layer was controlled using a gear pump.
  • the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to prepare an unstretched sheet so as to be an A / B / A layer.
  • the obtained unstretched sheet was uniformly heated to 70 ° C. using a heating roll, and 3.3-fold roll stretching was performed at 90 ° C. to obtain a uniaxially stretched polyester film.
  • the coating solution was applied to one side of the obtained uniaxially stretched polyester film so that the final coating layer thickness was 0.08 g / m 2, and then dried at 135 ° C.
  • Example 7 Preparation of cavity forming agent
  • 20% by mass of polystyrene with a melt flow rate of 1.5 manufactured by Nippon Polystyrene Co., Ltd., G797N
  • 20% by mass of vapor phase polymerization polypropylene with a melt flow rate of 3.0 melt flow rate of 3.0
  • melt flow 60% by mass pellet of polymethylpentene having a rate of 180 Mitsubishi Chemicals Co., Ltd .: TPX DX-820 was supplied to a twin screw extruder and kneaded sufficiently to prepare a cavity forming agent (MB-II).
  • a plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 6 except that PET-I: MB-I: MB-II was changed to 82: 10: 8 (mass%) as a raw material for the B layer. It was.
  • Example 8 Example 9, Comparative Example 3 Except that the acid value of polyethylene terephthalate resin as a film raw material was 10.1, 19.5, 30.2 (PET-II, PET-III, PET-IV, respectively) A plastic film for the battery back surface protective film was obtained.
  • Comparative Example 4 In the preparation of a master batch containing fine particles, a polyethylene terephthalate resin having an undried intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton) stored in a paper bag as a raw material in a place where temperature and humidity are not controlled (PET-I) 50 mass% mixed with 50 mass% rutile type titanium dioxide having an average particle size of 0.3 ⁇ m (electron microscopic method) is supplied to a vent type twin screw extruder and kneaded to 305 ° C. A masterbatch (MB-III) pellet containing fine particles (titanium oxide) was prepared while degassing with a. The acid value of this pellet was 38.4 (eq / ton). Other than that obtained the plastic film for solar cell back surface protective films by the method similar to Example 7. FIG.
  • Example 10 In the production of the master batch containing fine particles, barium sulfate having an average particle size of 0.6 ⁇ m was used instead of rutile titanium dioxide (MB-IV), and it was used instead of MB-I as a raw material for the A layer.
  • MB-IV rutile titanium dioxide
  • a plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 7.
  • Example 11 A polyester film for a solar cell back surface protective film was obtained in the same manner as in Example 7 except that the coating layer was not provided.
  • Example 12 (Preparation of fine particle-containing masterbatch)
  • a polyethylene terephthalate resin (PET-A) having an intrinsic viscosity of 0.69 and an acid value of 8 (eq / ton) dried at 120 ° C. under a vacuum of 10 Pa for about 8 hours in advance has an average particle size of 0.1%.
  • PET-A polyethylene terephthalate resin
  • rutile titanium oxide to a vent type twin screw extruder, kneading and extruding at 275 ° C while degassing, preparing fine particle-containing master batch pellets did.
  • this master batch pellet was subjected to solid phase polymerization under a vacuum of 10 Pa until the intrinsic viscosity became 0.79, to prepare a fine particle-containing master batch (MB-A).
  • the acid value of MB-A was 23 (eq / ton).
  • amorphous polyester resin (Preparation of amorphous polyester resin) Transesterification and polycondensation reactions are carried out by conventional methods, and an amorphous polyester resin (Co-PET) comprising 100 mol% terephthalic acid as the dicarboxylic acid component, 70 mol% ethylene glycol and 30 mol% neopentyl glycol as the glycol component was prepared. This resin had an intrinsic viscosity of 0.72 and an acid value of 19 eq / ton.
  • the discharge rate ratio of the A layer and the B layer was controlled using a gear pump.
  • the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to produce an unstretched sheet having an A / B / A layer structure.
  • the obtained unstretched sheet was uniformly heated to 70 ° C. using a heating roll, and 3.3-fold roll stretching was performed at 90 ° C. to obtain a uniaxially stretched polyester film. This was led to a tenter, heated to 140 ° C. and stretched to 3.7 times, fixed in width, subjected to heat treatment at 230 ° C. for 5 seconds, and further relaxed by 4% in the width direction at 220 ° C.
  • stacked the thermal adhesive layer of 188 micrometers (19/150/19) was obtained.
  • Example 13 Preparation of coating solution
  • a water / isopropyl alcohol-based coating solution containing 1% by mass with respect to the solid content was prepared.
  • Example 14 Preparation of cavity forming agent master batch
  • 20% by mass of polystyrene having a melt flow rate of 1.5 (manufactured by Nippon Polystyrene Co., Ltd., G797N)
  • 20% by mass of vapor phase polymerization polypropylene having a melt flow rate of 3.0 (manufactured by Idemitsu Kosan Co., Ltd., F300SP)
  • 60% by mass of polymethylpentene having a melt flow rate of 180 manufactured by Mitsui Chemicals: TPX DX-820
  • TPX DX-820 60% by mass of polymethylpentene having a melt flow rate of 180
  • Example 15 The polyethylene terephthalate resin used as a raw material was changed to one having an intrinsic viscosity of 0.69 and an acid value of 19 (eq / ton) (PET-B). Further, solid phase polymerization treatment was not performed in the production of the fine particle-containing master batch, and the master batch (MB-A2) having an acid value of 39 eq / ton was used. Except this, the polyester film for solar cell back surface protective films which laminated
  • Comparative Example 5 In the preparation of the master batch containing fine particles, PET-A (water content 3500 ppm) which was not subjected to drying treatment was used, and solid phase polymerization treatment was not conducted. The acid value of the pellet (MB-A3) was 57 (eq / ton). In place of PET-A, a polyethylene terephthalate resin (PET-C) having an acid value of 31 (eq / ton) was used. Except this, the polyester film for solar cell back surface protective films which laminated
  • PET-C polyethylene terephthalate resin
  • Example 16 A master batch (MB-A4) containing fine particles was prepared using anatase-type titanium oxide having an average particle size of 0.2 ⁇ m instead of rutile-type titanium oxide.
  • a polyester film for a solar cell back surface protective film in which a thermal adhesive layer was laminated was obtained in the same manner as in Example 14 except that this was used in place of MB-A1 as a raw material for the B layer.
  • Example 17 For the raw material supplied to the extruder A, PET-A was used instead of Co-PET. Except this, a polyester film for solar cell back surface protective film having no thermal adhesive layer was obtained in the same manner as in Example 14.
  • Example 18 In Example 12, instead of the polystyrene resin supplied to the extruder A, a polyethylene resin (manufactured by Ube Industries, Umerit 2040F, melting point 116 ° C., density 0.918 g / cm 3 ) was used. The raw material ratio was changed to that shown in Table 5. This obtained the polyester film for solar cell back surface protective films which laminated
  • a polyethylene resin manufactured by Ube Industries, Umerit 2040F, melting point 116 ° C., density 0.918 g / cm 3
  • Example 19 A transesterification reaction and a polycondensation reaction were carried out by a conventional method to prepare an amorphous polyester resin composed of 80 mol% terephthalic acid and 20 mol% isophthalic acid as the dicarboxylic acid component and 100 mol% ethylene glycol as the glycol component.
  • This resin had an intrinsic viscosity of 0.67 and an acid value of 22 eq / ton. 95% by mass of this amorphous polyester resin and 5% by mass of polyethylene wax (manufactured by Mitsui Chemicals, NL500) were mixed and supplied to a twin screw extruder, and kneaded thoroughly to prepare a wax agent master batch (MB- C) was adjusted.
  • MB- C wax agent master batch
  • Example 20 The raw material supplied to the extruder A was a mixture of Co-PET, PET-A and polystyrene at the ratio shown in Table 3. Except this, a polyester film for a solar cell back surface protective film having no thermal adhesive layer was obtained in the same manner as in Example 12.
  • the polyester film for the solar cell back surface protective film of the examples within the scope of the present invention exhibited excellent durability and EVA resin adhesion.
  • the films of Comparative Examples 1 and 2 that are outside the scope of the present invention have poor durability, and the films of Examples 17, 20, and 21 have poor adhesion to the EVA resin.
  • Example 22 (Preparation of fine particle-containing masterbatch) The average particle size was 50% by mass of polyethylene terephthalate resin (PET-I) having an intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton), which was dried at 120 ° C. under 10 ⁇ 3 torr for about 8 hours in advance.
  • PET-I polyethylene terephthalate resin
  • a mixture of 50% by mass of rutile type titanium dioxide having a diameter of 0.3 ⁇ m (electron microscopic method) is supplied to a vent type twin screw extruder, kneaded and extruded at 275 ° C. while degassing, and rutile type titanium dioxide fine particles.
  • Containing masterbatch (MB-I) pellets were prepared. The acid value of this pellet was 8.6 (eq / ton).
  • the discharge rate ratio of the A layer and the B layer was controlled using a gear pump.
  • the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to prepare an unstretched sheet so as to be an A / B / A layer.
  • the obtained unstretched sheet was uniformly heated to 70 ° C. using a heating roll, and 3.3-fold roll stretching was performed at 90 ° C.
  • the obtained uniaxially stretched film was led to a tenter, heated to 140 ° C. and transversely stretched 3.7 times, fixed in width and subjected to heat treatment at 220 ° C. for 5 seconds, and further at 220 ° C. in the width direction of 4%.
  • a plastic film for a solar cell back surface protective film having a thickness of 188 ⁇ m (19/150/19) was obtained.
  • Example 23 Preparation of cavity forming agent
  • 20% by mass of polystyrene with a melt flow rate of 1.5 manufactured by Nippon Polystyrene Co., Ltd., G797N
  • 20% by mass of vapor phase polymerization polypropylene with a melt flow rate of 3.0 melt flow rate of 3.0
  • melt flow 60% by mass pellet of polymethylpentene having a rate of 180 Mitsubishi Chemicals Co., Ltd .: TPX DX-820
  • a twin screw extruder and kneaded sufficiently to prepare a cavity forming agent (MB-II).
  • a plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 22 except that PET-I: MB-I: MB-II was changed to 80: 12: 8 (mass%) as a raw material for the B layer. It was.
  • Example 24, Example 25, Comparative Example 7 A solar cell was produced in the same manner as in Example 23 except that the acid value of polyethylene terephthalate resin as a film raw material was 10.1, 19.5, 30.2 (PET-II, PET-III, and PET-IV, respectively). A plastic film for the battery back surface protective film was obtained.
  • Example 26 A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 24 except that the amount of MB-I added in Example 24 was changed as shown in the table.
  • Example 27 In the preparation of the fine particle-containing masterbatch, as a raw material, 50% by mass of polyethylene terephthalate resin (PET-I) and 50% by mass of anatase-type titanium dioxide having an average particle size of 0.3 ⁇ m (electron microscopic method) are bent. The mixture was supplied to a shaft extruder, kneaded and extruded at 275 ° C. while degassing to prepare fine particle-containing master batch (MB-III) pellets. The acid value of this pellet was 8.1 (eq / ton). A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 23 except that MB-III was used instead of the fine particle-containing master batch MB-I.
  • PET-I polyethylene terephthalate resin
  • anatase-type titanium dioxide having an average particle size of 0.3 ⁇ m electrostatic method
  • Comparative Example 8 In the preparation of a master batch containing fine particles, a polyethylene terephthalate resin having an undried intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton) stored in a paper bag as a raw material in a place where temperature and humidity are not controlled (PET-I) 50 mass% mixed with 50 mass% rutile type titanium dioxide having an average particle size of 0.3 ⁇ m (electron microscopic method) is supplied to a vent type twin screw extruder and kneaded to 305 ° C. A masterbatch (MB-IV) pellet containing fine particles (titanium oxide) was prepared while degassing with a vacuum. The acid value of this pellet was 38.4 (eq / ton). A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 23 except that MB-IV was used instead of the fine particle-containing master batch MB-I.
  • PET-I polyethylene terephthalate resin having an undried intrinsic
  • Example 28 A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 22 except that MB-III was used instead of the fine particle-containing master batch MB-I.
  • Example 29 In the preparation of the master batch containing fine particles, barium sulfate having an average particle diameter of 0.6 ⁇ m was used instead of rutile titanium dioxide (MB-V), and it was used instead of MB-I as a raw material for the A layer.
  • MB-V rutile titanium dioxide
  • a plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 23.
  • the polyester film for solar cell back surface protective film of the present invention is excellent in durability and light reflection efficiency under high temperature and high humidity, and is useful as a material constituting the solar cell back surface protective film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a polyester film for a solar cell back surface protection film for a thin film silicon solar cell, which has excellent durability under high temperature and high humidity. The polyester film for a solar cell back surface protection film is characterized in that: whiteness is 50 or greater; 3‑50 mass% of microparticles, the mean particle size of which is 0.1‑3 µm, are contained; and a film acid value is at least 1 (eq/ton) and not more than 30 (eq/ton).

Description

太陽電池裏面保護膜用ポリエステルフィルムPolyester film for solar cell back surface protective film
 本発明は太陽電池裏面保護膜用ポリエステルフィルムに関する。 This invention relates to the polyester film for solar cell back surface protective films.
 石油燃料に由来しないエネルギーを利用して電力を得ることのできる太陽電池は、環境保護の面からその要求が高まっている。太陽電池モジュールは、例えば実開平6-38264号公報に記載があるように、一般的には、受光側のガラス基板と、裏面保護膜との間に、複数の板状太陽電池素子を挟み、内部の隙間に封止樹脂を充填した構造をとる。 The demand for solar cells capable of obtaining power using energy not derived from petroleum fuel is increasing from the viewpoint of environmental protection. As described in, for example, Japanese Utility Model Publication No. 6-38264, a solar cell module generally has a plurality of plate-like solar cell elements sandwiched between a glass substrate on a light receiving side and a back surface protective film, It takes a structure in which the internal gap is filled with sealing resin.
 裏面保護膜には、優れた機械的性質、耐熱性、耐湿性を有するプラスチックフィルムが用いられる。例えば、特開2002-26354号公報や特開2003-60218号公報には、ポリエチレンテレフタレートフィルムを用いた裏面保護膜が提案されている。そして、太陽電池の発電効率を高める目的で、白色の裏面保護膜を用いることがある。 プ ラ ス チ ッ ク A plastic film having excellent mechanical properties, heat resistance and moisture resistance is used for the back surface protective film. For example, Japanese Patent Laid-Open Nos. 2002-26354 and 2003-60218 propose a back surface protective film using a polyethylene terephthalate film. And a white back surface protective film may be used for the purpose of improving the power generation efficiency of a solar cell.
特開2002-26354号公報JP 2002-26354 A 特開2003-60218号公報Japanese Patent Laid-Open No. 2003-60218 特開昭60-250946号公報JP-A-60-250946 特開2004-247390号公報JP 2004-247390 A 特開2002-134771号公報JP 2002-134771 A 特開2007-208179号公報JP 2007-208179 A 特開2008-85270号公報JP 2008-85270 A
 白色ポリエステルフィルムを用いることにより、太陽光を反射させ、発電効率を上げることが可能である。白色ポリエステルフィルムはポリエステル基材に対し、粒子を多量に添加する必要がある。そのため、それらの分散性や混合状態を良好にするため、2種類以上の材料を予備混合した原料を作製することや、通常の押出工程でも溶融時間を長くとることなどが行われるため樹脂が劣化しやすくなりやすい。よって、高温高湿度下において太陽電池として使用する場合に、耐久性に乏しいことが問題であった。 By using a white polyester film, it is possible to reflect sunlight and increase power generation efficiency. A white polyester film needs to add a large amount of particles to a polyester substrate. Therefore, in order to improve their dispersibility and mixing state, the raw material is preliminarily mixed with two or more kinds of materials, and the resin is deteriorated because the melting time is increased even in a normal extrusion process. Easy to do. Therefore, when used as a solar cell under high temperature and high humidity, it has been a problem that durability is poor.
