JP3919727B2 - Ground injection device and ground injection method - Google Patents
Ground injection device and ground injection method Download PDFInfo
- Publication number
- JP3919727B2 JP3919727B2 JP2003346885A JP2003346885A JP3919727B2 JP 3919727 B2 JP3919727 B2 JP 3919727B2 JP 2003346885 A JP2003346885 A JP 2003346885A JP 2003346885 A JP2003346885 A JP 2003346885A JP 3919727 B2 JP3919727 B2 JP 3919727B2
- Authority
- JP
- Japan
- Prior art keywords
- ground
- injection
- space
- packer
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007924 injection Substances 0.000 title claims description 199
- 238000002347 injection Methods 0.000 title claims description 199
- 238000000034 method Methods 0.000 title claims description 37
- 239000007788 liquid Substances 0.000 claims description 110
- 230000008602 contraction Effects 0.000 claims description 70
- 239000012530 fluid Substances 0.000 claims description 41
- 239000002689 soil Substances 0.000 claims description 40
- 239000000243 solution Substances 0.000 claims description 31
- 238000005553 drilling Methods 0.000 claims description 28
- 239000003978 infusion fluid Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 238000001802 infusion Methods 0.000 claims description 11
- 230000035699 permeability Effects 0.000 claims description 4
- 239000011440 grout Substances 0.000 description 38
- 230000035515 penetration Effects 0.000 description 29
- 230000008595 infiltration Effects 0.000 description 16
- 238000001764 infiltration Methods 0.000 description 16
- 238000001879 gelation Methods 0.000 description 15
- 238000010276 construction Methods 0.000 description 13
- 235000019353 potassium silicate Nutrition 0.000 description 13
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 238000007596 consolidation process Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000000725 suspension Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 239000003570 air Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
本発明は地盤の改良工事、地盤の液状化防止や大深度掘削の際の地盤の補強効果を図る施工の技術に関するものであり、特に、液状化防止施工工事のように大容量地盤の地盤改良のための硬化材の地盤への注入の技術分野に属するものであり、詳細には、外壁長手方向に間隔をあけて複数の袋パッカが設けられ、互いに隣接する袋パッカ間にはゴムスリーブで覆われた外管吐出口を有し、地盤の削孔中に挿入されて削孔壁と互いに隣接する袋パッカとの間に管外空間を形成する外管と、この外管内に移動自在に挿入され、かつ、長手方向に膨縮パッカが間隔をあけて設けられ、噴出位置を形成する内管とを有し、この内管には吐出口がそれぞれ噴出位置に位置する複数の注入液流路および膨縮パッカに流体を送って該パッカを膨脹させる膨縮流路をそれぞれ独立して備えた地盤注入装置およびこれを用いた地盤注入工法に関する。 The present invention relates to ground improvement work, construction technology for preventing ground liquefaction and ground reinforcement during deep excavation, and in particular, ground improvement for large capacity ground such as liquefaction prevention construction work. In particular, a plurality of bag packers are provided at intervals in the longitudinal direction of the outer wall, and a rubber sleeve is provided between adjacent bag packers. An outer tube having a covered outer tube discharge port, which is inserted into the ground drilling hole to form an outer space between the drilling wall and the bag packer adjacent to each other, and is movable in the outer tube A plurality of infusion liquid streams, each of which has an expansion tube which is inserted in the longitudinal direction and which is provided at an interval, and which forms an ejection position, each of which has a discharge port located at the ejection position. Expansion and contraction by sending fluid to the path and expansion / contraction packer to expand the packer Road and about independently soil injection device and ground grouting method using the same with.
本発明は特に、ゲル化時間を瞬結〜長結に任意にコントロールでき、複数の注入液の任意の切り換え、複数の注入液の地盤中での反応等が容易であって、上下に隣接する柱状空間への注入液の逸脱を防ぎ、このため柱状空間を長くすることができ、かつ注入工程が早まるのみならず、地盤条件や注入目的に応じて最適の注入が可能であり、さらに、管外空間を柱状に長くしても、注入液が水平方向に互いに拘束し合って平行に浸透する地盤注入装置および地盤注入工法に関する。 In particular, the present invention allows the gelation time to be arbitrarily controlled from momentary to long-lasting, and can be arbitrarily switched between a plurality of infusions, easily reacted in the ground of a plurality of infusions, and adjacent vertically. This prevents the injection liquid from escaping into the columnar space, which makes it possible to lengthen the columnar space and speed up the injection process, as well as optimal injection according to the ground conditions and the purpose of injection. The present invention relates to a ground injecting apparatus and a ground injecting method in which injection liquids are constrained to each other in the horizontal direction and permeate in parallel even if the outer space is elongated in a columnar shape.
従来より地盤掘削や大深度地下工事の周辺地盤をはじめ、地下水の存在による流動性を帯びた地盤の液状化現象に対する安定化施工技術は当該地盤に形成した削孔に注入管を挿入してセメントモルタルや薬液等の硬化材を注入することにより地盤を部分的にあるいは、広領域的に強化する施工態様が広く用いられてきた。 Conventionally, stable construction technology against the liquefaction phenomenon of ground that has fluidity due to the presence of groundwater, including the ground around ground excavation and deep underground work, has been cemented by inserting an injection pipe into the hole formed in the ground. A construction mode has been widely used in which the ground is partially or broadly reinforced by injecting a hardening material such as mortar or chemicals.
例えば、従来、地盤中に形成されたボーリング孔や、そこに設置されたスリーブ管等の注入孔(外管)の内側と、注入孔内にセットされた装置本体(内管)との間をシールするパッカを装備し、該パッカによってシールされた空間に薬液を注入し、該薬液に外管周囲の地盤を改良する装置が知られている(特許第2814475号)。 For example, conventionally, between the bore hole formed in the ground and the inside of the injection hole (outer pipe) such as a sleeve pipe installed there, and the device body (inner pipe) set in the injection hole A device is known which is equipped with a sealer for sealing, injects a chemical solution into a space sealed by the packer, and improves the ground around the outer tube in the chemical solution (Japanese Patent No. 2814475).
この装置は薬液として少なくとも二種の成分を混合するものを使用し、少なくとも第1の薬液の搬送のための第1流路と、第2の薬液の搬送のための第2の流路とを装置本体に設けるとともに、第1、第2各流路の末端部から前記各薬液を装置本体の外部へ流出させるための少なくとも2系統のノズルを装置本体に形成し、いずれかのノズルを開閉弁により開閉可能に閉塞したことを特徴とする。 This device uses a mixture of at least two components as a chemical solution, and includes at least a first flow path for transporting the first chemical liquid and a second flow path for transporting the second chemical liquid. Provided in the apparatus main body, and at least two systems of nozzles for allowing the chemical solutions to flow out of the apparatus main body from the end portions of the first and second flow paths are formed in the apparatus main body. It is characterized by being closed by an open / close state.
