JP2010156172A - Injection pipe device and grouting construction method - Google Patents

Injection pipe device and grouting construction method Download PDF

Info

Publication number
JP2010156172A
JP2010156172A JP2008335849A JP2008335849A JP2010156172A JP 2010156172 A JP2010156172 A JP 2010156172A JP 2008335849 A JP2008335849 A JP 2008335849A JP 2008335849 A JP2008335849 A JP 2008335849A JP 2010156172 A JP2010156172 A JP 2010156172A
Authority
JP
Japan
Prior art keywords
injection
packer
tube
outer tube
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008335849A
Other languages
Japanese (ja)
Other versions
JP4581013B2 (en
Inventor
Shunsuke Shimada
俊介 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2008335849A priority Critical patent/JP4581013B2/en
Publication of JP2010156172A publication Critical patent/JP2010156172A/en
Application granted granted Critical
Publication of JP4581013B2 publication Critical patent/JP4581013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection pipe device and a grouting construction method for significantly simplifying an injection process substantially reducing construction cost. <P>SOLUTION: An outer pipe packer is a water-impermeable expansion and contraction packer and is expanded by a fluid filled in the outer pipe packer via an injection inner pipe from an outer-pipe-packer-inside discharge opening which is covered with a check valve and is provided on the pipe wall of an injection outer pipe in the outer pipe packer. The inner pipe has a plurality of inner pipe packers, while a pipe wall in the inner pipe packer has pipe-packer-inside discharge opening. Also, inner pipe discharge openings are provided in the inner-pipe pipe-wall among the plurality of inner pipe packers. The plurality of inner pipe packers are loosely inserted in the outer pipe in such a way as to be positioned on both sides of the outer-pipe-inside discharge opening. By feeding the fluid into the injection inner pipe, the fluid is filled in the outer pipe packer through the space between the inner pipe packers to form the outer pipe packer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は地盤中の削孔内にパッカを少なくとも1つ、特に複数個の外管パッカを間隔をあけて備えた注入外管を挿入し、パッカ間の削孔壁と注入管との間の空間を通して、外管内に挿入した複数の内管にパッカを有する内管から注入材を地盤中に注入する注入管装置、および地盤注入工法に係り、特に内管パッカの形成と外管パッカの形成を自動的に行い、あるいは外管パッカの形成と外管注入口からの注入液の注入を自動的に行い、あるいは内管注入液の送液によって内管パッカの形成と外管パッカの形成と外管注入口からの注入液の注入を自動的に行うことによって注入の工程を飛躍的に単純化し、あるいは注入管の孔径を小さくすることにより削孔径を小さくすることを可能にし、工費を大幅に低減することを可能にする注入管装置および地盤注入工法に関する。   The present invention inserts an injection outer pipe having at least one packer, particularly a plurality of outer pipe packers, at intervals in a borehole in the ground, and between the borehole wall between the packers and the injection pipe. The present invention relates to an injection pipe device for injecting an injection material into the ground from an inner pipe having a packer in a plurality of inner pipes inserted into the outer pipe through a space, and formation of the inner pipe packer and formation of the outer pipe packer. Or the formation of the outer tube packer and the injection of the injection solution from the outer tube injection port, or the formation of the inner tube packer and the formation of the outer tube packer by feeding the inner tube injection solution. By automatically injecting the injection solution from the outer tube inlet, the injection process can be greatly simplified, or the hole diameter can be reduced by reducing the hole diameter of the injection tube, greatly increasing the construction cost. The injection tube device can be reduced to On the fine soil injection method.

注入対象となる地盤が沖積層の場合には、通常、透水係数は垂直方向よりも水平方向の方が大きい。このような地盤に注入材を注入して該地盤を固結するに当たり、従来、注入管管壁に袋パッカを形成する袋体を間隔をあけて複数個取りつけ、かつ袋体の内部ならびに上下に隣接する袋体間に開口する吐出口を備えた注入管装置を用い、この注入管装置を地盤中に設けられた削孔中に挿入し、次いで、前記袋体の内部に開口する吐出口から袋体中に固結材を填充し、膨らませて袋パッカを形成するとともに、上下に隣接する袋体間に開口する吐出口から注入材を注入して前記地盤を固結する技術が採用されていた。   When the ground to be injected is alluvium, the hydraulic conductivity is usually larger in the horizontal direction than in the vertical direction. In injecting injection material into such ground and consolidating the ground, conventionally, a plurality of bag bodies forming a bag packer are attached to the injection pipe tube wall at intervals, and the inside and upper and lower sides of the bag body Using an injection tube device having a discharge port that opens between adjacent bag bodies, insert this injection tube device into a drilling hole provided in the ground, and then from the discharge port that opens inside the bag body A technology is adopted in which a bag material is filled in a bag body and inflated to form a bag packer, and the ground is consolidated by injecting an injection material from a discharge port that opens between adjacent bag bodies vertically. It was.

また、二重注入管を用いて内管注入管への送液と内管パッカの形成を同時に行って外管より注入液を注入する工法は本出願人によってすでに公知である。上述の公知技術では、注入管と、削孔壁との間に形成される隙間を上下に隣接する袋パッカで遮断してこれら袋パッカ間に独立した空間を形成し、この空間を通して注入材を地盤中に注入するものである。   In addition, a method for injecting an injection solution from an outer tube by simultaneously performing liquid feeding to an inner tube injection tube and formation of an inner tube packer using a double injection tube is already known by the present applicant. In the above-mentioned known technology, the gap formed between the injection tube and the hole-drilling wall is blocked by the bag packer adjacent to the upper and lower sides to form an independent space between the bag packers, and the injection material is passed through this space. It is injected into the ground.

本出願人による先願特許第3509744号を例にあげれば、まず外管2に内管6を挿入して外管パッカ3内に固結材7を充填して、外管パッカ体20を形成してのち、上下の外管パッカ体で形成された外管外空間22に外管注入口16を通して地盤23に注入液
7を注入する。また内管パッカ8は合成ゴムのような弾性体、あるいは内管内に設けられたパッカ流体の管路を通して膨縮性のゴムの袋体の内管パッカに圧入されて内管パッカ8を形成する。
For example, in the case of prior application No. 3509744 filed by the present applicant, the inner tube 6 is first inserted into the outer tube 2 and the outer tube packer 3 is filled with the consolidated material 7 to form the outer tube packer body 20. Thereafter, the injection solution 7 is injected into the ground 23 through the outer tube injection port 16 into the outer tube outer space 22 formed by the upper and lower outer tube packer bodies. The inner tube packer 8 is press-fitted into an inner tube packer of an inflatable / decompressible rubber bag through an elastic body such as synthetic rubber or a packer fluid line provided in the inner tube to form the inner tube packer 8. .

しかし、上記の注入では外管のパッカ体の形成と内管からの地盤中への注入液の注入の工程が別々に行われる。また、内管内にパッカ流体の流路を設けて内管パッカを形成することは内管径が大きくなり、したがって、外管径が大きくなり削孔径が大きくなる。また、これらはいずれも工期も長くなり工費が高くなる。   However, in the above injection, the process of forming the packer body of the outer tube and the injection of the injection solution from the inner tube into the ground are performed separately. Further, forming the inner tube packer by providing the flow path of the packer fluid in the inner tube increases the inner tube diameter, and therefore increases the outer tube diameter and the drilling hole diameter. Moreover, both of these require a long construction period and high construction costs.

また、本出願による先願特許第4034305号を例に上げれば、外管パッカの形成をあらかじめ行った上で、内管におけるパッカの形成と注入を同時に行うことを特徴とする。このため工程が多くなる。したがって、さらなる簡便性と工期の短縮が望まれていた。
特許第3509744号 特許第4034305号
Further, according to prior application No. 4034305 according to the present application, the outer tube packer is formed in advance, and then the packer is formed and injected into the inner tube at the same time. This increases the number of processes. Therefore, further simplicity and shortening of the construction period have been desired.
Japanese Patent No. 3509744 Patent No. 4034305

そこで、本発明が解決しようとする課題は内管パッカの形成と外管パッカの形成を自動的に行い、あるいは外管パッカの形成と外管注入口からの注入液の注入を自動的に行い、あるいは内管注入液の送液によって内管パッカの形成と外管パッカの形成と外管注入口からの注入液の注入を自動的に行うことによって注入の工程を飛躍的に単純化し、あるいは注入管の孔径を小さくすることにより削孔径を小さくして工費を大幅に低減することを可能にし、上述の公知技術に存する欠点を改良した注入管装置、外管パッカの形成方法および地盤注入工法を提供する。   Therefore, the problem to be solved by the present invention is to automatically form the inner tube packer and the outer tube packer, or automatically form the outer tube packer and inject the injection liquid from the outer tube inlet. Alternatively, the injection process is dramatically simplified by automatically forming the inner tube packer and the outer tube packer and injecting the injection solution from the outer tube injection port by feeding the inner tube injection solution, or By reducing the hole diameter of the injection pipe, it is possible to reduce the drilling diameter and significantly reduce the construction cost. The injection pipe apparatus, the outer pipe packer forming method, and the ground injection construction method have improved the disadvantages of the above-mentioned known techniques. I will provide a.

上述の課題を解決するため、本発明の注入管装置によれば、地盤中の削孔中に設置された外管パッカを有する注入外管から注入内管を通して地盤中に注入液を外管注入口から注入する注入管装置において、該外管パッカは不透水性膨縮パッカであって、該外管パッカ内の注入外管の管壁に設けられた逆止弁に覆われた外管パッカ内吐出口から注入内管を介して外管パッカ内に填充された流体によって膨張し、該内管は複数の内管パッカを有し、該内管パッカ内の管壁には内管パッカ内吐出口を有し、該複数の内管パッカ間の内管管壁には内管吐出口を有し、該複数の内管パッカは該外管内吐出口を挟むように外管内に遊挿して挿入され、該注入内管内に流体を送液することによって、内管パッカ間の空間から該流体が外管パッカ内に填充して外管パッカ体を形成することを特徴とする。   In order to solve the above-described problems, according to the injection tube device of the present invention, the injection solution is injected into the ground from the injection outer tube having the outer tube packer installed in the drilling hole in the ground through the injection inner tube into the ground. In the injection pipe device for injecting from the inlet, the outer pipe packer is a water-impermeable expansion / contraction packer, and the outer pipe packer is covered with a check valve provided on the pipe wall of the injection outer pipe in the outer pipe packer. The inner tube is expanded by the fluid filled in the outer tube packer through the injection inner tube, the inner tube has a plurality of inner tube packers, and the inner wall packer has a wall inside the inner tube packer. The inner tube wall between the plurality of inner tube packers has an inner tube discharge port, and the plurality of inner tube packers are loosely inserted into the outer tube so as to sandwich the outer tube discharge port. By inserting and feeding the fluid into the injection inner tube, the fluid is filled into the outer tube packer from the space between the inner tube packers. And forming a tubular packer body.

さらに、上述の課題を解決するため、本発明の地盤注入工法によれば、地盤の削孔中に設置された注入外管に注入内管を通して地盤中に注入液を外管注入口から注入する地盤注入工法において、前記注入外管が、外管管壁に外管パッカ体を形成する伸縮性外管パッカを1個、または間隔をあけて複数個取りつけ、かつ、該外管パッカより下方にあるいは上下に隣接する外管パッカに外管注入口を備え、該外管パッカ内に開口する逆止弁で覆われた外管パッカ内吐出口を設けてなり、前記外管に挿入する注入内管は複数の内管パッカを形成する伸縮性内管袋体を内管パッカ間吐出口をはさんで複数設け、該内管に流体を送液することにより内管袋体内吐出口から吐出された流体の流体圧により内管袋体が膨張して内管パッカが形成され、それによって形成された内管パッカ間空間を経て外管パッカ内吐出口より外管パッカ内に流体が充填されて外管パッカ体が形成されることを特徴とする。   Furthermore, in order to solve the above-mentioned problem, according to the ground injection method of the present invention, the injection solution is injected from the outer tube injection port into the ground through the injection inner tube into the injection outer tube installed in the ground drilling hole. In the ground injection construction method, the injection outer pipe is attached with one or a plurality of stretchable outer pipe packers forming an outer pipe packer body on the outer pipe wall, and below the outer pipe packer. Alternatively, the outer tube packer adjacent to the upper and lower sides is provided with an outer tube injection port, and the outer tube packer is provided with a discharge port covered with a check valve that opens into the outer tube packer, and is inserted into the outer tube. The tube is provided with a plurality of elastic inner tube bag bodies that form a plurality of inner tube packers across the discharge port between the inner tube packers, and is discharged from the inner tube bag discharge port by feeding fluid to the inner tube. The inner tube bag body is expanded by the fluid pressure of the fluid to form an inner tube packer. Fluid is filled into the outer tube packer from the outer tube packer discharge opening through the inner tube packer between space formed me in, characterized in that the outer tube packer body is formed.

さらに、上述の課題を解決するため、本発明の地盤注入工法によれば、地盤中の削孔中に設置された不透水性の膨縮性外管パッカを有する注入外管から膨縮性内管パッカを複数有する注入内管を通して地盤中に注入液を注入する地盤注入工法において、外管管壁に1つまたは複数の外管注入口を有し、外管内に注入内管を隣接する複数の外管パッカ内吐出口をはさむように複数の内管パッカを位置せしめ、該外管パッカ内には逆止弁を有する外管パッカ内吐出口が設けられてなり、かつ、複数の外管パッカ間の外管管壁には逆止弁を有する外管パッカ間注入口が設けられてなり、該注入内管内に流体を送液して内管パッカを膨張し、ついで内管パッカ間吐出口から外管パッカ内吐出口を通して上下の外管パッカに流入して外管パッカ体を形成し、さらに、外管パッカ体間に開口する外管注入口から注入液を注入することを特徴とする。   Furthermore, in order to solve the above-described problems, according to the ground injection method of the present invention, the inner surface of the inflatable structure is expanded from the outer surface of the injection outer tube having a water-impermeable and expandable outer tube packer installed in the drilling hole in the ground. In a ground injection method for injecting an injection solution into a ground through an injection inner pipe having a plurality of pipe packers, the outer pipe wall has one or a plurality of outer pipe injection ports, and a plurality of injection inner pipes adjacent to each other in the outer pipe A plurality of inner tube packers are positioned so as to sandwich the discharge ports in the outer tube packer, and the outer tube packer is provided with discharge ports in the outer tube packer having check valves, and the plurality of outer tubes The outer tube wall between the packers is provided with an inlet between outer tube packers having a check valve. The fluid is fed into the inner tube to expand the inner tube packer, and then the inner tube packer is discharged. From the outlet through the outlet in the outer tube packer, it flows into the upper and lower outer tube packers to form the outer tube packer body. Further characterized in that injecting an injection fluid from the outer tube inlet opening between the outer tube packer body.

さらに、上述の課題を解決するため、本発明の地盤注入工法によれば、前記注入内管を複数の膨縮性内管パッカが前記外管パッカ体内外管吐出口をはさむように位置せしめ、さらに、これら内管パッカ内にパッカ内吐出口を有し、かつ前記間隔をあけて備えられた内管パッカ間に外管吐出口に通じる内管吐出口を有する内管とを備えた注入内管を用い、内管流路に注入液を送液することにより、前記膨縮性内管パッカを注入液の送液圧力によって膨張して複数の内管パッカ間に外管内空間を形成するとともに、この外管内空間内に内管吐出口から注入液を吐出し、該外管袋体を膨らませて外管パッカ体を形成すると共に注入液を外管内空間から外管吐出口を通して外管パッカ外空間から地盤中に注入して地盤を固結することを特徴とする。   Furthermore, in order to solve the above-mentioned problem, according to the ground injection method of the present invention, the injecting inner tube is positioned such that a plurality of inflatable inner tube packers sandwich the outer tube packer inner / outer tube discharge port, Further, the inner tube packer has an inner tube discharge port in the inner tube packer, and an inner tube having an inner tube discharge port communicating with the outer tube discharge port between the inner tube packers provided at the intervals. The tube is used to send the injection solution to the inner tube flow path, whereby the expandable inner tube packer is expanded by the solution supply pressure of the injection solution to form an outer tube inner space between the plurality of inner tube packers. The injecting solution is discharged from the inner tube discharge port into the outer tube inner space, the outer tube bag body is inflated to form an outer tube packer body, and the injected solution is discharged from the outer tube inner space through the outer tube discharge port to the outside of the outer tube packer. It is characterized by pouring the ground into the ground from the space.

上述の本発明は内管パッカの形成と外管パッカの形成を自動的に行い、あるいは外管パッカの形成と外管注入口からの注入液の注入を自動的に行い、あるいは内管注入液の送液によって内管パッカの形成と外管パッカの形成と外管注入口からの注入液の注入を自動的に行うことによって注入の工程を飛躍的に単純化し、あるいは注入管の孔径を小さくすることにより削孔径を小さくして工費を大幅に低減することを可能にする。   The above-described present invention automatically forms the inner tube packer and the outer tube packer, or automatically forms the outer tube packer and injects the injection solution from the outer tube inlet, or the inner tube injection solution. By automatically feeding the inner tube packer, the outer tube packer, and the injection solution from the outer tube inlet, the injection process is greatly simplified, or the hole diameter of the injection tube is reduced. This makes it possible to reduce the drilling diameter and greatly reduce the construction cost.

以下、本発明を添付図面を用いて詳述する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図21(イ)、図22(ロ)は従来技術の説明図である。
注入管1の管壁2には、外管パッカ体20を形成する外管パッカ3を間隔をあけて複数個取りつけ、かつ外管パッカ3の内部ならびに上下に隣接する外管パッカ3に開口する外管パッカ内吐出口5、5・・・5を備えて注入管装置Xを構成する。
このようにして構成される注入管装置Xは地盤6中に設けられた削孔7中に挿入する。次いで、外管パッカ3の内部に開口する吐出口5から外管パッカ3中に硬化性懸濁液を注入内管1を通して充填し、膨らませて外管パッカ体20を形成する。そして、上下に隣接する袋体4、4間に開口する吐出口5から注入内管6を通して注入材を空間22に、次いで削孔壁9から地盤23中に注入し、地盤23を固結する。
FIGS. 21A and 22B are explanatory diagrams of the prior art.
A plurality of outer tube packers 3 forming the outer tube packer body 20 are attached to the tube wall 2 of the injection tube 1 at intervals, and open to the outer tube packer 3 adjacent to the inside and the upper and lower sides of the outer tube packer 3. The injection tube device X is configured to include the discharge ports 5, 5... 5 in the outer tube packer.
The injection tube device X configured as described above is inserted into a drilling hole 7 provided in the ground 6. Next, a curable suspension is filled into the outer tube packer 3 through the injection inner tube 1 from the discharge port 5 opened inside the outer tube packer 3 and is expanded to form the outer tube packer body 20. Then, the injection material is injected into the space 22 through the injection inner tube 6 from the discharge port 5 opened between the upper and lower adjacent bag bodies 4, 4, and then into the ground 23 from the drilled wall 9 to solidify the ground 23. .

しかし、上述の従来技術では、袋パッカ3の膨張および吐出口5からの注入液の吐出は別工程で行われなければならず、注入の工程が単純化されず削孔径を小さくすることができない。   However, in the above-described conventional technology, the expansion of the bag packer 3 and the discharge of the injection liquid from the discharge port 5 must be performed in separate processes, and the injection process is not simplified and the hole diameter cannot be reduced. .

本発明の図1(イ)は削孔1中に本発明注入管装置Aの外管2を挿入する。外管は少なくとも1つの弾性材料からなる不透水性の膨縮性外管パッカ3を装着してある。外管パッカ3の内部の外管管壁9には外管パッカ内吐出口5が逆止弁4に覆われて設けられている。外管パッカ3の少なくとも下方の外管管壁24には外管注入口逆止弁17で覆われた外管注入口16が設けられている。   In FIG. 1 (a) of the present invention, the outer tube 2 of the injection tube device A of the present invention is inserted into the hole 1. The outer tube is fitted with an impermeable and expandable outer tube packer 3 made of at least one elastic material. A discharge port 5 in the outer tube packer is provided on the outer tube wall 9 inside the outer tube packer 3 so as to be covered with the check valve 4. An outer tube inlet 16 covered with an outer tube inlet check valve 17 is provided on at least the outer tube wall 24 below the outer tube packer 3.

図1(ロ)は外管2に内管6を挿入した図である。内管には内管パッカ間吐出口12をはさんで内管パッカ8が複数設けられており、内管パッカ8の内管パッカ管壁10には内管パッカ内吐出口11が設けられている。外管パッカ3も内管パッカ8もいずれも不透水性の弾性の膨縮性材料からなりその上下をかしめられている。外管パッカ3も内管パッカ8も内管6からの流体による加圧によって膨張する内管パッカは内管パッカ体流体の加圧の停止あるいはパッカ内の流体の吸出し等による減圧によって収縮し、平らになる。また内管パッカ間吐出口12の吐出口面積Sは内管パッカ内吐出口11の吐出口面積Sよりも小さくする等して吐出抵抗力が大きく設計してある。吐出口は1個でも複数でもよく、その面積は各吐出口の面積の合計としてなるように考えてよい。もちろん吐出口には細孔として流体を噴射するものであってもよい。また、吐出口の上に抵抗物を設けて吐出抵抗を大きくすることができる。いずれにせよ、吐出抵抗がパッカ内吐出口よりもパッカ間吐出口を大きくすることが好ましい。 FIG. 1 (b) is a view in which the inner tube 6 is inserted into the outer tube 2. The inner tube is provided with a plurality of inner tube packers 8 across the inner tube packer discharge port 12, and the inner tube packer tube wall 10 of the inner tube packer 8 is provided with an inner tube packer discharge port 11. Yes. Both the outer tube packer 3 and the inner tube packer 8 are made of a water-impermeable elastic expandable material and are caulked up and down. Both the outer tube packer 3 and the inner tube packer 8 expand due to pressurization by the fluid from the inner tube 6, and the inner tube packer contracts by stopping the pressurization of the inner tube pack body fluid or sucking out the fluid in the packer. Flattened. The discharge port area S 2 of the inner pipe packer between the outlets 12 discharge resistance force equal to less than the discharge port area S 1 of the inner tube packer in the discharge port 11 are designed large. One or a plurality of discharge ports may be provided, and the area may be considered to be the sum of the areas of the discharge ports. Of course, a fluid may be ejected to the discharge port as a fine hole. In addition, it is possible to increase the discharge resistance by providing a resistor on the discharge port. In any case, it is preferable that the discharge resistance between the packers is larger than that in the packer.

図2(ハ)は外管および内管に流体を送液した図面である。内管6に流体7を送液すると吐出口12は吐出口11よりも吐出口面積が小さく吐出抵抗が大きいため流体はまず吐出口11から内管パッカ8を膨張させて内管パッカ体25を形成し、内管パッカ間空間13を形成する。空間13に充填した流体7は吐出口5からゴムスリーブのような弾力性のある逆止弁4を押し拡げて外管パッカ3を膨張させて外管パッカ体20を形成する。外管パッカ体は削孔壁に圧着し外管外空間22を形成する。外管パッカ体は逆止弁4によって外管内に戻ることなく膨張したままとなる。外管パッカ体はゴム膜等でつくられるので過大に加圧すると破損するための外側に強度のあるネット等による防護被覆26を設けてもよい。(図20(ハ))このような本発明は内管内に流体を送液することによって内管パッカの形成と外管パッカの形成を自動的にあるいは連続的に行うことができ、作業が簡単で能率を上げることができる。また流体はゲル化機能をもつ注入液を用いることもできるし、水や空気、不活性気体等でもよい。また、パッカは水や薬液等、パッカ用流体で形成してから、地盤改良のための注入は例えばコロイダルシリカ等、目的に応じた注入液に換えてもよい。パッカ体20、25を形成後、流体7の送液を中止または吸出す等の減圧を行えば内管パッカはその弾力性のゆえに収縮して外管内を自由に遊挿できる。このため注入管が長くて外管が土圧によって断面が変形しても湾曲しても内管は容易に遊挿できる。   FIG. 2C is a drawing in which a fluid is fed to the outer tube and the inner tube. When the fluid 7 is fed to the inner tube 6, the discharge port 12 has a smaller discharge port area and larger discharge resistance than the discharge port 11, so that the fluid first expands the inner tube packer 8 from the discharge port 11 to cause the inner tube packer 25 to move. Then, the space 13 between the inner tube packers is formed. The fluid 7 filled in the space 13 pushes and expands the elastic check valve 4 such as a rubber sleeve from the discharge port 5 to expand the outer tube packer 3 to form the outer tube packer body 20. The outer tube packer body is pressure-bonded to the bore wall to form the outer tube outer space 22. The outer tube packer body remains expanded without returning to the outer tube by the check valve 4. Since the outer tube packer body is made of a rubber film or the like, a protective coating 26 with a strong net or the like may be provided on the outside in order to break if excessive pressure is applied. (FIG. 20 (c)) In the present invention, the inner tube packer and the outer tube packer can be formed automatically or continuously by feeding a fluid into the inner tube, and the operation is simple. Can increase efficiency. The fluid may be an injection solution having a gelling function, or water, air, inert gas, or the like. Further, the packer may be formed of a packer fluid such as water or a chemical solution, and the injection for ground improvement may be replaced with an injection solution according to the purpose such as colloidal silica. After forming the packer bodies 20 and 25, if pressure reduction such as stopping or sucking out the fluid 7 is performed, the inner tube packer contracts due to its elasticity and can be freely inserted into the outer tube. Therefore, even if the injection tube is long and the outer tube is deformed or curved due to earth pressure, the inner tube can be easily inserted.