 加えて、それらを太陽電池モジュールとする場合には、EVA樹脂との接着性を併せてもつことが必要となる場合がある。 In addition, when using them as solar cell modules, it may be necessary to have adhesiveness with EVA resin.
 さらに、太陽電池素子の薄膜化の進展により、太陽光がシリコン薄膜などを透過して直接裏面保護膜に到達しやすくなっている。そのため、裏面保護膜が光照射による分解・劣化が問題となりつつある。そのため、大規模な太陽光発電システムにおいては広大な太陽電池モジュールを設置するため、地面からの照り返しにより裏面保護膜が分解・劣化する場合がある。 Furthermore, with the progress of thinning of solar cell elements, sunlight easily passes through the silicon thin film and reaches the back protective film directly. Therefore, decomposition / deterioration of the back surface protective film due to light irradiation is becoming a problem. For this reason, in a large-scale photovoltaic power generation system, a vast solar cell module is installed, so that the back surface protective film may be decomposed and deteriorated due to reflection from the ground.
 本発明は、前記課題、すなわち高温高湿度下における耐久性が良好な太陽電池裏面保護膜用ポリエステルフィルムに関する。加えて、EVA樹脂との接着性が良好な太陽電池裏面保護膜用ポリエステルフィルムに関する。また、加えて光照射下における耐久性が良好な太陽電池裏面保護膜用ポリエステルフィルムに関する。 The present invention relates to the above-mentioned problem, that is, a polyester film for a solar cell back surface protective film having good durability under high temperature and high humidity. In addition, the present invention relates to a polyester film for a solar cell back surface protective film having good adhesion to EVA resin. In addition, the present invention relates to a polyester film for a solar cell back surface protective film having good durability under light irradiation.
 第1の発明は、白色度が50以上で、平均粒径が0.1~3μmの微粒子を3~50質量%含有し、フィルムの酸価が1(eq/ton)以上30(eq/ton)以下であることを特徴とする太陽電池裏面保護膜用ポリエステルフィルムである。
 第2の発明は、少なくとも片面にポリエステル樹脂、ポリウレタン樹脂またはポリアクリル樹脂の少なくとも1種類を主成分とする被覆層を有することを特徴とする前記太陽電池裏面保護膜用ポリエステルフィルムである。
 第3の発明は、少なくとも片面に非晶性ポリエステル樹脂を主成分とした厚さ1.0~40μmの熱接着層を有することを特徴とする前記太陽電池裏面保護膜用ポリエステルフィルムである。
 第4の発明は、前記微粒子がルチル型を主体とする二酸化チタン微粒子であって、該微粒子を3~50質量%含有することを特徴とする前記太陽電池裏面保護膜用ポリエステルフィルムである。
 第5の発明は、フィルム内部に微細な空洞を多数有することにより、フィルムの見かけ比重が0.7以上1.3以下であることを特徴とする前記太陽電池裏面保護膜用ポリエステルフィルムである。
 第6の発明は、平均粒径が0.1~3μmの微粒子に由来する空洞を多数含有するポリエステル層(スキン層)と、ポリエステルに非相溶の熱可塑性樹脂に由来する空洞を多数含有するポリエステル層(コア層)が積層されてなることを特徴とする前記太陽電池裏面保護膜用ポリエステルフィルムである。
 第7の発明は、フィルム原料となるポリエステルの酸価が1(eq/ton)以上30(eq/ton)以下であることを特徴とする前記太陽電池裏面保護膜用ポリエステルフィルムである。
The first invention contains 3 to 50% by mass of fine particles having a whiteness of 50 or more and an average particle size of 0.1 to 3 μm, and the acid value of the film is 1 (eq / ton) to 30 (eq / ton) It is a polyester film for solar cell back surface protective film characterized by the following.
2nd invention is the said polyester film for solar cell back surface protective films which has a coating layer which has at least 1 sort (s) of a polyester resin, a polyurethane resin, or a polyacryl resin as a main component at least on one side.
A third invention is the above-mentioned polyester film for a solar cell backside protective film, characterized by having a thermal adhesive layer having a thickness of 1.0 to 40 μm mainly composed of an amorphous polyester resin on at least one side.
A fourth invention is the polyester film for a solar cell back surface protective film, wherein the fine particles are titanium dioxide fine particles mainly composed of a rutile type and contain 3 to 50% by mass of the fine particles.
5th invention is the said polyester film for solar cell back surface protective films characterized by having an apparent specific gravity of 0.7 or more and 1.3 or less by having many fine cavities inside a film.
The sixth invention contains a polyester layer (skin layer) containing many cavities derived from fine particles having an average particle size of 0.1 to 3 μm, and contains many cavities derived from a thermoplastic resin incompatible with polyester. The polyester film for a solar cell back surface protective film, wherein a polyester layer (core layer) is laminated.
7th invention is the polyester film for solar cell back surface protective films characterized by the acid value of polyester used as a film raw material being 1 (eq / ton) or more and 30 (eq / ton) or less.
 本発明は、光反射効率および高温高湿度下での優れた耐久性を有する。さらに、本発明の好ましい態様は、前記効果に加え、EVA樹脂との良好な接着性を有する。また、さらに本発明の好ましい態様は、前記効果に加え、光照射下での優れた耐久性をも有する。よって、太陽電池、特に薄膜シリコン太陽電池において有用である。 The present invention has light reflection efficiency and excellent durability under high temperature and high humidity. Furthermore, the preferable aspect of this invention has favorable adhesiveness with EVA resin in addition to the said effect. Furthermore, the preferable aspect of this invention has the outstanding durability under light irradiation in addition to the said effect. Therefore, it is useful in solar cells, particularly thin film silicon solar cells.
 本発明におけるポリエステルとは、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸のごとき芳香族ジカルボン酸又はそのエステルとエチレングリコール、ジエチレングリコール、1、4-ブタンジオール、ネオペンチルグリコールのごときグリコールとを重縮合させて製造されるポリエステルである。これらのポリエステルは芳香族ジカルボン酸とグリコールとを直接反応させる方法のほか、芳香族ジカルボン酸のアルキルエステルとグリコールとをエステル交換反応させた後重縮合させるか、あるいは芳香族ジカルボン酸のジグリコールエステルを重縮合させるなどの方法によって製造することができる。かかるポリエステルの代表例としてはポリエチレンテレフタレート、ポリエチレンブチレンテレフタレートあるいはポリエチレン-2、6-ナフタレートなどが挙げられる。このポリエステルはホモポリマーであってもよく、第三成分を共重合したものであっても良い。いずれにしても本発明においては、エチレンテレフタレート単位、ブチレンテレフタレート単位あるいはエチレン-2、6-ナフタレート単位が70モル%以上、好ましくは80モル%以上、更に好ましくは90モル%以上であるポリエステルが好ましい。 The polyester in the present invention is a polycondensation of an aromatic dicarboxylic acid or its ester such as terephthalic acid, isophthalic acid or naphthalenedicarboxylic acid with a glycol such as ethylene glycol, diethylene glycol, 1,4-butanediol or neopentyl glycol. Polyester produced. In addition to the method of directly reacting aromatic dicarboxylic acid and glycol, these polyesters can be polycondensed by transesterification of alkyl ester of aromatic dicarboxylic acid and glycol, or diglycol ester of aromatic dicarboxylic acid. Can be produced by a method such as polycondensation. Typical examples of such polyester include polyethylene terephthalate, polyethylene butylene terephthalate, polyethylene-2,6-naphthalate and the like. This polyester may be a homopolymer or a copolymer of a third component. In any case, in the present invention, a polyester having an ethylene terephthalate unit, a butylene terephthalate unit or an ethylene-2,6-naphthalate unit of 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more is preferable. .
 これらのフィルム原料となるポリエステルは酸価が1(eq/ton)以上30(eq/ton)以下であることが好ましく、より好ましくは2(eq/ton)以上20(eq/ton)以下、さらに好ましくは2(eq/ton)以上16(eq/ton)以下である。30(eq/ton)を超えると、耐加水分解性の良好なフィルムが得られない。1(eq/ton)未満のポリエステルは、工業的には作製が難しい。 The polyester used as the film raw material preferably has an acid value of 1 (eq / ton) to 30 (eq / ton), more preferably 2 (eq / ton) to 20 (eq / ton), Preferably they are 2 (eq / ton) or more and 16 (eq / ton) or less. If it exceeds 30 (eq / ton), a film having good hydrolysis resistance cannot be obtained. Polyesters of less than 1 (eq / ton) are difficult to produce industrially.
 本発明に使用する白色ポリエステルフィルム基材は、白色度が50以上の白色ポリエステルフィルムであることが好ましい。この白色度が高いほど太陽光線の反射率が高いため、太陽電池モジュールとして用いた際の発電効率のために白色度は50以上であることが好ましく、60以上がより好ましく,80以上がさらに好ましい。 The white polyester film substrate used in the present invention is preferably a white polyester film having a whiteness of 50 or more. The higher the whiteness is, the higher the reflectance of sunlight is. Therefore, the whiteness is preferably 50 or more, more preferably 60 or more, and further preferably 80 or more for power generation efficiency when used as a solar cell module. .
 本発明に使用する白色ポリエステルフィルム基材は、厚さ38~1000μmの白色ポリエステルフィルムであることが好ましく、50~250μmであることがより好ましく、75~188μmであることがさらに好ましい。基材の厚さが38μmに満たない場合には支持体としての剛性が不十分となり、また1000μmを超える場合には断裁などの加工が難しくなるため好ましくない。 The white polyester film substrate used in the present invention is preferably a white polyester film having a thickness of 38 to 1000 μm, more preferably 50 to 250 μm, and further preferably 75 to 188 μm. When the thickness of the substrate is less than 38 μm, the rigidity as a support becomes insufficient, and when it exceeds 1000 μm, it is not preferable because processing such as cutting becomes difficult.
 本発明のフィルムには、平均粒径は0.1~3μmの微粒子がフィルム全質量に対して、3~50質量%、好ましくは4~25質量%含まれる。0.1μm以下または3μmを超えると、添加量を上げていってもフィルムの白色度を50以上とすることが困難となる。また、3質量%未満では、白色度を50以上とすることが困難となる。50質量%を超えるとフィルム重量が大きくなり、加工などでの取り扱いが困難になる。 The film of the present invention contains fine particles having an average particle diameter of 0.1 to 3 μm in an amount of 3 to 50% by mass, preferably 4 to 25% by mass, based on the total mass of the film. If it is 0.1 μm or less or exceeds 3 μm, it is difficult to make the whiteness of the film 50 or more even if the addition amount is increased. Moreover, if it is less than 3 mass%, it will become difficult to make whiteness into 50 or more. If it exceeds 50% by mass, the film weight increases, making it difficult to handle it during processing.
 なお、本発明の平均粒径は電顕法により求める。具体的には、以下の方法による。
 微粒子を走査型電子顕微鏡で観察し、粒子の大きさに応じて適宜倍率を変え、写真撮影したものを拡大コピーする。次いで、ランダムに選んだ少なくとも200個以上の微粒子について、各粒子の外周をトレースする。画像解析装置にてこれらのトレース像から粒子の円相当径を測定し、それらの平均値を平均粒径とする。
In addition, the average particle diameter of this invention is calculated | required by the electron microscope method. Specifically, the following method is used.
The fine particles are observed with a scanning electron microscope, the magnification is appropriately changed according to the size of the particles, and the photographed image is enlarged and copied. Next, the outer circumference of each particle is traced for at least 200 fine particles selected at random. The equivalent circle diameter of the particles is measured from these trace images with an image analysis apparatus, and the average value of these is taken as the average particle diameter.
 本発明の微粒子としては、無機または有機の粒子を用いることができる。これら微粒子としては、シリカ、カオリナイト、タルク、炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸価亜鉛、酸化チタン、硫化亜鉛、有機白色顔料等が例示されるが特に限定されるものではない。白色度の向上の点と生産性の点から、好ましくは酸化チタンまたは硫酸バリウム、より好ましくは酸化チタンである。なお、酸化チタンはアナターゼ型、ルチル型の何れでもよい。また、微粒子表面にアルミナやシリカ等の無機処理を施してもよいし、シリコン系あるいはアルコール系等の有機処理を施してもよい。 As the fine particles of the present invention, inorganic or organic particles can be used. Examples of these fine particles include silica, kaolinite, talc, calcium carbonate, zeolite, alumina, barium sulfate, carbon black, acid value zinc, titanium oxide, zinc sulfide, and organic white pigment, but are not particularly limited. Absent. From the viewpoint of improving whiteness and productivity, titanium oxide or barium sulfate is preferable, and titanium oxide is more preferable. The titanium oxide may be either anatase type or rutile type. Further, the surface of the fine particles may be subjected to an inorganic treatment such as alumina or silica, or may be subjected to an organic treatment such as silicon or alcohol.
 フィルム中への微粒子の添加は公知の方法を用いることで可能であるが、事前にポリエステル樹脂と微粒子を押出機で混合しておくマスターバッチ法(MB法)が好ましい。また、事前に乾燥させていないポリエステル樹脂と微粒子を押出機に投入し、水分や空気などを脱気しながらMBを作製する方法を採用することもできる。さらに、好ましくは、事前に少しでも乾燥したポリエステル樹脂を用いてMBを作製する方が、ポリエステルの酸価上昇を抑えられる。この場合、脱気しながら押出する方法や、十分乾燥したポリエステル樹脂により脱気をせずに押出する方法などがあげられる。 The addition of fine particles into the film is possible by using a known method, but a master batch method (MB method) in which a polyester resin and fine particles are mixed in an extruder in advance is preferable. Further, it is possible to adopt a method in which a polyester resin and fine particles which have not been dried in advance are put into an extruder and MB is produced while moisture and air are deaerated. Furthermore, it is preferable to prepare an MB using a polyester resin that has been slightly dried in advance to suppress an increase in the acid value of the polyester. In this case, a method of extruding while degassing, a method of extruding without deaeration with a sufficiently dried polyester resin, and the like can be mentioned.
 本発明の好ましい態様として、光照射下でも優れた耐久性が要求される場合、具体的には、63℃、50%Rh、照射強度100mW/cmで100時間UV照射した場合、破断伸び保持率が好ましくは35%以上、より好ましくは40%以上である。このように本発明の好ましい態様においては、光照射によってもフィルムの光分解や劣化が抑制されるため、屋外で用いられる太陽電池の裏面保護膜として好適である。 As a preferred embodiment of the present invention, when excellent durability is required even under light irradiation, specifically, when the UV irradiation is performed at 63 ° C., 50% Rh, irradiation intensity of 100 mW / cm 2 for 100 hours, the elongation at break is maintained. The rate is preferably 35% or more, more preferably 40% or more. Thus, in the preferable aspect of this invention, since photodecomposition and deterioration of a film are suppressed also by light irradiation, it is suitable as a back surface protective film of the solar cell used outdoors.
 光照射下での耐久性を上記範囲に制御するために、本発明のフィルムに微粒子としてルチル型を主体とする二酸化チタン微粒子を添加することが好ましい。酸化チタンでは、主にルチル型とアナターゼ型の2つの結晶形態が知られているが、アナターゼ型は紫外線の分光反射率が非常に大きいのに対し、ルチル型は紫外線の吸収率が大きい(分光反射率が小さい)という特性を有している。本発明者は、二酸化チタンの結晶形態におけるこうした分光特性の違いに着目し、ルチル型の紫外線吸収性能を利用することで、太陽電池裏面保護用ポリエステルフィルムにおいて、耐光性を向上させるに至ったのである。これにより本発明は他の紫外線吸収剤を実質的に添加しなくても光照射下でのフィルム耐久性に優れる。そのため、紫外線吸収剤のブリードアウトによる汚染や密着性の低下のような問題が生じにくい。 In order to control the durability under light irradiation within the above range, it is preferable to add fine particles of titanium dioxide mainly composed of rutile type as fine particles to the film of the present invention. Titanium oxide is mainly known in two crystalline forms, rutile and anatase. The anatase has a very high spectral reflectance of ultraviolet rays, whereas the rutile type has a high absorption rate of ultraviolet rays (spectral spectroscopy). (Reflectance is small). The present inventor paid attention to such a difference in spectral characteristics in the crystal form of titanium dioxide, and by using the rutile-type ultraviolet absorption performance, in the polyester film for protecting the back surface of the solar cell, the light resistance was improved. is there. As a result, the present invention is excellent in film durability under light irradiation even when other ultraviolet absorbers are not substantially added. For this reason, problems such as contamination due to bleeding out of the ultraviolet absorber and a decrease in adhesion are unlikely to occur.