しかし、この工法では、装置本体を直接注入孔に挿入する場合には、注入対象地盤はくずれやすい土砂のために注入孔壁はくずれているのが普通であり、このため、装置本体を上下に移向させることが困難になって注入ステージ毎の注入は不可能である。また、注入外管に装置本体を挿入する場合には、通常、注入外管の外側にシールグラウトを填充し、内管からの注入液をこのシールグラウトを破って地盤中に注入する。しかし、シールグラウトを介しての注入では、注入源の直径が注入外管径(ほぼ10cm程度)の球に相当する球状、注入を基本とするため、注入浸透源が小さく注入液が目詰まりを起こしやすく、このため、浸透範囲を広くすることが難しい。(図8)
すなわち、液状化防止工法のように、広範囲の地盤に1本の注入管から硬化材を広範囲に注入しようとする場合、注入管のまわりのシールグラウトによるシールによって、硬化材が地盤に浸透するための地盤への開口部が少なく、毎分当たりの多量の吐出量を均質に長時間、広範囲に均等に浸透し続けることが困難であるという難点があった。
However, in this construction method, when the main body of the apparatus is directly inserted into the injection hole, the injection hole wall is usually broken due to the soil that is subject to breakage. It becomes difficult to shift, and it is impossible to inject each injection stage. Further, when the apparatus main body is inserted into the outer injection tube, the seal grout is usually filled outside the injection outer tube, and the injection liquid from the inner tube is injected into the ground by breaking the seal grout. However, the injection through the seal grout is based on a spherical injection corresponding to a sphere having a diameter of the injection outer tube (approximately 10 cm), so that the injection penetration source is small and the injection liquid is clogged. It is easy to wake up, so it is difficult to widen the penetration range. (Fig. 8)
That is, when trying to inject a hardened material from a single injection tube into a wide range of ground as in the liquefaction prevention method, the hardened material penetrates into the ground by sealing with a seal grout around the injection tube. The number of openings to the ground is small, and it is difficult to uniformly permeate a large amount of discharge per minute uniformly over a wide range for a long time.
また、実際の施工においては、外管と削孔孔壁の間にシールグラウトを填充し、このシールグラウトの固化を待って(一般には7日〜10日)から浸透性グラウトを注入するが、シールグラウトが削孔内で沈殿を起こしたり、周辺からの砂の崩壊によって砂と混じる深さ方向に不均質に固結し、その結果、浸透性グラウトの吐出浸透が阻害される。 In actual construction, a seal grout is filled between the outer tube and the hole-drilled wall, and the permeable grout is injected after the seal grout is solidified (generally 7 to 10 days). The seal grout precipitates in the drilling holes or is non-uniformly consolidated in the depth direction mixed with the sand due to the collapse of the sand from the surroundings. As a result, the discharge penetration of the permeable grout is inhibited.
さらに、長手方向にゾーン毎区画して注入口が形成された外管と、この外管内をその軸心方向に移動自在とされた内管部材とを備えた注入装置も知られている(特開61−186613)。 Further, an injection device is also known that includes an outer tube in which an injection port is formed by dividing each zone in the longitudinal direction, and an inner tube member that is movable in the axial direction in the outer tube (special feature). Open 61-186613).
この装置は内管部材が複数の独立した流路を有する内管と、その長手方向に間隔を置いて外管の内面にそれぞれ内接してグラウトの液密を図るべく設けられた三つ以上のパッカ部とを有し、前記パッカ部間における外管と内管との間隙たる相互に異なる注出室に、前記内管の各流路が1対1で独立的に連通していることを特徴とする。 In this apparatus, the inner tube member has an inner tube having a plurality of independent flow paths, and three or more provided in order to incline the inner surface of the outer tube at intervals in the longitudinal direction and to make the grout liquid-tight. Each of the flow paths of the inner pipe communicates with each other independently in a one-to-one manner to different dispensing chambers that are gaps between the outer pipe and the inner pipe between the packer sections. Features.
しかし、上述の三つ以上のパッカ部は流体で膨脹してパッカを形成する膨縮パッカと異なり、ゴムリングで外管の内面に内接したパッカである。この種のパッカでは外管内で内管を移動自在とすることはできない。この理由は注入地盤が深くなって土圧により外管が変形したり、あるいは水平方向の注入では、外管が土圧によってしなってしまい、外管が変形するため、パッカが変形に対応できず、内管を外管中に挿入することが困難となるためである。 However, the three or more packer portions described above are packers inscribed in the inner surface of the outer tube by rubber rings, unlike the expansion / contraction packers that are expanded by a fluid to form a packer. With this type of packer, the inner tube cannot be moved within the outer tube. The reason for this is that the outer ground is deformed by earth pressure when the injection ground is deep, or the outer pipe is deformed by earth pressure in horizontal injection, and the outer pipe is deformed, so the packer can cope with deformation. This is because it becomes difficult to insert the inner tube into the outer tube.
また、袋体の内部に開口する吐出口から袋体中に硬化性懸濁液を填充し、袋パッカを形成するとともに、袋体間に開口する吐出口から注入材を注入して地盤を固結する地盤注入技術も知られている。(特開2002−167745)
この袋体は硬化性懸濁液の一部を透過する透水性袋体であり、かつ、削孔の径よりも大きな直径を有している。そして、袋体中に懸濁液を填充し、膨らませて袋パッカを形成する際、袋体の直径が削孔の径よりも大きいため、袋パッカによってパッカの周りの削孔壁が圧密されるとともに、袋体が透水性袋体であるため、袋体から通過した硬化性懸濁液が圧密された削孔壁に浸透硬化し、袋体内を高濃度で硬化して高強度の袋パッカを形成するとともに袋パッカ周りの地盤の領域に注入材の浸透しにくい、密な地盤内パッカを形成する。
In addition, the bag body is filled with a curable suspension from an outlet opening that opens inside the bag body to form a bag packer, and an injection material is injected from the outlet opening between the bag bodies to fix the ground. The ground injection technique that ties is also known. (JP 2002-167745 A)
This bag body is a water-permeable bag body that allows a part of the curable suspension to pass therethrough, and has a diameter larger than the diameter of the hole. When the bag body is filled with the suspension and inflated to form the bag packer, the hole diameter around the packer is consolidated by the bag packer because the bag body has a larger diameter than the hole diameter. At the same time, since the bag body is a water-permeable bag body , the curable suspension that has passed from the bag body penetrates and cures into the compacted hole, and the bag body is cured at a high concentration to form a high-strength bag packer. At the same time, a dense ground packer is formed in which the injected material is less likely to penetrate into the ground area around the bag packer.
この方法は柱状注入空間を形成し、大きな注入源から注入できるため、目詰まりを起こしにくい。しかも、大きな吐出速度で注入しても注入源の単位面積当りの浸透速度は小さいから低圧、低吐出量で土粒子浸透しながら広範囲にわたって浸透固結することができる。特に、これを液状化防止注入に適用する場合、注入孔間隔を広くとって(例えば2〜4m)広範囲に注入を行う。(図9)
この場合の設計態様の実例を以下に示す。
Since this method forms a columnar injection space and can be injected from a large injection source, clogging is unlikely to occur. Moreover, even if injection is performed at a high discharge rate, the permeation rate per unit area of the injection source is small, so that it can be infiltated and consolidated over a wide range while soil particles permeate at a low pressure and a low discharge amount. In particular, when this is applied to liquefaction prevention injection, injection is performed over a wide range with a wide injection hole interval (for example, 2 to 4 m 2). (Fig. 9)
An example of the design mode in this case is shown below.
1 注入管の埋設間隔 P=2m×2mの正方形配置にし、
2 注入速度 f=30l/分とし、
3 注入管1孔当たり改良平面積 Ap=2m×2m=4m2
4 1ステージ当たりの改良土量(m3)を
V=2m(改良高さ)×4m2=16m3とし
5 1ステージ当たりの硬化材の注入量(kl)Q
Q=Vx(0.35〜0.40)
=5.6〜6.4kl
ここで;0.35〜0.40は注入率である。
1 Embedding interval of injection pipe P = 2m × 2m
2 Infusion rate f = 30 l / min,
3 Improved flat area per injection tube hole Ap = 2m × 2m = 4m 2
4 Improved soil volume per stage (m 3 )
V = 2m (improved height) × 4 m 2 = 16
Q = Vx (0.35-0.40)
= 5.6 to 6.4 kl
Here, 0.35 to 0.40 is an injection rate.
6 1ステージ当たり注入時間
tl=6kl÷0.03kl/分=200分
=3.3時間(注入継続時間)
の注入を行わなければならない。
6 Injection time per stage
tl = 6kl / 0.03kl / min = 200 minutes
= 3.3 hours (infusion duration)
Must be injected.