上述のようにしてパッカ体を形成の後、図2(ニ)のように、さらに下方に内管を移動して上下の内管パッカ8が外管吐出口16をはさむように位置せしめ内管から注入液を送液すれば外管パッカの存在のもとに注入液は外管外空間22を経て地盤23に注入される。図5並びに図6は内管6の下端部または内管パッカ8の下方に内管吐出口12と同様の吐出口12´を設けて内管から注入液を送液すると内管パッカ体、外管パッカ体の形成とその下方の外管吐出口16´からの地盤中への注入が自動的に行われる。17´は筒状の端部がゴム弾性で縮む逆止弁である。   After forming the packer body as described above, as shown in FIG. 2 (d), the inner tube is moved further downward so that the upper and lower inner tube packers 8 are positioned so as to sandwich the outer tube discharge port 16, and the inner tube. When the injection solution is fed from the outside, the injection solution is injected into the ground 23 through the outer tube outer space 22 in the presence of the outer tube packer. 5 and 6 show that the inner tube packer body and the outer tube body are formed when a discharge port 12 'similar to the inner tube discharge port 12 is provided at the lower end of the inner tube 6 or below the inner tube packer 8 and the injection liquid is fed from the inner tube. The formation of the tube packer body and the injection into the ground from the outer tube discharge port 16 'below the tube packer body are automatically performed. Reference numeral 17 'denotes a check valve whose cylindrical end is contracted by rubber elasticity.

図3(イ)は内管パッカ流路14内から送液されたパッカ流体15によって吐出口11を通して内管パッカ8を膨張させ、内管6から流体7を送液して外管パッカ3を膨張させる構造を示す。   FIG. 3A shows the expansion of the inner tube packer 8 through the discharge port 11 by the packer fluid 15 fed from the inner tube packer flow path 14, and the fluid 7 is fed from the inner tube 6 to move the outer tube packer 3. The structure to be expanded is shown.

図4(ロ)は、注入液または水、気体等のパッカ用流体で内管パッカ8、外管パッカ3が形成後吐出口12から吐出された注入液7が外管内空間27に吐出されて外管注入口16から外管外空間22を経て地盤23に注入される。   FIG. 4B shows that the injection liquid 7 discharged from the discharge port 12 after the inner tube packer 8 and the outer tube packer 3 are formed with the injection liquid or the packing fluid such as water or gas is discharged into the outer tube inner space 27. It is injected from the outer tube inlet 16 into the ground 23 through the outer tube outer space 22.

また、図10(ニ)は内管パッカ8の位置を外管パッカ内吐出口5と外管吐出口16´をはさむように設けた例である。吐出口16´の吐出抵抗(吐出口8の吐出抵抗)が吐出口の吐出抵抗ならば、パッカ8の形成をパッカ3の形成、吐出口16´からの地盤への流れが連続的に行われる。図7〜図8は外管パッカを形成後、内管を下げて外管吐出口16´から注入した図である。上記図1〜5はいずれも外管パッカが1個でそれよりも下方の地盤改良を行う例で本発明は大きな柱状浸透(外管外空間)からの注入できるため、注入範囲を広くとれる。このため吐出1段の外管パッカで大きな深さと浸透径を有する固結体を形成するのに用いられる。本発明によれば浸透径を1.5〜3mの固結径が保たれるので注入孔ピッチを2〜4mは可能なので4mの固結層を1ステージで構築することができるため液状化防止注入には極めて適している。すなわち、液状化層が4mの場合、簡便な作業で1ステージが出来るため、その有用性は経済性も含めてはかりしれない。   FIG. 10D shows an example in which the position of the inner tube packer 8 is provided so as to sandwich the discharge port 5 in the outer tube packer and the discharge port 16 'of the outer tube. If the discharge resistance of the discharge port 16 ′ (discharge resistance of the discharge port 8) is the discharge resistance of the discharge port, the packer 8 is formed, the packer 3 is formed, and the flow from the discharge port 16 ′ to the ground is continuously performed. . 7 to 8 are views in which the inner tube is lowered and injected from the outer tube discharge port 16 'after forming the outer tube packer. Each of FIGS. 1 to 5 is an example in which one outer tube packer is used to improve the ground below it, and the present invention can be injected from a large columnar penetration (outer tube outer space), so that the injection range can be widened. For this reason, it is used to form a consolidated body having a large depth and permeation diameter with a single-stage outer tube packer. According to the present invention, since a consolidated diameter of 1.5 to 3 m can be maintained, an injection hole pitch of 2 to 4 m is possible, so a 4 m consolidated layer can be constructed in one stage, thus preventing liquefaction. Very suitable for injection. That is, when the liquefied layer is 4 m, one stage can be made by a simple operation, and its usefulness cannot be measured including economic efficiency.

内管パッカ流路を用いなければ内管径が小さくて済む。したがって、外管径が小さくなり削孔径が小さくて済む。したがって削孔費が低減する上、注入液の注入のみで注入内管と外管のパッカの形成と地盤への注入が連続的に可能であり工費工期が大幅に低減するという効果が生ずる。
さらに図7、図8における多孔、多ステージ同時注入システム29を用いれば広範囲な液状化防止注入工法を決めて短期間で完了することができる。
If the inner tube packer flow path is not used, the inner tube diameter may be small. Accordingly, the outer tube diameter is reduced and the drilling hole diameter is reduced. Therefore, the hole cost is reduced, and the formation of the inner and outer tube packers and the injection into the ground can be continuously performed only by injecting the injection solution, and the construction cost can be greatly reduced.
Furthermore, if the porous and multistage simultaneous injection system 29 in FIGS. 7 and 8 is used, a wide range of liquefaction prevention injection methods can be determined and completed in a short period of time.

図10、図11は複数の外管パッカ3を有する外管2を用いた本発明の代表的構造例と施工法を示す(イ)削孔中への外管2の挿入、(ロ)外管への内管6の挿入、(ハ)内管への流体(注入液でもパッカ用流体でもよい)の送液による内管パッカ8、外管パッカ3の形成を行う。(ニ)。流体の送液中止、あるいは流体の吸出しによる内管パッカ8の収縮(外管パッカ3は逆止弁4の存在により収縮しない)。(ニ)は上方に内管を移行して上方外管パッカ3を形成、(ホ)は外管外空間に通じる外管注入口16´´をはさんで内管パッカ8を位置せしめ内管6から注入液7を送液して外管外空間22を通して地盤中に注入する。(ヘ)は外管最下部の注入ステージはその下端部に外管パッカがなくてもよい。注入液は上方に移行しやすく上方は外管の最下部のパッカで拘束している。   10 and 11 show a typical structure example and construction method of the present invention using an outer tube 2 having a plurality of outer tube packers 3 (a) Inserting the outer tube 2 into a drilling hole, (b) Outside The inner tube packer 8 and the outer tube packer 3 are formed by inserting the inner tube 6 into the tube and (c) feeding the fluid into the inner tube (which may be an injection solution or a packer fluid). (D). The inner tube packer 8 is contracted by stopping the fluid feeding or sucking out the fluid (the outer tube packer 3 does not contract due to the presence of the check valve 4). (D) The upper tube is moved upward to form the upper outer tube packer 3. (e) The inner tube packer 8 is positioned across the outer tube inlet 16 ″ leading to the outer tube outer space. The injection solution 7 is fed from 6 and injected into the ground through the outer space 22 outside the outer tube. In (f), the lowermost portion of the injection stage at the lowermost part of the outer tube may not have an outer tube packer. The injected liquid easily moves upward, and the upper part is constrained by the lowermost packer of the outer tube.

図12(イ)および図14は2または3個以上の外管パッカ3間の外管外空間22に内管6から複数の注入ステージに同時に注入する例を示す。吐出口面積をS<S<Sとすれば(複数の吐出口を設ければ吐出面積S、S、Sはその合計であってもよい)、注入液7を内管に送液すれば内管パッカの形成→外管パッカの形成→複数の外管注入口からの地盤中への多ステージ同時注入が自動的に行われる。この場合内管を次のステージに遊挿して注入すれば多数の多ステージで同時注入が行われる。なお、Sは吐出抵抗力の大きさであって、必ずしも面積とは限らず、吐出口をシールで覆いかぶせてもよく、コーン等の抵抗物を挿入してもよい。図13(ロ)、(ハ)は図12(イ)の部分拡大図である。 FIGS. 12A and 14 show an example in which a plurality of injection stages are simultaneously injected from the inner tube 6 into the outer tube outer space 22 between two or more outer tube packers 3. If the discharge port area is S 3 <S 2 <S 1 (if a plurality of discharge ports are provided, the discharge areas S 1 , S 2 , and S 3 may be the sum of them), the injection solution 7 is used as the inner tube. When the liquid is fed, the formation of the inner tube packer → formation of the outer tube packer → multistage simultaneous injection from the plurality of outer tube inlets into the ground is automatically performed. In this case, if the inner tube is loosely inserted into the next stage and injected, simultaneous injection is performed in a number of multiple stages. In addition, S is a magnitude | size of discharge resistance force, Comprising: It does not necessarily need to be an area, A discharge port may be covered with a seal | sticker, and resistance objects, such as a cone, may be inserted. FIGS. 13B and 13C are partial enlarged views of FIG.

さらにこの構造の特徴は長尺の全注入ステージに多数の外管パッカを設けて内管は外管に挿入して所定の位置にセットしたままで注入すれば注入ステージを移動させることなく一度に全深度の注入を行うことができることである。この際注入ステージ毎に地盤の透水係数をk、k(k<k)とすれば、それぞれの地盤の1本当たりの注入範囲の1注入ステージ当たりの注入量を算定できる。1本当たりの各注入ステージの注入を同じ時間内に完了できるように各ステージにおける透水係数に対応した間隙等、注入量とは注入時間に対応した吐出面積S3−1、S3−2(S3−2<S3−1)になるようにあらかじめ内管吐出口を作成しておけば注入孔において透水係数が異なり、したがって、各注入ステージにおける注入速度、注入量が異なるにもかかわらず、上から下まで同一の設計浸透径の固結体を同一注入時間で得ることができるという画期的地盤改良が可能になる。 In addition, this structure is characterized by providing a large number of outer tube packers on all long injection stages and inserting the inner tube into the outer tube and injecting it while it is set in place without moving the injection stage at once. It is possible to perform full depth injections. At this time, if the ground permeability coefficient is k 1 , k 2 (k 2 <k 1 ) for each injection stage, the injection amount per injection stage in the injection range per each ground can be calculated. The injection amount such as a gap corresponding to the water permeability coefficient in each stage so that the injection of each injection stage per one can be completed within the same time is the discharge area S 3-1 , S 3-2 ( If the inner tube discharge port is prepared in advance so that S 3-2 <S 3-1 ), the water permeability coefficient is different in the injection hole, and therefore the injection rate and the injection amount in each injection stage are different. Thus, it is possible to achieve groundbreaking ground improvement that a solidified body having the same design penetration diameter can be obtained from the top to the bottom with the same injection time.

例えば、k地盤はk地盤より透水係数が大きい、したがって、間隙が大きいから同一固結径にしようとすれば注入量はk地盤より多くなる。同一時間に同一固結径になるようにそれぞれの地盤の注入が完了するようにするためにはk地盤の注入速度をk地盤の注入速度よりも大きくなるようにする。そのためには吐出口面積と注入口面積がS2<S1、S3<S2、S3−1<S3−1になるように設計すればよい。そしてあらかじめ定めた注入速度の比率になるようにS1−1 <S3−1を設計した注入内管を用いればよいことになる。 For example, the k 1 ground has a larger hydraulic conductivity than the k 2 ground. Therefore, since the gap is large, the injection amount is larger than the k 2 ground if the same consolidation diameter is attempted. Same solid in order to be in so as to inject each of the ground is completed Yui径to allow the injection rate of k 1 Ground greater than the injection rate of the k 2 Ground the same time. Its inlet area and the outlet area for the S2 <S1, S3 <S2, S 3-1 < may be designed to be S 3-1. Then, it is sufficient to use an injection inner tube designed such that S 1-1 <S 3-1 so that the ratio of the injection rate determined in advance is obtained.

図14は図12、13と同じ原理に基づく。この場合、図中にS<S、k<kならば、S3−2<S3−1となるように内管吐出口を設計すればよい。 FIG. 14 is based on the same principle as FIGS. In this case, if S 3 <S 2 and k 2 <k 1 in the figure, the inner pipe discharge port may be designed so that S 3-2 <S 3-1 .

図15〜図18は複数の外管パッカ3の形成と外管注入口16´からの注入が自動的に行われ、あるいはさらに、注入管を移行させて複数の外管注入口からの注入を行う例を示す。   15 to 18 show that the formation of the plurality of outer tube packers 3 and the injection from the outer tube injection port 16 'are automatically performed, or the injection tube is moved to perform the injection from the plurality of outer tube injection ports. An example is shown.

図15において一対の内管パッカ8は上下の外管パッカ内吐出口5と上下の外管パッカ3に挟まれた外管注入口16を挟むように挿入される。内管6からは水等の流体を注入して内管パッカ8と外管パッカ3を膨張させて外管注入口16より注入地盤に注入して外管パッカの形成と地盤の透水性を測定してから再度注入液を内管から注入して内管パッカの形成と外管注入口16から地盤への注入を自動的に行うことができる。   In FIG. 15, the pair of inner tube packers 8 is inserted so as to sandwich an upper tube discharge port 5 between upper and lower outer tube packers and an outer tube injection port 16 sandwiched between upper and lower outer tube packers 3. Water or other fluid is injected from the inner tube 6 to expand the inner tube packer 8 and the outer tube packer 3 and then injected into the injection ground from the outer tube inlet 16 to measure the formation of the outer tube packer and the water permeability of the ground. Then, the injection solution can be again injected from the inner tube to automatically form the inner tube packer and inject the outer tube inlet 16 into the ground.

この場合はじめから、内管に注入液を送液すれば内管パッカの形成、外管パッカの形成、外管の吐出口から地盤中への注入液の注入を自動的に行うことができる。   In this case, if the injection solution is sent to the inner tube from the beginning, the formation of the inner tube packer, the formation of the outer tube packer, and the injection of the injection solution into the ground from the discharge port of the outer tube can be automatically performed.

この場合、図中の吐出口の面積はS>S、S<Sの合計とするのが好ましい。
すなわち、内管パッカ体25が形成後、注入液7は内管パッカ間吐出口12を経て上下の外管パッカ内吐出口5から上下の外管パッカ3内に流入して外管パッカ体20を形成してのち外管パッカ間吐出口より外管外空間22を通して地盤中に注入される。さらに図15につながる図17において注入内管を下方に移行して外管パッカ体20の形成、外管注入口16´´からの地盤への注入を行うことができる順序は任意でもよい。
In this case, the area of the discharge port in the figure is preferably the sum of S 1 > S 2 and S 5 <S 4 .
That is, after the inner tube packer body 25 is formed, the injection liquid 7 flows into the upper and lower outer tube packers 3 from the upper and lower outer tube packer discharge ports 5 through the discharge ports 12 between the inner tube packers. After being formed, it is injected into the ground through the outer tube outer space 22 from the discharge port between the outer tube packers. Further, in FIG. 17 connected to FIG. 15, the order in which the injection inner tube is moved downward to form the outer tube packer body 20 and injection into the ground from the outer tube inlet 16 ″ may be arbitrary.

この場合図15において、注入液は瞬結性注入液あるいは懸濁型注入液を外管注入口16´´より注入することによりあらかじめ粗い層を瞬結性注入液あるいは懸濁液で一次注入あるいは粗結注入を行い図17の注入において浸透性の優れた長結型注入液あるいは溶液型注入液を注入することができる。   In this case, in FIG. 15, the infusate is infused with the instantaneous infusion liquid or suspension type infusion liquid from the outer tube injection port 16 ″, so that the coarse layer is preliminarily injected with the instantaneous infusion liquid or suspension. By performing rough injection, it is possible to inject a long-type injection solution or a solution-type injection solution having excellent permeability in the injection shown in FIG.

図16および図18は注入内管6にパッカ流体管路15が設けられており、内管パッカ体はパッカ流体で形成されるが図9と原理は同じである。本発明において、注入内管を二重管または併列管あるいはパッカ流路を組み合わせても良いのである。この場合、A液、B液を別々に送液することにより瞬結性グラウトや任意のゲルタイムの注入液を地盤状況や注入目的に応じて、注入できる。   16 and 18, the packer fluid pipe line 15 is provided in the injection inner pipe 6, and the inner pipe packer body is formed of packer fluid, but the principle is the same as in FIG. In the present invention, the injection inner pipe may be combined with a double pipe, a parallel pipe or a packer flow path. In this case, the liquid A and the liquid B are separately fed, so that an instantaneous liquid grout or an injection liquid having an arbitrary gel time can be injected according to the ground condition or the injection purpose.

図15、図16において、内管から注入液の送液を二重管30にすることによりA液、B液を合流して外管吐出口から注入できるため注入液のゲルタイムを自由に調整できるし、瞬結性注入液による一次注入を行うことができるし、また長結グラウトを注入して地上面等に逸出した場合、自由にゲルタイムを短縮して逸出を防止することができる。図13のように二重管を並列管にしてもよいし、パッカ流体管路と組み合わせても良い。多注入ステージの同時注入や瞬結注入と長結注入を同時に行うこともできる。   15 and 16, since the injection liquid is fed from the inner pipe to the double pipe 30, the A liquid and the B liquid can be joined and injected from the outer pipe discharge port, so that the gel time of the injection liquid can be adjusted freely. In addition, primary injection with an instantaneous setting injection solution can be performed, and when a long setting grout is injected and escapes to the ground surface or the like, the gel time can be freely shortened to prevent the escape. As shown in FIG. 13, the double pipe may be a parallel pipe or may be combined with a packer fluid line. Simultaneous injection of multiple injection stages and instantaneous injection and long-injection injection can be performed simultaneously.

図20(イ)は外管パッカ間の外管管壁の吐出口を透水性の壁面保護材31で覆った構造を示し、図20(ロ)は透孔のある弾力性被覆膜32で外管吐出口を覆い、外管からの注入液が被覆膜と外管壁につくられた間隙から一斉に削孔壁全体に分布して孔壁を保護しながら均等に注入されるようにした構造を示す。図20(ハ)はパッカにネット26を張った例を示す。   FIG. 20 (a) shows a structure in which the discharge port of the outer tube pipe wall between the outer tube packers is covered with a water-permeable wall protective material 31, and FIG. 20 (b) shows an elastic coating film 32 having a through hole. Covering the outer tube discharge port, so that the injection solution from the outer tube is uniformly distributed from the gap formed in the coating film and the outer tube wall over the entire drilling wall, and is injected evenly while protecting the hole wall Shows the structure. FIG. 20C shows an example in which a net 26 is stretched on the packer.

また図20(ロ)はゴム状の外管パッカが注入圧力によって過大に膨張して破損しないように膨張するものの耐圧強度のあるプラスチックネットのような透水性のある防護被覆33で外管パッカ間吐出口を覆った構造を示す。   FIG. 20 (b) shows that the rubber-like outer tube packer expands due to the injection pressure and expands so as not to be damaged, but the outer tube packer is covered with a water-permeable protective covering 33 such as a plastic net having pressure resistance. The structure which covered the discharge outlet is shown.

本発明において、注入管を地盤中に水平方向に挿入してもよい。
は注入液送液装置Xを用いた本発明にかかる地盤注入工法の説明図である。図23において、上述と同様、地盤1の地盤改良を施すべき個所に、地表面2から斜め下方に湾曲して、次いで、水平方向にボーリング孔3を削孔する。このボーリング孔3に図1に示されるような逆止弁4を備えた複数の外管吐出口5、5・・・5を有する外管7を設置し、この外管7内に、外側長手方向に三個以上の膨縮パッカ8、8・・・8を間隔をあけて設けて互いに隣接する膨縮パッカ8、8間を吐出位置9とし、かつ内壁吐出口10が別々の吐出位置9に位置する複数の注入液流路11と、膨縮パッカ8に流体を送って膨張させ、あるいは排出して収縮させるパッカ流路12とそれぞれ内部に独立して形成された内管13を移動自在に挿入し、吐出位置9を外管吐出口5に合致させた後、パッカ流路12を通して三個以上の膨縮パッカ8、8・・・8に流体を送って膨縮パッカ8を膨張させ、これにより互いに隣接する膨縮パッカ8、8によって挟まれる隙間14に管内空間15を形成し、注入液を内管吐出口10を通して注入液送液装置Xから管内空間15および外管吐出口5を経て地盤1に注入する。図8では、上述の外管7および内管13の詳細な記載は省略し、外管7内に内管13が移動自在に挿入された状態を注入管Aとして表す。
In the present invention, the injection tube may be inserted into the ground in the horizontal direction.
These are explanatory drawings of the ground injection construction method concerning the present invention using injection liquid sending device X. FIG. In FIG. 23, similarly to the above, the ground 1 of the ground 1 is curved obliquely downward from the ground surface 2 and then the bored hole 3 is drilled in the horizontal direction. An outer pipe 7 having a plurality of outer pipe discharge ports 5, 5... 5 provided with a check valve 4 as shown in FIG. 1 is installed in the boring hole 3. Three or more expansion / contraction packers 8, 8... 8 are provided at intervals in the direction so that the expansion / contraction packers 8, 8 adjacent to each other serve as discharge positions 9, and the inner wall discharge port 10 has separate discharge positions 9. A plurality of infusion fluid channels 11 located at the same position, a packer channel 12 for supplying fluid to the expansion / contraction packer 8 for expansion or discharge and contraction, and an inner tube 13 formed independently inside each other are freely movable. And the discharge position 9 is matched with the outer tube discharge port 5, and then the fluid is sent to three or more expansion / contraction packers 8, 8... Thus, the inner space 15 is formed in the gap 14 between the expansion / contraction packers 8 and 8 adjacent to each other. Form, from the injection fluid feeding device X through the pipe space 15 and the outer tube discharge port 5 is injected into the ground 1 of the infusate through the inner tube the discharge port 10. In FIG. 8, detailed description of the outer tube 7 and the inner tube 13 is omitted, and a state in which the inner tube 13 is movably inserted into the outer tube 7 is represented as an injection tube A.

図23に示される注入液送液装置Xは制御部30、注入液加圧部31、注入液分配部32、注入部33および送液系34から構成される。操業を手動で行う場合には、制御部30は必要としない。以下、制御部30を用いた例について具体的に詳述する。   The infusion solution feeding apparatus X shown in FIG. 23 includes a control unit 30, an infusion solution pressurizing unit 31, an infusion solution distribution unit 32, an infusion unit 33, and a solution delivery system 34. When the operation is performed manually, the control unit 30 is not necessary. Hereinafter, an example using the control unit 30 will be specifically described in detail.

注入液加圧部31は図23に示されるように、注入液槽35からの注入液ポンプ36(グラウトポンプ)により加圧し、加圧注入液として送液系34を介して注入液分配部32に送液する。グラウトポンプ36は制御部30の注入監視盤30aからの指示を受け、注入液を所望の圧力に加圧する。   As shown in FIG. 23, the infusate pressurizing unit 31 pressurizes by an infusate pump 36 (grouting pump) from the infusate tank 35, and as a pressurized infusate via the liquid feeding system 34, the infusate distributor 32 To liquid. The grout pump 36 receives an instruction from the injection monitoring board 30a of the control unit 30 and pressurizes the injected liquid to a desired pressure.

注入液分配部32は複数本の分枝管37、37・・・37を備える。これら分枝管37、37・・・37はそれぞれ先端に注入管Aと連結する連結部38を有する。この連結部38は所定の注入管Aを通して所定の注入量を注入し終わった時点、あるいは所定の注入圧に達した時点で、その分枝管37を他の注入管Aに連結換えすることもできる。   The infusate distribution unit 32 includes a plurality of branch pipes 37, 37. Each of these branch pipes 37, 37... 37 has a connecting portion 38 connected to the injection pipe A at the tip. The connecting portion 38 may switch the branch pipe 37 to another injection pipe A when a predetermined injection amount is injected through a predetermined injection pipe A or when a predetermined injection pressure is reached. it can.