 なお、上記の通り、本発明の好ましい態様における二酸化チタン粒子は、ルチル型を主体とするものである。ここでいう「主体」とは、全二酸化チタン粒子中のルチル型二酸化チタン量が50質量%を超えていることを意味する。また、全二酸化チタン粒子中のアナターゼ型二酸化チタン量が10質量%以下であることが好ましい。より好ましくは5質量%以下、特に好ましくは0質量%以下である。アナターゼ型二酸化チタンの含有量が上記上限値を超えると、全二酸化チタン粒子中に占めるルチル型二酸化チタン量が少なくなるために紫外線吸収性能が不十分となる場合がある他、アナターゼ型二酸化チタンは光触媒作用が強いため、この作用によっても耐光性が低下する傾向にある。ルチル型二酸化チタンとアナターゼ型二酸化チタンとは、X線構造回折や分光吸収特性により区別することができる。 In addition, as above-mentioned, the titanium dioxide particle in the preferable aspect of this invention has a rutile type as a main body. Here, “main body” means that the amount of rutile titanium dioxide in all titanium dioxide particles exceeds 50% by mass. Moreover, it is preferable that the amount of anatase type titanium dioxide in all the titanium dioxide particles is 10 mass% or less. More preferably, it is 5 mass% or less, Most preferably, it is 0 mass% or less. If the content of anatase type titanium dioxide exceeds the above upper limit, the amount of rutile type titanium dioxide in the total titanium dioxide particles may be reduced, resulting in insufficient ultraviolet absorption performance. Since the photocatalytic action is strong, the light resistance tends to be lowered by this action. Rutile titanium dioxide and anatase titanium dioxide can be distinguished by X-ray structure diffraction and spectral absorption characteristics.
 光照射下でも優れた耐久性が要求される場合、本発明のフィルムには、平均粒径0.1~3μmの二酸化チタン微粒子がフィルム全質量に対して3~50質量%、好ましくは4~25質量%含まれる。0.1μm以下または3μmを超えると、添加量を上げていってもフィルムの白色度を50以上とすることが困難となる。また、3質量%未満では、光照射下での耐久性が低下する場合がある。50質量%を超えるとフィルム重量が大きくなり、加工などでの取り扱いが困難になる。さらに、二酸化チタン以外の微粒子を含有させた場合には、微粒子の平均粒径、添加量が上記の範囲であっても、光照射下の耐久性が低くなる。ルチル型酸化チタン以外の微粒子としては、アナターゼ型二酸化チタンの他、シリカ、カオリナイト、タルク、炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸価亜鉛、硫化亜鉛、有機白色顔料等の微粒子が例示される。 When excellent durability is required even under light irradiation, titanium dioxide fine particles having an average particle diameter of 0.1 to 3 μm are contained in the film of the present invention in an amount of 3 to 50% by mass, preferably 4 to 4% by mass. 25% by mass is contained. If it is 0.1 μm or less or exceeds 3 μm, it is difficult to make the whiteness of the film 50 or more even if the addition amount is increased. Moreover, if it is less than 3 mass%, durability under light irradiation may fall. If it exceeds 50% by mass, the film weight increases, making it difficult to handle it during processing. Furthermore, when fine particles other than titanium dioxide are contained, even when the average particle size and the added amount of the fine particles are within the above ranges, durability under light irradiation is lowered. As fine particles other than rutile type titanium oxide, fine particles such as silica, kaolinite, talc, calcium carbonate, zeolite, alumina, barium sulfate, carbon black, acid value zinc, zinc sulfide, organic white pigment, etc. in addition to anatase type titanium dioxide Is exemplified.
 前述のルチル型二酸化チタン微粒子は、微粒子表面にアルミナやシリカ等の無機処理を施してもよいし、シリコン系あるいはアルコール系等の有機処理を施してもよい。ルチル型二酸化チタンは、ポリエステル組成物に配合する前に、精製プロセスを用いて、粒径調整、粗大粒子除去を行ってもよい。精製プロセスの工業的手段としては、粉砕手段で例えばジェットミル、ボールミルを適用することができ、分級手段としては、例えば乾式もしくは湿式の遠心分離を適用することができる。 The rutile titanium dioxide fine particles described above may be subjected to inorganic treatment such as alumina or silica on the fine particle surface, or may be subjected to organic treatment such as silicon or alcohol. Rutile titanium dioxide may be subjected to particle size adjustment and coarse particle removal using a purification process before blending with the polyester composition. As industrial means of the purification process, for example, a jet mill or a ball mill can be applied as a pulverizing means, and as a classification means, for example, dry or wet centrifugation can be applied.
 本発明のフィルムは、内部に微細な空洞を多数含有してもよい。その場合の見かけ比重は0.7以上1.3以下、好ましくは0.9以上1.3以下、より好ましくは1.05以上1.2以下である。0.7未満では、フィルムに腰がなく太陽電池モジュール作製時の加工が困難になる。1.3を越えるフィルムであっても本発明のフィルムの範囲であるが、好ましくは1.3を越えた場合にフィルム重量が大きいため太陽電池の軽量化を検討する場合の障害となる可能性がある。 The film of the present invention may contain many fine cavities inside. In that case, the apparent specific gravity is 0.7 or more and 1.3 or less, preferably 0.9 or more and 1.3 or less, more preferably 1.05 or more and 1.2 or less. If it is less than 0.7, the film is not elastic and processing at the time of producing the solar cell module becomes difficult. Even if the film exceeds 1.3, it is within the range of the film of the present invention. However, if the film exceeds 1.3, the film weight is so large that it may become an obstacle when considering the reduction in weight of solar cells. There is.
 上記の微細な空洞は、前記微粒子および/もしくは後述のポリエステルに非相溶の熱可塑性樹脂に由来して形成することができる。なお、微粒子もしくはポリエステルに非相溶の熱可塑性樹脂に由来する空洞とは前記微粒子もしくは前記熱可塑性樹脂のまわりに空洞が存在することを言い、例えばフィルムの電子顕微鏡による断面写真などで確認することができる。 The fine cavities can be formed from a thermoplastic resin that is incompatible with the fine particles and / or polyester described below. The term “cavity derived from a thermoplastic resin that is incompatible with fine particles or polyester” means that there are voids around the fine particles or the thermoplastic resin. For example, confirm with a cross-sectional photograph of the film by an electron microscope. Can do.
 本発明に用いられるポリエステルには、非相溶の熱可塑性樹脂の添加が任意であり、ポリエステルに非相溶性のものであれば特に制限されるものではない。具体的には、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリアクリル系樹脂、ポリカーボネート樹脂、ポリスルホン系樹脂、セルロース系樹脂などがあげられる。特にポリスチレン系樹脂あるいはポリメチルペンテン、ポリプロピレンなどのポリオレフィン系樹脂が好んで用いられる。 The polyester used in the present invention can be optionally added with an incompatible thermoplastic resin, and is not particularly limited as long as it is incompatible with the polyester. Specific examples include polystyrene resins, polyolefin resins, polyacrylic resins, polycarbonate resins, polysulfone resins, and cellulose resins. In particular, polystyrene resins or polyolefin resins such as polymethylpentene and polypropylene are preferably used.
 これらの空洞形成剤すなわちポリエステルに非相溶な熱可塑性樹脂のポリエステルに対する混合量は、目的とする空洞の量によって異なってくるが、フィルム全体に対して3~20質量%の範囲とすることが好ましく、更には5~18質量%が好ましい。そして、3質量%未満では、空洞の生成量を多くすることに限界がある。逆に、20質量%以上では、フィルムの延伸性が著しく損なわれ、また耐熱性や強度、腰の強さが損なわれるため好ましくない。 The mixing amount of these void forming agents, that is, the thermoplastic resin incompatible with the polyester, with respect to the polyester varies depending on the amount of the target void, but may be in the range of 3 to 20% by mass with respect to the entire film. More preferably, it is 5 to 18% by mass. And if it is less than 3 mass%, there exists a limit in increasing the production amount of a cavity. On the other hand, if it is 20% by mass or more, the stretchability of the film is remarkably impaired, and the heat resistance, strength, and waist strength are impaired.
 本発明の太陽電池裏面保護膜用ポリエステルフィルムは、空洞含有ポリエステル系フィルムとすることも可能である。本発明のポリエステルフィルムは、単層または2層以上の多層からなる積層構成であっても構わない。積層構成としては、平均粒径が0.1~3μmの微粒子に由来する空洞を多数含有するポリエステル層からなるスキン層と、ポリエステルに非相溶の熱可塑性樹脂に由来する空洞を多数含有するポリエステル層からなるコア層とを有することも本発明の好ましい態様である。その製造方法は任意であり、特に制限されるものではないが、例えば以下のようにして製造することが出来る。まず、スキン層をフィルム表面に接合する方法としては、微粒子を含有するスキン層のポリエステル樹脂と、非相溶の熱可塑性樹脂を含有するコア層のポリエステル樹脂を別々の押出機に供給した後、溶融状態で積層して同一のダイから押し出す共押出法を採用することが最も好ましい。 The polyester film for a solar cell back surface protective film of the present invention can be a void-containing polyester film. The polyester film of the present invention may have a single layer or a laminated structure composed of two or more layers. The laminated structure includes a skin layer composed of a polyester layer containing many cavities derived from fine particles having an average particle diameter of 0.1 to 3 μm, and a polyester containing many cavities derived from a thermoplastic resin incompatible with polyester. It is also a preferred embodiment of the present invention to have a core layer composed of layers. Although the manufacturing method is arbitrary and is not particularly limited, for example, it can be manufactured as follows. First, as a method of joining the skin layer to the film surface, after supplying the polyester resin of the skin layer containing fine particles and the polyester resin of the core layer containing an incompatible thermoplastic resin to separate extruders, It is most preferable to employ a coextrusion method in which layers are laminated in a molten state and extruded from the same die.
 それぞれの原料を混合し押出機に投入し、溶融し、T-ダイより押し出しし、冷却ロールに密着することで未延伸シートが得られる。未延伸シートは、更に速度差をもったロール間での延伸(ロール延伸)やクリップに把持して拡げていくことによる延伸(テンター延伸)や空気圧によって拡げることによる延伸(インフレーション延伸)などによって2軸配向処理される。配向処理することにより、ポリエステル/非相溶性熱可塑性樹脂間およびポリエステル/微粒子間で界面剥離を生じ、微細空洞が多数発現する。従って、未延伸シートを延伸・配向処理する条件は、空洞の生成と密接に関係する。 Each raw material is mixed, put into an extruder, melted, extruded from a T-die, and adhered to a cooling roll to obtain an unstretched sheet. The unstretched sheet is further expanded by stretching between rolls having a speed difference (roll stretching), stretching by gripping and expanding by a clip (tenter stretching), stretching by expanding with air pressure (inflation stretching), and the like. Axial orientation treatment. By performing the orientation treatment, interfacial peeling occurs between the polyester / incompatible thermoplastic resin and between the polyester / fine particles, and many fine cavities appear. Therefore, the conditions for stretching / orienting the unstretched sheet are closely related to the formation of cavities.
 まず、第1段の縦延伸工程は、フィルム内部に微細な空洞を多数形成するために最も重要なプロセスである。縦延伸は、周速が異なる2本あるいは多数本のロール間で延伸する。このときの加熱手段としては、加熱ロールを用いる方法でも非接触の加熱方法を用いる方法でもよく、それらを併用してもよい。この中で最も好ましい延伸方法としては、ロール加熱と非接触加熱を併用する方法があげられる。この場合、まず加熱ロールを用いてフィルムを50℃~ポリエステルのガラス転移点以下の温度に予備加熱した後、赤外線ヒータで加熱する。 First, the first-stage longitudinal stretching process is the most important process for forming many fine cavities inside the film. In the longitudinal stretching, stretching is performed between two or many rolls having different peripheral speeds. As a heating means at this time, a method using a heating roll or a method using a non-contact heating method may be used, or they may be used in combination. Among these, the most preferable stretching method is a method using both roll heating and non-contact heating. In this case, the film is first preheated to a temperature of 50 ° C. to the glass transition point of polyester using a heating roll, and then heated with an infrared heater.
 次いで、このようにして得られた1軸延伸フィルムをテンターに導入し、幅方向に2.5~5倍に延伸する。このときの好ましい延伸温度は、100℃~200℃である。このようにして得られた2軸延伸フィルムに対し、必要に応じて熱処理を施す。熱処理はテンター中で行うのが好ましく、ポリエステルの融点Tm-50℃~Tmの範囲で行うのが好ましい。 Next, the uniaxially stretched film thus obtained is introduced into a tenter and stretched 2.5 to 5 times in the width direction. A preferred stretching temperature at this time is 100 ° C. to 200 ° C. The biaxially stretched film thus obtained is subjected to heat treatment as necessary. The heat treatment is preferably carried out in a tenter, preferably in the range of the melting point Tm-50 ° C. to Tm of the polyester.
(被覆層) (Coating layer)
 本発明においては、EVA樹脂との接着性を改良のために、ポリエステルフィルムの少なくとも片面に、ポリエステル樹脂、ポリウレタン樹脂またはポリアクリル樹脂の少なくとも1種類を主成分とする被覆層を有することが好ましい。ここで、「主成分」とは被覆層を構成する固形成分のうち50質量%以上である成分をいう。本発明の被覆層の形成に用いる塗布液は、水溶性又は水分散性の共重合ポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂の内、少なくとも1種を含む水性塗布液が好ましい。これらの塗布液としては、例えば、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報等に開示された水溶性又は水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、ポリウレタン樹脂溶液等が挙げられる。 In the present invention, in order to improve the adhesiveness to the EVA resin, it is preferable to have a coating layer containing at least one kind of polyester resin, polyurethane resin or polyacrylic resin as a main component on at least one side of the polyester film. Here, the “main component” refers to a component that is 50% by mass or more of the solid components constituting the coating layer. The coating solution used for forming the coating layer of the present invention is preferably an aqueous coating solution containing at least one of water-soluble or water-dispersible copolymerized polyester resin, acrylic resin and polyurethane resin. Examples of these coating liquids include water-soluble or water-dispersible copolyester resin solutions, acrylic resin solutions, polyurethane resin solutions disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, and the like. Etc.
 被覆層は、前記塗布液を縦方向の1軸延伸フィルムの片面または両面に塗布した後、100~150℃で乾燥し、さらに横方向に延伸して得ることができる。最終的な被覆層の塗布量は、0.05~0.20g/mに管理することが好ましい。塗布量が0.05g/m未満であると、得られるEVA樹脂との接着性が不十分となる場合がある。一方、塗布量が0.20g/mを超えると、耐ブロッキング性が低下する場合がある。ポリエステルフィルムの両面に被覆層を設ける場合は、両面の被覆層の塗布量は、同じであっても異なっていてもよく、それぞれ独立して上記範囲内で設定することができる。 The coating layer can be obtained by applying the coating liquid on one or both sides of a uniaxially stretched film in the longitudinal direction, drying at 100 to 150 ° C., and stretching in the transverse direction. The final coating amount of the coating layer is preferably controlled to 0.05 to 0.20 g / m 2 . If the coating amount is less than 0.05 g / m 2 , adhesion with the resulting EVA resin may be insufficient. On the other hand, when the coating amount exceeds 0.20 g / m 2 , blocking resistance may be lowered. When coating layers are provided on both sides of the polyester film, the coating amounts of the coating layers on both sides may be the same or different, and can be independently set within the above range.