7 袋体の注入充填量(l)q
q=60l
同じく、注入孔間隔を4mの正方向配置にする場合、
Ap=4m×4m=16m2、
1ステージの改良土量は、V=2m(改良厚さ)×16m3=32m3、
1ステージ注入量(kl)はQ=Vx(0.35〜0.40)
=32×(0.35〜0.40)
=11.2〜12.8kl≒12kl(平均)であり、
注入速度f=20l/分とすると、1ステージ当たり注入時間t=
12kl÷0.02kl=600分=10時間
の注入を行わなければならない。
7 Injection filling volume of bag (l) q
q = 60 l
Likewise, when the injection hole interval is 4 m in the positive direction,
Ap = 4 m × 4 m = 16 m 2 ,
The amount of improved soil in one stage is V = 2 m (improved thickness) × 16 m 3 = 32 m 3 ,
One-stage injection amount (kl) is Q = Vx (0.35-0.40)
= 32 × (0.35-0.40)
= 11.2 to 12.8 kl≈12 kl (average),
When the injection speed f = 20 l / min, the injection time t per stage t =
Infusion of 12 kl ÷ 0.02 kl = 600 minutes = 10 hours must be performed.
このようにすれば、柱状浸透源からゲル化時間の長い注入液を長時間注入し、得られた柱状浸透固結体を、平面的に、かつ上下に連続することにより、大容量土の急速固結が可能になるはずである。 In this way, an injection solution having a long gelation time is injected for a long time from the columnar infiltration source, and the obtained columnar infiltration consolidated body is planarly and continuously up and down. It should be possible to consolidate.
このようにして、柱状浸透源の長さを長尺にするほど、ゲル化時間を長くして大量の注入を行う必要がある。しかし、浸透源の長さを長くするほど、また、注入孔間隔を広くとる程、注入量が大きくなり、かつ不均質な土層を含むことになる。さらに、長いゲル化時間の注入液が上下の袋パッカをのりこえて上下方向にも浸透しやすくなり、隣接した上下の柱状空間に侵入し、所定の注入ステージごとに確実な柱状固結体が形成されない。(図5参照)また、注入孔間隔を長くするほど、注入浸透範囲が広くなり、ゲル化時間も長くしなければならず、このため地表面への流出が避けられない。また、例えば、ゲル化時間10時間のグラウトのゲル化をまって注入することは工程上困難であるため、広範囲な浸透固結が不可能になる。 In this way, the longer the length of the columnar penetration source is, the longer the gelation time is required to perform a large amount of injection. However, the longer the length of the permeation source and the wider the interval between the injection holes, the larger the injection amount and the non-uniform soil layer. In addition, the injection solution with a long gelling time easily penetrates the upper and lower bag packers in the vertical direction and enters the adjacent upper and lower columnar spaces to form a solid columnar solid body at each predetermined injection stage. Not. (Refer to FIG. 5) Further, the longer the interval between the injection holes, the wider the infiltration range and the longer the gelation time. Therefore, the outflow to the ground surface is inevitable. In addition, for example, it is difficult to inject and inject a grout gelling time of 10 hours, so that a wide range of permeation consolidation is impossible.
これを防ぐためには袋パッカを長くして柱状空間を短くせざるを得ない。しかし、これでは大きな柱状空間で、広範囲に、しかも大きな吐出速度で土粒子間浸透を行うことができない。(図6参照)
解決しようとする課題は管外空間を柱状に長くし、ゲル化時間の長いグラウトを用い、注入孔間隔を広くとっても各ステージ毎に確実に大きな柱状固結体を形成し得、さらに注入工程を倍以上に早めるのみならず、地盤条件や注入目的に応じて最適の注入を可能にし、さらに柱状管外空間を長くしても注入液が水平方向に互いに拘束し合って平行に浸透させることにある。また、長いゲル化時間のグラウトが注入中に地表面に逸脱してきたら、容易に瞬結して逸脱を防止に、ひきつづいてゲル化時間の長いグラウトの注入を行うことにある。 The problem to be solved is to lengthen the extra-tube space into a columnar shape, use a grout with a long gelation time, and even if the injection hole interval is wide, a large columnar consolidated body can be surely formed for each stage. In addition to speeding up more than twice, it enables optimal injection according to the ground conditions and the purpose of injection, and even if the columnar extra-tube space is lengthened, the injection solutions are bound to each other in the horizontal direction and penetrated in parallel. is there. In addition, if a grout with a long gelation time deviates to the ground surface during injection, it is easy to instantly freeze and prevent the deviation, and subsequently, a grout with a long gelation time is injected.
シールグラウトを破って注入する球状浸透方式では広範囲な浸透固結は困難であることから、柱状浸透方式の利点に着目し、柱状浸透方式の課題を解決するものである。 The spherical penetration method that breaks and injects the seal grout is difficult to achieve a wide range of penetration and consolidation. Therefore, the problem of the columnar penetration method is solved by paying attention to the advantages of the columnar penetration method.
すなわち、球状浸透方式は図8の原理図に示されるように、グラウトの吐出口を、注入管の直径を有効径とする球状浸透源と考え、これを上下方向にステージ移動させ、球状固結を上下左右に連続させて固結体を形成させる方式である。 That is, in the spherical infiltration method, as shown in the principle diagram of FIG. 8, the outlet of the grout is considered as a spherical infiltration source having an effective diameter of the injection tube, and this is moved in stages in the vertical direction, Is a system in which a solidified body is formed continuously in the vertical and horizontal directions.
平野部を構成する地盤は、一般的に平面的な成層堆積をしており、透水性は水平方向に大きい。したがって球状浸透は浸透源から三次元的浸透をさせるので、浸透抵抗が大きく、地盤の土質状態によって割裂脈の発生する率が高くなり、固結形態は不均質になる傾向がある。また、浸透源が小さく、通常ボーリング孔に相当する直径5〜10cmの球状浸透源であるため、ゲルが浸透源で目詰まりを起こし、長時間の浸透注入が困難になり、あるいは高圧力になって脈状浸透になる。 The ground constituting the plain is generally flat and stratified, and its permeability is large in the horizontal direction. Therefore, since spherical infiltration causes three-dimensional infiltration from the infiltration source, the permeation resistance is large, the rate of occurrence of splitting veins increases depending on the soil condition of the ground, and the consolidated form tends to be inhomogeneous. Moreover, since the penetration source is small and is a spherical penetration source having a diameter of 5 to 10 cm, usually corresponding to a boring hole, the gel clogs the penetration source, making it difficult to infuse for a long time or increasing the pressure. It becomes pulmonary penetration.
また、柱状浸透方式は図9の原理図に示されるように、ケーシング削孔によって地中に柱状空間を形成し、この柱状空間に大量のグラウトを吐出して充満し、その全周面壁を浸透源として、グラウトを地盤に浸透させる方法である。この方法によると、浸透源は大きな柱状浸透源であるため、円筒状の表面積が大きく、このため吐出量を多くしても浸透抵抗が比較的小さい二次元的浸透が主体となるので、浸透距離の広い範囲で均質の柱状固結体を形成する。したがって均質地盤では、広範囲な浸透固結体を形成するのに適した注入工法と言える。この場合、注入管は5〜10cmの直径で、削孔径は10〜15cmである。したがって、上下に袋パッカを設けることにより、柱状空間が直径10cm位で、長さは0.5〜2.0mの柱状浸透源を形成することができ、球状浸透源のほぼ10倍、あるいはそれ以上の表面積を持つ柱状浸透源となる。 As shown in the principle diagram of FIG. 9, the columnar infiltration method forms a columnar space in the ground by casing drilling, and a large amount of grout is discharged into the columnar space to fill it and penetrate the entire peripheral wall. As a source, it is a method to penetrate grout into the ground. According to this method, since the permeation source is a large columnar permeation source, the cylindrical surface area is large. A homogeneous columnar consolidated body is formed in a wide range. Therefore, in homogeneous ground, it can be said that it is an injection method suitable for forming a wide range of permeation consolidated bodies. In this case, the injection tube has a diameter of 5 to 10 cm and a drilling diameter of 10 to 15 cm. Therefore, by providing a bag packer at the top and bottom, a columnar penetration source having a columnar space of about 10 cm in diameter and a length of 0.5 to 2.0 m can be formed, which is almost 10 times that of a spherical penetration source, or It becomes a columnar penetration source having the above surface area.