上述の分枝管37、37・・・37は図23に示されるように、送液系34を介して加圧部31と連結された分配容器39からのそれぞれ伸長して配置され、先端の連結部38で注入管Aと連結される。そして、加圧部31からの加圧注入液は分配容器39を介して各分枝管37、37・・・37に分配され、注入管Aに送液される。なお、この分配容器39には図示しない撹拌装置を備えることもできる。また、各分枝管37、37・・・37は分配容器39を経たずに、直後、加圧部31からの送液計34と連結することもできる。   As shown in FIG. 23, the branch pipes 37, 37... 37 described above are respectively extended from the distribution container 39 connected to the pressurizing unit 31 via the liquid feeding system 34, and are arranged at the tip. The connecting portion 38 is connected to the injection tube A. Then, the pressurized injection liquid from the pressurizing unit 31 is distributed to the branch pipes 37, 37... 37 through the distribution container 39 and sent to the injection pipe A. The distribution container 39 may be provided with a stirring device (not shown). Moreover, each branch pipe 37, 37 ... 37 can also be connected with the liquid feeding meter 34 from the pressurization part 31 immediately after not passing through the distribution container 39. FIG.

また、図23において、分枝流量計f、f・・・f、fの総量を測定することにより送液流量計40の流量を把握することができ、このため、送液流量計40は必ずしも必要としない。さらに、送液圧力計41は必ずしも送液系34に設けなくても、直後、分配容器39に設けてもよい。V〜Vは分枝バルブ、P〜Pは分枝圧力計、30b、は操作盤30cは注入記録盤、30dはデータ入力装置、42は送液バルブである。また、43は膨縮パッカ8に流体を送液する圧力ボンベ、44は内管自動昇降機であって、いずれも制御部30と接続され、制御部30からの指示を受けて作動する。 Further, in FIG. 23, the flow rate of the liquid flow meter 40 can be grasped by measuring the total amount of the branch flow meters f 1 , f 2 ... F 1 , f n. The total 40 is not necessarily required. Further, the liquid feeding pressure gauge 41 is not necessarily provided in the liquid feeding system 34 but may be provided in the distribution container 39 immediately after. V 1 to V 4 are branch valves, P 1 to P 4 are branch pressure gauges, 30 b is an operation panel 30 c is an injection recording board, 30 d is a data input device, and 42 is a liquid feed valve. Reference numeral 43 denotes a pressure cylinder for sending fluid to the expansion / contraction packer 8, and 44 denotes an inner pipe automatic elevator, both of which are connected to the control unit 30 and operate in response to an instruction from the control unit 30.

図24は注入液送液装置として多連装注入装置を用いた本発明にかかる地盤注入工法の説明図であって、注入液を貯蔵する注入液槽35と、一プラント中にそれぞれモータ等の独立したあるいは図示しないが共通の駆動源45で作動し、かつ制御部30に接続されて制御される多数のユニットポンプ46、46・・・46と、これら各ユニットポンプ46、46・・・46から伸長され、配置される送液管47、47・・・47とを備えて構成される。各送液管47、47・・・47の先端に連結部38を備え、地盤1のボーリング孔3に挿入された注入管Aの図示しない内管13の注入液流路11に連結される。注入液槽35中の注入液は各ユニットポンプ46、46・・・46の作動により任意の注入速度、注入圧力あるいは注入量で各注入管Aの注入液流路11に圧送され、複数の外管吐出口5、5・・・5からゴムスリーブ4を押し開けて同時に地盤1に多点注入される。Vは分枝バルブである。圧力ボンベ43および自動昇降機44は図23と同様に制御部30からの指示を受けて作動する。   FIG. 24 is an explanatory diagram of a ground injection method according to the present invention using a multi-injection injection device as an injection solution delivery device. An injection solution tank 35 for storing the injection solution and an independent motor such as a motor in each plant. Although not shown in the drawing, the unit pumps 46, 46... 46 operated by a common drive source 45 and connected to the control unit 30 are controlled, and these unit pumps 46, 46. The liquid feed pipes 47, 47,... A connecting portion 38 is provided at the tip of each liquid feeding pipe 47, 47... 47, and is connected to the injection liquid flow path 11 of the inner pipe 13 (not shown) of the injection pipe A inserted into the boring hole 3 of the ground 1. The injection liquid in the injection liquid tank 35 is pumped to the injection liquid flow path 11 of each injection pipe A at an arbitrary injection speed, injection pressure or injection volume by the operation of each unit pump 46, 46. The rubber sleeve 4 is pushed open from the tube discharge ports 5, 5. V is a branch valve. The pressure cylinder 43 and the automatic elevator 44 operate in response to an instruction from the control unit 30 as in FIG.

図9〜16において、外管および外管内に挿入された内管からなる注入管装置を用いて地盤中に固結材を注入するに際して、従来、注入管路中の注入圧力を地表面に位置する圧力計で測定していた。   9 to 16, when injecting a consolidated material into the ground using an injection pipe device comprising an outer pipe and an inner pipe inserted into the outer pipe, conventionally, the injection pressure in the injection pipe is positioned on the ground surface. It was measured with a pressure gauge.

しかし、この注入圧力は実際には、注入管路の抵抗圧や内管吐出口の抵抗圧が土粒子間に浸透する本来の地盤注入圧力に加算されたものであって、正確に地盤注入圧力を示すものではない。特に、内管吐出口が細孔からなる噴射口の場合、噴射口の抵抗力により内管内圧力は高くなり、実際の地盤中における圧力は把握できず、したがって、注入が地盤中でどのように行われているかの判断は注入圧力の変化によって確認することができないという問題があった。   However, this injection pressure is actually the resistance pressure of the injection pipe and the resistance pressure of the inner pipe outlet added to the original ground injection pressure penetrating between the soil particles, It does not indicate. In particular, when the inner pipe discharge port is an injection port composed of fine holes, the inner pipe pressure increases due to the resistance force of the injection port, and the pressure in the actual ground cannot be grasped. There is a problem that the determination of whether or not the determination is made cannot be confirmed by the change in the injection pressure.

すなわち、この圧力は単に地上部における送液圧力と内管流路と吐出口の抵抗圧力が大きく影響しているため、注入ステージで適切な土粒子間浸透がさなれているかどうか、あるいは圧力がかかり過ぎて地盤を破壊し、注入液が逸脱してしまっているかどうか、不明である。   In other words, this pressure is largely influenced by the liquid supply pressure in the ground and the resistance pressure of the inner pipe flow path and the discharge port. It is unclear whether the ground has been destroyed too much and the infusion has deviated.

そこで、本発明は内管パッカ間に位置する内管吐出口から固結材を外管吐出口を通して地盤中に注入するに当たり、吐出口からの地盤中への注入圧力を直接、正確に把握し、上述の公知技術に存する欠点を改良した注入管装置および地盤注入工法を提供することにある。   Therefore, the present invention directly and accurately grasps the injection pressure from the discharge port into the ground when injecting the consolidated material from the inner tube discharge port located between the inner tube packers into the ground through the outer tube discharge port. An object of the present invention is to provide an injection pipe device and a ground injection method that have improved the above-mentioned drawbacks of the known technology.

本発明の注入管装置によれば、外管と、この外管内に挿入された内管とを備え、地盤中に固結材を注入して該地盤固結する地盤注入装置であって、前記外管は外管表面に外管吐出口を有し、前記内管は複数の内管パッカを間隔をあけて備え、かつ互いに隣接する内管パッカ間には内管吐出口を有し、前記外管内に前記内管を挿入するに際して、隣接する内管パッカ間に外管吐出口が位置し、かつ、前記外管内の内管パッカ間に空間が形成されるように挿入してなる注入管装置において、前記空間内の圧力を感知して伝達する圧力伝達部材を注入装置内に設置し、この圧力伝達部材を通して前記空間内で感知された圧力を伝達して測定し、正確な地盤注入圧力を把握することを特徴とする。   According to the injection tube device of the present invention, the ground injection device comprises an outer tube and an inner tube inserted into the outer tube, and injects a consolidated material into the ground to consolidate the ground. The outer tube has an outer tube discharge port on the outer tube surface, the inner tube is provided with a plurality of inner tube packers at intervals, and an inner tube discharge port is provided between adjacent inner tube packers, When inserting the inner tube into the outer tube, the injection tube is inserted so that an outer tube discharge port is located between adjacent inner tube packers and a space is formed between the inner tube packers in the outer tube. In the device, a pressure transmission member that senses and transmits the pressure in the space is installed in the injection device, and the pressure sensed in the space is transmitted and measured through the pressure transmission member, and an accurate ground injection pressure is measured. It is characterized by grasping.

さらに、本発明の注入管装置によれば、外管と、この外管内に挿入された内管とを備え、地盤中に固結材を注入して該地盤を固結する注入管装置であって、前記外管は外管表面に一個、あるいは軸方向の異なる位置に複数の外管吐出口を有し、前記内管は複数の内管パッカを間隔をあけて備え、かつ互いに隣接する内管パッカ間には内管吐出口を有し、前記外管内に前記内管を挿入するに際し、隣接する内管パッカ間に外管吐出口が位置するように挿入し、これにより前記外管内の内管パッカ間には空間が形成されてなる注入管装置において、前記空間内に配置されたひずみ抵抗式圧力センサーと、このひずみ抵抗式圧力センサーに信号ケーブルを介して接続されたアンプと、このアンプに信号ケーブルを介して接続された地盤上の圧力表示装置とからなる圧力伝達部材を注入装置内に設置し、前記圧力センサーが空間内圧力を感知し、この感知された空間内圧力をアンプを介し、信号ケーブルを通して電気信号として圧力表示装置に伝達して測定し、地盤の正確な注入圧力を把握することを特徴とする。   Furthermore, according to the injection tube device of the present invention, the injection tube device includes an outer tube and an inner tube inserted into the outer tube, and injects a consolidated material into the ground to consolidate the ground. The outer tube has one outer tube surface or a plurality of outer tube discharge ports at different positions in the axial direction, and the inner tube is provided with a plurality of inner tube packers spaced apart from each other and adjacent to each other. There is an inner tube discharge port between the tube packers, and when inserting the inner tube into the outer tube, it is inserted so that the outer tube discharge port is located between adjacent inner tube packers. In an injection tube device in which a space is formed between inner tube packers, a strain resistance type pressure sensor disposed in the space, an amplifier connected to the strain resistance type pressure sensor via a signal cable, Pressure display on ground connected to amplifier via signal cable A pressure transmission member comprising a device is installed in the injection device, and the pressure sensor senses the pressure in the space, and the sensed pressure in the space is transmitted to the pressure display device as an electrical signal through the signal cable through the amplifier. It is characterized by grasping the exact injection pressure of the ground.

さらに、本発明の注入管装置によれば、外管と、この外管内に挿入された内管とを備え、地盤中に固結材を注入して該地盤を固結する注入管装置であって、前記外管は外管表面に一個、あるいは軸方向の異なる位置に複数の外管吐出口を有し、前記内管は複数の内管パッカを間隔をあけて備え、かつ互いに隣接する内管パッカ間には内管吐出口を有し、前記外管内に前記内管を挿入するに際し、隣接する内管パッカ間に外管吐出口が位置するように挿入し、これにより前記外管内の内管パッカ間には空間が形成されてなる注入管装置において、前記空間内にチューブを介して接続されたひずみ抵抗式圧力センサーと、この圧力センサーに連結されたアンプと、該アンプに信号ケーブルを介して連結された地盤上の圧力表示装置とからなる圧力伝達部材を注入管装置内に設置し、前記空間内に位置するチューブの一端が空間内圧力を感知し、この感知された圧力を圧力センサーおよびアンプを介して圧力表示装置に伝達して測定し、内管吐出口の正確な注入圧力を把握することを特徴とする。   Furthermore, according to the injection tube device of the present invention, the injection tube device includes an outer tube and an inner tube inserted into the outer tube, and injects a consolidated material into the ground to consolidate the ground. The outer tube has one outer tube surface or a plurality of outer tube discharge ports at different positions in the axial direction, and the inner tube is provided with a plurality of inner tube packers spaced apart from each other and adjacent to each other. There is an inner tube discharge port between the tube packers, and when inserting the inner tube into the outer tube, it is inserted so that the outer tube discharge port is located between adjacent inner tube packers. In an injection tube device in which a space is formed between inner tube packers, a strain resistance type pressure sensor connected to the space via a tube, an amplifier connected to the pressure sensor, and a signal cable to the amplifier Pressure consisting of pressure display devices on the ground connected via The end of the tube located in the space senses the pressure in the space, and the sensed pressure is transmitted to the pressure display device via a pressure sensor and an amplifier for measurement. It is characterized by grasping an accurate injection pressure of the inner pipe discharge port.

さらにまた、本発明の地盤注入工法によれば、地盤中に固結材を注入して該地盤を固結する地盤注入工法において、表面に一個の外管吐出口を有するか、軸方向の異なる位置に複数の外管吐出口を有する外管と、該外管に挿入され、複数の内管パッカを間隔をあけて備え、かつ互いに隣接する内管パッカ間には内管吐出口を有する内管とからなる地盤注入装置を用い、前記外管内に前記内管を挿入するに際して、隣接する内管パッカ間に外管吐出口が位置し、かつ、前記外管内の内管パッカ間に空間が形成されるように挿入し、さらに、前記注入装置内に空間内の圧力を感知して伝達する圧力伝達部材を設置し、この圧力伝達部材を通して前記空間内で感知された圧力を伝達し、この伝達された圧力を測定して内管吐出口の正確な注入圧力を把握することを特徴とする。   Furthermore, according to the ground injection method of the present invention, in the ground injection method for injecting a caking material into the ground and consolidating the ground, the surface has one outer tube discharge port or different in the axial direction. An outer tube having a plurality of outer tube discharge ports at a position, and an inner tube inserted into the outer tube and spaced apart from each other, and having an inner tube discharge port between adjacent inner tube packers When inserting the inner pipe into the outer pipe using a ground injection device comprising a pipe, an outer pipe discharge port is located between adjacent inner pipe packers, and a space is provided between the inner pipe packers in the outer pipe. Further, a pressure transmission member that senses and transmits the pressure in the space is installed in the injection device, and the pressure sensed in the space is transmitted through the pressure transmission member. Measure the transmitted pressure to determine the correct injection pressure at the inner pipe outlet. And characterized in that the grip.

また、本発明において、注入管を複数本地盤中に設置し、注入液を同時注入して多点注入することもできる。   Further, in the present invention, a plurality of injection tubes can be installed in the ground, and the injection solution can be injected at the same time for multi-point injection.

図25は本発明に用いられる多点地盤注入システムXの説明図であって、貯蔵タンク22と、複数のユニットポンプ4、4・・・4と、複数の注入管装置A、A・・・Aとを基本的に備える。   FIG. 25 is an explanatory diagram of the multi-point ground injection system X used in the present invention, in which a storage tank 22, a plurality of unit pumps 4, 4... 4 and a plurality of injection pipe devices A, A. A is basically provided.

貯蔵タンク22はA液用タンク22aと、B液用タンク22bとからなり、これらタンク中のA液およびB液をそれぞれ別々に注入管装置Aに導き、合流させる構造となっている。地盤1の注入ポイント25に2本の注入管装置を配設し、これら2本の注入管装置A、AにそれぞれA液およびB液を圧送し、外管吐出口5から注入ポイント25に注入した後、地盤1中で合流し、反応させたり、あるいは異なるタイプの注入液を同時に、あるいは時間差をもって注入する。   The storage tank 22 includes an A liquid tank 22a and a B liquid tank 22b, and has a structure in which the A liquid and the B liquid in these tanks are separately guided to the injection pipe device A and merged. Two injection pipe devices are arranged at the injection point 25 of the ground 1, and liquid A and liquid B are pumped to the two injection pipe devices A and A, respectively, and injected from the outer tube discharge port 5 to the injection point 25. After that, they merge in the ground 1 and react, or different types of injection solutions are injected simultaneously or with a time difference.

一連のユニットポンプ4、4・・・4は一プラント中に独立した多数のユニットポンプ4、4・・・4を備えるとともに、これらユニットポンプ4、4・・・4がそれぞれモータ等、独立した駆動源2で一つの集中管理装置3によって1セットの注入装置として一緒に作動し、かつ導管21、21・・・21を介してA液用タンク22aおよびB液用タンク22bに接続している。   The series of unit pumps 4, 4,... 4 includes a large number of independent unit pumps 4, 4,... 4 in one plant, and these unit pumps 4, 4,. The drive source 2 operates together as a set of injection devices by one centralized control device 3 and is connected to the A liquid tank 22a and the B liquid tank 22b via conduits 21, 21. .

注入管装置Aは先端に外管吐出口5を有するものであって、地盤1の複数の注入ポイント25、25・・・25に複数本埋設され、A液用タンク22aに通じるユニットポンプ4、4・・・4およびB液用タンク22bに通じるユニットポンプ4、4・・・4にそれぞれ接続される。   The injection pipe device A has an outer pipe discharge port 5 at the tip, and a plurality of the injection pipes A are embedded in a plurality of injection points 25, 25... 25 of the ground 1 and communicate with the A liquid tank 22a. .. 4 and unit pumps 4, 4... 4 connected to the B liquid tank 22b.

図26は本発明にかかる注入システムを模型的に表した説明図である。図26から注入液の地盤1への注入状況が模型的に理解される。   FIG. 26 is an explanatory view schematically showing an injection system according to the present invention. From FIG. 26, the injection state of the injection liquid into the ground 1 is understood in a model manner.

上述の本発明は内管パッカの形成と外管パッカの形成を自動的に行い、あるいは外管パッカの形成と外管注入口からの注入液の注入を自動的に行い、あるいは内管注入液の送液によって内管パッカの形成と外管パッカの形成と外管注入口からの注入液の注入を自動的に行うことによって注入の工程を飛躍的に単純化し、あるいは注入管の孔径を小さくすることにより削孔径を小さくすることを可能にし、工費を大幅に低減することを可能にする。したがって、本発明は土木分野における産業上の利用可能性が高い。   The above-described present invention automatically forms the inner tube packer and the outer tube packer, or automatically forms the outer tube packer and injects the injection solution from the outer tube inlet, or the inner tube injection solution. By automatically feeding the inner tube packer, the outer tube packer, and the injection solution from the outer tube inlet, the injection process is greatly simplified, or the hole diameter of the injection tube is reduced. By doing so, it is possible to reduce the diameter of the hole and greatly reduce the construction cost. Therefore, the present invention has high industrial applicability in the civil engineering field.

(イ)本発明の説明図である。外管の地盤への挿入状態。(ロ)内管を外管に挿入した状態。(A) It is explanatory drawing of this invention. Inserted state of the outer pipe into the ground. (B) A state in which the inner pipe is inserted into the outer pipe. (ハ)内外管のパッカを膨張させた状態。(ニ)内管を下方に下げ、内管パッカ間から注入液を地盤に注入した状態。(C) A state where the packer of the inner and outer pipes is expanded. (D) A state in which the inner pipe is lowered and the injection liquid is injected into the ground from between the inner pipe packers. (イ)本発明の説明図である。内外管のパッカを膨張させた状態。(A) It is explanatory drawing of this invention. A state where the packer of the inner and outer pipes is expanded. (ロ)内管先端吐出口から注入液を注入した状態。(B) A state in which an injection solution is injected from the inner tube tip discharge port. 本発明の注入状態を表した図面。The figure showing the injection | pouring state of this invention. 本発明の注入状態を表した図面。The figure showing the injection | pouring state of this invention. (イ)本発明の説明図である。内管パッカ、外管パッカを膨張させない前の状態。(ロ)外管パッカ、内管パッカを膨張させた状態。(A) It is explanatory drawing of this invention. The state before the inner tube packer and outer tube packer are not expanded. (B) The outer tube packer and the inner tube packer are inflated. (ハ)内管を下方に下げ、内管から注入液を注入させた状態。(C) A state in which the inner pipe is lowered and the injection solution is injected from the inner pipe. (イ)本発明の説明図である。外管パッカを備えた外管を削孔中に設置した状態。(ロ)内管を外管内に挿入した状態。(A) It is explanatory drawing of this invention. An outer tube with an outer tube packer installed in the drilling hole. (B) A state in which the inner pipe is inserted into the outer pipe. (ハ)下方外管パッカを膨張させた状態。(ニ)外管パッカおよび内管パッカの全部を膨張させた状態。(C) The state in which the lower outer tube packer is expanded. (D) A state in which all of the outer tube packer and the inner tube packer are expanded. (ホ)外管パッカ間および内管パッカ間の吐出口から注入液を地盤中に注入している状態。(ヘ)内管パッカを下方に移動し、内管パッカ間から注入液を地盤中に注入している状態。(E) A state in which the injection liquid is being injected into the ground from the discharge ports between the outer tube packers and between the inner tube packers. (F) The state in which the inner tube packer is moved downward and the injection solution is injected into the ground from between the inner tube packers. (イ)本発明の説明図である。(イ)内管パッカ内吐出口面積、外管パッカ内吐出口面積および内管吐出口面積の関係を表した図面。(A) It is explanatory drawing of this invention. (A) Drawing showing the relationship between the discharge area in the inner tube packer, the discharge area in the outer tube packer, and the discharge area of the inner tube. (ロ)、(ハ)は(イ)の部分拡大図である。(B) and (C) are partially enlarged views of (A). 外管パッカ内内管パッカ吐出口面積、外管パッカ内内管吐出口面積、内管吐出口および外管吐出口面積、地盤層の関係を表した図面。Drawing showing the relationship between the inner tube packer discharge area in the outer tube packer, the inner tube discharge area in the outer tube packer, the inner and outer tube discharge areas, and the ground layer. 内管パッカ内吐出口面積、外管パッカ内外管吐出口面積、内管および外管のパッカ外面積の関係を表した図面。The drawing which showed the relationship between the discharge port area in an inner tube packer, the outer tube packer inner / outer tube discharge port area, and the outer tuber outer area of an inner tube and an outer tube. 内管パッカ内吐出口面積、外管パッカ内外管吐出口面積、および内管および外管のパッカ外吐出口面積の関係を表した図面。The drawing which showed the relationship between the discharge port area in an inner tube packer, the discharge port area in an outer tube packer, and the discharge port area outside a packer of an inner tube and an outer tube. 本発明の注入液吐出状態を表した図面。The drawing showing the injection liquid discharge state of this invention. 本発明の注入液吐出状態の他の例を表した図面。The figure showing the other example of the injection liquid discharge state of this invention. 瞬結および長結注入液の地盤への注入状態を表した図面。Drawing showing the state of injection into the ground of instantaneous setting and long setting injection solution. (イ)本発明の他の例を表した図面である。(イ)外管吐出口を壁面保護材で覆った例。(ロ)弾力性透孔防護被覆膜で吐出口を覆った例。(ハ)パッカ上にネットを張った例。(A) It is drawing showing the other example of this invention. (A) An example in which the outer tube discharge port is covered with a wall surface protective material. (B) An example in which the discharge port is covered with an elastic through-hole protective coating film. (C) An example of a net on a packer. (イ)従来技術の説明図である。外管パッカ間から注入液を注入している状態を表した図面。(A) It is explanatory drawing of a prior art. The figure showing the state which is injecting injection liquid from between outer tube packers. (ロ)二重管ダブルパッカにより外管パッカを膨張させる状態を表した図面。(B) A drawing showing a state in which the outer tube packer is expanded by the double tube double packer. 注入管を地盤中に水平方向に挿入した例。An example in which the injection tube is inserted horizontally into the ground. 多連装注入装置を用い、注入管を地盤中に水平方向に挿入した例。An example in which an injection tube is inserted horizontally into the ground using a multi-component injection device. 多点地盤注入システムの一具体例を示した図面。The figure which showed one specific example of the multipoint ground injection system. 本発明の多点地盤注入システムを模型的に表した図面。Drawing which represented the multipoint ground injection system of the present invention typically.

符号の説明Explanation of symbols

1 削孔
2 外管
3 外管パッカ
4 逆止弁
5 外管パッカ内吐出口
6 注入内管
7 注入液(流体)
8 内管パッカ
9 外管管壁
10 内管管壁
11 内管パッカ内吐出口
12 内管吐出口
A 注入管装置




































1 Drilling hole 2 Outer tube 3 Outer tube packer 4 Check valve 5 Outer tube packer discharge port 6 Injection inner tube 7 Injection liquid (fluid)
8 Inner tube packer 9 Outer tube wall 10 Inner tube tube wall 11 Inner tube packer discharge port 12 Inner tube discharge port A Injection tube device




































図21(イ)、図22(ロ)は従来技術の説明図である。
注入管1の管壁2には、外管パッカ体20を形成する外管パッカ3を間隔をあけて複数個取りつけ、かつ外管パッカ3の内部ならびに上下に隣接する外管パッカ3に開口する外管パッカ内吐出口5、5・・・5を備えて注入管装置Xを構成する。
このようにして構成される注入管装置Xは地盤23中に設けられた削孔7中に挿入する。次いで、外管パッカ3の内部に開口する吐出口5から外管パッカ3中に硬化性懸濁液を注入内管1を通して充填し、膨らませて外管パッカ体20を形成する。そして、上下に隣接する袋体4、4間に開口する吐出口5から注入内管を通して注入材を空間22に、次いで削孔壁9から地盤8中に注入し、地盤23を固結する。
FIGS. 21A and 22B are explanatory diagrams of the prior art.
A plurality of outer tube packers 3 forming the outer tube packer body 20 are attached to the tube wall 2 of the injection tube 1 at intervals, and open to the outer tube packer 3 adjacent to the inside and the upper and lower sides of the outer tube packer 3. The injection tube device X is configured to include the discharge ports 5, 5... 5 in the outer tube packer.
The injection tube device X configured as described above is inserted into the drilling hole 7 provided in the ground 23 . Next, a curable suspension is filled into the outer tube packer 3 through the injection inner tube 1 from the discharge port 5 opened inside the outer tube packer 3 and is expanded to form the outer tube packer body 20. Then, the injection material through an injection in the tube from the discharge port 5 which opens between the bag 4 and 4 vertically adjacent to the space 22, then poured into ground 8 from drilling the wall 9, consolidate the soil 23 To do.