 被覆層には易滑性を付与するために粒子を添加することが好ましい。粒子の平均粒径は2μm以下の粒子を用いることが好ましい。粒子の平均粒径が2μmを超えると、粒子が被覆層から脱落しやすくなる。被覆層に含有させる粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカ-アルミナ複合酸化物、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカなどの無機粒子、架橋ポリスチレン粒子、架橋アクリル系樹脂粒子、架橋メタクリル酸メチル系樹脂粒子、ベンゾグアナミン・ホルムアルデヒド縮合物粒子、メラミン・ホルムアルデヒド縮合物粒子、ポリテトラフルオロエチレン粒子などの耐熱性高分子粒子が挙げられる。これらの粒子の中でも、被覆層の樹脂成分と屈折率が比較的近いシリカ粒子が好適である。 It is preferable to add particles to the coating layer in order to impart easy slipperiness. It is preferable to use particles having an average particle size of 2 μm or less. When the average particle diameter of the particles exceeds 2 μm, the particles easily fall off from the coating layer. The particles to be included in the coating layer include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide, barium sulfate, calcium fluoride, and fluoride. Inorganic particles such as lithium, zeolite, molybdenum sulfide and mica, crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate resin particles, benzoguanamine / formaldehyde condensate particles, melamine / formaldehyde condensate particles, polytetrafluoroethylene particles And heat resistant polymer particles. Among these particles, silica particles having a relatively close refractive index to the resin component of the coating layer are preferable.
 また、塗布液を塗布する方法としては、公知の方法を用いることができる。例えば、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、などが挙げられ、これらの方法を単独であるいは組み合わせて行うことができる。 Further, as a method for applying the coating solution, a known method can be used. For example, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, etc. can be mentioned. Or it can carry out in combination.
(熱接着層)
 本発明においては、EVA樹脂との接着性を改良するために、白色ポリエステルフィルム基材の少なくとも片面に非晶性ポリエステル樹脂を主成分とする熱接着層を積層することも好ましい。ここでいう「主成分」とは、非晶性ポリエステル樹脂が熱接着層全体の質量に対して50質量%以上であることである。また、ここでいう熱接着層とは、加熱条件下においてEVA樹脂と熱接着が可能な層である。この熱接着層を白色ポリエステルフィルム基材に積層することで、接着剤の層を設けずともEVA樹脂に接着することができる。この熱接着層の厚みは一層あたり1~40μmとすることが重要である。熱接着層の厚みが1μm未満の場合、熱接着性や表面強度が不十分となる。一方、熱接着層の厚みが40μmを超える場合には、線膨張係数や熱収縮率が大きくなどして耐熱性が低下する。なお、熱接着層の厚みは上記の理由から、3~30μmが好ましく、5~25μmがより好ましく、10~20μmが特に好ましい。
(Thermal adhesive layer)
In the present invention, in order to improve the adhesiveness with the EVA resin, it is also preferable to laminate a thermal adhesive layer mainly composed of an amorphous polyester resin on at least one surface of the white polyester film substrate. The term “main component” as used herein means that the amorphous polyester resin is 50% by mass or more based on the mass of the entire thermal bonding layer. In addition, the thermal adhesive layer here is a layer that can be thermally bonded to the EVA resin under heating conditions. By laminating this thermal adhesive layer on the white polyester film substrate, it is possible to adhere to the EVA resin without providing an adhesive layer. It is important that the thickness of the thermal adhesive layer is 1 to 40 μm per layer. When the thickness of the thermal adhesive layer is less than 1 μm, the thermal adhesiveness and the surface strength are insufficient. On the other hand, when the thickness of the thermal adhesive layer exceeds 40 μm, the heat resistance decreases due to a large linear expansion coefficient or thermal contraction rate. The thickness of the thermal adhesive layer is preferably 3 to 30 μm, more preferably 5 to 25 μm, and particularly preferably 10 to 20 μm for the above reasons.
 熱接着層を白色ポリエステルフィルム基材の表面に設ける手段は特に限定されないが、溶融押出工程で二種類の樹脂を共押出しして積層させる方法、いわゆる共押出し法を用いて未延伸シートを製造することが好ましい。また、熱接着層に適度の耐熱性を付与する観点からも延伸工程以前において積層し、熱接着層と基材層を共に延伸加工することが好ましい。 The means for providing the thermal adhesive layer on the surface of the white polyester film substrate is not particularly limited, but an unstretched sheet is produced using a method in which two kinds of resins are coextruded and laminated in a melt extrusion process, a so-called coextrusion method. It is preferable. Moreover, it is preferable to laminate | stack before a extending process also from a viewpoint of providing moderate heat resistance to a heat bonding layer, and to extend | stretch both a heat bonding layer and a base material layer.
 また、本発明においては、白色ポリエステルフィルム基材の両面に熱接着層を設けることも、フィルムのカールを抑制する点から好ましい。本発明における熱接着層は主として非晶性ポリエステル樹脂から構成され、結晶性ポリエステル樹脂を主体とする基材層とは熱膨張係数が大きく異なる。このため、基材の片面のみに熱接着層を設けた場合、加工条件や使用条件によってはバイメタルのようにカールする場合があり、平面性やハンドリング性の不良が懸念される。基材の両面に熱接着層を設ける場合、表裏の熱接着層の厚み比率は0.5~2.0であることが好ましい。この範囲を外れる場合には、上記の理由によってカールが発生する場合がある。なお、カールが発生した場合においても、無荷重の状態で110℃、30分間の加熱処理をした後のカール値が5mm以下であればハンドリング性に実質的な支障は生じないが、カール値を3mm以下とすることが好ましく、1mm以下とすることがより好ましい。 In the present invention, it is also preferable to provide a thermal adhesive layer on both sides of the white polyester film substrate from the viewpoint of suppressing curling of the film. The thermal adhesive layer in the present invention is mainly composed of an amorphous polyester resin, and has a thermal expansion coefficient greatly different from that of a base material layer mainly composed of a crystalline polyester resin. For this reason, when a thermal adhesive layer is provided only on one side of the substrate, it may curl like a bimetal depending on processing conditions and use conditions, and there is a concern about poor flatness and handling properties. When the thermal adhesive layers are provided on both surfaces of the substrate, the thickness ratio of the front and back thermal adhesive layers is preferably 0.5 to 2.0. When it is out of this range, curling may occur due to the above reason. Even when curling occurs, if the curl value after heating at 110 ° C. for 30 minutes in a no-load state is 5 mm or less, there will be no substantial hindrance to handling properties. It is preferably 3 mm or less, and more preferably 1 mm or less.
 本発明における熱接着層は、非晶性ポリエステル樹脂を当該層の50質量%以上を占める主たる構成成分とすることが重要である。ここでいう非晶性ポリエステル樹脂とは、融解熱量が20J/g以下のポリエステル樹脂である。この融解熱量とはJIS−K7122に記載の「プラスチックの転移熱測定方法」にしたがい、DSC装置を用いて、窒素雰囲気下、10℃/分の速度で加熱して測定される。本発明において、前記の融解熱量は10J/g以下が好ましく、5J/g以下がより好ましい。融解熱量が20J/gを超える場合には、熱接着性が十分に得られない。 It is important for the thermal adhesive layer in the present invention to use an amorphous polyester resin as a main component occupying 50% by mass or more of the layer. The amorphous polyester resin here is a polyester resin having a heat of fusion of 20 J / g or less. The heat of fusion is measured by heating at a rate of 10 ° C./min in a nitrogen atmosphere using a DSC apparatus according to “Method for measuring the heat of transition of plastic” described in JIS − K7122. In the present invention, the heat of fusion is preferably 10 J / g or less, and more preferably 5 J / g or less. When the amount of heat of fusion exceeds 20 J / g, sufficient heat adhesion cannot be obtained.
 また、非晶性ポリエステル樹脂は、ガラス転移温度が50℃以上かつ100℃以下であることが好ましい。このガラス転移温度とはJIS−K7121に記載の「プラスチックの転移温度測定方法」にしたがい、DSC装置を用いて、窒素雰囲気下、10℃/分の速度で加熱し、得られたDSC曲線をもとに求められる中間点ガラス転移温度(Tmg)を意味する。非晶性ポリエステル樹脂Aのガラス転移温度は60~90℃が好ましく、70~85℃がより好ましい。ガラス転移温度が50℃未満の場合には、耐熱性が不足して変形したり、使用中の温度上昇によって熱接着層が再剥離したりする。一方、ガラス転移温度が100℃を超える場合には、太陽電池パネルを製造する際により高い温度で加熱する必要が生じるため、電気回路などへの負担が大きくなる。 The amorphous polyester resin preferably has a glass transition temperature of 50 ° C. or higher and 100 ° C. or lower. This glass transition temperature is a DSC curve obtained by heating at a rate of 10 ° C./min in a nitrogen atmosphere using a DSC apparatus according to “Method for measuring plastic transition temperature” described in JIS − K7121. Is the midpoint glass transition temperature (Tmg) determined based on The glass transition temperature of the amorphous polyester resin A is preferably 60 to 90 ° C, more preferably 70 to 85 ° C. When the glass transition temperature is less than 50 ° C., the heat adhesion is insufficient and deforms, or the thermal adhesive layer peels off again due to the temperature rise during use. On the other hand, when the glass transition temperature exceeds 100 ° C., it is necessary to heat the solar cell panel at a higher temperature, which increases the burden on the electric circuit and the like.
 非晶性ポリエステル樹脂の種類は特に限定されないが、汎用性やコスト、耐久性あるいは熱接着性の観点から、芳香族ポリエステル樹脂の分子骨格に種々の共重合成分を導入したものが好ましい。導入する共重合成分のうち、グリコール成分としてはエチレングリコールやジエチレングリコール,ネオペンチルグリコール(NPG),シクロヘキサンジメタノール(CHDM),プロパンジオール、ブタンジオールなどが、酸成分としてはテレフタル酸やイソフタル酸,ナフタレンジカルボン酸などが好ましく用いられる。特にポリエチレンテレフタレート樹脂の分子骨格にイソフタル酸、CHDM及び/又はNPGを導入した共重合ポリエステル樹脂が加工性の観点から好ましく、NPGを導入したものがより好ましい。 The kind of the amorphous polyester resin is not particularly limited, but from the viewpoint of versatility, cost, durability, or thermal adhesiveness, those in which various copolymerization components are introduced into the molecular skeleton of the aromatic polyester resin are preferable. Among the copolymer components to be introduced, the glycol components include ethylene glycol, diethylene glycol, neopentyl glycol (NPG), cyclohexanedimethanol (CHDM), propanediol, butanediol, and the acid components include terephthalic acid, isophthalic acid, and naphthalene. Dicarboxylic acid and the like are preferably used. In particular, a copolymer polyester resin in which isophthalic acid, CHDM, and / or NPG is introduced into the molecular skeleton of a polyethylene terephthalate resin is preferable from the viewpoint of processability, and one in which NPG is introduced is more preferable.
 本発明における熱接着層には、非晶性ポリエステル樹脂と非相溶な熱可塑性樹脂を含有させることが好ましい。これにより非晶性ポリエステル樹脂と該熱可塑性樹脂は、熱接着層で相分離構造を形成し、この構造に起因して形成されるフィルム表面突起によってフィルムの滑り性を改善することができる。 The thermal adhesive layer in the present invention preferably contains a thermoplastic resin that is incompatible with the amorphous polyester resin. As a result, the amorphous polyester resin and the thermoplastic resin form a phase separation structure in the thermal adhesive layer, and the slipperiness of the film can be improved by the film surface protrusions formed due to this structure.
 非晶性ポリエステル樹脂と非相溶な熱可塑性樹脂としては、特に限定されないが、汎用性の高い樹脂として、ポリスチレンやポリカーボネート、アクリル、環状ポリオレフィンやその共重合体,ポリプロピレンやポリエチレンなどの結晶性ポリオレフィンやその共重合体などが挙げられる。中でも加工適性と熱接着性に優れる点から、ポリスチレンやポリオレフィン又はその共重合体が好ましく、ポリスチレンやポリプロピレン,ポリエチレンがより好ましい。 The thermoplastic resin that is incompatible with the amorphous polyester resin is not particularly limited, but as a highly versatile resin, polystyrene, polycarbonate, acrylic, cyclic polyolefin and copolymers thereof, crystalline polyolefin such as polypropylene and polyethylene, etc. And copolymers thereof. Among these, from the viewpoint of excellent processability and thermal adhesiveness, polystyrene, polyolefin, or a copolymer thereof is preferable, and polystyrene, polypropylene, or polyethylene is more preferable.
 本発明において、熱接着層に含有させる上記の熱可塑性樹脂の量は、熱接着層を構成する材料に対して、1~30質量%である。3~25質量%が好ましく、5~20質量%がより好ましい。上記熱可塑性樹脂の含有量が1質量%未満の場合には、必要な滑り性が得られなくなる。30質量%を超える場合には、熱接着性が阻害される。 In the present invention, the amount of the thermoplastic resin contained in the thermal adhesive layer is 1 to 30% by mass with respect to the material constituting the thermal adhesive layer. 3 to 25% by mass is preferable, and 5 to 20% by mass is more preferable. When the content of the thermoplastic resin is less than 1% by mass, the necessary slip properties cannot be obtained. When it exceeds 30% by mass, the thermal adhesiveness is inhibited.
 本発明において、熱接着性を阻害しない範囲で熱接着層に前記の微粒子を含有させることは、好ましい実施形態の一つである。微粒子の中でも白色顔料すなわち酸化チタンまたは硫酸バリウム及びこれらの複合粒子が好ましく、隠蔽効果の観点からは酸化チタンを用いることがより好ましい。これらの白色顔料は、熱接着層において30質量%以下の範囲で含有させることが好ましく、15質量%以下とすることがより好ましい。上記の範囲を超えて添加した場合には、熱接着性が阻害される場合がある。 In the present invention, it is one of the preferred embodiments that the above-mentioned fine particles are contained in the heat-adhesive layer as long as the heat-adhesive property is not impaired. Among the fine particles, white pigments, that is, titanium oxide or barium sulfate and composite particles thereof are preferable, and titanium oxide is more preferably used from the viewpoint of concealment effect. These white pigments are preferably contained in the heat bonding layer in an amount of 30% by mass or less, and more preferably 15% by mass or less. If added beyond the above range, the thermal adhesiveness may be inhibited.
(フィルム特性)
 本発明のフィルムは酸価が1(eq/ton)以上30(eq/ton)以下であること、好ましくは2(eq/ton)以上20(eq/ton)以下、より好ましくは2(eq/ton)以上16(eq/ton)以下である。30(eq/ton)を超えると、耐加水分解性の良好なフィルムが得られない。1(eq/ton)未満のフィルムは、工業的には作製が難しい。
(Film characteristics)
The film of the present invention has an acid value of 1 (eq / ton) to 30 (eq / ton), preferably 2 (eq / ton) to 20 (eq / ton), more preferably 2 (eq / ton). ton) to 16 (eq / ton). If it exceeds 30 (eq / ton), a film having good hydrolysis resistance cannot be obtained. A film of less than 1 (eq / ton) is difficult to produce industrially.
 本発明のフィルムは、耐加水分解性の評価である破断伸び保持率が60%以上、好ましくは70%以上、より好ましくは80%以上である。60%未満では太陽電池裏面保護膜としての耐久性が低く使用できない。 The film of the present invention has a breaking elongation retention ratio of 60% or more, preferably 70% or more, more preferably 80% or more, which is an evaluation of hydrolysis resistance. If it is less than 60%, the durability as a solar cell back surface protective film is low and cannot be used.
 次に本発明の実施例および比較例を示す。本発明に用いる測定・評価方法を以下に示す。
1)見かけ比重
 フィルムを10cm×10cmの正方形に正確に切り出し、その厚みを50点測定して平均厚みt(単位μm)を求める。次にサンプルの質量を0.1mgまで測定し、w(単位g)とする。そして、下式によって見かけ比重を計算した。
見かけ比重(-)=(w/t)×10000
Next, examples and comparative examples of the present invention will be shown. The measurement / evaluation method used in the present invention is shown below.
1) Apparent specific gravity A film is accurately cut into a 10 cm × 10 cm square, and its thickness is measured at 50 points to obtain an average thickness t (unit: μm). Next, the mass of the sample is measured to 0.1 mg and is set to w (unit: g). And the apparent specific gravity was calculated by the following formula.