上述の課題を解決するため、本発明の地盤注入装置によれば、地盤の削孔中に挿入され、外壁長手方向に間隔をあけて複数の袋パッカが設けられ、これら袋パッカは例えばセメント液等の固結材を圧入して削孔壁内に食い込ませ、周辺土を圧密するように膨張され、互いに隣接する袋パッカ間にはゴムスリーブで覆われた少なくとも一つの外管吐出口を有し、かつ、互いに隣接する袋パッカと削孔壁との間に管外空間を形成する外管と、該外管内に移動自在に挿入され、長手方向に一対の膨縮パッカが間隔をあけて設けられ、噴出位置を形成する内管とを有し、該内管には注入液を送液し、吐出口がそれぞれ噴出位置に位置する複数の注入液流路と、前記膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、該パッカ流路を通して一対の膨縮パッカに流体を送って膨張させ、一対の膨縮パッカによって挟まれる内外管のすき間に管内空間を形成してなり、該噴出位置を管外空間に合致させ、吐出口から注入液を管内空間、外管吐出口および管外空間を経て地盤中に注入し、前記削孔径を10〜15cmとし、前記外管径を5〜10cmとし、前記管外空間によって形成される柱状浸透源を長さ0.5〜2mとし、これにより大容量土の急速固結を可能とすることを特徴とする。 In order to solve the above-described problems, according to the ground injection device of the present invention, a plurality of bag packers are provided in the ground drilling hole and spaced apart in the longitudinal direction of the outer wall. A solidified material such as squeeze is inserted into the borehole wall and expanded so as to consolidate the surrounding soil, and there is at least one outer tube discharge port covered with a rubber sleeve between adjacent bag packers. And an outer tube that forms an outer space between the adjacent bag packer and the drilling wall, and a pair of expansion / contraction packers that are movably inserted into the outer tube and that are spaced apart in the longitudinal direction. And an inner pipe that forms an ejection position. The inner pipe feeds an infusate, and a plurality of infusate passages each having an ejection port located at the ejection position, and a fluid in the expansion / contraction packer And a packer flow path for inflating and expanding the packer independently. A fluid is sent through a passage to a pair of expansion / contraction packers and expanded to form a space in the tube between the inner and outer tubes sandwiched by the pair of expansion / contraction packers. The injection liquid is injected into the ground through the inner space, the outer tube discharge port and the outer space, the hole diameter is 10 to 15 cm, the outer tube diameter is 5 to 10 cm, and the column shape formed by the outer space The infiltration source has a length of 0.5 to 2 m, which enables rapid consolidation of large-capacity soil .
さらに、上述の課題を解決するため、本発明の地盤注入装置によれば、地盤の削孔中に挿入され、外壁長手方向に間隔をあけて複数の袋パッカが設けられ、これら袋パッカは固結材を圧入して削孔壁内に食い込ませ、周辺土を圧密するように膨張され、互いに隣接する袋パッカ間にはゴムスリーブで覆われた少なくとも二つの外管吐出口を有し、かつ、互いに隣接する袋パッカと削孔壁との間に管外空間を形成する外管と、該外管内に移動自在に挿入され、長手方向に三個以上の膨縮パッカが間隔をあけて設けられ、複数の噴出位置を形成する内管とを有し、該内管には注入液を送液し、吐出口が別々の噴出位置にそれぞれ位置する複数の注入液流路と、前記膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、該パッカ流路を通して三個以上の膨縮パッカに流体を送って膨張させ、互いに隣接する膨縮パッカによって挟まれる内外管のすき間に複数個の管内空間を形成してなり、これら複数個の噴出位置を同一の管外空間に合致させ、吐出口から注入液をそれぞれ別々の管内空間を経て、外管吐出口を通し、同一の管外空間から地盤中に注入し、前記削孔径を10〜15cmとし、前記外管径を5〜10cmとし、前記管外空間によって形成される柱状浸透源を長さ0.5〜2mとし、これにより大容量土の急速固結を可能とすることを特徴とする。 Furthermore, in order to solve the above-described problems, according to the ground injection device of the present invention, a plurality of bag packers are provided in the ground wall in the longitudinal direction and spaced apart in the longitudinal direction of the outer wall. The binder is pressed into the drilling wall, expanded to consolidate the surrounding soil , and has at least two outer pipe discharge ports covered with rubber sleeves between the adjacent bag packers, and An outer tube that forms a space outside the tube between the adjacent bag packer and the drilled wall, and three or more expansion / contraction packers that are movably inserted into the outer tube and spaced apart in the longitudinal direction. A plurality of injection passages that form a plurality of ejection positions, send an infusion solution to the inner pipe, and have discharge ports respectively located at different ejection positions; and the expansion and contraction A packer flow path for inflating the fluid by sending a fluid to the packer. A plurality of in-pipe spaces are formed between the inner and outer pipes sandwiched between the inflating and shrinking packers adjacent to each other by sending a fluid to three or more inflating and shrinking packers through the channel. It was matched to the same extravascular space, the injection liquid respectively through separate pipe space from the discharge port, through the outer tube discharge port, and injected from the same extravascular space in the ground, 10 to 15 cm the drilling diameter The outer tube diameter is 5 to 10 cm, and the columnar penetration source formed by the outer space is 0.5 to 2 m in length, thereby enabling rapid consolidation of large-capacity soil. To do .
さらにまた、上述の課題を解決するため、本発明の地盤注入装置によれば、地盤の削孔中に挿入され、外壁長手方向に間隔をあけて複数の袋パッカが設けられ、これら袋パッカは固結材を圧入して削孔壁内に食い込ませ、周辺土を圧密するように膨張され、互いに隣接する袋パッカ間にはゴムスリーブで覆われた少なくとも一つの外管吐出口を有し、かつ、互いに隣接する袋パッカと削孔壁との間に管外空間を形成する外管と、該外管内に移動自在に挿入され、長手方向に複数の膨縮パッカが間隔をあけて設けられ、複数の噴出位置を形成する内管とを有し、該複数の噴出位置は少なくとも一個づつ、管外空間に位置するように配置され、該内管には注入液を送液し、吐出口が各噴出位置に別々に位置する複数の注入液流路と、前記膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、該パッカ流路を通して複数の膨縮パッカに流体を送って膨張させ、隣接する膨縮パッカによって挟まれる内外管すき間に管内空間を形成してなり、各噴出位置を管外空間に合致させ、吐出口から注入液を管内空間および外管吐出口を通し、管外空間を経て地盤中に注入し、前記削孔径を10〜15cmとし、前記管外空間によって形成される柱状浸透源を長さ0.5〜2mとし、これにより大容量土の急速固結を可能とすることを特徴とする。 Furthermore, in order to solve the above-mentioned problems, according to the ground injection device of the present invention, a plurality of bag packers are provided in the ground wall in the longitudinal direction and spaced apart in the longitudinal direction of the outer wall. The caulking material is pressed into the borehole wall, expanded so as to consolidate the surrounding soil, and has at least one outer tube discharge port covered with a rubber sleeve between adjacent bag packers. In addition, an outer tube that forms an outer space between the adjacent bag packer and the drilled wall, and a plurality of expansion / contraction packers that are movably inserted into the outer tube and are provided at intervals in the longitudinal direction are provided. And an inner pipe that forms a plurality of ejection positions, and the plurality of ejection positions are arranged at least one by one so as to be located in the space outside the pipe, and an injection liquid is fed into the inner pipe, and a discharge port A plurality of infusion flow paths separately located at each ejection position, and the expansion / contraction pack. And a packer flow path for inflating by sending a fluid to each other, and a space in the pipe between the inner and outer pipe gaps sandwiched by the adjacent expansion / contraction packers by sending the fluid to the plurality of expansion / contraction packers through the packer flow path. Each injection position is made to coincide with the space outside the tube, and the injection solution is injected from the discharge port through the space inside the tube and the discharge port of the outside tube and injected into the ground through the space outside the tube, and the diameter of the hole is adjusted to 10 to 10. It is 15 cm, and the columnar seepage source formed by the extra-tube space has a length of 0.5 to 2 m, which enables rapid consolidation of large-capacity soil .