本発明の図1(イ)は削孔1中に本発明注入管装置Aの外管2を挿入する。外管は少なくとも1つの弾性材料からなる不透水性の膨縮性外管パッカ3を装着してある。外管パッカ3の内部の外管管壁9には外管パッカ内吐出口5が逆止弁4に覆われて設けられている。外管パッカ3の少なくとも下方の外管管壁には外管注入口逆止弁17で覆われた外管注入口16が設けられている。 In FIG. 1 (a) of the present invention, the outer tube 2 of the injection tube device A of the present invention is inserted into the hole 1. The outer tube is fitted with an impermeable and expandable outer tube packer 3 made of at least one elastic material. A discharge port 5 in the outer tube packer is provided on the outer tube wall 9 inside the outer tube packer 3 so as to be covered with the check valve 4. An outer tube inlet 16 covered with an outer tube inlet check valve 17 is provided on at least the outer tube wall below the outer tube packer 3.

図2(ハ)は外管および内管に流体を送液した図面である。内管6に流体7を送液すると吐出口12は吐出口11よりも吐出口面積が小さく吐出抵抗が大きいため流体はまず吐出口11から内管パッカ8を膨張させて内管パッカ体を形成し、内管パッカ間空間13を形成する。空間13に充填した流体7は吐出口5からゴムスリーブのような弾力性のある逆止弁4を押し拡げて外管パッカ3を膨張させて外管パッカ体20を形成する。外管パッカ体は削孔壁に圧着し外管外空間を形成する。外管パッカ体は逆止弁4によって外管内に戻ることなく膨張したままとなる。外管パッカ体はゴム膜等でつくられるので過大に加圧すると破損するための外側に強度のあるネット等による防護被覆26を設けてもよい。(図20(ハ))このような本発明は内管内に流体を送液することによって内管パッカの形成と外管パッカの形成を自動的にあるいは連続的に行うことができ、作業が簡単で能率を上げることができる。また流体はゲル化機能をもつ注入液を用いることもできるし、水や空気、不活性気体等でもよい。また、パッカは水や薬液等、パッカ用流体で形成してから、地盤改良のための注入は例えばコロイダルシリカ等、目的に応じた注入液に換えてもよい。パッカ体20を形成後、流体7の送液を中止または吸出す等の減圧を行えば内管パッカはその弾力性のゆえに収縮して外管内を自由に遊挿できる。このため注入管が長くて外管が土圧によって断面が変形しても湾曲しても内管は容易に遊挿できる。 FIG. 2C is a drawing in which a fluid is fed to the outer tube and the inner tube. When the fluid 7 is fed to the inner tube 6, the discharge port 12 has a smaller discharge port area and larger discharge resistance than the discharge port 11, so the fluid first expands the inner tube packer 8 from the discharge port 11 to form an inner tube packer body. Then, a space 13 between the inner tube packers is formed. The fluid 7 filled in the space 13 pushes and expands the elastic check valve 4 such as a rubber sleeve from the discharge port 5 to expand the outer tube packer 3 to form the outer tube packer body 20. The outer tube packer body is crimped to the drilling wall to form an outer tube outer space . The outer tube packer body remains expanded without returning to the outer tube by the check valve 4. Since the outer tube packer body is made of a rubber film or the like, a protective coating 26 with a strong net or the like may be provided on the outside in order to break if excessive pressure is applied. (FIG. 20 (c)) In the present invention, the inner tube packer and the outer tube packer can be formed automatically or continuously by feeding a fluid into the inner tube, and the operation is simple. Can increase efficiency. The fluid may be an injection solution having a gelling function, or water, air, inert gas, or the like. Further, the packer may be formed of a packer fluid such as water or a chemical solution, and the injection for ground improvement may be replaced with an injection solution according to the purpose such as colloidal silica. After the packer body 20 is formed, the inner tube packer contracts due to its elasticity and can be freely inserted into the outer tube by reducing the pressure such as stopping or sucking the liquid 7. Therefore, even if the injection tube is long and the outer tube is deformed or curved due to earth pressure, the inner tube can be easily inserted.

上述のようにしてパッカ体を形成の後、図2(ニ)のように、さらに下方に内管を移動して上下の内管パッカ8が外管吐出口16をはさむように位置せしめ内管から注入液を送液すれば外管パッカの存在のもとに注入液は外管外空間を経て地盤に注入される。図5並びに図6は内管6の下端部または内管パッカ8の下方に内管吐出口12と同様の吐出口を設けて内管から注入液を送液すると内管パッカ体、外管パッカ体の形成とその下方の外管吐出口からの地盤中への注入が自動的に行われる。17は筒状の端部がゴム弾性で縮む逆止弁である。 After forming the packer body as described above, as shown in FIG. 2 (d), the inner tube is moved further downward so that the upper and lower inner tube packers 8 are positioned so as to sandwich the outer tube discharge port 16, and the inner tube. If the injection solution is fed from the outside, the injection solution is injected into the ground through the outer space outside the outer tube in the presence of the outer tube packer. 5 and 6 show an inner tube packer body and an outer tube packer when a discharge port similar to the inner tube discharge port 12 is provided at the lower end portion of the inner tube 6 or below the inner tube packer 8 and an injection solution is fed from the inner tube. Formation of the body and injection into the ground from the outer tube discharge port below it is automatically performed. Reference numeral 17 denotes a check valve whose cylindrical end is contracted by rubber elasticity.

また、図9(イ)〜図11(ヘ)は内管パッカ8の位置を外管パッカ内吐出口5と外管吐出口16をはさむように設けた例である。図10(ニ)に示されるように吐出口16の吐出抵抗(吐出口8の吐出抵抗)が吐出口の吐出抵抗ならば、パッカ8の形成をパッカ3の形成、吐出口16からの地盤への流れが連続的に行われる。図7〜図8は外管パッカを形成後、内管を下げて外管吐出口16から注入した図である。上記図1〜8はいずれも外管パッカが1個でそれよりも下方の地盤改良を行う例で本発明は大きな柱状浸透(外管外空間)からの注入できるため、注入範囲を広くとれる。このため吐出1段の外管パッカで大きな深さと浸透径を有する固結体を形成するのに用いられる。本発明によれば浸透径を1.5〜3mの固結径が保たれるので注入孔ピッチを2〜4mは可能なので4mの固結層を1ステージで構築することができるため液状化防止注入には極めて適している。すなわち、液状化層が4mの場合、簡便な作業で1ステージが出来るため、その有用性は経済性も含めてはかりしれない。 FIGS. 9A to 11F are examples in which the position of the inner tube packer 8 is provided so as to sandwich the discharge port 5 in the outer tube packer and the discharge port 16 of the outer tube. If the discharge resistance of the discharge port 16 (discharge resistance of the discharge port 8) is the discharge resistance of the discharge port as shown in FIG. 10 (d), the formation of the packer 8 is changed to the formation of the packer 3 and the ground from the discharge port 16 . The flow is continuous. 7 to 8 are views in which the inner tube is lowered and injected from the outer tube discharge port 16 after forming the outer tube packer. FIGS. 1 to 8 are examples in which one outer tube packer is used to improve the ground below the present invention, and the present invention can be injected from a large columnar penetration (outer tube outer space), so that the injection range can be widened. For this reason, it is used to form a consolidated body having a large depth and permeation diameter with a single-stage outer tube packer. According to the present invention, since a consolidated diameter of 1.5 to 3 m can be maintained, an injection hole pitch of 2 to 4 m is possible, so a 4 m consolidated layer can be constructed in one stage, thus preventing liquefaction. Very suitable for injection. That is, when the liquefied layer is 4 m, one stage can be made by a simple operation, and its usefulness cannot be measured including economic efficiency.

内管パッカ流路を用いなければ内管径が小さくて済む。したがって、外管径が小さくなり削孔径が小さくて済む。したがって削孔費が低減する上、注入液の注入のみで注入内管と外管のパッカの形成と地盤への注入が連続的に可能であり工費工期が大幅に低減するという効果が生ずる。
さらに図7、図8における多孔、多ステージ同時注入システムを用いれば広範囲な液状化防止注入工法を決めて短期間で完了することができる。
If the inner tube packer flow path is not used, the inner tube diameter may be small. Accordingly, the outer tube diameter is reduced and the drilling hole diameter is reduced. Therefore, the hole cost is reduced, and the formation of the inner and outer tube packers and the injection into the ground can be continuously performed only by injecting the injection solution, and the construction cost can be greatly reduced.
Furthermore , if the porous and multistage simultaneous injection system shown in FIGS. 7 and 8 is used, a wide range of liquefaction prevention injection methods can be determined and completed in a short period of time.

図10、図11は複数の外管パッカ3を有する外管2を用いた本発明の代表的構造例と施工法を示す。(イ)削孔中への外管2の挿入、(ロ)外管への内管6の挿入、(ハ)内管への流体(注入液でもパッカ用流体でもよい)の送液による内管パッカ8、外管パッカ3の形成を行う。(ニ)流体の送液中止、あるいは流体の吸出しによる内管パッカ8の収縮(外管パッカ3は逆止弁4の存在により収縮しない)。(ニ)は上方に内管を移行して上方外管パッカ3を形成、(ホ)は外管外空間に通じる外管注入口16をはさんで内管パッカ8を位置せしめ内管6から注入液を送液して外管外空間22を通して地盤中に注入する。(ヘ)は外管最下部の注入ステージはその下端部に外管パッカがなくてもよい。注入液は上方に移行しやすく上方は外管の最下部のパッカで拘束している。 10 and 11 shows the typical structure example and construction methods of the present invention using an outer tube 2 having a plurality of outer tube packer 3. (A) Insertion of the outer tube 2 into the drilling hole, (b) Insertion of the inner tube 6 into the outer tube, (c) Inner by feeding fluid (either injection liquid or packer fluid) into the inner tube. The tube packer 8 and the outer tube packer 3 are formed. (D) Shrinkage of the inner tube packer 8 by stopping fluid feeding or sucking out the fluid (the outer tube packer 3 does not shrink due to the presence of the check valve 4). (D) moves the inner tube upward to form the upper outer tube packer 3, (e) locates the inner tube packer 8 across the outer tube inlet 16 leading to the outer tube outer space, and from the inner tube 6 The injection solution is fed and injected into the ground through the outer space 22 outside the tube. In (f), the lowermost portion of the injection stage at the lowermost part of the outer tube may not have an outer tube packer. The injected liquid easily moves upward, and the upper part is constrained by the lowermost packer of the outer tube.

この場合、図中の吐出口の面積はS>S、S<Sの合計とするのが好ましい。
すなわち、内管パッカ体が形成後、注入液7は内管パッカ間吐出口12を経て上下の外管パッカ内吐出口5から上下の外管パッカ3内に流入して外管パッカ体を形成してのち外管パッカ間吐出口より外管外空間22を通して地盤中に注入される。さらに図15につながる図17において注入内管を下方に移行して外管パッカ体の形成、外管注入口16´´からの地盤への注入を行うことができる順序は任意でもよい。
In this case, the area of the discharge port in the figure is preferably the sum of S 1 > S 2 and S 5 <S 4 .
That is, after the inner tube packer body is formed, the injection liquid 7 flows into the upper and lower outer tube packers 3 from the upper and lower outer tube packer discharge ports 5 through the discharge ports 12 between the inner tube packers to form the outer tube packer body. After that, it is injected into the ground through the outer tube outer space 22 from the discharge port between the outer tube packers. Further, in FIG. 17 connected to FIG. 15, the order in which the injection inner tube is moved downward to form the outer tube packer body and to inject the ground from the outer tube injection port 16 ″ may be arbitrary.

図15、図16において、内管から注入液の送液を二重管にすることによりA液、B液を合流して外管吐出口から注入できるため注入液のゲルタイムを自由に調整できるし、瞬結性注入液による一次注入を行うことができるし、また長結グラウトを注入して地上面等に逸出した場合、自由にゲルタイムを短縮して逸出を防止することができる。図19のように二重管を並列管にしてもよいし、パッカ流体管路と組み合わせても良い。多注入ステージの同時注入や瞬結注入と長結注入を同時に行うこともできる。 In FIGS. 15 and 16, the injection liquid can be fed from the inner tube into a double tube so that the liquid A and the liquid B can be combined and injected from the outlet of the outer tube, so that the gel time of the injection can be adjusted freely. The primary injection with the instantaneous setting liquid can be performed, and when the long setting grout is injected and escapes to the ground surface or the like, the gel time can be freely shortened to prevent the escape. As shown in FIG. 19, the double pipe may be a parallel pipe or may be combined with a packer fluid line. Simultaneous injection of multiple injection stages and instantaneous injection and long-injection injection can be performed simultaneously.

本発明において、注入管を地盤中に水平方向に挿入してもよい。図23は注入液送液装置Xを用いた本発明にかかる地盤注入工法の説明図である。図23において、上述と同様、地盤1の地盤改良を施すべき個所に、地表面2から斜め下方に湾曲して、次いで、水平方向にボーリング孔3を削孔する。このボーリング孔3に図1に示されるような逆止弁4を備えた複数の外管吐出口5、5・・・5を有する外管7を設置し、この外管7内に、外側長手方向に三個以上の膨縮パッカ8、8・・・8を間隔をあけて設けて互いに隣接する膨縮パッカ8、8間を吐出位置9とし、かつ内壁吐出口10が別々の吐出位置9に位置する複数の注入液流路11と、膨縮パッカ8に流体を送って膨張させ、あるいは排出して収縮させるパッカ流路12とそれぞれ内部に独立して形成された内管13を移動自在に挿入し、吐出位置9を外管吐出口5に合致させた後、パッカ流路12を通して三個以上の膨縮パッカ8、8・・・8に流体を送って膨縮パッカ8を膨張させ、これにより互いに隣接する膨縮パッカ8、8によって挟まれる隙間14に管内空間15を形成し、注入液を内管吐出口10を通して注入液送液装置Xから管内空間15および外管吐出口5を経て地盤1に注入する。上述の外管7および内管13の詳細な記載は省略し、外管7内に内管13が移動自在に挿入された状態を注入管Aとして表す。 In the present invention, the injection tube may be inserted into the ground in the horizontal direction. FIG. 23 is an explanatory view of the ground injection method according to the present invention using the injection liquid feeding device X. In FIG. 23, similarly to the above, the ground 1 of the ground 1 is curved obliquely downward from the ground surface 2 and then the bored hole 3 is drilled in the horizontal direction. An outer pipe 7 having a plurality of outer pipe discharge ports 5, 5... 5 provided with a check valve 4 as shown in FIG. 1 is installed in the boring hole 3. Three or more expansion / contraction packers 8, 8... 8 are provided at intervals in the direction so that the expansion / contraction packers 8, 8 adjacent to each other serve as discharge positions 9, and the inner wall discharge port 10 has separate discharge positions 9. A plurality of infusion fluid channels 11 located at the same position, a packer channel 12 for supplying fluid to the expansion / contraction packer 8 for expansion or discharge and contraction, and an inner tube 13 formed independently inside each other are freely movable. And the discharge position 9 is matched with the outer tube discharge port 5, and then the fluid is sent to three or more expansion / contraction packers 8, 8... Thus, the inner space 15 is formed in the gap 14 between the expansion / contraction packers 8 and 8 adjacent to each other. Form, from the injection fluid feeding device X through the pipe space 15 and the outer tube discharge port 5 is injected into the ground 1 of the infusate through the inner tube the discharge port 10. The detailed description of the outer tube 7 and the inner tube 13 described above is omitted, and a state where the inner tube 13 is movably inserted into the outer tube 7 is represented as an injection tube A.

(イ)本発明の説明図である。外管の地盤への挿入状態。(ロ)内管を外管に挿入した状態。(A) It is explanatory drawing of this invention. Inserted state of the outer pipe into the ground. (B) A state in which the inner pipe is inserted into the outer pipe. (ハ)は内外管のパッカを膨張させた状態。(ニ)内管を下方に下げ、内管パッカ間から注入液を地盤に注入した状態。(C) is a state where the packer of the inner and outer pipes is expanded. (D) A state in which the inner pipe is lowered and the injection liquid is injected into the ground from between the inner pipe packers. (イ)本発明の説明図である。内外管のパッカを膨張させた状態。(A) It is explanatory drawing of this invention. A state where the packer of the inner and outer pipes is expanded. (ロ)内管先端吐出口から注入液を注入した状態。(B) A state in which an injection solution is injected from the inner tube tip discharge port. 本発明の注入状態を表した図面。The figure showing the injection | pouring state of this invention. 本発明の注入状態を表した図面。The figure showing the injection | pouring state of this invention. (イ)本発明の説明図である。内管パッカ、外管パッカを膨張させない前の状態。(ロ)外管パッカ、内管パッカを膨張させた状態。(A) It is explanatory drawing of this invention. The state before the inner tube packer and outer tube packer are not expanded. (B) The outer tube packer and the inner tube packer are inflated. (ハ)内管を下方に下げ、内管から注入液を注入させた状態。(C) A state in which the inner pipe is lowered and the injection solution is injected from the inner pipe. (イ)本発明の説明図である。外管パッカを備えた外管を削孔中に設置した状態。(ロ)内管を外管内に挿入した状態。(A) It is explanatory drawing of this invention. An outer tube with an outer tube packer installed in the drilling hole. (B) A state in which the inner pipe is inserted into the outer pipe. (ハ)下方外管パッカを膨張させた状態。(ニ)外管パッカおよび内管パッカの全部を膨張させた状態。(C) The state in which the lower outer tube packer is expanded. (D) A state in which all of the outer tube packer and the inner tube packer are expanded. (ホ)外管パッカ間および内管パッカ間の吐出口から注入液を地盤中に注入している状態。(ヘ)内管パッカを下方に移動し、内管パッカ間から注入液を地盤中に注入している状態。(E) A state in which the injection liquid is being injected into the ground from the discharge ports between the outer tube packers and between the inner tube packers. (F) The state in which the inner tube packer is moved downward and the injection solution is injected into the ground from between the inner tube packers. 本発明の説明図である。(イ)内管パッカ内吐出口面積、外管パッカ内吐出口面積および内管吐出口面積の関係を表した図面。It is explanatory drawing of this invention . (A) Drawing showing the relationship between the discharge area in the inner tube packer, the discharge area in the outer tube packer, and the discharge area of the inner tube. (ロ)、(ハ)は図12(イ)の部分拡大図である。(B) is a partially enlarged view of (c) is 12 (b). 外管パッカ内内管パッカ吐出口面積、外管パッカ内内管吐出口面積、内管吐出口および外管吐出口面積、地盤層の関係を表した図面。Drawing showing the relationship between the inner tube packer discharge area in the outer tube packer, the inner tube discharge area in the outer tube packer, the inner and outer tube discharge areas, and the ground layer. 内管パッカ内吐出口面積、外管パッカ内外管吐出口面積、内管および外管のパッカ外面積の関係を表した図面。The drawing which showed the relationship between the discharge port area in an inner tube packer, the outer tube packer inner / outer tube discharge port area, and the outer tuber outer area of an inner tube and an outer tube. 内管パッカ内吐出口面積、外管パッカ内外管吐出口面、および内管および外管のパッカ外吐出口面積の関係を表した図面。The drawing which showed the relationship of the discharge port area in an inner tube packer, the outer and outer tube discharge port surface of an outer tube packer, and the discharge port outer area of an inner tube and an outer tube. 本発明の注入液吐出状態を表した図面。The drawing showing the injection liquid discharge state of this invention. 本発明の注入液吐出状態の他の例を表した図面。The figure showing the other example of the injection liquid discharge state of this invention. 瞬結および長結注入液の地盤への注入状態を表した図面。Drawing showing the state of injection into the ground of instantaneous setting and long setting injection solution. 本発明の他の例を表した図面である。(イ)外管吐出口を壁面保護材で覆った例。(ロ)弾力性透孔防護被覆膜で吐出口を覆った例。(ハ)パッカ上にネットを張った例。It is drawing which represented the other example of this invention . (A) An example in which the outer tube discharge port is covered with a wall surface protective material. (B) An example in which the discharge port is covered with an elastic through-hole protective coating film. (C) An example of a net on a packer. (イ)従来技術の説明図である。外管パッカ間から注入液を注入している状態を表した図面。(A) It is explanatory drawing of a prior art. The figure showing the state which is injecting injection liquid from between outer tube packers. (ロ)二重管ダブルパッカにより外管パッカを膨張させる状態を表した図面。(B) A drawing showing a state in which the outer tube packer is expanded by the double tube double packer. 注入管を地盤中に水平方向に挿入した例。An example in which the injection tube is inserted horizontally into the ground. 多連装注入装置を用い、注入管を地盤中に水平方向に挿入した例。An example in which an injection tube is inserted horizontally into the ground using a multi-component injection device. 多点地盤注入システムの一具体例を示した図面。The figure which showed one specific example of the multipoint ground injection system. 本発明の多点地盤注入システムを模型的に表した図面。Drawing which represented the multipoint ground injection system of the present invention typically.

1 削孔
注入外管
3 外管パッカ
4 逆止弁
5 外管パッカ内吐出口
6 注入内管
7 注入液(流体)
8 内管パッカ
9 外管管壁
10 内管管壁
11 内管パッカ内吐出口
12 内管吐出口
A 注入管装置
DESCRIPTION OF SYMBOLS 1 Drilling hole 2 Injection | pouring outer pipe 3 Outer pipe packer 4 Check valve 5 Outer pipe packer discharge port 6 Injection inner pipe 7 Injection liquid (fluid)
8 Inner tube packer 9 Outer tube wall 10 Inner tube tube wall 11 Inner tube packer discharge port 12 Inner tube discharge port A Injection tube device

本発明は地盤中の削孔内にパッカを少なくとも1つ、特に複数個の不透水性膨縮性外管パッカを間隔をあけて備えた注入外管を挿入し、パッカ間の削孔壁と注入管との間の空間を通して、外管内に挿入した複数の内管にパッカを有する内管から注入材を地盤中に注入する注入管装置、および地盤注入工法に係り、特に内管パッカの形成と外管パッカの形成を自動的に行い、あるいは外管パッカの形成と外管注入口からの注入液の注入を自動的に行い、あるいは内管注入液の送液によって内管パッカの形成と外管パッカの形成と外管注入口からの注入液の注入を自動的に行うことによって注入の工程を飛躍的に単純化し、あるいは注入管の孔径を小さくすることにより削孔径を小さくすることを可能にし、工費を大幅に低減することを可能にする注入管装置および地盤注入工法に関する。 The present invention inserts an injection outer tube having at least one packer, particularly a plurality of water-impermeable, expandable and contractible outer tube packers at intervals, into a borehole in the ground, The present invention relates to an injection pipe device for injecting an injection material into the ground from an inner pipe having a packer in a plurality of inner pipes inserted into the outer pipe through a space between the injection pipe, and formation of the inner pipe packer, in particular. The outer tube packer is automatically formed, or the outer tube packer is formed and the injection solution is automatically injected from the outer tube inlet, or the inner tube packer is formed by feeding the inner tube injection solution. It is possible to dramatically simplify the injection process by automatically forming the outer tube packer and injecting the injection solution from the outer tube inlet, or reducing the hole diameter by reducing the hole diameter of the injection tube. Enabling construction costs to be significantly reduced. It relates infusion tube device and ground grouting method.

注入対象となる地盤が沖積層の場合には、通常、透水係数は垂直方向よりも水平方向の方が大きい。このような地盤に注入材を注入して該地盤を固結するに当たり、従来、注入管管壁に袋パッカを形成する袋体を間隔をあけて複数個取りつけ、かつ袋体の内部ならびに上下に隣接する袋体間に開口する吐出口を備えた注入管装置を用い、この注入管装置を地盤中に設けられた削孔中に挿入し、次いで、前記袋体の内部に開口する吐出口から袋体中に固結材を填充し、膨らませて袋パッカを形成するとともに、上下に隣接する袋体間に開口する吐出口から注入材を注入して前記地盤を固結する技術が採用されていた。   When the ground to be injected is alluvium, the hydraulic conductivity is usually larger in the horizontal direction than in the vertical direction. In injecting injection material into such ground and consolidating the ground, conventionally, a plurality of bag bodies forming a bag packer are attached to the injection pipe tube wall at intervals, and the inside and upper and lower sides of the bag body Using an injection tube device having a discharge port that opens between adjacent bag bodies, insert this injection tube device into a drilling hole provided in the ground, and then from the discharge port that opens inside the bag body A technology is adopted in which a bag material is filled in a bag body and inflated to form a bag packer, and the ground is consolidated by injecting an injection material from a discharge port that opens between adjacent bag bodies vertically. It was.