Apparent specific gravity (−) = (w / t) × 10000
2)白色度
 白色度JIS-L1015-1981-B法により、日本電色工業(株)Z-1001DPを用いて行った
2) Whiteness Whiteness was measured using Nippon Denshoku Industries Co., Ltd. Z-1001DP according to the JIS-L1015-1981-B method.
3)酸価
 フィルムおよび原料ポリエステル樹脂につき、下記の方法で測定した。
3) Acid value It measured with the following method about the film and raw material polyester resin.
(1)試料の調製
 フィルムまたは原料ポリエステル樹脂を粉砕し、70℃で24時間真空乾燥を行った後、天秤を用いて0.20±0.0005gの範囲に秤量する。そのときの質量をW(g)とする。試験管にベンジルアルコール10mlと秤量した試料を加え、試験管を205℃に加熱したベンジルアルコール浴に浸し、ガラス棒で攪拌しながら試料を溶解する。溶解時間を3分間、5分間、7分間としたときのサンプルをそれぞれA,B,Cとする。次いで、新たに試験管を用意し、ベンジルアルコールのみ入れ、同様の手順で処理し、溶解時間を3分間、5分間、7分間としたときのサンプルをそれぞれa,b,cとする。
(2)滴定
 予めファクターの分かっている0.04mol/l水酸化カリウム溶液(エタノール溶液)を用いて滴定する。指示薬はフェノールレッドを用い、黄緑色から淡紅色に変化したところを終点とし、水酸化カリウム溶液の滴定量(ml)を求める。サンプルA,B,Cの滴定量をXA,XB,XC(ml)とする。サンプルa,b,cの滴定量をXa,Xb,Xc(ml)とする。
(3)酸価の算出
 各溶解時間に対しての滴定量XA,XB,XCを用いて、最小2乗法により、溶解時間0分での滴定量V(ml)を求める。同様にXa,Xb,Xcを用いて、滴定量V0(ml)を求める。次いで、次式に従い酸価を求める。
 カルボキシル末端濃度(eq/ton)=[(V-V0)×0.04×NF×1000]/W
NF:0.04mol/l水酸化カリウム溶液のファクター
W:試料質量(g)
(1) Preparation of sample A film or a raw material polyester resin is pulverized and vacuum-dried at 70 ° C. for 24 hours, and then weighed in a range of 0.20 ± 0.0005 g using a balance. The mass at that time is defined as W (g). A sample weighed with 10 ml of benzyl alcohol is added to a test tube, the test tube is immersed in a benzyl alcohol bath heated to 205 ° C., and the sample is dissolved while stirring with a glass rod. Samples with dissolution times of 3 minutes, 5 minutes, and 7 minutes are designated as A, B, and C, respectively. Next, a new test tube is prepared, and only benzyl alcohol is added and processed in the same procedure, and the samples when the dissolution time is 3 minutes, 5 minutes, and 7 minutes are designated as a, b, and c, respectively.
(2) Titration Titration is performed using a 0.04 mol / l potassium hydroxide solution (ethanol solution) whose factor is known in advance. The indicator is phenol red, and the titration (ml) of the potassium hydroxide solution is determined with the end point being changed from yellowish green to light red. The titration amounts of samples A, B, and C are XA, XB, and XC (ml). The titration amounts of samples a, b, and c are Xa, Xb, and Xc (ml).
(3) Calculation of acid value Using the titration amounts XA, XB, and XC for each dissolution time, the titration amount V (ml) at a dissolution time of 0 minutes is determined by the least square method. Similarly, titration volume V0 (ml) is obtained using Xa, Xb, and Xc. Subsequently, an acid value is calculated | required according to following Formula.
Carboxyl terminal concentration (eq / ton) = [(V−V0) × 0.04 × NF × 1000] / W
NF: factor W of 0.04 mol / l potassium hydroxide solution: sample mass (g)
4)耐加水分解性
 JIS-60068-2-66で規格化されているHAST(Highly Accelerated temperature and humidity Stress Test)を行った。機器はエスペック社製EHS-221を用い、105℃、100%Rh、0.03MPa下の条件で行った。
 フィルムを70mm×190mmにカットし、治具を用いてフィルムを設置した。各フィルムは各々が接触しない距離を保ち設置した。105℃、100%Rh、0.03MPaの条件下で200時間処理を行った。処理前、処理後の破断伸びをJIS C 2318-1997 5.3.31(引張強さ及び伸び率)に準拠して測定し、下記式に従い破断伸び保持率を算出した。
 破断伸び保持率(%)=〔(処理後の破断伸び)×100〕/(処理前の破断伸び)
4) Hydrolysis resistance HAST (Highly Accelerated Temperature and Humidity Stress Test) standardized in JIS-60068-2-66 was performed. The equipment was EHS-221 manufactured by ESPEC Co., Ltd. under the conditions of 105 ° C., 100% Rh, 0.03 MPa.
The film was cut into 70 mm × 190 mm, and the film was placed using a jig. Each film was placed at a distance where it did not touch. The treatment was performed for 200 hours under the conditions of 105 ° C., 100% Rh, 0.03 MPa. The elongation at break before and after treatment was measured according to JIS C 2318-1997 5.3.31 (tensile strength and elongation), and the elongation at break was calculated according to the following formula.
Breaking elongation retention ratio (%) = [(breaking elongation after treatment) × 100] / (breaking elongation before treatment)
5)EVA樹脂との接着性
 フィルムを20mm幅×100mm長にカットしたものを2枚、EVA樹脂シート(ハイシート工業(株)製
SOLAR EVA(R)SC4)を20mm幅×50mm長にカットしたものを1枚、それぞれ準備した。EVA樹脂シートがフィルムのほぼ中央に位置するよう、またフィルムの易接性を評価したい面がEVA側になるよう、フィルム/EVA樹脂シート/フィルムの順に重ねて、ヒートシーラーにてプレスを行った。圧着条件は、120℃・0.02MPaにて5分圧着後、150℃に昇温し、プレス圧を0.1MPaに上げて25分圧着する。熱圧着した試料を、23℃、50%RH雰囲気下において、JIS-Z0237に準じて、上下のクリップに未接着部のフィルムを挟み、剥離角180°、引張速度100mm/分で接着力を測定した。なお、EVAは、エチレン-酢酸ビニル共重合体の略称である。
◎:20N/20mm以上 ・・・接着性非常に良好
○:10N/20mm以上、20N/20mm未満・・・接着性良好
△:5N/20mm以上~10N/20mm未満 ・・・接着性やや良好
×:5N/20mm未満 ・・・接着性不良
5) Adhesiveness with EVA resin Two pieces of the film cut to 20 mm width × 100 mm length were cut, and EVA resin sheet (High Sheet Industry Co., Ltd. SOLAR EVA (R) SC4) was cut to 20 mm width × 50 mm length. I prepared one piece of each. The film was placed in the order of film / EVA resin sheet / film and pressed with a heat sealer so that the EVA resin sheet was positioned almost at the center of the film, and the surface to be evaluated for easy contact of the film was on the EVA side. . The pressure bonding conditions are 120 ° C. and 0.02 MPa for 5 minutes, then heated to 150 ° C., the press pressure is increased to 0.1 MPa, and the pressure is bonded for 25 minutes. Measure the adhesive strength of the thermocompression-bonded sample at 23 ° C and 50% RH in accordance with JIS-Z0237 with the unattached film sandwiched between the upper and lower clips at a peel angle of 180 ° and a pulling speed of 100 mm / min. did. EVA is an abbreviation for ethylene-vinyl acetate copolymer.
◎: 20 N / 20 mm or more ・ ・ ・ Adhesion is very good ◯: 10 N / 20 mm or more, less than 20 N / 20 mm ・ ・ ・ Good adhesion △: 5 N / 20 mm or more to less than 10 N / 20 mm ・ ・ ・ Adhesion slightly good × : Less than 5N / 20mm ... poor adhesion
6)ポリエステル樹脂の極限粘度
 ポリエステル樹脂を粉砕して乾燥した後、フェノール/テトラクロロエタン=60/40(重量比)の混合溶媒に溶解した。この溶液に遠心分離処理を施して無機粒子を取り除いた後に、ウベローデ粘度計を用いて、30℃で0.4(g/dl)の濃度の溶液の流下時間及び溶媒のみの流下時間を測定し、それらの時間比率から、Hugginsの式を用い、Hugginsの定数が0.38であると仮定して極限粘度を算出した。
6) Intrinsic viscosity of polyester resin The polyester resin was pulverized and dried, and then dissolved in a mixed solvent of phenol / tetrachloroethane = 60/40 (weight ratio). After removing inorganic particles by centrifuging this solution, the flow time of the solution having a concentration of 0.4 (g / dl) and the flow time of the solvent alone were measured at 30 ° C. using an Ubbelohde viscometer. From these time ratios, the intrinsic viscosity was calculated using the Huggins equation, assuming that the Huggins constant was 0.38.
7)ポリエステル樹脂の融点及びガラス転移温度
 JIS K 7121に記載の「プラスチックの転移温度測定方法」により、DSC測定を行った。サンプルには約10mgの樹脂辺またはフィルム片をアルミパンに密封して300℃で3分間溶融し、液体窒素で急冷固化したものを用いた。測定器には示差走査熱量計(セイコーインスツルメント社製、EXSTAR6200DSC)を用い、乾燥窒素雰囲気下で実施した。室温より10℃/分の速さで加熱して中間点ガラス転移温度を求めた後、融解ピーク温度(融点)を求めた。
7) Melting | fusing point and glass transition temperature of polyester resin DSC measurement was performed by the "method for measuring plastic transition temperature" described in JIS K7121. About 10 mg of resin side or film piece was sealed in an aluminum pan, melted at 300 ° C. for 3 minutes, and rapidly cooled and solidified with liquid nitrogen. A differential scanning calorimeter (manufactured by Seiko Instruments Inc., EXSTAR 6200DSC) was used as a measuring instrument, and the measurement was performed under a dry nitrogen atmosphere. After heating from room temperature at a rate of 10 ° C./min to determine the midpoint glass transition temperature, the melting peak temperature (melting point) was determined.
8)ポリエステル樹脂の融解熱量 
 JIS K 7122に記載の「プラスチックの転移熱測定方法」により融解熱量を求めた。DSC測定の詳細は上記の融点の測定と同様にした。
8) Heat of fusion of polyester resin
The amount of heat of fusion was determined by the “Method of measuring the transition heat of plastic” described in JIS K7122. The details of the DSC measurement were the same as those of the above melting point measurement.
9)耐光性
 促進耐光性試験は、岩崎電気株式会社製アイ スーパーUVテスターSUV-W151を用い、63℃、50%Rh、照射強度100mW/cmで100時間の連続UV照射処理を行った後、破断伸び保持率を評価して行った。それぞれの処理前、処理後の破断伸びをJIS C 2318-1997 5.3.31(引張強さ及び伸び率)に準拠して測定し、下記式に従い破断伸び保持率を算出した。
 破断伸び保持率(%)=〔(処理後の破断伸び)×100〕/(処理前の破断伸び)
9) Light resistance The accelerated light resistance test was performed after continuous UV irradiation treatment for 100 hours at 63 ° C., 50% Rh, irradiation intensity of 100 mW / cm 2 using an I-super UV tester SUV-W151 manufactured by Iwasaki Electric Co., Ltd. This was done by evaluating the elongation at break. The elongation at break before and after each treatment was measured according to JIS C 2318-1997 5.3.31 (tensile strength and elongation), and the elongation at break was calculated according to the following formula.
Breaking elongation retention ratio (%) = [(breaking elongation after treatment) × 100] / (breaking elongation before treatment)
 実施例1
(微粒子含有マスターバッチの作製)
原料として事前に120℃、8時間ほど10-3torr下で乾燥した極限粘度0.64、酸価8.0(eq/ton)のポリエチレンテレフタレート樹脂(PET-I)50質量%に、平均粒径0.3μm(電顕法)のルチル型二酸化チタン50質量%を混合したものをベント式2軸押し出し機に供給して、混練りして脱気しながら275℃で押出し、微粒子(酸化チタン)含有マスターバッチ(MB-I)ペレットを調製した。このペレットの酸価は、8.6(eq/ton)であった。
Example 1
(Preparation of fine particle-containing masterbatch)
The average particle size was 50% by mass of polyethylene terephthalate resin (PET-I) having an intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton), which was dried at 120 ° C. under 10 −3 torr for about 8 hours in advance. A mixture of 50% by mass of rutile titanium dioxide with a diameter of 0.3μm (electron microscopic method) is supplied to a vent type twin screw extruder, kneaded and extruded at 275 ° C while degassing to produce fine particles (titanium oxide) Containing masterbatch (MB-I) pellets were prepared. The acid value of this pellet was 8.6 (eq / ton).
(フィルムの作製)
 次いで、ポリエチレンテレフタレート樹脂(PET-I)50質量%と、先に作製したMB-Iを50質量%とを混合した(A)層の原料と、PET-Iを90質量%とMB-Iを10質量%とを(B)層の原料とし、それぞれ別々の押出機に投入し、280℃で混合、溶融し、続いてフィードブロックを用い、A層の片面にB層を溶融状態で接合した。このとき、A層とB層の吐出量比率は、ギアポンプを用いて制御した。次いでT-ダイを用いて30℃に調節された冷却ドラム上に押し出し、A/B/A層となるように未延伸シートを作成した。
(Production of film)
Next, the raw material of the layer (A) in which 50% by mass of polyethylene terephthalate resin (PET-I) and 50% by mass of the previously prepared MB-I were mixed, 90% by mass of PET-I and MB-I were 10% by mass is used as a raw material for the layer (B), put into separate extruders, mixed and melted at 280 ° C., and then, using a feed block, the layer B is joined to one side of the layer A in a molten state. . At this time, the discharge rate ratio of the A layer and the B layer was controlled using a gear pump. Next, the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to prepare an unstretched sheet so as to be an A / B / A layer.
(2軸延伸フィルムの作製)
 得られた未延伸シートを、加熱ロールを用いて70℃に均一加熱し、90℃で3.3倍ロール延伸を行った。得られた1軸延伸フィルムをテンターに導き、140℃に加熱して3.7倍に横延伸し、幅固定して220℃で5秒間の熱処理を施し、更に220℃で幅方向に4%緩和させることにより、厚み188μm(19/150/19)の太陽電池裏面保護膜用プラスチックフィルムを得た。
(Production of biaxially stretched film)
The obtained unstretched sheet was uniformly heated to 70 ° C. using a heating roll, and 3.3-fold roll stretching was performed at 90 ° C. The obtained uniaxially stretched film was led to a tenter, heated to 140 ° C. and transversely stretched 3.7 times, fixed in width and subjected to heat treatment at 220 ° C. for 5 seconds, and further at 220 ° C. in the width direction of 4%. By relaxing, a plastic film for a solar cell back surface protective film having a thickness of 188 μm (19/150/19) was obtained.
 実施例2
(空洞形成剤の調製)
 原料として、メルトフローレート1.5のポリスチレン(日本ポリスチ社製、G797N)20質量%、メルトフローレート3.0の気相法重合ポリプロピレン(出光石油化学製、F300SP)20質量%、及びメルトフローレート180のポリメチルペンテン(三井化学製:TPX DX-820)60質量%ペレット混合し、2軸押し出し機に供給して十分に混練りし、空洞形成剤を調製した(MB-II)。
 B層の原料として、PET-I:MB-I:MB-IIを82:10:8(質量%)とした以外は、実施例1と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 2
(Preparation of cavity forming agent)
As raw materials, 20% by mass of polystyrene with a melt flow rate of 1.5 (manufactured by Nippon Polystyrene Co., Ltd., G797N), 20% by mass of vapor phase polymerization polypropylene with a melt flow rate of 3.0 (F300SP, manufactured by Idemitsu Petrochemical), and melt flow 60% by mass pellet of polymethylpentene having a rate of 180 (Mitsui Chemicals Co., Ltd .: TPX DX-820) was supplied to a twin screw extruder and kneaded sufficiently to prepare a cavity forming agent (MB-II).
A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 1 except that PET-I: MB-I: MB-II was changed to 82: 10: 8 (mass%) as a raw material for the B layer. It was.