上述の課題を解決するため、本発明の地盤注入工法によれば、改良すべき地盤に削孔を形成し、この削孔中に、外壁長手方向に間隔をあけて複数の袋パッカが設けられ、これら袋パッカは固結材を圧入して削孔壁内に食い込ませ、周辺土を圧密するように膨張され、互いに隣接する袋パッカ間にはゴムスリーブで覆われた少なくとも一つの外管吐出口を有する外管を挿入し、さらに外管中に内管を移動自在に挿入し、前記内管は外側長手方向に一対の膨縮パッカが間隔をあけて設けられて噴出位置を形成し、かつ、内側に注入液を送液し、吐出口がそれぞれ噴出位置に位置する複数の注入液流路と、膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、さらにパッカ流路を通して一対の膨縮パッカに流体を送って膨張させ、一対の膨縮パッカによって挟まれるすき間に管内空間を形成して構成され、かつ、外管の袋パッカには流体を注入して膨張させ、互いに隣接する袋パッカと削孔壁との間に管外空間を形成し、内管の噴出位置を管外空間に合致させ、吐出口から注入液を管内空間および外管吐出口を通し、管外空間を経て地盤中に注入し、前記削孔径を10〜15cmとし、前記外管径を5〜10cmとし、前記管外空間によって形成される柱状浸透源を長さ0.5〜2mとし、これにより大容量土の急速固結を可能とすることを特徴とする。注入孔間隔は好ましくは2〜4mとし、これにより液状化防止注入を行う。 In order to solve the above-described problems, according to the ground injection method of the present invention, a hole is formed in the ground to be improved, and a plurality of bag packers are provided in the hole in the outer wall in the longitudinal direction. These bag packers are inflated to press the caking material into the borehole wall and consolidate the surrounding soil, and at least one outer tube discharge covered with a rubber sleeve between adjacent bag packers. An outer tube having an outlet is inserted, and the inner tube is movably inserted into the outer tube, and the inner tube is provided with a pair of expansion / contraction packers spaced apart in the outer longitudinal direction to form an ejection position, In addition, a plurality of infusion liquid passages for sending the infusion liquid to the inside, each having a discharge port positioned at the ejection position, and a packer flow passage for inflating the fluid by sending the fluid to the expansion / contraction packer are provided independently. Inflate by sending fluid to a pair of expansion / contraction packers through the packer channel A space between the bag packer adjacent to each other and the hole-drilling wall is inflated by injecting a fluid into the bag packer of the outer tube. the extravascular space formed in the ejection position of the inner tube is matched to the extravascular space, the infusate through the tube space and the outer tube discharge port from the discharge port, and injected into the ground through the extravascular space, the cutting The hole diameter is 10 to 15 cm, the outer tube diameter is 5 to 10 cm, and the columnar seepage source formed by the outer space is 0.5 to 2 m in length, thereby enabling rapid consolidation of large-capacity soil. It is characterized by doing. The interval between the injection holes is preferably 2 to 4 m, whereby liquefaction prevention injection is performed.
上述の課題を解決するため、本発明の地盤注入工法によれば、改良すべき地盤に削孔を形成し、この削孔中に、外壁長手方向に間隔をあけて複数の袋パッカが設けられ、これら袋パッカは固結材を圧入して削孔壁内に食い込ませ、周辺土を圧密するように膨張され、互いに隣接する袋パッカ間にはゴムスリーブで覆われた少なくとも二つの外管吐出口を有する外管を挿入し、さらに外管中に内管を移動自在に挿入し、前記内管は外側長手方向に三個以上の膨縮パッカが間隔をあけて設けられて複数の噴出位置を形成し、かつ、内側に注入液を送液し、吐出口が別々の噴出位置にそれぞれ位置する複数の注入液流路と、膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、さらにパッカ流路を通して三個以上の膨縮パッカに流体を送って膨張させ、互いに隣接する膨縮パッカによって挟まれる内外管のすき間に複数個の管内空間を形成して構成され、かつ、外管の袋パッカには流体を注入して膨張させ、互いに隣接する袋パッカと削孔壁との間に管外空間を形成し、複数個の噴出位置を同一の管外空間に合致させ、吐出口から注入液をそれぞれ別々の管内空間を経て外管吐出口を通し、同一の管外空間から地盤中に注入し、前記削孔径を10〜15cmとし、前記外管径を5〜10cmとし、前記管外空間によって形成される柱状浸透源を長さ0.5〜2mとし、これにより大容量土の急速固結を可能とすることを特徴とする。注入孔間隔は好ましくは2〜4mとし、これにより液状化防止注入を行う。 In order to solve the above-described problems, according to the ground injection method of the present invention, a hole is formed in the ground to be improved, and a plurality of bag packers are provided in the hole in the outer wall in the longitudinal direction. These bag packers are inflated to press the caking material into the borehole wall and consolidate the surrounding soil, and at least two outer tube discharges covered with rubber sleeves between adjacent bag packers. An outer tube having an outlet is inserted, and the inner tube is movably inserted into the outer tube. The inner tube is provided with three or more expansion / contraction packers at intervals in the outer longitudinal direction, and a plurality of ejection positions. And a plurality of infusion liquid passages, each of which has an ejection port positioned at a separate ejection position, and a packer passage for inflating the fluid by sending fluid to the expansion / contraction packer, respectively. 3 or more expansion / contraction packs are provided independently through the packer channel. A plurality of inner spaces are formed between the inner and outer tube gaps sandwiched between adjacent expansion / contraction packers, and the bag packer of the outer tube is inflated by injecting fluid. An external space is formed between the adjacent bag packer and the drilling wall, a plurality of ejection positions are made to coincide with the same external space, and the injection solution is discharged from the discharge port through separate internal spaces. Injecting into the ground from the same external space through the tube discharge port, the hole diameter is 10 to 15 cm, the outer tube diameter is 5 to 10 cm, and the columnar penetration source formed by the external space is long. It is characterized by being able to rapidly consolidate large-capacity soil. The interval between the injection holes is preferably 2 to 4 m, whereby liquefaction prevention injection is performed.