また、二重注入管を用いて内管注入管への送液と内管パッカの形成を同時に行って外管より注入液を注入する工法は本出願人によってすでに公知である。上述の公知技術では、注入管と、削孔壁との間に形成される隙間を上下に隣接する袋パッカで遮断してこれら袋パッカ間に独立した空間を形成し、この空間を通して注入材を地盤中に注入するものである。   In addition, a method for injecting an injection solution from an outer tube by simultaneously performing liquid feeding to an inner tube injection tube and formation of an inner tube packer using a double injection tube is already known by the present applicant. In the above-mentioned known technology, the gap formed between the injection tube and the hole-drilling wall is blocked by the bag packer adjacent to the upper and lower sides to form an independent space between the bag packers, and the injection material is passed through this space. It is injected into the ground.

本出願人による先願特許第3509744号を例にあげれば、まず外管2に内管6を挿入して透水性袋体からなる外管パッカ3内に固結材7を充填して、外管パッカ体20を形成してのち、上下の外管パッカ体で形成された外管外空間22に外管注入口16を通して地盤23に注入液
7を注入する。また内管パッカ8は合成ゴムのような弾性体、あるいは内管内に設けられたパッカ流体の管路を通して膨縮性のゴムの袋体の内管パッカに圧入されて内管パッカ8を形成する。
In the case of prior application No. 3509744 filed by the present applicant, for example, the inner tube 6 is first inserted into the outer tube 2 and the outer tube packer 3 made of a water-permeable bag is filled with the consolidated material 7. After the tube packer body 20 is formed, the injection solution 7 is injected into the ground 23 through the outer tube injection port 16 into the outer tube outer space 22 formed by the upper and lower outer tube packer bodies. The inner tube packer 8 is press-fitted into an inner tube packer of an inflatable / decompressible rubber bag through an elastic body such as synthetic rubber or a packer fluid line provided in the inner tube to form the inner tube packer 8. .

しかし、上記の注入では外管のパッカ体の形成と内管からの地盤中への注入液の注入の工程が別々に行われる。また、内管内にパッカ流体の流路を設けて内管パッカを形成することは内管径が大きくなり、したがって、外管径が大きくなり削孔径が大きくなる。また、これらはいずれも工期も長くなり工費が高くなる。 However, in the above injection, the process of forming the packer body of the outer tube and the injection of the injection solution from the inner tube into the ground are performed separately. Further, forming the inner tube packer by providing the flow path of the packer fluid in the inner tube increases the inner tube diameter, and therefore increases the outer tube diameter and the drilling hole diameter. Moreover, both of these require a long construction period and high construction costs.

また、本出願による先願特許第4034305号を例に上げれば、外管パッカの形成をあらかじめ行った上で、内管におけるパッカの形成と注入を同時に行うことを特徴とする。このため工程が多くなる。したがって、さらなる簡便性と工期の短縮が望まれていた。
特許第3509744号 特許第4034305号
Further, by raising the prior application Patent No. 4034305 by the present applicant as an example, after performing formation of the outer tube packer advance, and performing injection and formation of the packer in the inner tube at the same time. This increases the number of processes. Therefore, further simplicity and shortening of the construction period have been desired.
Japanese Patent No. 3509744 Patent No. 4034305

そこで、本発明が解決しようとする課題は内管パッカの形成と外管パッカの形成を自動的に行い、あるいは外管パッカの形成と外管注入口からの注入液の注入を自動的に行い、あるいは内管注入液の送液によって内管パッカの形成と外管パッカの形成と外管注入口からの注入液の注入を自動的に行うことによって注入の工程を飛躍的に単純化し、あるいは注入管の孔径を小さくすることにより削孔径を小さくして工費を大幅に低減することを可能にし、上述の公知技術に存する欠点を改良した注入管装置、外管パッカの形成方法および地盤注入工法を提供する。   Therefore, the problem to be solved by the present invention is to automatically form the inner tube packer and the outer tube packer, or automatically form the outer tube packer and inject the injection liquid from the outer tube inlet. Alternatively, the injection process is dramatically simplified by automatically forming the inner tube packer and the outer tube packer and injecting the injection solution from the outer tube injection port by feeding the inner tube injection solution, or By reducing the hole diameter of the injection pipe, it is possible to reduce the drilling diameter and significantly reduce the construction cost. The injection pipe apparatus, the outer pipe packer forming method, and the ground injection construction method have improved the disadvantages of the above-mentioned known techniques. I will provide a.

上述の課題を解決するため、本発明の注入管装置によれば、地盤中の削孔中に設置された外管パッカを有する注入外管から注入内管を通して地盤中に注入液を外管注入口から注入する注入管装置において、該外管パッカは不透水性膨縮パッカであって、該外管パッカ内の注入外管の管壁に設けられた逆止弁に覆われた外管パッカ内吐出口から注入内管を介して外管パッカ内に填充された流体によって膨張し、該内管は複数の内管パッカを有し、該内管パッカ内の管壁には内管パッカ内吐出口を有し、該複数の内管パッカ間の内管管壁には内管吐出口を有し、該複数の内管パッカは該外管内吐出口を挟むように外管内に遊挿して挿入され、該注入内管内に流体を送液することによって、内管パッカ間の空間から該流体が不透水性膨縮性外管パッカ内に填充して外管パッカ体を形成し外管注入口から注入液を地盤中に注入することを特徴とする。 In order to solve the above-described problems, according to the injection tube device of the present invention, the injection solution is injected into the ground from the injection outer tube having the outer tube packer installed in the drilling hole in the ground through the injection inner tube into the ground. In the injection pipe device for injecting from the inlet, the outer pipe packer is a water-impermeable expansion / contraction packer, and the outer pipe packer is covered with a check valve provided on the pipe wall of the injection outer pipe in the outer pipe packer. The inner tube is expanded by the fluid filled in the outer tube packer through the injection inner tube, the inner tube has a plurality of inner tube packers, and the inner wall packer has a wall inside the inner tube packer. The inner tube wall between the plurality of inner tube packers has an inner tube discharge port, and the plurality of inner tube packers are loosely inserted into the outer tube so as to sandwich the outer tube discharge port. inserted, infusion by feeding a fluid to imperial bridal party's entry into the court tract, space fluid is water-impermeable inflation and deflation of outer tube package from between the inner tube packer Characterized by injecting into the ground the injectate from the outer tube inlet to form an outer tube packer body and stuffing within.

さらに、上述の課題を解決するため、本発明の地盤注入工法によれば、地盤の削孔中に設置された注入外管に注入内管を通して地盤中に注入液を外管注入口から注入する地盤注入工法において、前記注入外管が、外管管壁に外管パッカ体を形成する不透水性膨縮性外管パッカを1個、または間隔をあけて複数個取りつけ、かつ、該外管パッカより下方にあるいは上下に隣接する外管パッカ間には外管注入口を備え、該外管パッカ内に開口する逆止弁で覆われた外管パッカ内吐出口を設けてなり、前記外管に挿入する注入内管は複数の内管パッカを形成する膨縮性内管袋体を内管パッカ間吐出口をはさんで複数設け、該内管に流体を送液することにより内管袋体内吐出口から吐出された流体の流体圧により内管袋体が膨張して内管パッカが形成され、それによって形成された内管パッカ間空間を経て外管パッカ内吐出口より外管パッカ内に流体が充填されて外管パッカ体が形成されることを特徴とする。 Furthermore, in order to solve the above-mentioned problem, according to the ground injection method of the present invention, the injection solution is injected from the outer tube injection port into the ground through the injection inner tube into the injection outer tube installed in the ground drilling hole. In the ground injection construction method, the injection outer tube is attached with one or more impermeable outer tube packers forming an outer tube packer body on the outer tube wall, and a plurality of the outer tube packs at intervals. An outer tube inlet is provided between the outer tube packers adjacent to the lower side or upper and lower sides of the packer, and an outer tube packer discharge port covered with a check valve opened in the outer tube packer is provided. The injection inner tube to be inserted into the tube is provided with a plurality of inflatable inner tube bag bodies sandwiching the discharge ports between the inner tube packers to form a plurality of inner tube packers, and by sending fluid to the inner tube, The inner tube bag body is expanded by the fluid pressure of the fluid discharged from the bag body discharge port to form the inner tube packer. Is characterized by a fluid is filled to the outer tube packer body is formed in the outer tube packer from the outer tube packer discharge opening through the inner tube packer between the space in which it is formed by.

さらに、上述の課題を解決するため、本発明の地盤注入工法によれば、地盤中の削孔中に設置された不透水性の膨縮性外管パッカを有する注入外管から膨縮性内管パッカを複数有する注入内管を通して地盤中に注入液を注入する地盤注入工法において、外管管壁に1つまたは複数の外管注入口を有し、外管内に注入内管を隣接する複数の外管パッカ内吐出口をはさむように複数の内管パッカを位置せしめ、該外管パッカ内には逆止弁を有する外管パッカ内吐出口が設けられてなり、かつ、複数の外管パッカ間の外管管壁には逆止弁を有する外管パッカ間注入口が設けられてなり、該注入内管内に流体を送液して内管パッカを膨張し、ついで内管パッカ間吐出口から外管パッカ内吐出口を通して上下の外管パッカに流入して外管パッカ体を形成し、さらに、外管パッカ体間に開口する外管注入口から注入液を注入することを特徴とする。   Furthermore, in order to solve the above-described problems, according to the ground injection method of the present invention, the inner surface of the inflatable structure is expanded from the outer surface of the injection outer tube having a water-impermeable and expandable outer tube packer installed in the drilling hole in the ground. In a ground injection method for injecting an injection solution into a ground through an injection inner pipe having a plurality of pipe packers, the outer pipe wall has one or a plurality of outer pipe injection ports, and a plurality of injection inner pipes adjacent to each other in the outer pipe A plurality of inner tube packers are positioned so as to sandwich the discharge ports in the outer tube packer, and the outer tube packer is provided with discharge ports in the outer tube packer having check valves, and the plurality of outer tubes The outer tube wall between the packers is provided with an inlet between outer tube packers having a check valve. The fluid is fed into the inner tube to expand the inner tube packer, and then the inner tube packer is discharged. From the outlet through the outlet in the outer tube packer, it flows into the upper and lower outer tube packers to form the outer tube packer body. Further characterized in that injecting an injection fluid from the outer tube inlet opening between the outer tube packer body.

さらに、上述の課題を解決するため、本発明の地盤注入工法によれば、前記注入内管を複数の膨縮性内管パッカが前記外管パッカ体内外管吐出口をはさむように位置せしめ、さらに、これら内管パッカ内にパッカ内吐出口を有し、かつ前記間隔をあけて備えられた内管パッカ間に外管吐出口に通じる内管吐出口を有する内管とを備えた注入内管を用い、内管流路に注入液を送液することにより、前記膨縮性内管パッカを注入液の送液圧力によって膨張して複数の内管パッカ間に外管内空間を形成するとともに、この外管内空間内に内管吐出口から注入液を吐出し、該外管袋体を膨らませて外管パッカ体を形成すると共に注入液を外管内空間から外管吐出口を通して外管パッカ外空間から地盤中に注入して地盤を固結することを特徴とする。 Furthermore, in order to solve the above-mentioned problem, according to the ground injection method of the present invention, the injecting inner tube is positioned such that a plurality of inflatable inner tube packers sandwich the outer tube packer inner / outer tube discharge port, Further, the inner tube packer has an inner tube discharge port in the inner tube packer, and an inner tube having an inner tube discharge port communicating with the outer tube discharge port between the inner tube packers provided at the intervals. The tube is used to send the injection solution to the inner tube flow path, whereby the expandable inner tube packer is expanded by the solution supply pressure of the injection solution to form an outer tube inner space between the plurality of inner tube packers. The injecting solution is discharged from the inner tube discharge port into the outer tube inner space, the outer tube bag body is inflated to form an outer tube packer body, and the injected solution is discharged from the outer tube inner space through the outer tube discharge port to the outside of the outer tube packer. It is characterized by pouring the ground into the ground from the space.

上述の本発明は内管パッカの形成と外管パッカの形成を自動的に行い、あるいは外管パッカの形成と外管注入口からの注入液の注入を自動的に行い、あるいは内管注入液の送液によって内管パッカの形成と外管パッカの形成と外管注入口からの注入液の注入を自動的に行うことによって注入の工程を飛躍的に単純化し、あるいは注入管の孔径を小さくすることにより削孔径を小さくして工費を大幅に低減することを可能にする。   The above-described present invention automatically forms the inner tube packer and the outer tube packer, or automatically forms the outer tube packer and injects the injection solution from the outer tube inlet, or the inner tube injection solution. By automatically feeding the inner tube packer, the outer tube packer, and the injection solution from the outer tube inlet, the injection process is greatly simplified, or the hole diameter of the injection tube is reduced. This makes it possible to reduce the drilling diameter and greatly reduce the construction cost.

以下、本発明を添付図面を用いて詳述する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図17(イ)、図18(ロ)は従来技術(特許第350974号)の説明図である。
注入管1の管壁2には、外管パッカ体20を形成する透水性袋体からなる外管パッカ3を間隔をあけて複数個取りつけ、かつ外管パッカ3の内部ならびに上下に隣接する外管パッカ3に開口する外管パッカ内吐出口5、5・・・5を備えて注入管装置Xを構成する。
このようにして構成される注入管装置Xは地盤23中に設けられた削孔7中に挿入する。次いで、外管パッカ3の内部に開口する吐出口5から透水性袋体からなる外管パッカ3中に硬化性懸濁液を注入内管1を通して充填し、懸濁液の一部を透過しながら透過しない懸濁液がつまって膨らませて外管パッカ体20を形成する。そして、上下に隣接する袋体4、4間に開口する吐出口5から注入内管を通して注入材を空間22に、次いで削孔壁9から地盤8中に注入し、地盤23を固結する。
FIGS. 17A and 18B are explanatory diagrams of the prior art (Japanese Patent No. 350974) .
A plurality of outer tube packers 3 made of a water-permeable bag forming the outer tube packer body 20 are attached to the tube wall 2 of the injection tube 1 at intervals, and the inside of the outer tube packer 3 and the outer layers adjacent to the upper and lower sides are attached. The injection tube device X is configured by including the discharge ports 5, 5...
The injection tube device X configured as described above is inserted into the drilling hole 7 provided in the ground 23. Next, a curable suspension is filled into the outer tube packer 3 made of a water-permeable bag through the injection inner tube 1 from the discharge port 5 opened inside the outer tube packer 3, and a part of the suspension is permeated. However, the non-permeable suspension is collected and inflated to form the outer tube packer body 20. Then, the injection material is injected into the space 22 through the injection inner pipe from the discharge port 5 opened between the upper and lower adjacent bag bodies 4, 4, and then into the ground 8 from the hole wall 9, and the ground 23 is consolidated.

しかし、上述の従来技術では、外管パッカが透過性であるため外管パッカ3の膨張および吐出口5からの注入液の吐出は別工程で行われなければならず、注入の工程が単純化されず削孔径を小さくすることができない。 However, in the above-described prior art, since the outer tube packer is permeable, the expansion of the outer tube packer 3 and the discharge of the injection liquid from the discharge port 5 must be performed in separate processes, which simplifies the injection process. The hole diameter cannot be reduced.

本発明の図1(イ)は削孔1中に本発明注入管装置Aの外管2を挿入する。外管は少なくとも1つの弾性材料からなる不透水性の膨縮性外管パッカ3を装着してある。外管パッカ3の内部の外管管壁9には外管パッカ内吐出口5が逆止弁4に覆われて設けられている。外管パッカ3の少なくとも下方の外管管壁には外管注入口逆止弁17で覆われた外管注入口16が設けられている。   In FIG. 1 (a) of the present invention, the outer tube 2 of the injection tube device A of the present invention is inserted into the hole 1. The outer tube is fitted with an impermeable and expandable outer tube packer 3 made of at least one elastic material. A discharge port 5 in the outer tube packer is provided on the outer tube wall 9 inside the outer tube packer 3 so as to be covered with the check valve 4. An outer tube inlet 16 covered with an outer tube inlet check valve 17 is provided on at least the outer tube wall below the outer tube packer 3.

図1(ロ)は外管2に内管6を挿入した図である。内管には内管パッカ間吐出口12をはさんで内管パッカ8が複数設けられており、内管パッカ8の内管パッカ管壁10には内管パッカ内吐出口11が設けられている。外管パッカ3も内管パッカ8もいずれも不透水性の弾性の膨縮性材料からなりその上下をかしめられている。外管パッカ3も内管パッカ8も内管6からの流体7(注入液)による加圧によって膨張する。内管パッカはパッカ流体の加圧の停止あるいはパッカ内の流体の吸出し等による減圧によって収縮し、平らになる。また内管パッカ間吐出口12の吐出口面積Sは内管パッカ内吐出口11の吐出口面積Sよりも小さくする等して吐出抵抗力が大きく設計してある。吐出口12は1個でも複数でもよく、その面積は各吐出口の面積の合計としてなるように考えてよい。もちろん吐出口12には細孔として流体を噴射するものであってもよい。また、吐出口12の上に逆止弁等の抵抗物を設けて吐出抵抗を大きくすることができる。いずれにせよ、吐出口12の吐出抵抗がパッカ内吐出口11の吐出抵抗よりも大きくすることが好ましい。 FIG. 1 (b) is a view in which the inner tube 6 is inserted into the outer tube 2. The inner tube is provided with a plurality of inner tube packers 8 across the inner tube packer discharge port 12, and the inner tube packer tube wall 10 of the inner tube packer 8 is provided with an inner tube packer discharge port 11. Yes. Both the outer tube packer 3 and the inner tube packer 8 are made of a water-impermeable elastic expandable material and are caulked up and down. Both the outer tube packer 3 and the inner tube packer 8 are expanded by pressurization by the fluid 7 (injection solution) from the inner tube 6 . The inner tube packer deflated by vacuum by suction or the like of the fluid in the pressurization of the stop or packer packer Fluid becomes flat. The discharge port area S 2 of the inner pipe packer between the outlets 12 discharge resistance force equal to less than the discharge port area S 1 of the inner tube packer in the discharge port 11 are designed large. One or a plurality of discharge ports 12 may be provided, and the area may be considered to be the sum of the areas of the discharge ports. Of course, the discharge port 12 may eject fluid as fine pores. Further, a resistance such as a check valve can be provided on the discharge port 12 to increase the discharge resistance. In any case, it is preferable that the discharge resistance of the discharge port 12 is greatly than the discharge resistance of the packer within the discharge port 11.

図2(ハ)は外管および内管に流体を送液した図面である。内管6に流体7(注入液)を送液すると内管パッカ間吐出口12は内管パッカ内吐出口11よりも吐出口面積が小さく吐出抵抗が大きいため流体はまず吐出口11から内管パッカ8を膨張させて内管パッカ体を形成し、内管パッカ間空間13を形成する。空間13に充填した流体7(注入液)外管パッカ内は吐出口5からゴムスリーブのような弾力性のある逆止弁4を押し拡げて外管パッカ3を膨張させて外管パッカ体20を形成する。外管パッカ体20は削孔壁に圧着し外管外空間22を形成する。外管パッカ体20は逆止弁4によって外管内に戻ることなく膨張したままとなる。外管パッカ体はゴム膜等でつくられるので過大に加圧すると破損するための外側に強度のあるネット等による防護被覆26を設けてもよい。このような本発明は内管内に流体を送液することによって内管パッカの形成と外管パッカの形成を自動的にあるいは連続的に行うことができ、作業が簡単で能率を上げることができる。また流体はゲル化機能をもつ注入液を用いることもできるし、水や空気、不活性気体等でもよい。また、パッカは水や薬液等、パッカ用流体で形成してから、地盤改良のための注入は例えばコロイダルシリカ等、目的に応じた注入液に換えてもよい。パッカ体20を形成後、流体7の送液を中止または吸出す等の減圧を行えば内管パッカはその弾力性のゆえに収縮して外管内を自由に遊挿できる。このため注入管が長くて外管が土圧によって断面が変形しても湾曲しても内管は容易に遊挿できる。 FIG. 2C is a drawing in which a fluid is fed to the outer tube and the inner tube. When the fluid 7 (injection solution) is fed to the inner tube 6, the discharge port 12 between the inner tube packers has a smaller discharge port area and larger discharge resistance than the discharge port 11 in the inner tube packer, so that the fluid first passes through the inner tube from the discharge port 11. The packer 8 is expanded to form an inner tube packer body, and an inner tube packer space 13 is formed. The fluid 7 (injection liquid) filled in the space 13 is expanded in the outer tube packer body 20 by expanding the outer tube packer 3 by expanding the elastic check valve 4 such as a rubber sleeve from the discharge port 5. Form. The outer tube packer body 20 is pressure-bonded to the bore wall to form an outer tube outer space 22 . The outer tube packer body 20 remains expanded without returning to the outer tube by the check valve 4. Since the outer tube packer body is made of a rubber film or the like, a protective coating 26 with a strong net or the like may be provided on the outside in order to break if excessive pressure is applied. In the present invention, the inner tube packer and the outer tube packer can be formed automatically or continuously by feeding a fluid into the inner tube, so that the operation is simple and the efficiency can be improved. . The fluid may be an injection solution having a gelling function, or water, air, inert gas, or the like. Further, the packer may be formed of a packer fluid such as water or a chemical solution, and the injection for ground improvement may be replaced with an injection solution according to the purpose such as colloidal silica. After the packer body 20 is formed, the inner tube packer contracts due to its elasticity and can be freely inserted into the outer tube by reducing the pressure such as stopping or sucking the liquid 7. Therefore, even if the injection tube is long and the outer tube is deformed or curved due to earth pressure, the inner tube can be easily inserted.

上述のようにしてパッカ体を形成の後、図2(ニ)のように、さらに下方に内管を移動して上下の内管パッカ8が外管注入口16をはさむように位置せしめ内管から注入液を送液すれば外管パッカの存在のもとに注入液は外管外空間22を経て地盤に注入される。図5並びに図6は内管6の下端部または内管パッカ8の下方に内管吐出口12と同様の吐出口を設けて内管から注入液を送液すると内管パッカ体、外管パッカ体20の形成とその下方の外管注入口からの地盤中への注入が自動的に行われる。17は筒状の端部がゴム弾性で縮む逆止弁である。 After forming the packer body as described above, as shown in FIG. 2 (d), the inner pipe is moved further downward so that the upper and lower inner pipe packers 8 are positioned so as to sandwich the outer pipe inlet 16 and the inner pipe. When the injection solution is fed from the outside, the injection solution is injected into the ground through the outer tube outer space 22 in the presence of the outer tube packer. 5 and 6 show that the inner tube packer body 8 and the outer tube are formed when an injection port similar to the inner tube discharge port 12 is provided at the lower end of the inner tube 6 or below the inner tube packer 8 and the injection liquid is fed from the inner tube. The formation of the packer body 20 and the injection into the ground from the outer tube injection port therebelow are automatically performed. Reference numeral 17 denotes a check valve whose cylindrical end is contracted by rubber elasticity.

図3(イ)は内管パッカ流路14内から送液されたパッカ流体15によって吐出口11を通して内管パッカ8を膨張させ、内管6から流体7(注入液)を送液して外管パッカ3を膨張させる構造を示す。 3 (a) shows that the inner tube packer 8 is expanded through the discharge port 11 by the packer fluid 15 fed from the inner tube packer flow path 14, and the fluid 7 (injection solution) is fed from the inner tube 6 to the outside. The structure which expands the tube packer 3 is shown.

図4(ロ)は注入液または水、気体等のパッカ用流体で内管パッカ8、外管パッカ3が形成後内管吐出口12から吐出された注入液7が外管内空間27に吐出されて外管注入口16から外管外空間22を経て地盤23に注入される。 FIG. 4 (b) shows an injection solution or a fluid for packing such as water or gas, and the injection solution 7 discharged from the inner tube discharge port 12 after the inner tube packer 8 and the outer tube packer 3 are formed is discharged into the outer tube inner space 27. Then, it is injected from the outer tube inlet 16 into the ground 23 through the outer tube outer space 22.