 実施例3、実施例4、比較例1
 フィルム原料としてのポリエチレンテレフタレート樹脂の酸価を10.1、19.5、30.2(それぞれPET-II、PET-III、PET-IV)とした以外は、実施例2と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 3, Example 4, Comparative Example 1
Except that the acid value of polyethylene terephthalate resin as a film raw material was 10.1, 19.5, 30.2 (PET-II, PET-III, PET-IV, respectively) A plastic film for the battery back surface protective film was obtained.
 比較例2
 微粒子含有マスターバッチの作製において、原料として紙袋に入れ温湿度の管理されていない場所で保管してあった未乾燥の極限粘度0.64、酸価8.0(eq/ton)のポリエチレンテレフタレート樹脂(PET-I)50質量%に、平均粒径0.3μm(電顕法)のルチル型二酸化チタン 50質量%を混合したものをベント式2軸押し出し機に供給して、混練りして305℃で脱気しながら微粒子(酸化チタン)含有マスターバッチ(MB-III)ペレットを調製した。このペレットの酸価は、38.4(eq/ton)であった。
 それ以外は、実施例2と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Comparative Example 2
In the preparation of a master batch containing fine particles, a polyethylene terephthalate resin having an undried intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton) stored in a paper bag as a raw material in a place where temperature and humidity are not controlled (PET-I) 50 mass% mixed with 50 mass% rutile type titanium dioxide having an average particle size of 0.3 μm (electron microscopic method) is supplied to a vent type twin screw extruder and kneaded to 305 ° C. A masterbatch (MB-III) pellet containing fine particles (titanium oxide) was prepared while degassing with a. The acid value of this pellet was 38.4 (eq / ton).
Other than that obtained the plastic film for solar cell back surface protective films by the method similar to Example 2. FIG.
 実施例5
 微粒子含有マスターバッチの作製において、ルチル型二酸化チタンの代わりに平均粒径が0.6μmの硫酸バリウムとし(MB-IV)、それをA層の原料としてMB-Iの代わりに用いた以外は、実施例2と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 5
In the production of the master batch containing fine particles, barium sulfate having an average particle size of 0.6 μm was used instead of rutile titanium dioxide (MB-IV), and it was used instead of MB-I as a raw material for the A layer. A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例6
(微粒子含有マスターバッチの作製)
 原料として事前に120℃、8時間ほど10-3torr下で乾燥した極限粘度0.64、酸価8.0(eq/ton)のポリエチレンテレフタレート樹脂(PET-I)50質量%に、平均粒径0.3μm(電顕法)のルチル型二酸化チタン50質量%を混合したものをベント式2軸押し出し機に供給して、混練りして脱気しながら275℃で押出し、微粒子(酸化チタン)含有マスターバッチ(MB-I)ペレットを調製した。このペレットの酸価は、8.6(eq/ton)であった。
Example 6
(Preparation of fine particle-containing masterbatch)
The average particle size was 50% by mass of polyethylene terephthalate resin (PET-I) having an intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton), which was dried at 120 ° C. under 10 −3 torr for about 8 hours in advance. A mixture of 50% by mass of rutile titanium dioxide with a diameter of 0.3μm (electron microscopic method) is supplied to a vent type twin screw extruder, kneaded and extruded at 275 ° C while degassing to produce fine particles (titanium oxide) Containing masterbatch (MB-I) pellets were prepared. The acid value of this pellet was 8.6 (eq / ton).
(塗布液の調製)
 常法によりエステル交換反応および重縮合反応を行って、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%および5-スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%およびネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n-ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に達したら、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、塗布液を得た。
(Preparation of coating solution)
A transesterification reaction and a polycondensation reaction were carried out by a conventional method, and as a dicarboxylic acid component (based on the total dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal base-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as a glycol component (based on the entire glycol component) was prepared. Next, 51.4 parts by mass of water, 38 parts by mass of isopropyl alcohol, 5 parts by mass of n-butyl cellosolve, 0.06 parts by mass of a nonionic surfactant were mixed and then heated and stirred. After adding 5 parts by mass of a water-dispersible sulfonic acid metal base-containing copolymer polyester resin and continuing to stir until the resin is no longer agglomerated, the resin water dispersion is cooled to room temperature to obtain a solid content concentration of 5.0% by mass. A uniform water-dispersible copolymerized polyester resin liquid was obtained. Furthermore, after dispersing 3 parts by mass of aggregated silica particles (Silicia 310, manufactured by Fuji Silysia Co., Ltd.) in 50 parts by mass of water, 99.46 parts by mass of the water-dispersible copolyester resin solution was mixed with 99.46 parts by mass of the silicia 310. 0.54 parts by mass of the aqueous dispersion was added, and 20 parts by mass of water was added with stirring to obtain a coating solution.
(フィルムの作製)
 次いで、ポリエチレンテレフタレート樹脂(PET-I)50質量%と、先に作製したMB-Iを50質量%とを混合した(A)層の原料と、PET-Iを90質量%とMB-Iを10質量%とを(B)層の原料とし、それぞれ別々の押出機に投入し、280℃で混合、溶融し、続いてフィードブロックを用い、A層の片面にB層を溶融状態で接合した。このとき、A層とB層の吐出量比率は、ギアポンプを用いて制御した。次いでT-ダイを用いて30℃に調節された冷却ドラム上に押し出し、A/B/A層となるように未延伸シートを作成した。
(Production of film)
Next, the raw material of the layer (A) in which 50% by mass of polyethylene terephthalate resin (PET-I) and 50% by mass of the previously prepared MB-I were mixed, 90% by mass of PET-I and MB-I were 10% by mass is used as a raw material for the layer (B), put into separate extruders, mixed and melted at 280 ° C., and then, using a feed block, the layer B is joined to one side of the layer A in a molten state. . At this time, the discharge rate ratio of the A layer and the B layer was controlled using a gear pump. Next, the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to prepare an unstretched sheet so as to be an A / B / A layer.
(2軸延伸フィルムの作製)
 得られた未延伸シートを、加熱ロールを用いて70℃に均一加熱し、90℃で3.3倍ロール延伸を行い、一軸延伸ポリエステルフィルムを得た。得られた一軸延伸ポリエステルフィルムの片面に前記塗布液を最終被覆層膜厚が0.08g/mとなるように塗布した後、135℃で乾燥させた。
(Production of biaxially stretched film)
The obtained unstretched sheet was uniformly heated to 70 ° C. using a heating roll, and 3.3-fold roll stretching was performed at 90 ° C. to obtain a uniaxially stretched polyester film. The coating solution was applied to one side of the obtained uniaxially stretched polyester film so that the final coating layer thickness was 0.08 g / m 2, and then dried at 135 ° C.
 塗布したフィルムをテンターに導き、140℃に加熱して3.7倍に横延伸し、幅固定して220℃で5秒間の熱処理を施し、更に220℃で幅方向に4%緩和させることにより、厚み188μm(19/150/19)の太陽電池裏面保護膜用プラスチックフィルムを得た。 By guiding the coated film to a tenter, heating it to 140 ° C. and transversely stretching it 3.7 times, fixing the width, applying heat treatment at 220 ° C. for 5 seconds, and further relaxing by 4% in the width direction at 220 ° C. A plastic film for a solar cell back surface protective film having a thickness of 188 μm (19/150/19) was obtained.
 実施例7
(空洞形成剤の調製)
 原料として、メルトフローレート1.5のポリスチレン(日本ポリスチ社製、G797N)20質量%、メルトフローレート3.0の気相法重合ポリプロピレン(出光石油化学製、F300SP)20質量%、及びメルトフローレート180のポリメチルペンテン(三井化学製:TPX DX-820)60質量%ペレット混合し、2軸押し出し機に供給して十分に混練りし、空洞形成剤を調製した(MB-II)。
 B層の原料として、PET-I:MB-I:MB-IIを82:10:8(質量%)とした以外は、実施例6と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 7
(Preparation of cavity forming agent)
As raw materials, 20% by mass of polystyrene with a melt flow rate of 1.5 (manufactured by Nippon Polystyrene Co., Ltd., G797N), 20% by mass of vapor phase polymerization polypropylene with a melt flow rate of 3.0 (F300SP, manufactured by Idemitsu Petrochemical), and melt flow 60% by mass pellet of polymethylpentene having a rate of 180 (Mitsui Chemicals Co., Ltd .: TPX DX-820) was supplied to a twin screw extruder and kneaded sufficiently to prepare a cavity forming agent (MB-II).
A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 6 except that PET-I: MB-I: MB-II was changed to 82: 10: 8 (mass%) as a raw material for the B layer. It was.
 実施例8、実施例9、比較例3
 フィルム原料としてのポリエチレンテレフタレート樹脂の酸価を10.1、19.5、30.2(それぞれPET-II、PET-III、PET-IV)とした以外は、実施例7と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 8, Example 9, Comparative Example 3
Except that the acid value of polyethylene terephthalate resin as a film raw material was 10.1, 19.5, 30.2 (PET-II, PET-III, PET-IV, respectively) A plastic film for the battery back surface protective film was obtained.
 比較例4
 微粒子含有マスターバッチの作製において、原料として紙袋に入れ温湿度の管理されていない場所で保管してあった未乾燥の極限粘度0.64、酸価8.0(eq/ton)のポリエチレンテレフタレート樹脂(PET-I)50質量%に、平均粒径0.3μm(電顕法)のルチル型二酸化チタン 50質量%を混合したものをベント式2軸押し出し機に供給して、混練りして305℃で脱気しながら微粒子(酸化チタン)含有マスターバッチ(MB-III)ペレットを調製した。このペレットの酸価は、38.4(eq/ton)であった。
 それ以外は、実施例7と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Comparative Example 4
In the preparation of a master batch containing fine particles, a polyethylene terephthalate resin having an undried intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton) stored in a paper bag as a raw material in a place where temperature and humidity are not controlled (PET-I) 50 mass% mixed with 50 mass% rutile type titanium dioxide having an average particle size of 0.3 μm (electron microscopic method) is supplied to a vent type twin screw extruder and kneaded to 305 ° C. A masterbatch (MB-III) pellet containing fine particles (titanium oxide) was prepared while degassing with a. The acid value of this pellet was 38.4 (eq / ton).
Other than that obtained the plastic film for solar cell back surface protective films by the method similar to Example 7. FIG.
 実施例10
 微粒子含有マスターバッチの作製において、ルチル型二酸化チタンの代わりに平均粒径が0.6μmの硫酸バリウムとし(MB-IV)、それをA層の原料としてMB-Iの代わりに用いた以外は、実施例7と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 10
In the production of the master batch containing fine particles, barium sulfate having an average particle size of 0.6 μm was used instead of rutile titanium dioxide (MB-IV), and it was used instead of MB-I as a raw material for the A layer. A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 7.
 実施例11
 被覆層を設けなかった以外は、実施例7と同様の方法で太陽電池裏面保護膜用ポリエステルフィルムを得た。
Example 11
A polyester film for a solar cell back surface protective film was obtained in the same manner as in Example 7 except that the coating layer was not provided.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例12
(微粒子含有マスターバッチの作製)
 原料として事前に120℃、8時間ほど10Paの真空下で乾燥した極限粘度0.69、酸価8(eq/ton)のポリエチレンテレフタレート樹脂(PET-A)50質量%に、平均粒径0.3μm(電子顕微鏡法)のルチル型酸化チタン50質量%を混合したものをベント式二軸押出機に供給して、混練りして脱気しながら275℃で押出し、微粒子含有マスターバッチペレットを調製した。さらにこのマスターバッチペレットを10Paの真空下で極限粘度が0.79となるまで固相重合処理を行い、微粒子含有マスターバッチ(MB-A)を作製した。このMB-Aの酸価は、23(eq/ton)であった。
Example 12
(Preparation of fine particle-containing masterbatch)
As a raw material, a polyethylene terephthalate resin (PET-A) having an intrinsic viscosity of 0.69 and an acid value of 8 (eq / ton) dried at 120 ° C. under a vacuum of 10 Pa for about 8 hours in advance has an average particle size of 0.1%. Mixing 50% by mass of 3μm (electron microscopy) rutile titanium oxide to a vent type twin screw extruder, kneading and extruding at 275 ° C while degassing, preparing fine particle-containing master batch pellets did. Further, this master batch pellet was subjected to solid phase polymerization under a vacuum of 10 Pa until the intrinsic viscosity became 0.79, to prepare a fine particle-containing master batch (MB-A). The acid value of MB-A was 23 (eq / ton).
(非晶性ポリエステル樹脂の作製)
 常法によりエステル交換反応及び重縮合反応を行い、ジカルボン酸成分としてテレフタル酸100モル%、グリコール成分としてエチレングリコール70モル%及びネオペンチルグリコール30モル%からなる非晶性ポリエステル樹脂(Co-PET)を調製した。この樹脂の極限粘度は0.72、酸価は19eq/tonであった。
(Preparation of amorphous polyester resin)
Transesterification and polycondensation reactions are carried out by conventional methods, and an amorphous polyester resin (Co-PET) comprising 100 mol% terephthalic acid as the dicarboxylic acid component, 70 mol% ethylene glycol and 30 mol% neopentyl glycol as the glycol component Was prepared. This resin had an intrinsic viscosity of 0.72 and an acid value of 19 eq / ton.
(熱接着層を積層した白色ポリエステルフィルムの作製)
 次いで、水分率30ppmに乾燥した非晶性ポリエステル樹脂(Co-PET)とポリスチレン(日本ポリスチレン社製、G797N、メルトフローレート1.5)を各々85質量%と15質量%に混合したA層原料を押出機Aに、同様に乾燥したPET-AとMB-Aをそれぞれ60質量%と40質量%に混合したB層原料を押出機Bに投入し、280℃で混合、溶融し、続いてフィードブロックを用い、B層の両面にA層を溶融状態で接合した。このとき、A層とB層の吐出量比率は、ギアポンプを用いて制御した。次いでT-ダイを用いて30℃に調節された冷却ドラム上に押し出し、A/B/Aの層構成からなる未延伸シートを作製した。
(Preparation of white polyester film with laminated thermal adhesive layer)
Next, A layer raw material in which amorphous polyester resin (Co-PET) dried to a moisture content of 30 ppm and polystyrene (Nippon Polystyrene Co., Ltd., G797N, melt flow rate 1.5) were mixed in 85% by mass and 15% by mass, respectively. Was fed into Extruder A, and B layer raw materials mixed with 60% by mass and 40% by mass of similarly dried PET-A and MB-A, respectively, were fed into Extruder B, mixed and melted at 280 ° C., and subsequently Using a feed block, the A layer was joined in a molten state on both sides of the B layer. At this time, the discharge rate ratio of the A layer and the B layer was controlled using a gear pump. Next, the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to produce an unstretched sheet having an A / B / A layer structure.
 得られた未延伸シートを、加熱ロールを用いて70℃に均一加熱し、90℃で3.3倍ロール延伸を行い、一軸延伸ポリエステルフィルムを得た。これをテンターに導き、140℃に加熱して3.7倍に横延伸し、幅固定して230℃で5秒間の熱処理を施し、更に220℃で幅方向に4%緩和させることにより、厚み188μm(19/150/19)の熱接着層を積層した太陽電池裏面保護膜用ポリエステルフィルムを得た。 The obtained unstretched sheet was uniformly heated to 70 ° C. using a heating roll, and 3.3-fold roll stretching was performed at 90 ° C. to obtain a uniaxially stretched polyester film. This was led to a tenter, heated to 140 ° C. and stretched to 3.7 times, fixed in width, subjected to heat treatment at 230 ° C. for 5 seconds, and further relaxed by 4% in the width direction at 220 ° C. The polyester film for solar cell back surface protective films which laminated | stacked the thermal adhesive layer of 188 micrometers (19/150/19) was obtained.