さらにまた、上述の課題を解決するため、本発明の地盤注入工法によれば、改良すべき地盤に削孔を形成し、この削孔中に、外壁長手方向に間隔をあけて複数の袋パッカが設けられ、これら袋パッカは固結材を圧入して削孔壁内に食い込ませ、周辺土を圧密するように膨張され、互いに隣接する袋パッカ間にはゴムスリーブで覆われた少なくとも一つの外管吐出口を有する外管を挿入し、さらに外管中に内管を移動自在に挿入し、前記内管は外側長手方向に複数の膨縮パッカが間隔をあけて設けられて複数の噴出位置を形成し、かつ複数の噴出位置が少なくとも一個づつ、柱状管外空間に位置するように配置され、さらに内側に注入液を送液し、吐出口が各噴出位置に別々に位置する複数の注入液流路と、膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、さらにパッカ流路を通して複数の膨縮パッカに流体を送って膨張させ、隣接する膨縮パッカによって挟まれる内外管のすき間に管内空間を形成して構成され、かつ、外管の袋パッカには流体を注入して膨張させ、互いに隣接する袋パッカと削孔壁との間に管外空間を形成し、各噴出位置を管外空間に合致させ、吐出口から注入液を管内空間および外管吐出口を通し、管外空間を経て地盤中に注入し、前記削孔径を10〜15cmとし、前記外管径を5〜10cmとし、前記管外空間によって形成される柱状浸透源を長さ0.5〜2mとし、これにより大容量土の急速固結を可能とすることを特徴とする。注入孔間隔は好ましくは2〜4mとし、これにより液状化防止注入を行う。 Furthermore, in order to solve the above-described problem, according to the ground injection method of the present invention, a hole is formed in the ground to be improved, and a plurality of bag packers are formed in the hole with a space in the longitudinal direction of the outer wall. These bag packers are inflated to press the caking material into the drilled wall and consolidate the surrounding soil, and at least one of the bag packers adjacent to each other is covered with a rubber sleeve. An outer tube having an outer tube discharge port is inserted, and the inner tube is movably inserted into the outer tube. The inner tube is provided with a plurality of expansion / contraction packers at intervals in the outer longitudinal direction, and a plurality of ejections. And a plurality of ejection positions are arranged so as to be located in the space outside the columnar tube at least one by one, and the injection liquid is further fed to the inside, and a plurality of ejection openings are separately located at each ejection position. The fluid is sent to the infusate flow path and the expansion / contraction packer for expansion. Each is equipped with a packer flow path independently, and is further configured to send a fluid to a plurality of expansion / contraction packers through the packer flow path to expand them, thereby forming an internal space between the inner and outer pipes sandwiched between adjacent expansion / contraction packers. In addition, a fluid is injected into the bag packer of the outer pipe to inflate it to form an extra-tube space between the adjacent bag packer and the drilling wall. An injection solution is injected from the outlet through the inner space and the outer tube outlet, and injected into the ground through the outer space , the hole diameter is 10 to 15 cm, the outer tube diameter is 5 to 10 cm, and the outer space is The formed column penetration source has a length of 0.5 to 2 m, which enables rapid consolidation of large-capacity soil. The interval between the injection holes is preferably 2 to 4 m, whereby liquefaction prevention injection is performed.
本発明は図1に示されるように、独立した注入液流路からのA液、B液が管内空間で混合され、直ちに上下の膨縮パッカ間の管内空間を通して柱状管外空間に注入されるため、瞬結から長結までの任意の注入液を地盤中に注入できる。このため、上下の袋パッカを乗り越えて上下の管外空間に侵入しないように、ゲル化時間の短いグラウトを注入して逸脱しやすい部分を填充してのち、ゲル化時間の長いグラウトに切り換えることにより、広範囲に浸透注入が可能である。また、A液として数時間あるいは数十時間の長いゲル化時間の浸透性グラウト、例えば酸性シリカゾルグラウトを用い、注入中にこれが地表面に逸脱してきたら、直ちにB液として水ガラスをA液とともに注入すれば、A液の逸出部に至る流路が直ちに瞬結グラウトによって閉束される。この時点でB液の注入を停止することにより、A液のみによる広範囲浸透に切り換えることができる。 In the present invention, as shown in FIG. 1, the liquid A and the liquid B from independent injection liquid flow paths are mixed in the internal space and immediately injected into the columnar external space through the internal space between the upper and lower expansion / contraction packers. Therefore, it is possible to inject any injection solution from instantaneous setting to long setting into the ground. For this reason, in order not to get over the upper and lower bag packers and enter the upper and lower outer space of the tube, inject a grout with a short gel time and fill the part that tends to deviate, and then switch to a grout with a long gel time. Therefore, osmotic injection can be performed over a wide range. In addition, an osmotic grout with a long gelation time of several hours or several tens of hours, for example, acidic silica sol grout, is used as the liquid A, and when this deviates to the ground surface during the injection, water glass is immediately injected with the liquid A as the liquid B. Then, the flow path leading to the escape portion of the liquid A is immediately closed by the instantaneous grouting. By stopping the injection of the B liquid at this time, it is possible to switch to the wide penetration with only the A liquid.
このため、上下の袋パッカを比較的短くし、その間の空間の長さを長くすることにより、長尺の柱状管外空間の浸透源からゲル化時間の長いグラウトを水平方向に広範囲に浸透することが可能である。その理由は図10に示されるように、ゲル化時間の短いグラウトは地盤の粗い部分や弱い部分をさがし出しながら不規則に填充するため、ゲル化時間の長いグラウト透水係数が垂直方向より水平方向が大きいため、上下の透水性の大きい部分が閉束されていれば、水平方向に浸透しやすくなるためである。 For this reason, the upper and lower bag packers are made relatively short, and the length of the space between them is made longer, so that the grout having a long gelation time penetrates a wide range horizontally from the permeation source of the long columnar extra-tube space. It is possible. The reason for this is that, as shown in FIG. 10, the grout with a short gel time fills irregularly while searching for rough or weak portions of the ground, so the grout permeability coefficient with a long gel time is higher than the vertical direction in the horizontal direction. This is because if the upper and lower water-permeable portions are closed, it will be easier to penetrate in the horizontal direction.
さらに、上述の本発明は同じ注入液のA液およびB液を同時に注入した場合、二つの独立した注入液流路から一つないしは二つの噴出位置を通して同時に注入でき、注入工程が二倍以上に早まり、施工能率が二倍以上になる。(図2、図3参照)
ゲル化時間の異なるA液、B液を二つの噴出位置から、すなわち、二つの注入ステ−ジからそれぞれ同時に注入した場合、それぞれの注入液流路に独立して設置されている流量計、圧力計、注入ポンプで注入管理し、地盤条件や、注入目的に応じて最適の注入が可能である。この注入は地盤が複雑な層からなる場合に適している。この場合も施工速度が2倍になる。(図3)
さらに、粗い土層と細い土層が互層になっている地盤の場合、A液を懸濁型グラウトあるいはゲル化時間の短いグラウトとし、B液をゲル化時間の長い溶液型グラウトとし、粗い土層をA液で、細い土層をB液で、噴出位置を移動して注入ステージを変えながら注入し、(図2、図3)あるいはA液を注入した土層にB液を重ねて注入する。(図1、図2、図3)。これにより懸濁グラウトによる高強度の地盤改良を行うとともに、溶液型グラウトで土粒子間の浸透注入を行い、固結と止水の同時処理を行うことができる。
Furthermore, in the above-described present invention, when the same injection liquid A and liquid B are injected at the same time, the injection process can be simultaneously performed through one or two ejection positions from two independent injection liquid flow paths. The construction efficiency is more than doubled. (See Figures 2 and 3)
When liquid A and liquid B with different gelation times are injected simultaneously from two ejection positions, that is, from two injection stages, respectively, flow meters and pressures installed independently in the respective injection liquid flow paths The injection can be controlled with a meter and an injection pump, and optimal injection is possible according to the ground conditions and the purpose of injection. This injection is suitable when the ground consists of complex layers. In this case, the construction speed is doubled. (Figure 3)
Furthermore, in the case of a ground in which a rough soil layer and a thin soil layer are alternating layers, the liquid A is a suspension type grout or a grout with a short gelation time, and the liquid B is a solution type grout with a long gelation time. Layer A with liquid A, thin soil layer B with liquid, injecting while changing the injection stage (Figs. 2 and 3), or injecting B liquid over the soil layer into which A liquid has been injected To do. (Fig. 1, Fig. 2, Fig. 3). As a result, high-strength ground improvement by suspension grout can be performed, and permeation injection between soil particles can be performed by solution-type grout to perform simultaneous treatment of solidification and water stopping.