また、図(イ)〜図(ニ)は内管パッカ8の位置を外管パッカ内吐出口5をはさむように設けて流体(注入液)を送液して内管パッカを膨張させて続いて外管パッカを膨張させた図であり図9はその後、外管吐出口16をはさむように設けて流体(注入液)を送液して外管外空間から注入液を地盤に注入した例である。図5、6では吐出口12の吐出抵抗が吐出口11の吐出抵抗よりも大きければ、パッカ8の形成後、パッカ3の形成と外管注入口16からの地盤への注入が連続的に行われる。図2(ニ)は外管パッカを形成後、内管を下げて外管吐出口16から注入した図である。上記図1〜はいずれも外管パッカが1個でそれよりも下方の地盤改良を行う例で本発明は大きな柱状浸透(外管外空間)からの注入できるため、注入範囲を広くとれる。このため注入ステージ1段の外管パッカで大きな外管外空間からの浸透により大きな浸透径を有する固結体を形成するのに用いられる。本発明によれば浸透径を1.5〜mの固結径が保たれるので注入孔ピッチを2〜4mは可能なので4mの固結層を1ステージで構築することができるため液状化防止注入には極めて適している。すなわち、液状化層が4mの場合、簡便な作業で1ステージが出来るため、その有用性は経済性も含めてはかりしれない。 7 (a) to 8 (d), the position of the inner tube packer 8 is provided so as to sandwich the discharge port 5 in the outer tube packer, and a fluid (injection solution) is fed to expand the inner tube packer. Subsequently, the outer tube packer is expanded, and FIG. 9 is then provided so as to sandwich the outer tube discharge port 16 to feed fluid (injected solution) and inject the injected solution from the outer tube outer space into the ground. This is an example. 5 and 6, if the discharge resistance of the discharge port 12 is larger than the discharge resistance of the discharge port 11, the formation of the packer 3 and the injection from the outer tube injection port 16 to the ground are continuously performed after the packer 8 is formed. Is called. FIG . 2D is a view in which after the outer tube packer is formed, the inner tube is lowered and injected from the outer tube discharge port 16. FIGS. 1 to 6 are examples in which one outer tube packer is used to improve the ground below the present invention, and the present invention can be injected from a large columnar penetration (outer tube outer space), so that the injection range can be widened. For this reason, the outer tube packer of the first stage of the injection stage is used to form a consolidated body having a large permeation diameter by permeation from a large space outside the outer tube. According to the present invention, since a consolidated diameter of 1.5 to 4 m is maintained, the injection hole pitch can be 2 to 4 m, so that a 4 m consolidated layer can be constructed in one stage, so that it can be liquefied. Very suitable for prevention injection. That is, when the liquefied layer is 4 m, one stage can be made by a simple operation, and its usefulness cannot be measured including economic efficiency.

図1、図2、図5〜11、図13および図15のように内管パッカ流路を用いなければ内管径が小さくて済む。したがって、外管径が小さくなり削孔径が小さくて済む。したがって削孔費が低減する上、注入液の注入のみで注入内管と外管のパッカの形成と地盤への注入が連続的に可能であり工費工期が大幅に低減するという効果が生ずる。
さらに図19、図20における多孔、多ステージ同時注入システムを用いれば広範囲な液状化防止注入工法を決めて短期間で完了することができる。
As shown in FIG. 1, FIG. 2, FIGS. 5 to 11, FIG. 13 and FIG . Accordingly, the outer tube diameter is reduced and the drilling hole diameter is reduced. Therefore, the hole cost is reduced, and the formation of the inner and outer tube packers and the injection into the ground can be continuously performed only by injecting the injection solution, and the construction cost can be greatly reduced.
Furthermore, if the porous and multistage simultaneous injection system shown in FIGS. 19 and 20 is used, a wide range of liquefaction prevention injection methods can be determined and completed in a short period of time.

7〜9は複数の外管パッカ3を有する外管2を用いた本発明の代表的構造例と施工法を示す。(イ)削孔中への外管2の挿入、(ロ)外管への内管6の挿入、(ハ)内管への流体(注入液でもパッカ用流体でもよい)の送液による内管パッカ8、外管パッカ3の形成を行う。(ニ)流体の送液中止、あるいは流体の吸出しによる内管パッカ8の収縮(外管パッカ3は逆止弁4の存在により収縮しない)。(ニ)は上方に内管を移行して上方外管パッカ3を形成、(ホ)は外管外空間22に通じる外管注入口16をはさんで内管パッカ8を位置せしめ内管6から注入液を送液して外管外空間22を通して地盤中に注入する。(ヘ)は外管最下部の注入ステージはその下端部に外管パッカがなくてもよい。注入液は上方に移行しやすく上方は外管の最下部のパッカで拘束している。 7 to 9 show a typical structure example and construction method of the present invention using the outer tube 2 having a plurality of outer tube packers 3. (A) Insertion of the outer tube 2 into the drilling hole, (b) Insertion of the inner tube 6 into the outer tube, (c) Inner by feeding fluid (either injection liquid or packer fluid) into the inner tube. The tube packer 8 and the outer tube packer 3 are formed. (D) Shrinkage of the inner tube packer 8 by stopping fluid feeding or sucking out the fluid (the outer tube packer 3 does not shrink due to the presence of the check valve 4). (D) moves the inner tube upward to form the upper outer tube packer 3, and (E) shows the inner tube packer 8 with the inner tube packer 8 positioned across the outer tube inlet 16 leading to the outer tube outer space 22. Then, the injection solution is fed and injected into the ground through the outer space 22 outside the tube. In (f), the lowermost portion of the injection stage at the lowermost part of the outer tube may not have an outer tube packer. The injected liquid easily moves upward, and the upper part is constrained by the lowermost packer of the outer tube.

10(イ)および図12は2または3個以上の外管パッカ3間の外管外空間22に内管6から複数の注入ステージに同時に注入する例を示す。 は内管パッカ内吐出口11の吐出面積、S は内管パッカ間吐出口12の吐出面積、S は内管吐出口28の吐出面積を示す。1対の内管パッカ8は内管パッカ間吐出口12を挟んで位置し、内管パッカ間吐出口12は外管パッカ内吐出口5に連通している。内管吐出口28は外管注入口16に連通している。吐出口面積をS<S<Sとすれば(複数の吐出口を設ければ吐出面積S、S、Sはその合計であってもよい)、注入液7を内管に送液すれば内管パッカの形成→外管パッカの形成→複数の外管注入口16からの地盤中への多ステージ同時注入が自動的に行われる。この場合内管を次のステージに遊挿して注入すれば多数の多ステージで同時注入が行われる。なお、Sは吐出抵抗力の大きさであって、必ずしも面積とは限らず、吐出口をゴムスリーブ等のシールで覆いかぶせてもよく、コーン等の抵抗物を挿入してもよい。図11(ロ)、(ハ)は図12(イ)の部分拡大図である。 Figure 10 (a) and FIG. 12 shows an example of simultaneously injected outside the extravascular space 22 from the inner tube 6 into a plurality of injection stages between two or three or more of the outer tube packer 3. S 1 indicates the discharge area of the inner tube packer discharge port 11, S 2 indicates the discharge area of the discharge tube 12 between the inner tube packers, and S 3 indicates the discharge area of the inner tube discharge port 28. The pair of inner tube packers 8 are located with the discharge port 12 between the inner tube packers interposed therebetween, and the discharge port 12 between the inner tube packers communicates with the discharge port 5 in the outer tube packer. The inner tube discharge port 28 communicates with the outer tube injection port 16. If the discharge port area is S 3 <S 2 <S 1 (if a plurality of discharge ports are provided, the discharge areas S 1 , S 2 , and S 3 may be the sum of them), the injection solution 7 is used as the inner tube. 6 , formation of the inner tube packer 8 → formation of the outer tube packer 3 → multistage simultaneous injection from the plurality of outer tube inlets 16 into the ground is automatically performed. In this case, if the inner tube is loosely inserted into the next stage and injected, simultaneous injection is performed in a number of multiple stages. In addition, S is a magnitude | size of discharge resistance force, Comprising: It does not necessarily need to be an area, A discharge port may be covered with seals, such as a rubber sleeve , and resistance objects, such as a cone, may be inserted. 11 (b) and 11 (c) are partial enlarged views of FIG. 12 (b).

さらにこの構造の特徴は長尺の全注入ステージに多数の外管パッカを設けて内管は外管に挿入して所定の位置にセットしたままで注入すれば注入ステージを移動させることなく一度に全深度の注入を行うことができることである。この際注入ステージ毎に地盤の透水係数をk、k(k<k)とすれば、それぞれの地盤の間隙率から1本当たりの注入範囲の1注入ステージ当たりの注入量を算定できる。1本当たりの各注入ステージの注入を同じ時間内に完了できるように各ステージにおける透水係数に対応した間隙、注入量を算出し、注入時間が同じになるように吐出面積S3−1、S3−2(S3−2>S3−1)になるようにあらかじめ内管吐出口の面積を作成しておく。このようにすればステージ毎に透水係数が異なり、したがって、各注入ステージにおける注入量が異なるにもかかわらず、上から下まで同一の設計浸透径の固結体を同一注入時間で得ることができるという画期的地盤改良が可能になる。 In addition, this structure is characterized by providing a large number of outer tube packers on all long injection stages and inserting the inner tube into the outer tube and injecting it while it is set in place without moving the injection stage at once. It is possible to perform full depth injections. At this time, if the hydraulic conductivity of the ground is k 1 , k 2 (k 2 <k 1 ) for each injection stage, the injection amount per injection stage in one injection range is calculated from the porosity of each ground. it can. Porosity corresponding to permeability in each stage to the injection of the injection stage can be completed within the same time per one calculates the injection quantity, discharging as injection time is the same area S 3-1, The area of the inner pipe discharge port is prepared in advance so that S 3-2 (S 3-2 > S 3-1 ) is satisfied. Thus different permeability in each stage if, therefore, the amount of implanted despite different to definitive in each injection stage, it is obtained by the same injection time caking of the same design penetration diameter from top to bottom A groundbreaking ground improvement is possible.

例えば、k地盤はk地盤より透水係数が大きい、したがって、間隙が大きいから同一固結径にしようとすれば 地盤の注入量はk地盤より多くなる。同一時間に同一固結径になるようにそれぞれの地盤の注入が完了するようにするためにはk地盤の注入速度をk地盤の注入速度よりも大きくなるようにする。図10は内管パッカの膨張状態図11は外管パッカ内膨張状態を示す。注入圧力が同一の場合、各内管吐出口28からの注入速度はそれぞれの内管吐出口の面積に比例する。したがって、k 地盤の内管吐出口28の吐出面積をS 3−1 、k 地盤の内管吐出口28´の吐出面積S 3−2 として(S 3−1 >S 3−2 )k 地盤の注入時間とk 地盤の注入時間が同一になるようにS 3−1 とS 3−2 の面積を設計すればよい。
したがって、S >S >S (S 3−1 >S 3−2 )として、内管6から注入液7を送液すれば、まず内管パッカ8が膨張し、ついで外管パッカ3が膨張し、続いて外管吐出口16から地盤に注入液が注入される。k 層はk 層より透水係数が大きいからS 3−1 >S 3−2 ならば毎分注入速度はk 層がk 層より大きいから注入速度の比率に合わせてS 3−1 、S 3−2 を適切に設計することにより同一時間で注入を完了することができる。
For example, the k 1 ground has a larger permeability coefficient than the k 2 ground, and therefore, the gap is large, so if the same consolidation diameter is attempted , the injection amount of the k 1 ground will be larger than that of the k 2 ground. Same solid in order to be in so as to inject each of the ground is completed Yui径to allow the injection rate of k 1 Ground greater than the injection rate of the k 2 Ground the same time. FIG. 10 shows an expanded state of the inner tube packer. FIG. 11 shows an expanded state of the outer tube packer. When the injection pressure is the same, the injection speed from each inner tube discharge port 28 is proportional to the area of each inner tube discharge port. Therefore, the discharge area of the inner pipe discharge port 28 of k 1 ground is S 3-1 , and the discharge area S 3-2 of the inner pipe discharge port 28 ′ of k 2 ground is (S 3-1 > S 3-2 ) k. may be designed to an area of S 3-1 and S 3-2 as injection time and k 2 soil infusion period of 1 ground are the same.
Therefore, if the injection solution 7 is fed from the inner tube 6 as S 1 > S 2 > S 3 (S 3-1 > S 3-2 ), the inner tube packer 8 first expands, and then the outer tube packer 3. Then, the injection solution is injected from the outer tube discharge port 16 into the ground. k 1 layer in accordance with the ratio of the infusion rate because there is greater permeability than k 2 layer S 3-1> S 3-2 if min infusion rate k 1 layers from larger k 2 layers S 3-1 The injection can be completed in the same time by appropriately designing S 3-2 .

図12は内管13内に内管パッカ流路14を設け、内管パッカ流体15で内管パッカ8を膨張させる構造を示す。内管パッカを形成した後、注入液7を送液すれば、SFIG. 12 shows a structure in which an inner tube packer flow path 14 is provided in the inner tube 13 and the inner tube packer fluid 15 is used to expand the inner tube packer 8. After forming the inner tube packer, if the injection solution 7 is fed, S 2 >S> S 3
だからまず注入液7によって外管パッカ3が膨張し、次いで内管吐出口28から外管吐出口16を通して注入液7が外管外空間22に注入され、さらに地盤への注入浸透が行なわれる。kTherefore, the outer tube packer 3 is first expanded by the injection solution 7, and then the injection solution 7 is injected from the inner tube discharge port 28 through the outer tube discharge port 16 into the outer tube outer space 22, and further, the injection penetration into the ground is performed. k 1 層における透水係数kPermeability coefficient k 1 はkIs k 2 層における透水係数kPermeability coefficient k 2 よりも大きいならばkIf greater than k 1 層に対応した注入内管の内管吐出口28の吐出面積SThe discharge area S of the inner tube outlet 28 of the injection inner tube corresponding to the layer 3−13-1. をkK 2 層に対応した内管吐出口28´の吐出面積SThe discharge area S of the inner pipe discharge port 28 'corresponding to the layer 3−2 3-2 よりも大きくすることによりkBy making it larger than k 1 層の注入量がkLayer injection volume is k 2 層の注入量よりも大きいにもかかわらず、同一注入時間で注入が完了し、kThe injection is completed in the same injection time, even though it is larger than the injection amount of the layer, and k 1 層、kLayer, k 2 層も同一の固結径を得ることができる。The layers can also have the same consolidated diameter.

図13〜図16は複数の外管パッカ3の形成と外管注入口16からの注入が自動的に行われ、あるいはさらに、注入管を移行させて複数の外管注入口からの注入を行う例を示す。 13 to 16, the formation of a plurality of outer tube packers 3 and the injection from the outer tube injection port 16 are automatically performed, or the injection tube is moved to perform the injection from the plurality of outer tube injection ports. An example is shown.

13において一対の内管パッカ8は上下の外管パッカ内吐出口5と上下の外管パッカ3に挟まれた外管注入口16を挟むように挿入される。内管6からは水等の流体を注入して内管パッカ8と外管パッカ3を膨張させて外管注入口16より注入地盤に注入して地盤の透水性を測定してから再度注入液を内管から注入して内管パッカの形成と外管注入口16から地盤への注入を自動的に行うことができる。 In FIG. 13 , the pair of inner tube packers 8 are inserted so as to sandwich the upper and lower outer tube packer discharge ports 5 and the outer tube injection port 16 sandwiched between the upper and lower outer tube packers 3. A fluid such as water is injected from the inner tube 6 to expand the inner tube packer 8 and the outer tube packer 3 and injected into the injection ground from the outer tube inlet 16 to measure the water permeability of the ground , and then the injection solution again. Can be injected from the inner tube to automatically form the inner tube packer and the outer tube inlet 16 to the ground.

この場合はじめから、内管に注入液を送液すれば内管パッカの形成、外管パッカの形成、外管の注入口16から地盤中への注入液の注入を自動的に行うことができる。 In this case, if the injection solution 7 is sent to the inner tube 6 from the beginning, the formation of the inner tube packer 8 , the formation of the outer tube packer 3 , and the injection of the injection solution from the inlet 16 of the outer tube into the ground are automatically performed. It can be carried out.

この場合、図中の吐出口の面積はS>S外管注入口16の吐出面積をS 、外管パッカ内吐出5の吐出面積をS とし、S <S と設計する。吐出口が複数ある場合はそれらの合計の面積と考えてよい。
すなわち、内管パッカ体が形成後、注入液7は内管パッカ間吐出口12を経て上下の外管パッカ内吐出口5から上下の外管パッカ3内に流入して外管パッカ体を形成してのち外管パッカ間吐出口より外管外空間22を通して地盤中に注入される。
In this case, the area of the discharge port in the figure is S 1 > S 2 , the discharge area of the outer tube injection port 16 is S 5 , the discharge area of the discharge 5 in the outer tube packer is S 4, and S 5 <S 4 is designed. To do. When there are a plurality of discharge ports, the total area may be considered.
That is, after the inner tube packer body is formed, the injection liquid 7 flows into the upper and lower outer tube packers 3 from the upper and lower outer tube packer discharge ports 5 through the discharge ports 12 between the inner tube packers to form the outer tube packer body. After that, it is injected into the ground through the outer tube outer space 22 from the discharge port between the outer tube packers.

この場合図13において、注入液は瞬結性注入液あるいは懸濁型注入液を外管注入口16より注入することによりあらかじめ粗い層を瞬結性注入液あるいは懸濁液で一次注入あるいは粗結注入を行い浸透性の優れた長結型注入液あるいは溶液型注入液を注入することができる。 In this case, in FIG. 13 , the injection solution is injected from the instantaneous tube injection solution 16 or the suspension type injection solution through the outer tube injection port 16 so that the rough layer is preliminarily injected or coarsely combined with the instantaneous connection solution or suspension. It is possible to inject a long-injection type solution or a solution type injection solution having excellent permeability.

14および図15は注入内管6に内管パッカ流路15が設けられており、内管パッカはパッカ流体で形成される。図14においては内管パッカ8を内管パッカ流体15で形成した後、注入液7を内管6から送液すれば外管パッカ3の膨張に引き続いて外管注入口16から地盤への注入液が自動的に行なわれる。本発明において、注入内管を二重管または併列管あるいはパッカ流路を組み合わせても良いのである。この場合、A液、B液を別々に送液することにより瞬結性グラウトや任意のゲルタイムの注入液を地盤状況や注入目的に応じて、注入できる。その後図12のようにステージを下方にうつして長結注入液を注入できる。 14 and 15 , the inner tube packer flow path 15 is provided in the injection inner tube 6, and the inner tube packer 8 is formed of a packer fluid. In FIG. 14, after the inner tube packer 8 is formed with the inner tube packer fluid 15, if the injection solution 7 is fed from the inner tube 6, the expansion of the outer tube packer 3 is followed by the injection from the outer tube inlet 16 to the ground. The liquid is done automatically. In the present invention, the injection inner pipe may be combined with a double pipe, a parallel pipe or a packer flow path. In this case, the liquid A and the liquid B are separately fed, so that an instantaneous liquid grout or an injection liquid having an arbitrary gel time can be injected according to the ground condition or the injection purpose. Thereafter, the long infusion solution can be injected by moving the stage downward as shown in FIG.

13、図14において、内管から注入液の送液を二重管にすることによりA液、B液を合流して外管吐出口から注入できるため注入液のゲルタイムを自由に調整できるし、瞬結性注入液による一次注入を行うことができるし、また長結グラウトを注入して地上面等に逸出した場合、自由にゲルタイムを短縮して逸出を防止することができる。図15のように二重管を並列管にしてもよいし、パッカ流体管路と組み合わせても良い。多注入ステージの同時注入や瞬結注入と長結注入を同時に行うこともできる。 In FIG. 13 and FIG. 14 , since the liquid A and the liquid B can be combined and injected from the outlet of the outer pipe by feeding the injection liquid from the inner pipe to the double pipe, the gel time of the injection liquid can be adjusted freely. The primary injection with the instantaneous setting liquid can be performed, and when the long setting grout is injected and escapes to the ground surface or the like, the gel time can be freely shortened to prevent the escape. As shown in FIG. 15, the double pipe may be a parallel pipe or may be combined with a packer fluid line. Simultaneous injection of multiple injection stages and instantaneous injection and long-injection injection can be performed simultaneously.

16(イ)は外管パッカ間の外管管壁の吐出口を透水性の壁面保護材31で覆った構造を示し、図16(ロ)は透孔のある弾力性被覆膜32で外管吐出口を覆い、外管からの注入液が被覆膜と外管壁につくられた間隙から一斉に削孔壁全体に分布して孔壁を保護しながら均等に注入されるようにした構造を示す。図16(ハ)はパッカにネット26を張った例を示す。 FIG. 16 (a) shows a structure in which the discharge port of the outer tube pipe wall between the outer tube packers is covered with a water-permeable wall protective material 31, and FIG. 16 (b) is an elastic coating film 32 having a through hole. Covering the outer tube discharge port, so that the injection solution from the outer tube is uniformly distributed from the gap formed in the coating film and the outer tube wall over the entire drilling wall, and is injected evenly while protecting the hole wall Shows the structure. FIG. 16 (c) shows an example in which the net 26 is stretched over the packer.

また図16(ハ)はゴム状の外管パッカが注入圧力によって過大に膨張して破損しないように膨張するものの耐圧強度のあるプラスチックネットのような透水性のある防護被覆33で外管パッカ間吐出口を覆った構造を示す。 FIG. 16 (c) shows that the rubber-like outer tube packer expands due to the injection pressure and expands so as not to be damaged, but the outer tube packer is covered with a water-permeable protective covering 33 such as a plastic net having pressure resistance. The structure which covered the discharge outlet is shown.

本発明において、注入管を地盤中に水平方向に挿入してもよい。
19は注入液送液装置Xを用いた本発明にかかる地盤注入工法の説明図である。図19において、上述と同様、地盤1の地盤改良を施すべき個所に、地表面2から斜め下方に湾曲して、次いで、水平方向にボーリング孔3を削孔する。このボーリング孔3に図1に示されるような逆止弁4を備えた複数の外管吐出口5、5・・・5を有する外管7を設置し、この外管7内に、外側長手方向に三個以上の膨縮パッカ8、8・・・8を間隔をあけて設けて互いに隣接する膨縮パッカ8、8間を吐出位置9とし、かつ内壁吐出口10が別々の吐出位置9に位置する複数の注入液流路11と、膨縮パッカ8に流体を送って膨張させ、あるいは排出して収縮させるパッカ流路12とそれぞれ内部に独立して形成された内管13を移動自在に挿入し、吐出位置9を外管吐出口5に合致させた後、パッカ流路12を通して三個以上の膨縮パッカ8、8・・・8に流体を送って膨縮パッカ8を膨張させ、これにより互いに隣接する膨縮パッカ8、8によって挟まれる隙間14に管内空間15を形成し、注入液を内管吐出口10を通して注入液送液装置Xから管内空間15および外管吐出口5を経て地盤1に注入する。図8では、上述の外管7および内管13の詳細な記載は省略し、上述の外管7内に内管13が移動自在に挿入された状態を注入管Aとして表す。
In the present invention, the injection tube may be inserted into the ground in the horizontal direction.
FIG. 19 is an explanatory view of the ground injection method according to the present invention using the injection liquid feeding device X. In FIG. 19 , similarly to the above, the ground 1 of the ground 1 is curved obliquely downward from the ground surface 2, and then the bored hole 3 is drilled in the horizontal direction. An outer pipe 7 having a plurality of outer pipe discharge ports 5, 5... 5 provided with a check valve 4 as shown in FIG. 1 is installed in the boring hole 3. Three or more expansion / contraction packers 8, 8... 8 are provided at intervals in the direction so that the expansion / contraction packers 8, 8 adjacent to each other serve as discharge positions 9, and the inner wall discharge port 10 has separate discharge positions 9. A plurality of infusion fluid channels 11 located at the same position, a packer channel 12 for supplying fluid to the expansion / contraction packer 8 for expansion or discharge and contraction, and an inner tube 13 formed independently inside each other are freely movable. And the discharge position 9 is matched with the outer tube discharge port 5, and then the fluid is sent to three or more expansion / contraction packers 8, 8... Thus, the inner space 15 is formed in the gap 14 between the expansion / contraction packers 8 and 8 adjacent to each other. Form, from the injection fluid feeding device X through the pipe space 15 and the outer tube discharge port 5 is injected into the ground 1 of the infusate through the inner tube the discharge port 10. In FIG. 8, detailed description of the outer tube 7 and the inner tube 13 is omitted, and a state where the inner tube 13 is movably inserted into the outer tube 7 is represented as an injection tube A.

19に示される注入液送液装置Xは制御部30、注入液加圧部31、注入液分配部32、注入部33および送液系34から構成される。操業を手動で行う場合には、制御部30は必要としない。以下、制御部30を用いた例について具体的に詳述する。 The infusion solution delivery apparatus X shown in FIG. 19 includes a control unit 30, an infusion solution pressurizing unit 31, an infusion solution distribution unit 32, an infusion unit 33, and a solution delivery system. When the operation is performed manually, the control unit 30 is not necessary. Hereinafter, an example using the control unit 30 will be specifically described in detail.

注入液加圧部31は図19に示されるように、注入液槽35からの注入液ポンプ36(グラウトポンプ)により加圧し、加圧注入液として送液系34を介して注入液分配部32に送液する。グラウトポンプ36は制御部30の注入監視盤30aからの指示を受け、注入液を所望の圧力に加圧する。 As shown in FIG. 19 , the infusate pressurizing unit 31 pressurizes by an infusate pump 36 (grouting pump) from the infusate tank 35, and the infusate distribution unit 32 via the liquid feeding system 34 as a pressurized infusate. To liquid. The grout pump 36 receives an instruction from the injection monitoring board 30a of the control unit 30 and pressurizes the injected liquid to a desired pressure.