実施例13
(塗布液の調製)
 水分散共重合ポリエステル樹脂(東洋紡績(株)製、バイロナール)3質量%、水溶性ウレタン樹脂(第一工業製薬(株)製、エラストロン)6質量%、平均粒径0.05μmのシリカ粒子を固形分に対して1質量%含有する水/イソプロピルアルコール系塗布液を調整した。
Example 13
(Preparation of coating solution)
Silica particles having a water-dispersed copolymer polyester resin (manufactured by Toyobo Co., Ltd., Vylonal) 3 mass%, a water-soluble urethane resin (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Elastron), and an average particle size of 0.05 μm A water / isopropyl alcohol-based coating solution containing 1% by mass with respect to the solid content was prepared.
(熱接着層を積層した白色ポリエステルフィルムの作製)
 押出機Bに投入する原料をPET-A/MB-A=85/15(質量%)の混合物に変更した。また、二軸延伸フィルムの作製工程において、得られた一軸延伸ポリエステルフィルムの両面に前記塗布液を最終被覆層膜厚が0.08g/mとなるように塗布した後、135℃で乾燥させてテンターに導入した。この他は実施例12と同様にして、熱接着層を積層した太陽電池裏面保護膜用ポリエステルフィルムを得た。
(Preparation of white polyester film with laminated thermal adhesive layer)
The raw material charged into the extruder B was changed to a mixture of PET-A / MB-A = 85/15 (mass%). In the biaxially stretched film production process, the coating solution was applied on both sides of the obtained uniaxially stretched polyester film so that the final coating layer thickness was 0.08 g / m 2, and then dried at 135 ° C. Introduced to the tenter. Other than that was carried out similarly to Example 12, and obtained the polyester film for solar cell back surface protective films which laminated | stacked the heat bonding layer.
実施例14
(空洞形成剤マスターバッチの調製)
 原料として、メルトフローレート1.5のポリスチレン(日本ポリスチレン株式会社製、G797N)20質量%、メルトフローレート3.0の気相法重合ポリプロピレン(出光興産株式会社製、F300SP)20質量%、及びメルトフローレート180のポリメチルペンテン(三井化学製:TPX DX-820)60質量%をペレット混合し、二軸押出機に供給して十分に混練りし、空洞形成剤マスターバッチを調製した(MB-B)。
Example 14
(Preparation of cavity forming agent master batch)
As raw materials, 20% by mass of polystyrene having a melt flow rate of 1.5 (manufactured by Nippon Polystyrene Co., Ltd., G797N), 20% by mass of vapor phase polymerization polypropylene having a melt flow rate of 3.0 (manufactured by Idemitsu Kosan Co., Ltd., F300SP), and 60% by mass of polymethylpentene having a melt flow rate of 180 (manufactured by Mitsui Chemicals: TPX DX-820) was mixed with pellets, supplied to a twin-screw extruder and sufficiently kneaded to prepare a cavity forming agent master batch (MB -B).
(熱接着層を積層した白色ポリエステルフィルムの作製)
 B層の原料として、PET-A/MB-A/MB-B=82/10/8(質量%)とした以外は、実施例12と同様の方法で熱接着層を積層した太陽電池裏面保護膜用ポリエステルフィルムを得た。
(Preparation of white polyester film with laminated thermal adhesive layer)
Solar cell back surface protection with a thermal adhesive layer laminated in the same manner as in Example 12 except that PET-A / MB-A / MB-B = 82/10/8 (mass%) was used as the raw material for the B layer. A polyester film for membrane was obtained.
実施例15
 原料として用いるポリエチレンテレフタレート樹脂を極限粘度が0.69,酸価が19(eq/ton)のもの(PET-B)に変更した。また、微粒子含有マスターバッチの作製において固相重合処理を行わず、酸価39eq/tonのマスターバッチ(MB-A2)として用いた。これ以外は実施例14と同様の方法で熱接着層を積層した太陽電池裏面保護膜用ポリエステルフィルムを得た。
Example 15
The polyethylene terephthalate resin used as a raw material was changed to one having an intrinsic viscosity of 0.69 and an acid value of 19 (eq / ton) (PET-B). Further, solid phase polymerization treatment was not performed in the production of the fine particle-containing master batch, and the master batch (MB-A2) having an acid value of 39 eq / ton was used. Except this, the polyester film for solar cell back surface protective films which laminated | stacked the heat bonding layer by the method similar to Example 14 was obtained.
比較例5)
 微粒子含有マスターバッチの作製において、乾燥処理を行わないPET-A(水分率3500ppm)を用い、固相重合処理を行わなかった。このペレット(MB-A3)の酸価は、57(eq/ton)であった。またPET-Aに代えて酸価が31(eq/ton)のポリエチレンテレフタレート樹脂(PET-C)を用いた。これ以外は実施例12と同様の方法で熱接着層を積層した太陽電池裏面保護膜用ポリエステルフィルムを得た。
Comparative Example 5)
In the preparation of the master batch containing fine particles, PET-A (water content 3500 ppm) which was not subjected to drying treatment was used, and solid phase polymerization treatment was not conducted. The acid value of the pellet (MB-A3) was 57 (eq / ton). In place of PET-A, a polyethylene terephthalate resin (PET-C) having an acid value of 31 (eq / ton) was used. Except this, the polyester film for solar cell back surface protective films which laminated | stacked the heat bonding layer by the method similar to Example 12 was obtained.
比較例6)
 押出機Bに供給する原料について、PET-Aに代えてPET-Cを、MB-A代えてMB-A3を用いた。これ以外は実施例14と同様の方法で熱接着層を積層した太陽電池裏面保護膜用ポリエステルフィルムを得た。
Comparative Example 6)
Regarding the raw material supplied to the extruder B, PET-C was used instead of PET-A, and MB-A3 was used instead of MB-A. Except this, the polyester film for solar cell back surface protective films which laminated | stacked the heat bonding layer by the method similar to Example 14 was obtained.
実施例16)
 ルチル型酸化チタンの代わりに、平均粒径が0.2μmのアナターゼ型酸化チタンを用いて微粒子含有マスターバッチ(MB-A4)を作製した。これをB層の原料としてMB-A1の代わりに用いた以外は、実施例14と同様の方法で熱接着層を積層した太陽電池裏面保護膜用ポリエステルフィルムを得た。
Example 16)
A master batch (MB-A4) containing fine particles was prepared using anatase-type titanium oxide having an average particle size of 0.2 μm instead of rutile-type titanium oxide. A polyester film for a solar cell back surface protective film in which a thermal adhesive layer was laminated was obtained in the same manner as in Example 14 except that this was used in place of MB-A1 as a raw material for the B layer.
実施例17)
 押出機Aに供給する原料について、Co-PETに代えてPET-Aを用いた。これ以外は実施例14と同様の方法で熱接着層が無い太陽電池裏面保護膜用ポリエステルフィルムを得た。
Example 17)
For the raw material supplied to the extruder A, PET-A was used instead of Co-PET. Except this, a polyester film for solar cell back surface protective film having no thermal adhesive layer was obtained in the same manner as in Example 14.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例18)
 実施例12において、押出機Aに供給するポリスチレン樹脂に代えてポリエチレン樹脂(宇部興産製,ユメリット2040F,融点116℃,密度0.918g/cm)を用いた。また、原料比率を表5に示したものに変更した。これにより熱接着層を積層した太陽電池裏面保護膜用ポリエステルフィルムを得た。
Example 18)
In Example 12, instead of the polystyrene resin supplied to the extruder A, a polyethylene resin (manufactured by Ube Industries, Umerit 2040F, melting point 116 ° C., density 0.918 g / cm 3 ) was used. The raw material ratio was changed to that shown in Table 5. This obtained the polyester film for solar cell back surface protective films which laminated | stacked the heat bonding layer.
実施例19)
 常法によりエステル交換反応及び重縮合反応を行い、ジカルボン酸成分としてテレフタル酸80モル%及びイソフタル酸20モル%、グリコール成分としてエチレングリコール100モル%からなる非晶性ポリエステル樹脂を調製した。この樹脂の極限粘度は0.67、酸価は22eq/tonであった。この非晶性ポリエステル樹脂95質量%とポリエチレンワックス(三井化学製,NL500)5質量%を混合して二軸押出機に供給し、十分に混練りしてワックス剤マスターバッチを調製した(MB-C)を調整した。
 押出機Aに供給する原料について、表5に示した比率に変更した他は実施例12と同様にして、熱接着層を積層した太陽電池裏面保護膜用ポリエステルフィルムを得た。
Example 19)
A transesterification reaction and a polycondensation reaction were carried out by a conventional method to prepare an amorphous polyester resin composed of 80 mol% terephthalic acid and 20 mol% isophthalic acid as the dicarboxylic acid component and 100 mol% ethylene glycol as the glycol component. This resin had an intrinsic viscosity of 0.67 and an acid value of 22 eq / ton. 95% by mass of this amorphous polyester resin and 5% by mass of polyethylene wax (manufactured by Mitsui Chemicals, NL500) were mixed and supplied to a twin screw extruder, and kneaded thoroughly to prepare a wax agent master batch (MB- C) was adjusted.
About the raw material supplied to Extruder A, except having changed into the ratio shown in Table 5, it carried out similarly to Example 12, and obtained the polyester film for solar cell back surface protective films which laminated | stacked the heat bonding layer.
実施例20,21)
 押出機Aに供給する原料について、表3に示した比率でCo-PET、PET-Aとポリスチレンを混合したものを用いた。これ以外は実施例12と同様の方法で熱接着層が無い太陽電池裏面保護膜用ポリエステルフィルムを得た。
Examples 20, 21)
The raw material supplied to the extruder A was a mixture of Co-PET, PET-A and polystyrene at the ratio shown in Table 3. Except this, a polyester film for a solar cell back surface protective film having no thermal adhesive layer was obtained in the same manner as in Example 12.
 表4、5に示したとおり、本発明の範囲である実施例の太陽電池裏面保護膜用ポリエステルフィルムは優れた耐久性とEVA樹脂接着性を示した。一方、本発明の範囲外である比較例1、2のフィルムは耐久性が悪く、実施例17、20、21のフィルムはEVA樹脂との接着性が劣った。 As shown in Tables 4 and 5, the polyester film for the solar cell back surface protective film of the examples within the scope of the present invention exhibited excellent durability and EVA resin adhesion. On the other hand, the films of Comparative Examples 1 and 2 that are outside the scope of the present invention have poor durability, and the films of Examples 17, 20, and 21 have poor adhesion to the EVA resin.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例22
(微粒子含有マスターバッチの作製)
原料として事前に120℃、8時間ほど10-3torr下で乾燥した極限粘度0.64、酸価8.0(eq/ton)のポリエチレンテレフタレート樹脂(PET-I)50質量%に、平均粒径0.3μm(電顕法)のルチル型二酸化チタン50質量%を混合したものをベント式2軸押し出し機に供給して、混練りして脱気しながら275℃で押出し、ルチル型二酸化チタン微粒子含有マスターバッチ(MB-I)ペレットを調製した。このペレットの酸価は、8.6(eq/ton)であった。
Example 22
(Preparation of fine particle-containing masterbatch)
The average particle size was 50% by mass of polyethylene terephthalate resin (PET-I) having an intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton), which was dried at 120 ° C. under 10 −3 torr for about 8 hours in advance. A mixture of 50% by mass of rutile type titanium dioxide having a diameter of 0.3 μm (electron microscopic method) is supplied to a vent type twin screw extruder, kneaded and extruded at 275 ° C. while degassing, and rutile type titanium dioxide fine particles. Containing masterbatch (MB-I) pellets were prepared. The acid value of this pellet was 8.6 (eq / ton).
(フィルムの作製)
 次いで、ポリエチレンテレフタレート樹脂(PET-I)50質量%と、先に作製したMB-Iを50質量%とを混合した(A)層の原料と、PET-Iを70質量%とMB-Iを30質量%とを(B)層の原料とし、それぞれ別々の押出機に投入し、280℃で混合、溶融し、続いてフィードブロックを用い、A層の片面にB層を溶融状態で接合した。このとき、A層とB層の吐出量比率は、ギアポンプを用いて制御した。次いでT-ダイを用いて30℃に調節された冷却ドラム上に押し出し、A/B/A層となるように未延伸シートを作成した。
(Production of film)
Next, the raw material of the layer (A) in which 50% by mass of polyethylene terephthalate resin (PET-I) and 50% by mass of the previously prepared MB-I, 70% by mass of PET-I and MB-I were mixed. 30% by mass is used as a raw material for the layer (B), and each is put into separate extruders, mixed and melted at 280 ° C., and subsequently, the layer B is joined in a molten state on one side of the layer A using a feed block. . At this time, the discharge rate ratio of the A layer and the B layer was controlled using a gear pump. Next, the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to prepare an unstretched sheet so as to be an A / B / A layer.
(2軸延伸フィルムの作製)
 得られた未延伸シートを、加熱ロールを用いて70℃に均一加熱し、90℃で3.3倍ロール延伸を行った。得られた1軸延伸フィルムをテンターに導き、140℃に加熱して3.7倍に横延伸し、幅固定して220℃で5秒間の熱処理を施し、更に220℃で幅方向に4%緩和させることにより、厚み188μm(19/150/19)の太陽電池裏面保護膜用プラスチックフィルムを得た。
(Production of biaxially stretched film)
The obtained unstretched sheet was uniformly heated to 70 ° C. using a heating roll, and 3.3-fold roll stretching was performed at 90 ° C. The obtained uniaxially stretched film was led to a tenter, heated to 140 ° C. and transversely stretched 3.7 times, fixed in width and subjected to heat treatment at 220 ° C. for 5 seconds, and further at 220 ° C. in the width direction of 4%. By relaxing, a plastic film for a solar cell back surface protective film having a thickness of 188 μm (19/150/19) was obtained.
 実施例23
(空洞形成剤の調製)
 原料として、メルトフローレート1.5のポリスチレン(日本ポリスチ社製、G797N)20質量%、メルトフローレート3.0の気相法重合ポリプロピレン(出光石油化学製、F300SP)20質量%、及びメルトフローレート180のポリメチルペンテン(三井化学製:TPX DX-820)60質量%ペレット混合し、2軸押し出し機に供給して十分に混練りし、空洞形成剤を調製した(MB-II)。
 B層の原料として、PET-I:MB-I:MB-IIを80:12:8(質量%)とした以外は、実施例22と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 23
(Preparation of cavity forming agent)
As raw materials, 20% by mass of polystyrene with a melt flow rate of 1.5 (manufactured by Nippon Polystyrene Co., Ltd., G797N), 20% by mass of vapor phase polymerization polypropylene with a melt flow rate of 3.0 (F300SP, manufactured by Idemitsu Petrochemical), and melt flow 60% by mass pellet of polymethylpentene having a rate of 180 (Mitsui Chemicals Co., Ltd .: TPX DX-820) was supplied to a twin screw extruder and kneaded sufficiently to prepare a cavity forming agent (MB-II).
A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 22 except that PET-I: MB-I: MB-II was changed to 80: 12: 8 (mass%) as a raw material for the B layer. It was.
 実施例24、実施例25、比較例7
 フィルム原料としてのポリエチレンテレフタレート樹脂の酸価を10.1、19.5、30.2(それぞれPET-II、PET-III、PET-IV)とした以外は、実施例23と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 24, Example 25, Comparative Example 7
A solar cell was produced in the same manner as in Example 23 except that the acid value of polyethylene terephthalate resin as a film raw material was 10.1, 19.5, 30.2 (PET-II, PET-III, and PET-IV, respectively). A plastic film for the battery back surface protective film was obtained.
 実施例26
 実施例24においてMB-Iの添加量を表のように変更した以外は実施例24と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 26
A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 24 except that the amount of MB-I added in Example 24 was changed as shown in the table.
 実施例27
 微粒子含有マスターバッチの作成において、原料として、ポリエチレンテレフタレート樹脂(PET-I)50質量%に、平均粒径0.3μm(電顕法)のアナターゼ型二酸化チタン50質量%を混合したものをベント式2軸押し出し機に供給して、混練りして脱気しながら275℃で押出し、微粒子含有マスターバッチ(MB-III)ペレットを調製した。このペレットの酸価は、8.1(eq/ton)であった。微粒子含有マスターバッチMB-Iに代えてMB-IIIとした以外は実施例23と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 27
In the preparation of the fine particle-containing masterbatch, as a raw material, 50% by mass of polyethylene terephthalate resin (PET-I) and 50% by mass of anatase-type titanium dioxide having an average particle size of 0.3 μm (electron microscopic method) are bent. The mixture was supplied to a shaft extruder, kneaded and extruded at 275 ° C. while degassing to prepare fine particle-containing master batch (MB-III) pellets. The acid value of this pellet was 8.1 (eq / ton). A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 23 except that MB-III was used instead of the fine particle-containing master batch MB-I.