さらにまた、A液を水ガラス水溶液、B液を反応剤水溶液とし、同一ステージで、あるいは噴出位置を移動して注入ステージを移向することにより、A液を注入したステージにB液を注入して地盤中でA液、B液を反応させることができる。この場合、水ガラスと、反応剤としての塩化カルシウム液のように、高強度は得られるものの、瞬結のため浸透しにくいという欠点を解決した地盤改良が可能になる。すなわち、水ガラスをA液として地盤に浸透させ、この水ガラスが外部に流失しないうちに、すなわち、水ガラスが土粒子間の間隙に填充しているうちに、B液としての塩化カルシウム水溶液を重ねて注入することにより、水ガラスと塩化カルシウムが土粒子間で反応して広範囲に固結することができる。 Furthermore, the liquid A is a water glass aqueous solution and the liquid B is a reactant aqueous solution, and the liquid B is injected into the stage where the liquid A is injected by moving the injection position on the same stage or by moving the ejection position. The liquid A and liquid B can be reacted in the ground. In this case, as with water glass and calcium chloride solution as a reactant, although high strength can be obtained, the ground can be improved by solving the disadvantage that it is difficult to penetrate due to instantaneous setting. That is, the water glass is infiltrated into the ground as the A liquid, and while the water glass is not washed away to the outside, that is, while the water glass is filled in the gaps between the soil particles, the calcium chloride aqueous solution as the B liquid is added. By injecting repeatedly, water glass and calcium chloride can react between soil particles and solidify in a wide range.
このようにして、地盤条件や使用する注入液の注入目的に応じてA液、B液を同時に注入したり、交互に注入することができる。これはA液、B液が独立した注入液流路を通して吐出口から別々に注入できるため、注入工程が倍以上に早まるのみならず、地盤条件に応じて最適な注入が可能になる。 In this way, the A liquid and the B liquid can be injected simultaneously or alternately according to the ground conditions and the injection purpose of the injection liquid to be used. This is because the A liquid and the B liquid can be separately injected from the discharge port through independent injection liquid channels, so that the injection process is not only accelerated more than twice, but also optimal injection is possible according to the ground conditions.
さらに、本発明は上下に位置する注入ステージに上下の噴出位置から同時に注入することにより、上下の注入液が互いに拘束し合って、水平方向に均等に浸透する。(図2、図3、図7)。このため、所定の形状の浸透固結が可能になる。一ステージづつ注入すると、最初の注入ステージの注入が先行して隣接する注入ステージの受け持ち領域まで浸透して固結する。このため、隣接するステージに移向して注入する時点で注入が困難になり、あるいは注入の形状が不規則になり、所定の個所に所定の固結形状の注入が難しくなる。(図5)
さらにまた、本発明は隣接する上下の袋パッカの間に形成された大きな柱状管外空間から大きな吐出量で注入して土粒子間浸透を可能にする。大きな柱状管外空間、すなわち大きな柱状浸透源から注入する方が、大きな注入速度で注入しても単位浸透源からの浸透速度は低いので、土粒子間浸透が可能である。しかし、柱状管外空間の長さを長くすると、図5に示されるように、袋パッカをのり越えて注入液が上下の柱状管外空間の方に流入しやすい。この場合、流入した柱状管外空間はそこに内管を移動してもすでに柱状管外空間が閉塞されている。これを防ぐためには、図6に示されるように袋パッカの長さを長くし、かつ、柱状管外空間を短くする必要がある。この場合、点注入と同じになって球状浸透となり、大きな柱状浸透源からの柱状浸透は困難になる。これに対して、図7に示されるように、隣接する上下間の複数の空間から同時に注入すれば、柱状管外空間の長さが長くても注入液が水平方向に互いに拘束し合って平行に浸透し、上下に隣接する柱状浸透源に一方が流入して浸透を阻害することがない。
Furthermore, according to the present invention, the upper and lower injection solutions are constrained to each other and permeate evenly in the horizontal direction by simultaneously injecting the upper and lower injection stages from the upper and lower ejection positions. (FIG. 2, FIG. 3, FIG. 7). For this reason, the permeation consolidation of a predetermined shape is attained. When the injection is performed one stage at a time, the injection of the first injection stage precedes and penetrates to the area of the adjacent injection stage to be consolidated. For this reason, the injection becomes difficult at the time of transfer to the adjacent stage, or the shape of the injection becomes irregular, and it becomes difficult to inject a predetermined solidified shape at a predetermined location. (Fig. 5)
Furthermore, the present invention enables infiltration between soil particles by injecting with a large discharge amount from a large columnar outer space formed between adjacent upper and lower bag packers. In the case of injecting from a large columnar extra-tube space, that is, from a large columnar infiltration source, the infiltration rate from the unit infiltration source is low even if the injection is performed at a large injection rate, so that it is possible to infiltrate between soil particles. However, when the length of the columnar tube outer space is increased, as shown in FIG. 5, the injected liquid easily flows over the bag packer and flows into the upper and lower columnar tube outer spaces. In this case, the columnar extra-tube space is already closed even if the inner pipe is moved there. In order to prevent this, it is necessary to lengthen the length of the bag packer and shorten the space outside the columnar tube as shown in FIG. In this case, it becomes spherical penetration like the point injection, and columnar penetration from a large columnar penetration source becomes difficult. On the other hand, as shown in FIG. 7, if the injection is simultaneously performed from a plurality of adjacent upper and lower spaces, the injected solutions are constrained in parallel in the horizontal direction even if the length of the columnar extra-tube space is long. One of them does not flow into the columnar permeation source adjacent to the top and bottom, and the permeation is not hindered.
公知技術のように、パッカとしてゴムリングのパッカを用いたのでは、パッカ効果はゴムリングと外管の摩擦によるから、外管が土圧で変形すると、内管の上下の移動が不可能になる。このため、土圧が大きくなる注入深度の深い場合はもちろん、水平方向に注入管を設置して外管が変形しやすい場合も、内管の移動が困難になる。特にパッカが三段以上になるとゴムリングの摩擦が大きくなり過ぎて、上下の移動することが困難になる。これに対して、本発明のように流体によって膨脹する膨縮パッカでは、外管が変形しても流体を抜いて収縮することにより内管内に自由に移動できる。 If a rubber ring packer is used as a packer as in the known technology, the packer effect is due to the friction between the rubber ring and the outer tube, so if the outer tube is deformed by earth pressure, the inner tube cannot move up and down. Become. For this reason, it is difficult to move the inner pipe not only when the injection depth is deep, where the earth pressure increases, but also when the outer pipe is easily deformed by installing the injection pipe in the horizontal direction. In particular, when the packer has three or more stages, the friction of the rubber ring becomes too large and it becomes difficult to move up and down. On the other hand, in the expansion / contraction packer that is expanded by the fluid as in the present invention, even if the outer tube is deformed, it can be freely moved into the inner tube by removing the fluid and contracting.
特に本発明では膨縮パッカは重要である。例えば、図1に示されるように、ゲル化時間の短いグラウトをあらかじめ注入する場合、瞬結性グラウトの注入も必要となるが、従来のように、ゴムリングのパッカでは管内空間にゲル化物が詰まってしまい、次の注入ステージでの注入が困難になる。これに対して、膨縮パッカを用いれば、その注入ステージの注入が完了した時点でパッカを収縮することによりゲル化物が落下し、次のステージに移ってパッカを膨脹させれば完全な管内空間が形成される。また、内管を地上に抜き出すことなく、管内空間のゲルを洗い流すことができる。 In particular, the expansion / contraction packer is important in the present invention. For example, as shown in FIG. 1, when injecting a grout with a short gelation time in advance, it is also necessary to inject a quick-set grout. It becomes clogged and it becomes difficult to inject at the next injection stage. On the other hand, if an expansion / contraction packer is used, the gelled product falls by contracting the packer when the injection of the injection stage is completed, and if the packer is expanded by moving to the next stage, the complete internal space Is formed. Moreover, the gel in the space in the tube can be washed away without extracting the inner tube on the ground.