注入液分配部32は複数本の分枝管37、37・・・37を備える。これら分枝管37、37・・・37はそれぞれ先端に注入管Aと連結する連結部38を有する。この連結部38は所定の注入管Aを通して所定の注入量を注入し終わった時点、あるいは所定の注入圧に達した時点で、その分枝管37を他の注入管Aに連結換えすることもできる。   The infusate distribution unit 32 includes a plurality of branch pipes 37, 37. Each of these branch pipes 37, 37... 37 has a connecting portion 38 connected to the injection pipe A at the tip. The connecting portion 38 may switch the branch pipe 37 to another injection pipe A when a predetermined injection amount is injected through a predetermined injection pipe A or when a predetermined injection pressure is reached. it can.

上述の分枝管37、37・・・37は図19に示されるように、送液系34を介して加圧部31と連結された分配容器39からのそれぞれ伸長して配置され、先端の連結部38で注入管Aと連結される。そして、加圧部31からの加圧注入液は分配容器39を介して各分枝管37、37・・・37に分配され、注入管Aに送液される。なお、この分配容器39には図示しない撹拌装置を備えることもできる。また、各分枝管37、37・・・37は分配容器39を経たずに、直後、加圧部31からの送液計34と連結することもできる。 As shown in FIG. 19 , the branch pipes 37, 37... 37 described above are respectively extended from the distribution container 39 connected to the pressurizing unit 31 via the liquid feeding system 34, and are arranged at the tip. The connecting portion 38 is connected to the injection tube A. Then, the pressurized injection liquid from the pressurizing unit 31 is distributed to the branch pipes 37, 37... 37 through the distribution container 39 and sent to the injection pipe A. The distribution container 39 may be provided with a stirring device (not shown). Moreover, each branch pipe 37, 37 ... 37 can also be connected with the liquid feeding meter 34 from the pressurization part 31 immediately after not passing through the distribution container 39. FIG.

また、図19において、分枝流量計f、f・・・f、fの総量を測定することにより送液流量計40の流量を把握することができ、このため、送液流量計40は必ずしも必要としない。さらに、送液圧力計41は必ずしも送液系34に設けなくても、直後、分配容器39に設けてもよい。V〜Vは分枝バルブ、P〜Pは分枝圧力計、30b、は操作盤30cは注入記録盤、30dはデータ入力装置、42は送液バルブである。また、43は膨縮パッカ8に流体を送液する圧力ボンベ、44は内管自動昇降機であって、いずれも制御部30と接続され、制御部30からの指示を受けて作動する。 In FIG. 19 , the flow rate of the liquid flow meter 40 can be grasped by measuring the total amount of the branch flow meters f 1 , f 2 ... F 1 , f n. The total 40 is not necessarily required. Further, the liquid feeding pressure gauge 41 is not necessarily provided in the liquid feeding system 34 but may be provided in the distribution container 39 immediately after. V 1 to V 4 are branch valves, P 1 to P 4 are branch pressure gauges, 30 b is an operation panel 30 c is an injection recording board, 30 d is a data input device, and 42 is a liquid feed valve. Reference numeral 43 denotes a pressure cylinder for sending fluid to the expansion / contraction packer 8, and 44 denotes an inner pipe automatic elevator, both of which are connected to the control unit 30 and operate in response to an instruction from the control unit 30.

20は注入液送液装置として多連装注入装置を用いた本発明にかかる地盤注入工法の説明図であって、注入液を貯蔵する注入液槽35と、一プラント中にそれぞれモータ等の独立したあるいは図示しないが共通の駆動源45で作動し、かつ制御部30に接続されて制御される多数のユニットポンプ46、46・・・46と、これら各ユニットポンプ46、46・・・46から伸長され、配置される送液管47、47・・・47とを備えて構成される。各送液管47、47・・・47の先端に連結部38を備え、地盤1のボーリング孔3に挿入された注入管Aの図示しない内管13の注入液流路11に連結される。注入液槽35中の注入液は各ユニットポンプ46、46・・・46の作動により任意の注入速度、注入圧力あるいは注入量で各注入管Aの注入液流路11に圧送され、複数の外管吐出口5、5・・・5からゴムスリーブ4を押し開けて同時に地盤1に多点注入される。Vは分枝バルブである。圧力ボンベ43および自動昇降機44は図19と同様に制御部30からの指示を受けて作動する。 FIG. 20 is an explanatory view of the ground injection method according to the present invention using a multi-injection injection device as an injection solution delivery device, and an injection solution tank 35 for storing the injection solution and an independent motor or the like in each plant. Although not shown in the drawing, the unit pumps 46, 46... 46 operated by a common drive source 45 and connected to the control unit 30 are controlled, and these unit pumps 46, 46. The liquid feed pipes 47, 47,... A connecting portion 38 is provided at the tip of each liquid feeding pipe 47, 47... 47, and is connected to the injection liquid flow path 11 of the inner pipe 13 (not shown) of the injection pipe A inserted into the boring hole 3 of the ground 1. The injection liquid in the injection liquid tank 35 is pumped to the injection liquid flow path 11 of each injection pipe A at an arbitrary injection speed, injection pressure or injection volume by the operation of each unit pump 46, 46. The rubber sleeve 4 is pushed open from the tube discharge ports 5, 5. V is a branch valve. Pressure cylinder 43 and an automatic elevator 44 operates in response to an instruction from similarly controlled unit 30 as in FIG. 19.

7〜14において、外管および外管内に挿入された内管からなる注入管装置を用いて地盤中に固結材を注入するに際して、従来、注入管路中の注入圧力を地表面に位置する圧力計で測定していた。 7 to 14 , when injecting a consolidated material into the ground using an injection pipe device comprising an outer pipe and an inner pipe inserted into the outer pipe, the injection pressure in the injection pipe is conventionally positioned on the ground surface. It was measured with a pressure gauge.

しかし、この注入圧力は実際には、注入管路の抵抗圧や内管吐出口の抵抗圧が土粒子間に浸透する本来の地盤注入圧力に加算されたものであって、正確に地盤注入圧力を示すものではない。特に、内管吐出口が細孔からなる噴射口の場合、噴射口の抵抗力により内管内圧力は高くなり、実際の地盤中における圧力は把握できず、したがって、注入が地盤中でどのように行われているかの判断は注入圧力の変化によって確認することができないという問題があった。   However, this injection pressure is actually the resistance pressure of the injection pipe and the resistance pressure of the inner pipe outlet added to the original ground injection pressure penetrating between the soil particles, It does not indicate. In particular, when the inner pipe discharge port is an injection port composed of fine holes, the inner pipe pressure increases due to the resistance force of the injection port, and the pressure in the actual ground cannot be grasped. There is a problem that the determination of whether or not the determination is made cannot be confirmed by the change in the injection pressure.

すなわち、この圧力は単に地上部における送液圧力と内管流路と吐出口の抵抗圧力が大きく影響しているため、注入ステージで適切な土粒子間浸透がなされているかどうか、あるいは圧力がかかり過ぎて地盤を破壊し、注入液が逸脱してしまっているかどうか、不明である。   In other words, this pressure is largely influenced by the liquid supply pressure in the ground part and the resistance pressure of the inner pipe flow path and the discharge port. It is unclear whether the ground has been destroyed and the infusion has gone.

そこで、本発明は内管パッカ間に位置する内管吐出口から固結材を外管吐出口を通して地盤中に注入するに当たり、吐出口からの地盤中への注入圧力を直接、正確に把握できることが好ましい。 Therefore, the present invention can directly and accurately grasp the injection pressure from the discharge port into the ground when injecting the consolidated material from the inner tube discharge port located between the inner tube packers through the outer tube discharge port. Is preferred.

このため、外管と、この外管内に挿入された内管とを備え、地盤中に固結材を注入して該地盤固結する地盤注入装置であって、前記外管は外管表面に外管吐出口を有し、前記内管は複数の内管パッカを間隔をあけて備え、かつ互いに隣接する内管パッカ間には内管吐出口を有し、前記外管内に前記内管を挿入するに際して、隣接する内管パッカ間に外管吐出口が位置し、かつ、前記外管内の内管パッカ間に空間が形成されるように挿入してなる注入管装置を用いて、前記空間内の圧力を感知して伝達する圧力伝達部材を注入装置内に設置し、この圧力伝達部材を通して前記空間内で感知された圧力を伝達して測定し、正確な地盤注入圧力を把握することができる。 For this reason, an outer pipe and an inner pipe inserted into the outer pipe, a ground injection device for injecting a caking material into the ground and solidifying the ground, wherein the outer pipe is placed on the surface of the outer pipe. The inner tube has a plurality of inner tube packers spaced apart from each other, and has an inner tube discharge port between adjacent inner tube packers, and the inner tube is placed in the outer tube. When inserting , using the injection tube device inserted so that the outer tube discharge port is located between the adjacent inner tube packers and a space is formed between the inner tube packers in the outer tube, A pressure transmission member that senses and transmits the internal pressure is installed in the injection device, and the pressure sensed in the space is transmitted and measured through the pressure transmission member, so that the accurate ground injection pressure can be grasped. it can.

さらに、この注入管装置によれば、外管と、この外管内に挿入された内管とを備え、地盤中に固結材を注入して該地盤を固結する注入管装置であって、前記外管は外管表面に一個、あるいは軸方向の異なる位置に複数の外管吐出口を有し、前記内管は複数の内管パッカを間隔をあけて備え、かつ互いに隣接する内管パッカ間には内管吐出口を有し、前記外管内に前記内管を挿入するに際し、隣接する内管パッカ間に外管吐出口が位置するように挿入し、これにより前記外管内の内管パッカ間には空間が形成されてなる注入管装置において、前記空間内に配置されたひずみ抵抗式圧力センサーと、このひずみ抵抗式圧力センサーに信号ケーブルを介して接続されたアンプと、このアンプに信号ケーブルを介して接続された地盤上の圧力表示装置とからなる圧力伝達部材を注入装置内に設置し、前記圧力センサーが空間内圧力を感知し、この感知された空間内圧力をアンプを介し、信号ケーブルを通して電気信号として圧力表示装置に伝達して測定し、地盤の正確な注入圧力を把握することができる。 Further, according to this injection tube device, the injection tube device comprises an outer tube and an inner tube inserted into the outer tube, and injects a consolidated material into the ground to consolidate the ground, The outer tube has one outer tube surface or a plurality of outer tube discharge ports at different positions in the axial direction, and the inner tube has a plurality of inner tube packers spaced apart from each other and is adjacent to each other. There is an inner tube outlet, and when inserting the inner tube into the outer tube, the inner tube is inserted so that the outer tube outlet is positioned between adjacent inner tube packers. In an injection tube apparatus in which a space is formed between packers, a strain resistance pressure sensor disposed in the space, an amplifier connected to the strain resistance pressure sensor via a signal cable, Pressure display device on the ground connected via signal cable A pressure transmission member consisting of is installed in the injection device, the pressure sensor senses the pressure in the space, and the sensed pressure in the space is transmitted to the pressure display device as an electrical signal through the signal cable through the amplifier and measured. And the precise injection pressure of the ground can be grasped .

さらに、この注入管装置によれば、外管と、この外管内に挿入された内管とを備え、地盤中に固結材を注入して該地盤を固結する注入管装置であって、前記外管は外管表面に一個、あるいは軸方向の異なる位置に複数の外管吐出口を有し、前記内管は複数の内管パッカを間隔をあけて備え、かつ互いに隣接する内管パッカ間には内管吐出口を有し、前記外管内に前記内管を挿入するに際し、隣接する内管パッカ間に外管吐出口が位置するように挿入し、これにより前記外管内の内管パッカ間には空間が形成されてなる注入管装置において、前記空間内にチューブを介して接続されたひずみ抵抗式圧力センサーと、この圧力センサーに連結されたアンプと、該アンプに信号ケーブルを介して連結された地盤上の圧力表示装置とからなる圧力伝達部材を注入管装置内に設置し、前記空間内に位置するチューブの一端が空間内圧力を感知し、この感知された圧力を圧力センサーおよびアンプを介して圧力表示装置に伝達して測定し、内管吐出口の正確な注入圧力を把握することができる。 Further, according to this injection tube device, the injection tube device comprises an outer tube and an inner tube inserted into the outer tube, and injects a consolidated material into the ground to consolidate the ground, The outer tube has one outer tube surface or a plurality of outer tube discharge ports at different positions in the axial direction, and the inner tube has a plurality of inner tube packers spaced apart from each other and is adjacent to each other. There is an inner tube outlet, and when inserting the inner tube into the outer tube, the inner tube is inserted so that the outer tube outlet is positioned between adjacent inner tube packers. In an injection tube apparatus in which a space is formed between packers, a strain resistance pressure sensor connected to the space through a tube, an amplifier connected to the pressure sensor, and a signal cable to the amplifier. Pressure transmission consisting of pressure display devices on the ground connected together The material is installed in the injection pipe device, and one end of the tube located in the space senses the pressure in the space, and the sensed pressure is transmitted to the pressure display device through the pressure sensor and the amplifier, and is measured. The accurate injection pressure of the inner pipe discharge port can be grasped .

さらにまた、本発明の地盤注入工法によれば、地盤中に固結材を注入して該地盤を固結する地盤注入工法において、表面に一個の外管吐出口を有するか、軸方向の異なる位置に複数の外管吐出口を有する外管と、該外管に挿入され、複数の内管パッカを間隔をあけて備え、かつ互いに隣接する内管パッカ間には内管吐出口を有する内管とからなる地盤注入装置を用い、前記外管内に前記内管を挿入するに際して、隣接する内管パッカ間に外管吐出口が位置し、かつ、前記外管内の内管パッカ間に空間が形成されるように挿入し、さらに、前記注入装置内に空間内の圧力を感知して伝達する圧力伝達部材を設置し、この圧力伝達部材を通して前記空間内で感知された圧力を伝達し、この伝達された圧力を測定して内管吐出口の正確な注入圧力を把握することを特徴とする。   Furthermore, according to the ground injection method of the present invention, in the ground injection method for injecting a caking material into the ground and consolidating the ground, the surface has one outer tube discharge port or different in the axial direction. An outer tube having a plurality of outer tube discharge ports at a position, and an inner tube inserted into the outer tube and spaced apart from each other, and having an inner tube discharge port between adjacent inner tube packers When inserting the inner pipe into the outer pipe using a ground injection device comprising a pipe, an outer pipe discharge port is located between adjacent inner pipe packers, and a space is provided between the inner pipe packers in the outer pipe. Further, a pressure transmission member that senses and transmits the pressure in the space is installed in the injection device, and the pressure sensed in the space is transmitted through the pressure transmission member. Measure the transmitted pressure to determine the correct injection pressure at the inner pipe outlet. And characterized in that the grip.

また、本発明において、注入管を複数本地盤中に設置し、注入液を同時注入して多点注入することもできる。   Further, in the present invention, a plurality of injection tubes can be installed in the ground, and the injection solution can be injected at the same time for multi-point injection.

図21は本発明に用いられる多点地盤注入システムXの説明図であって、貯蔵タンク22と、複数のユニットポンプ4,4・・・4と、複数の注入管装置A、A・・・Aとを基本的に備える。   FIG. 21 is an explanatory diagram of the multi-point ground injection system X used in the present invention, in which a storage tank 22, a plurality of unit pumps 4, 4... 4 and a plurality of injection pipe devices A, A. A is basically provided.

貯蔵タンク22はA液用タンク22aと、B液用タンク22bとからなり、これらタンク中のA液およびB液をそれぞれ別々に注入管装置Aに導き、合流させる構造となっている。地盤1の注入ポイント25に2本の注入管装置を配設し、これら2本の注入管装置A、AにそれぞれA液およびB液を圧送し、外管吐出口5から注入ポイント25に注入した後、地盤1中で合流し、反応させたり、あるいは異なるタイプの注入液を同時に、あるいは時間差をもって注入する。   The storage tank 22 includes an A liquid tank 22a and a B liquid tank 22b, and has a structure in which the A liquid and the B liquid in these tanks are separately guided to the injection pipe device A and merged. Two injection pipe devices are arranged at the injection point 25 of the ground 1, and liquid A and liquid B are pumped to the two injection pipe devices A and A, respectively, and injected from the outer tube discharge port 5 to the injection point 25. After that, they merge in the ground 1 and react, or different types of injection solutions are injected simultaneously or with a time difference.

一連のユニットポンプ4、4・・・4は一プラント中に独立した多数のユニットポンプ4、4・・・4を備えるとともに、これらユニットポンプ4、4・・・4がそれぞれモータ等、独立した駆動源2で一つの集中管理装置3によって1セットの注入装置として一緒に作動し、かつ導管21、21・・・21を介してA液用タンク22aおよびB液用タンク22bに接続している。   The series of unit pumps 4, 4,... 4 includes a large number of independent unit pumps 4, 4,... 4 in one plant, and these unit pumps 4, 4,. The drive source 2 operates together as a set of injection devices by one centralized control device 3 and is connected to the A liquid tank 22a and the B liquid tank 22b via conduits 21, 21. .

注入管装置Aは先端に外管吐出口5を有するものであって、地盤1の複数の注入ポイント25、25・・・25に複数本埋設され、A液用タンク22aに通じるユニットポンプ4、4・・・4およびB液用タンク22bに通じるユニットポンプ4、4・・・4にそれぞれ接続される。   The injection pipe device A has an outer pipe discharge port 5 at the tip, and a plurality of the injection pipes A are embedded in a plurality of injection points 25, 25... 25 of the ground 1 and communicate with the A liquid tank 22a. .. 4 and unit pumps 4, 4... 4 connected to the B liquid tank 22b.

図22は本発明にかかる注入システムを模型的に表した説明図である。図22から注入液の地盤1への注入状況が模型的に理解される。   FIG. 22 is an explanatory view schematically showing an injection system according to the present invention. The injection | pouring condition to the ground 1 of an injection liquid is understood modelly from FIG.

上述の本発明は内管パッカの形成と外管パッカの形成を自動的に行い、あるいは外管パッカの形成と外管注入口からの注入液の注入を自動的に行い、あるいは内管注入液の送液によって内管パッカの形成と外管パッカの形成と外管注入口からの注入液の注入を自動的に行うことによって注入の工程を飛躍的に単純化し、あるいは注入管の孔径を小さくすることにより削孔径を小さくすることを可能にし、工費を大幅に低減することを可能にする。したがって、本発明は土木分野における産業上の利用可能性が高い。 The above-described present invention automatically forms the inner tube packer and the outer tube packer, or automatically forms the outer tube packer and injects the injection solution from the outer tube inlet, or the inner tube injection solution. By automatically feeding the inner tube packer, the outer tube packer, and the injection solution from the outer tube inlet, the injection process is greatly simplified, or the hole diameter of the injection tube is reduced. By doing so, it is possible to reduce the diameter of the hole and greatly reduce the construction cost. Therefore, the present invention has high industrial applicability in the civil engineering field.

(イ)本発明の説明図である。外管の地盤への挿入状態。(ロ)内管を外管に挿入した状態。(A) It is explanatory drawing of this invention. Inserted state of the outer pipe into the ground. (B) A state in which the inner pipe is inserted into the outer pipe. (ハ)内外管のパッカを膨張させた状態。(ニ)内管を下方に下げ、内管パッカ間から注入液を地盤に注入した状態。(C) A state where the packer of the inner and outer pipes is expanded. (D) A state in which the inner pipe is lowered and the injection liquid is injected into the ground from between the inner pipe packers. (イ)本発明の説明図である。内外管のパッカを膨張させた状態。(A) It is explanatory drawing of this invention. A state where the packer of the inner and outer pipes is expanded. (ロ)内管先端吐出口から注入液を注入した状態。(B) A state in which an injection solution is injected from the inner tube tip discharge port. 本発明の注入状態を表した図面。The figure showing the injection | pouring state of this invention. 本発明の注入状態を表した図面。The figure showing the injection | pouring state of this invention. (イ)本発明の説明図である。外管パッカを備えた外管を削孔中に設置した状態。(ロ)内管を外管内に挿入した状態。(A) It is explanatory drawing of this invention. An outer tube with an outer tube packer installed in the drilling hole. (B) A state in which the inner pipe is inserted into the outer pipe. (ハ)下方外管パッカを膨張させた状態。(ニ)外管パッカおよび内管パッカの全部を膨張させた状態。(C) The state in which the lower outer tube packer is expanded. (D) A state in which all of the outer tube packer and the inner tube packer are expanded. (ホ)外管パッカ間および内管パッカ間の吐出口から注入液を地盤中に注入している状態。(ヘ)内管パッカを下方に移動し、内管パッカ間から注入液を地盤中に注入している状態。(E) A state in which the injection liquid is being injected into the ground from the discharge ports between the outer tube packers and between the inner tube packers. (F) The state in which the inner tube packer is moved downward and the injection solution is injected into the ground from between the inner tube packers. (イ)本発明の説明図である。(イ)内管パッカ内吐出口面積、外管パッカ内吐出口面積および内管吐出口面積の関係を表した図面。(A) It is explanatory drawing of this invention. (A) Drawing showing the relationship between the discharge area in the inner tube packer, the discharge area in the outer tube packer, and the discharge area of the inner tube. (ロ)、(ハ)は図10(イ)の部分拡大図である。(B) and (C) are partial enlarged views of FIG. 外管パッカ内内管パッカ吐出口面積、外管パッカ内内管吐出口面積、内管吐出口および外管吐出口面積、地盤層の関係を表した図面。Drawing showing the relationship between the inner tube packer discharge area in the outer tube packer, the inner tube discharge area in the outer tube packer, the inner and outer tube discharge areas, and the ground layer. 内管パッカ内吐出口面積、外管パッカ内外管吐出口面積、内管および外管のパッカ外面積の関係を表した図面。The drawing which showed the relationship between the discharge port area in an inner tube packer, the outer tube packer inner / outer tube discharge port area, and the outer tuber outer area of an inner tube and an outer tube. 内管パッカ内吐出口面積、外管パッカ内外管吐出口面積、および内管および外管のパッカ外吐出口面積の関係を表した図面。The drawing which showed the relationship between the discharge port area in an inner tube packer, the discharge port area in an outer tube packer, and the discharge port area outside a packer of an inner tube and an outer tube. 瞬結および長結注入液の地盤への注入状態を表した図面。Drawing showing the state of injection into the ground of instantaneous setting and long setting injection solution. (イ)本発明の他の例を表した図面である。(イ)外管吐出口を壁面保護材で覆った例。(ロ)弾力性透孔防護被覆膜で吐出口を覆った例。(ハ)パッカ上にネットを張った例。(A) It is drawing showing the other example of this invention. (A) An example in which the outer tube discharge port is covered with a wall surface protective material. (B) An example in which the discharge port is covered with an elastic through-hole protective coating film. (C) An example of a net on a packer. (イ)従来技術の説明図である。外管パッカ間から注入液を注入している状態を表した図面。(A) It is explanatory drawing of a prior art. The figure showing the state which is injecting injection liquid from between outer tube packers. (ロ)二重管ダブルパッカにより外管パッカを膨張させる状態を表した図面。(B) A drawing showing a state in which the outer tube packer is expanded by the double tube double packer. 注入管を地盤中に水平方向に挿入した例。An example in which the injection tube is inserted horizontally into the ground. 多連装注入装置を用い、注入管を地盤中に水平方向に挿入した例。An example in which an injection tube is inserted horizontally into the ground using a multi-component injection device. 多点地盤注入システムの一具体例を示した図面。The figure which showed one specific example of the multipoint ground injection system. 本発明の多点地盤注入システムを模型的に表した図面。Drawing which represented the multipoint ground injection system of the present invention typically.