 比較例8
 微粒子含有マスターバッチの作製において、原料として紙袋に入れ温湿度の管理されていない場所で保管してあった未乾燥の極限粘度0.64、酸価8.0(eq/ton)のポリエチレンテレフタレート樹脂(PET-I)50質量%に、平均粒径0.3μm(電顕法)のルチル型二酸化チタン 50質量%を混合したものをベント式2軸押し出し機に供給して、混練りして305℃で脱気しながら微粒子(酸化チタン)含有マスターバッチ(MB-IV)ペレットを調製した。このペレットの酸価は、38.4(eq/ton)であった。微粒子含有マスターバッチMB-Iに代えてMB-IVとした以外は、実施例23と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Comparative Example 8
In the preparation of a master batch containing fine particles, a polyethylene terephthalate resin having an undried intrinsic viscosity of 0.64 and an acid value of 8.0 (eq / ton) stored in a paper bag as a raw material in a place where temperature and humidity are not controlled (PET-I) 50 mass% mixed with 50 mass% rutile type titanium dioxide having an average particle size of 0.3 μm (electron microscopic method) is supplied to a vent type twin screw extruder and kneaded to 305 ° C. A masterbatch (MB-IV) pellet containing fine particles (titanium oxide) was prepared while degassing with a vacuum. The acid value of this pellet was 38.4 (eq / ton). A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 23 except that MB-IV was used instead of the fine particle-containing master batch MB-I.
 実施例28
 微粒子含有マスターバッチMB-Iに代えてMB-IIIを用いた以外は、実施例22と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 28
A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 22 except that MB-III was used instead of the fine particle-containing master batch MB-I.
 実施例29
 微粒子含有マスターバッチの作製において、ルチル型二酸化チタンの代わりに平均粒径が0.6μmの硫酸バリウムとし(MB-V)、それをA層の原料としてMB-Iの代わりに用いた以外は、実施例23と同様の方法で太陽電池裏面保護膜用プラスチックフィルムを得た。
Example 29
In the preparation of the master batch containing fine particles, barium sulfate having an average particle diameter of 0.6 μm was used instead of rutile titanium dioxide (MB-V), and it was used instead of MB-I as a raw material for the A layer. A plastic film for a solar cell back surface protective film was obtained in the same manner as in Example 23.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の太陽電池裏面保護膜用ポリエステルフィルムは、高温高湿度下での耐久性および光反射効率に優れており、太陽電池裏面保護膜を構成する素材として有用である。 The polyester film for solar cell back surface protective film of the present invention is excellent in durability and light reflection efficiency under high temperature and high humidity, and is useful as a material constituting the solar cell back surface protective film.

Claims (7)

  1.  白色度が50以上で、平均粒径が0.1~3μmの微粒子を3~50質量%含有し、フィルムの酸価が1(eq/ton)以上30(eq/ton)以下であることを特徴とする太陽電池裏面保護膜用ポリエステルフィルム。 3 to 50% by mass of fine particles having a whiteness of 50 or more and an average particle size of 0.1 to 3 μm, and the acid value of the film is 1 (eq / ton) to 30 (eq / ton). A polyester film for a solar cell back surface protective film.
  2.  少なくとも片面にポリエステル樹脂、ポリウレタン樹脂またはポリアクリル樹脂の少なくとも1種類を主成分とする被覆層を有することを特徴とする請求項1に記載の太陽電池裏面保護膜用ポリエステルフィルム。 2. The polyester film for a solar cell back surface protective film according to claim 1, comprising a coating layer mainly comprising at least one of polyester resin, polyurethane resin or polyacrylic resin on one side.
  3.  少なくとも片面に非晶性ポリエステル樹脂を主成分とした厚さ1.0~40μmの熱接着層を有することを特徴とする請求項1または2に記載の太陽電池裏面保護膜用ポリエステルフィルム。 3. The polyester film for a solar cell back surface protective film according to claim 1 or 2, further comprising a thermal adhesive layer having a thickness of 1.0 to 40 μm mainly composed of an amorphous polyester resin on at least one side.
  4.  前記微粒子がルチル型を主体とする二酸化チタン微粒子であって、該微粒子を3~50質量%含有することを特徴とする請求項1~3のいずれかに記載の太陽電池裏面保護膜用ポリエステルフィルム。 The polyester film for a solar cell back surface protective film according to any one of claims 1 to 3, wherein the fine particles are titanium dioxide fine particles mainly composed of a rutile type and contain 3 to 50% by mass of the fine particles. .
  5.  フィルム内部に微細な空洞を多数有することにより、フィルムの見かけ比重が0.7以上1.3以下であることを特徴とする請求項1~4のいずれかに記載の太陽電池裏面保護膜用ポリエステルフィルム。 The polyester for solar cell back surface protective film according to any one of claims 1 to 4, wherein an apparent specific gravity of the film is 0.7 or more and 1.3 or less by having many fine cavities inside the film. the film.
  6.  平均粒径が0.1~3μmの微粒子に由来する空洞を多数含有するポリエステル層(スキン層)と、ポリエステルに非相溶の熱可塑性樹脂に由来する空洞を多数含有するポリエステル層(コア層)が積層されてなることを特徴とする請求項1~5のいずれかに記載の太陽電池裏面保護膜用ポリエステルフィルム。 Polyester layer (skin layer) containing many cavities derived from fine particles having an average particle size of 0.1 to 3 μm, and polyester layer (core layer) containing many cavities derived from a thermoplastic resin incompatible with polyester The polyester film for a solar cell back surface protective film according to any one of claims 1 to 5, which is laminated.
  7.  フィルム原料となるポリエステルの酸価が1(eq/ton)以上30(eq/ton)以下であることを特徴とする請求項1~6のいずれかに記載の太陽電池裏面保護膜用ポリエステルフィルム。 The polyester film for a solar cell back surface protective film according to any one of claims 1 to 6, wherein the acid value of the polyester as a film raw material is 1 (eq / ton) to 30 (eq / ton).
PCT/JP2010/050084 2009-01-07 2010-01-07 Polyester film for solar cell back surface protection film WO2010079798A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009001489A JP5114681B2 (en) 2009-01-07 2009-01-07 Polyester film for solar cell back surface protective film
JP2009-001489 2009-01-07
JP2009-002369 2009-01-08
JP2009002369A JP5572949B2 (en) 2009-01-08 2009-01-08 Method for producing polyester film for solar cell back surface protective film
JP2009-224198 2009-09-29
JP2009224198 2009-09-29
JP2009-226778 2009-09-30
JP2009226778 2009-09-30

Publications (1)

Publication Number Publication Date
WO2010079798A1 true WO2010079798A1 (en) 2010-07-15

Family

ID=42316563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050084 WO2010079798A1 (en) 2009-01-07 2010-01-07 Polyester film for solar cell back surface protection film

Country Status (1)

Country Link
WO (1) WO2010079798A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005034A1 (en) * 2010-07-06 2012-01-12 帝人デュポンフィルム株式会社 Polyester film for protecting rear surface of solar cell
WO2012132921A1 (en) * 2011-03-30 2012-10-04 リンテック株式会社 Protective sheet for solar cell, method for producing same, and solar cell module
WO2012132922A1 (en) * 2011-03-30 2012-10-04 リンテック株式会社 Protective sheet for solar cells, method for producing same, and solar cell module
JP2013058748A (en) * 2011-08-17 2013-03-28 Fujifilm Corp Back sheet for solar cell and manufacturing method therefor and solar cell module
WO2013137167A1 (en) * 2012-03-12 2013-09-19 富士フイルム株式会社 Polyester film, method for producing same, back sheet for solar cell module, and solar cell module
US20150068601A1 (en) * 2012-03-14 2015-03-12 Toyobo Co., Ltd. Sealing sheet for back surface of solar cell, and solar cell module
TWI499064B (en) * 2011-10-07 2015-09-01 Toyo Boseki White polyester film for solar cell, solar cell back encapsulant and solar cell module using same
WO2019072108A1 (en) * 2017-10-11 2019-04-18 珠海奔图电子有限公司 Chip and installation detection method therefor, replaceable unit and image formation device
US10439086B2 (en) 2014-07-08 2019-10-08 Dupont Teijin Films U.S. Limited Partnership Polyester film comprising amorphous polyester
CN110845694A (en) * 2019-11-08 2020-02-28 浙江华峰热塑性聚氨酯有限公司 Thermoplastic polyurethane capable of carrying out light transmission and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148497A (en) * 1999-11-19 2001-05-29 Kanegafuchi Chem Ind Co Ltd Solar cell module
JP2002026354A (en) * 2000-07-11 2002-01-25 Toray Ind Inc Film for sealing rear surface of solar cell and solar cell using the same
JP2005322687A (en) * 2004-05-06 2005-11-17 Keiwa Inc Backsheet for solar cell module and solar cell module using the same
JP2007118267A (en) * 2005-10-26 2007-05-17 Toray Ind Inc Thermoplastic polyester sheet for solar cell
WO2007063860A1 (en) * 2005-11-29 2007-06-07 Dai Nippon Printing Co., Ltd. Back-protective sheet for solar cell module, back laminate for solar cell module, and solar cell module
JP2007177136A (en) * 2005-12-28 2007-07-12 Asahi Kasei Chemicals Corp Back surface-protecting sheet for solar cell
JP2007320218A (en) * 2006-06-02 2007-12-13 Toppan Printing Co Ltd Sheet for sealing back side of solar cell
JP2008004839A (en) * 2006-06-23 2008-01-10 Dainippon Printing Co Ltd Back protection sheet film of solar cell, and back protection sheet of solar cell module using it
JP2008218856A (en) * 2007-03-07 2008-09-18 Toray Advanced Film Co Ltd Solar-cell backside sealing film
WO2009125701A1 (en) * 2008-04-08 2009-10-15 東レ株式会社 Thermoplastic resin sheet for solar battery, method for manufacturing thermoplastic resin sheet, and solar battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148497A (en) * 1999-11-19 2001-05-29 Kanegafuchi Chem Ind Co Ltd Solar cell module
JP2002026354A (en) * 2000-07-11 2002-01-25 Toray Ind Inc Film for sealing rear surface of solar cell and solar cell using the same
JP2005322687A (en) * 2004-05-06 2005-11-17 Keiwa Inc Backsheet for solar cell module and solar cell module using the same
JP2007118267A (en) * 2005-10-26 2007-05-17 Toray Ind Inc Thermoplastic polyester sheet for solar cell
WO2007063860A1 (en) * 2005-11-29 2007-06-07 Dai Nippon Printing Co., Ltd. Back-protective sheet for solar cell module, back laminate for solar cell module, and solar cell module
JP2007177136A (en) * 2005-12-28 2007-07-12 Asahi Kasei Chemicals Corp Back surface-protecting sheet for solar cell
JP2007320218A (en) * 2006-06-02 2007-12-13 Toppan Printing Co Ltd Sheet for sealing back side of solar cell
JP2008004839A (en) * 2006-06-23 2008-01-10 Dainippon Printing Co Ltd Back protection sheet film of solar cell, and back protection sheet of solar cell module using it
JP2008218856A (en) * 2007-03-07 2008-09-18 Toray Advanced Film Co Ltd Solar-cell backside sealing film
WO2009125701A1 (en) * 2008-04-08 2009-10-15 東レ株式会社 Thermoplastic resin sheet for solar battery, method for manufacturing thermoplastic resin sheet, and solar battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005034A1 (en) * 2010-07-06 2012-01-12 帝人デュポンフィルム株式会社 Polyester film for protecting rear surface of solar cell
JP2012018971A (en) * 2010-07-06 2012-01-26 Teijin Dupont Films Japan Ltd Polyester film for solar battery backside protective film
WO2012132921A1 (en) * 2011-03-30 2012-10-04 リンテック株式会社 Protective sheet for solar cell, method for producing same, and solar cell module
WO2012132922A1 (en) * 2011-03-30 2012-10-04 リンテック株式会社 Protective sheet for solar cells, method for producing same, and solar cell module
JP2012209462A (en) * 2011-03-30 2012-10-25 Lintec Corp Protective sheet for solar cell, manufacturing method thereof, and solar cell module
JP2012209461A (en) * 2011-03-30 2012-10-25 Lintec Corp Protection sheet for solar cell, manufacturing method of protection sheet, and solar cell module
JP2013058748A (en) * 2011-08-17 2013-03-28 Fujifilm Corp Back sheet for solar cell and manufacturing method therefor and solar cell module
TWI499064B (en) * 2011-10-07 2015-09-01 Toyo Boseki White polyester film for solar cell, solar cell back encapsulant and solar cell module using same
WO2013137167A1 (en) * 2012-03-12 2013-09-19 富士フイルム株式会社 Polyester film, method for producing same, back sheet for solar cell module, and solar cell module
US20150068601A1 (en) * 2012-03-14 2015-03-12 Toyobo Co., Ltd. Sealing sheet for back surface of solar cell, and solar cell module
US10896987B2 (en) * 2012-03-14 2021-01-19 Toyobo Co., Ltd. Sealing sheet for back surface of solar cell, and solar cell module
US10439086B2 (en) 2014-07-08 2019-10-08 Dupont Teijin Films U.S. Limited Partnership Polyester film comprising amorphous polyester
WO2019072108A1 (en) * 2017-10-11 2019-04-18 珠海奔图电子有限公司 Chip and installation detection method therefor, replaceable unit and image formation device
US10996611B2 (en) 2017-10-11 2021-05-04 Zhuhai Pantum Electronics Co., Ltd. Chip and replaceable unit of image forming apparatus
CN110845694A (en) * 2019-11-08 2020-02-28 浙江华峰热塑性聚氨酯有限公司 Thermoplastic polyurethane capable of carrying out light transmission and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2010079798A1 (en) Polyester film for solar cell back surface protection film
JP5572949B2 (en) Method for producing polyester film for solar cell back surface protective film
JP5835667B2 (en) Method for producing polyester film for sealing solar cell back surface
JP6241414B2 (en) Solar cell backside sealing sheet and solar cell module
JP6260314B2 (en) Biaxially oriented polyester film
JP5494269B2 (en) Polyester film for solar cell back surface protective film
KR20100090680A (en) Polyester film, method for production of the same, and area light source, solar battery back-sheet and solar battery each comprising the same
US20120202083A1 (en) Biaxially oriented polyester film
WO2011087159A1 (en) Back sheet for solar cell, method for producing the same, and solar cell module
US20220024111A1 (en) Biaxially oriented polyester film and method for producing same
JP4896558B2 (en) Polyester film for solar cell back surface protective film and solar cell back surface protective film using the same
US11646385B2 (en) PV cells and backsheet polyester films
JP5114681B2 (en) Polyester film for solar cell back surface protective film
JP5521806B2 (en) Polyester film for solar cell back surface protective film
WO2015182282A1 (en) Polyester film for solar cell back sheets
JP6096135B2 (en) White polyester film and method for producing the same, solar cell module and method for producing the same
JP2015216213A (en) Polyester film for solar battery backside protective films, and solar battery backside protective film including the same
WO2016031340A1 (en) Solar cell rear surface protection sheet and solar cell module
JP2009249421A (en) Polyester film for solar cell rear surface protective film
JP5995769B2 (en) Laminated film, back sheet for solar cell module, and solar cell module
JP2015188015A (en) Laminate polyester film for solar battery backside protection, solar battery backside protective sheet, and solar battery module
JP2017157730A (en) Polyester film for solar battery back sheet
JP2004331729A (en) Biaxially oriented laminated polyester film
JP2012199592A (en) Polyester film for solar-cell backside protection film
JP2018103619A (en) Polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10729218

Country of ref document: EP

Kind code of ref document: A1