1 削孔
2 注入外管
3 外管パッカ
4 逆止弁
5 外管パッカ内吐出口
6 注入内管
7 注入液(流体)
8 内管パッカ
9 外管管壁
10 内管管壁
11 内管パッカ内吐出口
12 内管吐出口
A 注入管装置
DESCRIPTION OF SYMBOLS 1 Drilling hole 2 Outer injection pipe 3 Outer pipe packer 4 Check valve 5 Outlet outlet in outer pipe packer 6 Inner injection pipe 7 Injection liquid (fluid)
8 Inner tube packer 9 Outer tube wall 10 Inner tube tube wall 11 Inner tube packer discharge port 12 Inner tube discharge port A Injection tube device

Claims (20)

地盤中の削孔中に設置された外管パッカを有する注入外管から注入内管を通して地盤中に注入液を外管注入口から注入する注入管装置において、該外管パッカは不透水性膨縮パッカであって、該外管パッカ内の注入外管の管壁に設けられた逆止弁に覆われた外管パッカ内吐出口から注入内管を介して外管パッカ内に填充された流体によって膨張し、該内管は複数の内管パッカを有し、該内管パッカ内の管壁には内管パッカ内吐出口を有し、該複数の内管パッカ間の内管管壁には内管吐出口を有し、該複数の内管パッカは該外管内吐出口を挟むように外管内に遊挿して挿入され、該注入内管内に流体を送液することによって、内管パッカ間の空間から該流体が外管パッカ内に填充して外管パッカ体を形成することを特徴とする注入管装置。   In an injection pipe device for injecting an injection solution from an outer pipe inlet into an earth through an injection inner pipe from an injection outer pipe having an outer pipe packer installed in a drilling hole in the ground, the outer pipe packer is impermeable to water. It is a contraction packer, which is filled into the outer tube packer from the discharge port in the outer tube packer covered with a check valve provided on the tube wall of the injection outer tube in the outer tube packer through the injection inner tube. The inner tube has a plurality of inner tube packers, and the inner wall of the inner tube packer has a discharge port in the inner tube packer, and an inner tube wall between the inner tube packers. Has an inner tube discharge port, and the plurality of inner tube packers are loosely inserted into the outer tube so as to sandwich the outer tube discharge port, and a fluid is fed into the injection inner tube, whereby the inner tube An injection tube apparatus, wherein the fluid is filled into an outer tube packer from a space between packers to form an outer tube packer body. 該外管は1個または複数の外管パッカを有し、複数の外管パッカ間の外管管壁には逆止弁で覆われた外管注入口を有し、少なくとも1個の外管パッカ下部または複数の内管パッカは外管パッカの外管パッカ内吐出口を挟むように位置し、該外管パッカは注入内管から送液され、外管パッカ内吐出口から外管パッカ内に充填した流体によって膨張し、外管パッカ体を形成し、さらに該流体は内管パッカ間空間を介して外管注入口から地盤中に注入される請求項1の注入管装置。   The outer pipe has one or a plurality of outer pipe packers, and an outer pipe wall between the outer pipe packers has an outer pipe inlet covered with a check valve, and at least one outer pipe The lower part of the packer or the plurality of inner tube packers are positioned so as to sandwich the discharge port in the outer tube packer of the outer tube packer, and the outer tube packer is fed from the injection inner tube, and is discharged from the discharge tube in the outer tube packer into the outer tube packer. 2. The injection pipe device according to claim 1, wherein the outer pipe packer body is expanded by the fluid filled in the outer pipe, and further, the fluid is injected into the ground from the outer pipe inlet through the space between the inner pipe packers. 該外管は複数の外管パッカを有し、該複数の外管パッカ間の外管管壁には逆止弁で覆われた外管注入口を有し、該複数の内管パッカは外管パッカの外管パッカ内吐出口を挟むように位置し、該複数の内管パッカは内管パッカ流路からの流体によって膨張し、該外管パッカは注入内管から送液され外管パッカ内吐出口から外管パッカ内に充填した注入液によって膨張して外管パッカ体を形成し、さらに該注入液は外管注入口から地盤中に注入される請求項1の注入管装置。   The outer tube has a plurality of outer tube packers, an outer tube wall between the plurality of outer tube packers has an outer tube injection port covered with a check valve, and the plurality of inner tube packers The plurality of inner tube packers are expanded by the fluid from the inner tube packer flow path, and the outer tube packer is fed from the injection inner tube and the outer tube packer is placed. 2. The injection tube device according to claim 1, wherein the outer tube pack body is formed by expansion by an injection solution filled in the outer tube packer from the inner discharge port, and the injection solution is injected into the ground from the outer tube injection port. 該内管パッカは不透水性膨縮性パッカであって該内管パッカ内に位置する内管パッカ内吐出口を有し、該内管吐出口は該内管パッカ内吐出口よりも吐出抵抗が大きく形成され、該注入内管に流体を送液して、内管パッカが膨張して、内管パッカ内空間を形成し、その空間を介して、該流体が外管パッカ内に充填して外管パッカを膨張し、外管パッカ体を形成することを特徴とする請求項1の注入管装置。   The inner tube packer is a water-impermeable and expandable packer and has an inner tube packer discharge port located in the inner tube packer, and the inner tube discharge port is more resistant to discharge than the inner tube packer discharge port. The inner tube packer expands to form an inner tube packer inner space through which the fluid is filled into the outer tube packer. 2. The injection tube device according to claim 1, wherein the outer tube packer is expanded to form an outer tube packer body. 該内管パッカは内管パッカ流体流路からの内管パッカ流体によって膨張することを特徴とする請求項1の注入管装置。   2. The injection tube device according to claim 1, wherein the inner tube packer is expanded by the inner tube packer fluid from the inner tube packer fluid flow path. 該注入管装置は注入外管が1個または複数の外管パッカを有し、該外管パッカの少なくとも下方側あるいは該複数の外管パッカ間には外管注入口を有する請求項1または2の注入管装置。   3. The injection tube apparatus according to claim 1 or 2, wherein the injection outer tube has one or a plurality of outer tube packers, and an outer tube inlet is provided at least below the outer tube packer or between the plurality of outer tube packers. Injection tube device. 外管外空間に開口した外管注入口に連通する外管内空間に開口する面積Sの内管吐出口は面積Sの内管パッカ間吐出口より吐出抵抗が大きく、S<S、S<Sとなる請求項6の注入管装置。 Outer extravascular space inner tube discharge opening area S 3 which opens in the outer tube space communicating with opened outer tube inlet to the discharge resistor is greater than the inner tube packer between the outlets of the area S 2, S 3 <S 1 , S 2 <S 1 . 外管と、この外管内に挿入された内管とを備え、地盤中に固結材を注入して該地盤を固結する請求項1の注入管装置であって、前記外管は表面に外管吐出口を有し、前記内管は複数の内管パッカを間隔をあけて備え、かつ互いに隣接する内管パッカ間には内管吐出口を有し、前記外管内に前記内管を挿入するに際して、隣接する内管パッカ間に外管吐出口が位置し、かつ、前記外管内の内管パッカ間に空間が形成されるように挿入してなる注入管装置において、前記空間内の圧力を感知して伝達する圧力伝達部材を注入装置内に設置し、この圧力伝達部材を通して前記空間内で感知された圧力を圧力計に伝達し、この伝達された圧力を測定して地盤注入圧力を把握することを特徴とする請求項1の注入管装置。   The injection pipe device according to claim 1, further comprising an outer pipe and an inner pipe inserted into the outer pipe, and injecting a caking material into the ground to consolidate the ground. The inner tube has a plurality of inner tube packers spaced apart from each other, and has an inner tube discharge port between adjacent inner tube packers, and the inner tube is placed in the outer tube. In the injection tube device, the outer tube discharge port is located between adjacent inner tube packers and the space is formed between the inner tube packers in the outer tube. A pressure transmission member that senses and transmits the pressure is installed in the injection device, the pressure sensed in the space is transmitted to the pressure gauge through the pressure transmission member, and the transmitted pressure is measured to measure the ground injection pressure. The infusion tube apparatus according to claim 1, wherein 前記圧力伝達部材はチューブであって、一端が前記空間内に位置して空間内圧力を感知するとともに、他端が地盤上の圧力計に連結され、感知された空間内圧力を圧力計で測定する請求項8に記載の注入管装置。   The pressure transmission member is a tube, and one end is located in the space to sense the pressure in the space, and the other end is connected to a pressure gauge on the ground, and the sensed pressure in the space is measured by the pressure gauge. The injection tube device according to claim 8. 請求項8において、前記チューブは内管を通して設置される請求項8に記載の注入管装置。   9. The injection tube device according to claim 8, wherein the tube is installed through an inner tube. 請求項8において、空間内に位置するチューブの一端を膜で被覆してなる請求項8に記載の注入管装置。   9. The injection tube device according to claim 8, wherein one end of the tube located in the space is covered with a film. 請求項11において、前記チューブ内に液体を充填し、膜で感知された空間内圧力を液体を介して圧力計で測定する請求項11に記載の注入管装置。   12. The injection tube device according to claim 11, wherein the tube is filled with a liquid, and the pressure in the space sensed by the membrane is measured with a pressure gauge through the liquid. 地盤の削孔中に設置された注入外管に注入内管を通して地盤中に注入液を外管注入口から注入する地盤注入工法において、前記注入外管が、外管管壁に外管パッカ体を形成する伸縮性外管パッカを1個、または間隔をあけて複数個取りつけ、かつ、該外管パッカより下方にあるいは上下に隣接する外管パッカに外管注入口を備え、該外管パッカ内に開口する逆止弁で覆われた外管パッカ内吐出口を設けてなり、前記外管に挿入する注入内管は複数の内管パッカを形成する伸縮性内管袋体を内管パッカ間吐出口をはさんで複数設け、該内管に流体を送液することにより内管袋体内吐出口から吐出された流体の流体圧により内管袋体が膨張して内管パッカが形成され、それによって形成された内管パッカ間空間を経て外管パッカ内吐出口より外管パッカ内に流体が充填されて外管パッカ体が形成されることを特徴とする地盤注入工法。   In the ground injection method in which an injection solution is injected from the outer tube inlet into the ground through the injection inner tube to the injection outer tube installed in the ground drilling hole, the injection outer tube is an outer tube packer body on the outer tube wall One or a plurality of stretchable outer tube packers that form a gap, and an outer tube filler is provided in the outer tube packer below or outside the outer tube packer. An outer tube packer discharge port covered with a check valve that opens inside, and the injection inner tube to be inserted into the outer tube is formed of a stretchable inner tube bag that forms a plurality of inner tube packers. A plurality of intermediate discharge ports are provided, and a fluid is supplied to the inner tube, whereby the inner tube bag body is expanded by the fluid pressure of the fluid discharged from the inner tube bag discharge port to form an inner tube packer. The outer pipe from the outlet in the outer pipe packer through the space between the inner pipe packer formed thereby Ground grouting method, wherein a fluid is filled outer tube packer body is formed in Tsu the mosquitoes. 注入管装置を複数本、地盤中に埋設し、これら注入管装置を通して注入液を注入する地盤注入工法であって、独立した駆動源で作動し、かつ集中管理装置で制御される個々に独立したユニットポンプをそれぞれの注入管装置に接続し、ユニットポンプの作動により注入液を地盤中に注入する地盤注入工法において、前記注入管装置は管壁長手方向に間隔をあけて、硬化性流体で膨張する複数の袋パッカを設け、互いに隣接する袋パッカ間にはゴムスリーブで覆われた少なくとも一つの外管吐出口を有し、かつ互いに隣接する袋パッカと削孔壁との間に管外空間を形成する外管と、外管内に移動自在に挿入され、長手方向に一対の膨縮パッカが間隔をあけて設けられ、吐出位置を形成する内管とを有し、該内管には、注入液を送液し、吐出口が噴出位置に位置する注入液流路と、前記膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、該パッカ流路を通して一対の膨縮パッカに流体を送って膨張させ、一対の膨縮パッカによって挟まれる内外管のすき間に管内空間を形成してなり、該噴出位置を管外空間に合致させ、外管吐出口から注入液を管内空間、外管吐出口および管外空間を経て地盤中に注入することを特徴とする請求項13の地盤注入工法。   A ground injection method in which a plurality of injection pipe devices are buried in the ground, and an injection solution is injected through these injection pipe devices, which are operated by an independent drive source and individually controlled by a central control device. In the ground injection method in which unit pumps are connected to each injection pipe device, and the injection liquid is injected into the ground by the operation of the unit pump, the injection pipe devices are expanded with a curable fluid at intervals in the longitudinal direction of the pipe wall. A plurality of bag packers that have at least one outer tube discharge port covered with a rubber sleeve between adjacent bag packers, and an extra-tube space between the adjacent bag packer and the drilled wall And an inner tube that is movably inserted into the outer tube and is provided with a pair of expansion / contraction packers spaced apart in the longitudinal direction to form a discharge position. The injection liquid is fed and the discharge port is An infusate flow path located at the exit position and a packer flow path for sending and inflating fluid to the expansion / contraction packer are provided independently, and the fluid is sent to the pair of expansion / contraction packers through the packer flow path for expansion. A space between the inner and outer pipes sandwiched between the pair of expansion / contraction packers is formed, the pipe inner space is made to coincide with the outer space of the pipe, and the injection liquid is supplied from the outer pipe outlet to the inner space, the outer pipe outlet and the pipe. 14. The ground injection method according to claim 13, wherein the ground injection method is injected into the ground through an outer space. 集中管理装置はパッカ流路に接続され、一対の膨縮パッカへの流体の送液を制御する流体送液制御部と、個々に独立した複数のユニットポンプの駆動源に接続され、各駆動源を制御する駆動制御部部と、各ユニットポンプから地盤中の注入管装置に通じる導管に配置された流量圧力検出器に接続され、注入圧力、注入量および注入速度に関する注入情報を記録表示する記録表示部とを備えた請求項13の地盤注入工法。   The central control device is connected to the packer flow path, and is connected to a fluid feed control unit for controlling the fluid feed to the pair of expansion / contraction packers, and to the drive sources of a plurality of independent unit pumps. Connected to a drive control unit for controlling the flow rate and a flow rate pressure detector arranged in a conduit leading from each unit pump to the injection pipe device in the ground, and records and displays injection information relating to injection pressure, injection volume and injection speed The ground injection construction method of Claim 13 provided with the display part. 内管にはパッカ流体送液流路が設けられてなり、パッカ流体送液流路にパッカ流体を送液して内管パッカが形成され、それによって形成された内管パッカ間空間に内管より流体を送液して外管パッカ内に流体が充填されて外管パッカ体が形成され、外管パッカを形成することを特徴とする請求項13の地盤注入工法。   The inner pipe is provided with a packer fluid feeding flow path, and the packer fluid is fed into the packer fluid feeding flow path to form an inner pipe packer, and the inner pipe is formed in the space between the inner pipe packers formed thereby. 14. The ground injection method according to claim 13, wherein a fluid is further fed to fill the outer tube packer with the fluid to form an outer tube packer body to form an outer tube packer. 地盤中の削孔中に設置された不透水性の膨縮性外管パッカを有する注入外管から膨縮性内管パッカを複数有する注入内管を通して地盤中に注入液を注入する地盤注入工法において、外管管壁に1つまたは複数の外管注入口を有し、外管内に注入内管を隣接する複数の外管パッカ内吐出口をはさむように複数の内管パッカを位置せしめ、該外管パッカ内には逆止弁を有する外管パッカ内吐出口が設けられてなり、かつ、複数の外管パッカ間の外管管壁には逆止弁を有する外管パッカ間注入口が設けられてなり、該注入内管内に流体を送液して内管パッカを膨張し、ついで内管パッカ間吐出口から外管パッカ内吐出口を通して上下の外管パッカに流入して外管パッカ体を形成し、さらに、外管パッカ体間に開口する外管注入口から注入液を注入する地盤注入工法。   Ground injection method in which injection solution is injected into the ground through an injection inner tube having a plurality of expandable inner tube packers from an injection outer tube having an impervious expandable outer tube packer installed in a drilling hole in the ground. The outer tube wall has one or a plurality of outer tube inlets, and the inner tube packer is positioned so as to sandwich a plurality of outer tube packer discharge ports adjacent to the inner tube in the outer tube, In the outer tube packer, an outlet in the outer tube packer having a check valve is provided, and an inlet between the outer tube packers having a check valve on the outer tube wall between the outer tube packers. The inner tube packer is expanded by feeding a fluid into the injection inner tube, and then flows from the discharge port between the inner tube packers to the upper and lower outer tube packers through the discharge port in the outer tube packer. A packer body is formed, and an injection solution is injected from an outer tube inlet opening between the outer tube packer bodies. Ground injection method. 注入液が非アルカリ性水ガラスグラウト、コロイダルシリカグラウト、活性シリカグラ
ウトまたはゲル化時間が1時間以上のグラウトである請求項17の地盤注入工法。
The ground injection method according to claim 17, wherein the injection solution is non-alkaline water glass grout, colloidal silica grout, activated silica grout, or grout having a gelation time of 1 hour or more.
前記注入内管を複数の膨縮性内管パッカが前記外管パッカ体内外管吐出口をはさむように位置せしめ、さらに、これら内管パッカ内にパッカ内吐出口を有し、かつ前記間隔をあけて備えられた内管パッカ間に外管吐出口に通じる内管吐出口を有する内管とを備えた注入内管を用い、内管流路に注入液を送液することにより、前記膨縮性内管パッカを注入液の送液圧力によって膨張して複数の内管パッカ間に外管内空間を形成するとともに、この外管内空間内に内管吐出口から注入液を吐出し、該外管袋体を膨らませて外管パッカ体を形成すると共に注入液を外管内空間から外管吐出口を通して外管パッカ外空間から地盤中に注入して地盤を固結する請求項17の地盤注入工法。   The injection inner tube is positioned such that a plurality of inflatable inner tube packers sandwich the outer tube packer inner / outer tube discharge ports, and further, the inner tube packer has packer discharge ports, and the interval is set. By using an injection inner tube having an inner tube having an inner tube discharge port that communicates with the outer tube discharge port between the inner tube packers that are provided open, and sending the injection solution to the inner tube flow path, The compressible inner tube packer is expanded by the feeding pressure of the injection solution to form an outer tube inner space between the plurality of inner tube packers, and the injection solution is discharged from the inner tube discharge port into the outer tube inner space. 18. The ground injecting method according to claim 17, wherein the tube bag body is inflated to form an outer tube packer body, and the ground is consolidated by injecting an injection solution from the outer tube inner space through the outer tube discharge port into the ground from the outer tube packer outer space. . 請求項17における内管パッカは内管パッカ用流路からのパッカ流体によって形成される請求項17の地盤注入工法。




















The ground injection construction method according to claim 17, wherein the inner pipe packer according to claim 17 is formed by a packer fluid from the flow path for the inner pipe packer.




















JP2008335849A 2008-12-30 2008-12-30 Injection pipe device and ground injection method Active JP4581013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335849A JP4581013B2 (en) 2008-12-30 2008-12-30 Injection pipe device and ground injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335849A JP4581013B2 (en) 2008-12-30 2008-12-30 Injection pipe device and ground injection method

Publications (2)

Publication Number Publication Date
JP2010156172A true JP2010156172A (en) 2010-07-15
JP4581013B2 JP4581013B2 (en) 2010-11-17

Family

ID=42574274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335849A Active JP4581013B2 (en) 2008-12-30 2008-12-30 Injection pipe device and ground injection method

Country Status (1)

Country Link
JP (1) JP4581013B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104189A (en) * 2011-11-11 2013-05-30 Toa Harbor Works Co Ltd Outer pipe for injecting chemical into ground
KR101538112B1 (en) * 2014-08-05 2015-07-22 심두섭 Method of compaction grouting system for anti-seismic reinforcement and quality management
CN108237616A (en) * 2016-12-24 2018-07-03 广东明泰盛陶瓷有限公司 A kind of ceramics injection mold device
CN108396746A (en) * 2018-01-25 2018-08-14 天津大学 A kind of multiple grouting device and its method of control soil deformation
JP2019078053A (en) * 2017-10-24 2019-05-23 戸田建設株式会社 Injection outer pipe and chemical feeding method
WO2019236269A1 (en) * 2018-06-06 2019-12-12 Saudi Arabian Oil Company Liner installation with inflatable packer
US10934814B2 (en) 2018-06-06 2021-03-02 Saudi Arabian Oil Company Liner installation with inflatable packer
US11339636B2 (en) 2020-05-04 2022-05-24 Saudi Arabian Oil Company Determining the integrity of an isolated zone in a wellbore
US11346177B2 (en) 2019-12-04 2022-05-31 Saudi Arabian Oil Company Repairable seal assemblies for oil and gas applications
US11519767B2 (en) 2020-09-08 2022-12-06 Saudi Arabian Oil Company Determining fluid parameters
US11530597B2 (en) 2021-02-18 2022-12-20 Saudi Arabian Oil Company Downhole wireless communication
US11603756B2 (en) 2021-03-03 2023-03-14 Saudi Arabian Oil Company Downhole wireless communication
US11619114B2 (en) 2021-04-15 2023-04-04 Saudi Arabian Oil Company Entering a lateral branch of a wellbore with an assembly
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
US11994016B2 (en) 2021-12-09 2024-05-28 Saudi Arabian Oil Company Downhole phase separation in deviated wells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117735B2 (en) * 2018-12-12 2022-08-15 戸田建設株式会社 injection tube
KR102289869B1 (en) * 2021-03-24 2021-08-13 권석훈 Simultaneous grouting injection device for multiple steel pipes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307508A (en) * 2004-04-20 2005-11-04 Kyokado Eng Co Ltd Ground grouting method and injection pipe device
JP2006132301A (en) * 2004-10-06 2006-05-25 Kyokado Eng Co Ltd Ground injector
JP2007046320A (en) * 2005-08-10 2007-02-22 Kyokado Eng Co Ltd Grouting apparatus and grouting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307508A (en) * 2004-04-20 2005-11-04 Kyokado Eng Co Ltd Ground grouting method and injection pipe device
JP2006132301A (en) * 2004-10-06 2006-05-25 Kyokado Eng Co Ltd Ground injector
JP2007046320A (en) * 2005-08-10 2007-02-22 Kyokado Eng Co Ltd Grouting apparatus and grouting method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104189A (en) * 2011-11-11 2013-05-30 Toa Harbor Works Co Ltd Outer pipe for injecting chemical into ground
KR101538112B1 (en) * 2014-08-05 2015-07-22 심두섭 Method of compaction grouting system for anti-seismic reinforcement and quality management
WO2016021911A1 (en) * 2014-08-05 2016-02-11 심두섭 C.g.s construction method capable of seismic retrofit and quality control
US10119236B2 (en) 2014-08-05 2018-11-06 Xenon Ground Technology Corp. Compaction grouting system construction method capable of seismic reinforcement and quality control
CN108237616A (en) * 2016-12-24 2018-07-03 广东明泰盛陶瓷有限公司 A kind of ceramics injection mold device
CN108237616B (en) * 2016-12-24 2024-01-23 广东明泰盛陶瓷有限公司 Ceramic injection molding device
JP2019078053A (en) * 2017-10-24 2019-05-23 戸田建設株式会社 Injection outer pipe and chemical feeding method
CN108396746B (en) * 2018-01-25 2023-08-11 天津大学 Multi-time grouting device and method for controlling soil deformation
CN108396746A (en) * 2018-01-25 2018-08-14 天津大学 A kind of multiple grouting device and its method of control soil deformation
WO2019236269A1 (en) * 2018-06-06 2019-12-12 Saudi Arabian Oil Company Liner installation with inflatable packer
US10767452B2 (en) 2018-06-06 2020-09-08 Saudi Arabian Oil Company Liner installation with inflatable packer
US10934814B2 (en) 2018-06-06 2021-03-02 Saudi Arabian Oil Company Liner installation with inflatable packer
CN112867842A (en) * 2018-06-06 2021-05-28 沙特阿拉伯石油公司 Liner mount with expandable packer
US11242731B2 (en) 2018-06-06 2022-02-08 Saudi Arabian Oil Company Liner installation with inflatable packer
US11346177B2 (en) 2019-12-04 2022-05-31 Saudi Arabian Oil Company Repairable seal assemblies for oil and gas applications
US11339636B2 (en) 2020-05-04 2022-05-24 Saudi Arabian Oil Company Determining the integrity of an isolated zone in a wellbore
US11519767B2 (en) 2020-09-08 2022-12-06 Saudi Arabian Oil Company Determining fluid parameters
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
US11530597B2 (en) 2021-02-18 2022-12-20 Saudi Arabian Oil Company Downhole wireless communication
US11603756B2 (en) 2021-03-03 2023-03-14 Saudi Arabian Oil Company Downhole wireless communication
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11619114B2 (en) 2021-04-15 2023-04-04 Saudi Arabian Oil Company Entering a lateral branch of a wellbore with an assembly
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
US11994016B2 (en) 2021-12-09 2024-05-28 Saudi Arabian Oil Company Downhole phase separation in deviated wells

Also Published As

Publication number Publication date
JP4581013B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP4581013B2 (en) Injection pipe device and ground injection method
JP3275039B2 (en) Ground injection device and construction method
EP2766569B1 (en) Formation pressure sensing system
JP4097671B2 (en) Ground injection method
CN106706416A (en) Test device capable of simulating basement bottom plate stress under effect of pressure water and use method thereof
JP4036303B2 (en) Ground injection method
CN102721634A (en) Method and device for in-situ penetration test by means of water injection under drilling pressure
CN110984900A (en) Device and method for stopping water in drilling
KR100420502B1 (en) Pouring pipe apparatus and the ground pouring method of construction
JP4458451B2 (en) Chemical injection method
JP4034305B2 (en) Ground injection method
KR101215468B1 (en) Apparatus and method for measuring permeability of sample using carbon dioxide
JP2001323451A (en) Ground injection apparatus and construction method
JP3386425B2 (en) Injection pipe device and ground injection method
JP3961510B2 (en) Ground injection method
KR101721494B1 (en) Simultaneous multi-stage pressure grouting apparatus
JP2006312811A (en) Grouting construction method
JP3889408B2 (en) Ground injection method and injection pipe device
JP4537978B2 (en) Ground injection device
JP3832457B2 (en) Fixing method of bundling injection capillaries in the ground
JP2007046320A (en) Grouting apparatus and grouting method
JP4180075B2 (en) Ground injection method
JP3919727B2 (en) Ground injection device and ground injection method
JPH03244707A (en) Multipoint packer type in-hole water premeation test method and test equipment therefor
JP2001123439A (en) Grouting method for soil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4581013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250