また、図1において、まず一方の注入液流路から水ガラス水溶液を地盤中に注入し、その後膨縮パッカを収縮すれば、水ガラスは下方に落下して管内空間には残っていないから、次にパッカを膨脹させてのち、同一ステージで塩化カルシウムを他方の注入液流路から注入すれば、管内空間で水ガラスと反応することなく地盤中ではじめて水ガラスと反応して固結する。このため、瞬結グラウトを用いて広範囲な柱状浸透が可能になる。 Also, in FIG. 1, firstly, by injecting a water glass aqueous solution into the ground from one of the injection liquid flow paths, and then contracting the expansion / contraction packer, the water glass falls downward and does not remain in the pipe space. Next, after expanding the packer and injecting calcium chloride from the other injection liquid flow path at the same stage, it reacts with the water glass and solidifies only in the ground without reacting with the water glass in the space inside the tube. For this reason, wide-ranging columnar penetration is possible using the instantaneous setting grout.
また、図2、図3において、一方の注入液流路からA液を、他方の注入液流路からB液を注入してのち、A液やB液と反応性のあるA1液、B1液をそれぞれ同一の流路から注入することができる。この場合、ゴムパッカでは、残存しているA液、B液と反応してしまう。これに対して、膨縮パッカを用いれば、A液、B液を注入後、膨縮パッカを収縮して内管を引き抜くことなく、そのまま流路に洗浄用水を流すことにより、残存のA、B液は洗浄水によって洗い流され、反応性を失う。その後、パッカを膨脹し、A1、B1液をそれぞれの流路から送液し、地盤中のA液、B液を注入した領域に重ね合わせて注入することができる。 2 and 3, the liquid A is injected from one injection liquid flow path, and the liquid B is injected from the other injection liquid flow path. Can be injected from the same flow path. In this case, the rubber packer reacts with the remaining A liquid and B liquid. On the other hand, if the expansion / contraction packer is used, after the A liquid and the B liquid are injected, the remaining A, Liquid B is washed away with washing water and loses reactivity. Thereafter, the packer is expanded, and the A1 and B1 liquids are fed from the respective flow paths, and can be injected in a superimposed manner on the areas of the ground where the A and B liquids are injected.
このような工程を同一ステージで行うこともできる。また、ステージを変化させながら上記A、B、A1、B1の4種類の注入液を地盤条件に応じて重ね合わせて注入することもできる。このような操作を行うことにより、袋パッカの長さを短くして長い柱状管外空間を設けても、注入液は袋パッカを乗り越えて上下の管外空間に注入することが防止され、広範囲に注入される。 Such a process can also be performed on the same stage. Further, the four types of injection liquids A, B, A1, and B1 can be superimposed and injected according to the ground conditions while changing the stage. By performing such an operation, even if the length of the bag packer is shortened to provide a long columnar extra-tube space, the injection solution is prevented from flowing over the bag packer and into the upper and lower extra-tube spaces. Injected into.
以下、本発明を添付図面を用いて詳述する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
図1、図2および図3はそれぞれ、本発明にかかる地盤注入装置の具体例を表した説明図である。図4(a)、図4(b)、図4(c)および図4(d)は本発明の地盤注入工法の工程図を表した説明図である。図5および図6は従来の注入装置の欠点を表した模型図であり、図7ならびに図10は本発明装置の利点を表した模型図である。図8は球状浸透の原理を表した模型図である。図9は球状浸透の原理を表した模型図である。図10本発明にかかる浸透の原理を表した模型図である。 1, FIG. 2, and FIG. 3 are explanatory views showing specific examples of the ground injection device according to the present invention. 4 (a), 4 (b), 4 (c) and 4 (d) are explanatory views showing process diagrams of the ground injection method of the present invention. 5 and 6 are model views showing the drawbacks of the conventional injection device, and FIGS. 7 and 10 are model views showing the advantages of the device of the present invention. FIG. 8 is a model diagram showing the principle of spherical infiltration. FIG. 9 is a model diagram showing the principle of spherical penetration. 10 is a model diagram showing the principle of penetration according to the present invention.
図1の地盤注入装置は外管7と、内管10とから基本的に構成される。内管10は通常、鋼管やホースで形成される。あるいは吐出口のある先端に近い部分が鋼管で形成され、それより上方の部分がホースで形成されてもよい。内管10内には流路が設けられ、一体化されて外管7内を上下することができる。外管7は地盤1の削孔2中に挿入され、外壁3の長手方向に間隔をあけて複数の袋パッカ4,4・・・4が設けられ、互いに隣接する袋パッカ4,4間には逆止弁として機能するゴムスリーブ16で覆われた少なくとも一つの外管吐出口17を有し、さらに、互いに隣接する袋パッカ4,4と削孔壁5との間に柱状管外空間6を形成する。なお、袋パッカ4は後述するように、外管吐出口17からゴムスリーブ16を経て内部に固結材を注入することにより膨脹し、袋パッカ4を形成する。
The ground injection device in FIG. 1 basically includes an
内管10は外管7内に移動自在に挿入され、長手方向に一対の膨縮パッカ8,8が間隔をあけて設けられて噴出位置9を形成する。さらに、内管10内には複数の注入液流路12およびパッカ流路13がそれぞれ独立して備えられる。注入液流路12は吐出口11がそれぞれ噴出位置9に位置し、A液およびB液をそれぞれ噴出位置9の吐出口11に送液する。
The
また、パッカ流路13はパッカ流路吐出口13aが膨縮パッカ8に位置し、膨縮パッカ8に連通してパッカ流体吐出口13aを通して膨縮パッカ8を膨脹させたり収縮させたりする。パッカ流体は空気、不活性気体、水等の流体であって、これを膨縮パッカ8に送って膨脹させ、一対の膨縮パッカ8,8を形成する。この結果、内外管7,10のすき間14には膨脹された一対の膨縮パッカ8,8によって挟まれた管内空間15が形成される。なお、18はA液貯槽、19はB液貯槽であって、これら貯槽18,19から内管10の注入液流路12に通じる導管23,23にはそれぞれ、ポンプ20、流量計21、圧力計22が配置される。
Further, the
このようにして構成される本発明装置は内管10の噴出位置9を柱状管外空間6に合わせ、吐出口11(A液は吐出口11a、B液は吐出口11b)から注入液を管内空間15、外管吐出口17を経て、ゴムスリーブ16を開き、さらに、柱状管外空間6を経て地盤1中に注入する。さらに、内管10を、例えば、上方に移動して噴出位置9を他の柱状管外空間6(図示せず)に合致させ、上述と同様にして吐出口11から注入液を管内空間15および柱状管外空間6を経て地盤1中に注入し、この注入を繰り返す。
The apparatus of the present invention configured as described above aligns the
図2は本発明にかかる他の地盤注入装置の断面図であって、この装置も図1と同様、外管7と、内管10とから基本的に構成される。外管7は図1と同様、地盤1の削孔2中に挿入され、外壁3の長手方向に間隔をあけて複数の袋パッカ4,4・・・4が設けられ、互いに隣接する上下の袋パッカ4,4間にはゴムスリーブ16で覆われた少なくとも二つの外管吐出口17を有し、さらに、互いに隣接する上下の袋パッカ4,4と削孔壁5との間に柱状管外空間6を形成する。
FIG. 2 is a cross-sectional view of another ground injection device according to the present invention, and this device is basically composed of an
内管10もまた、図1と同様、外管7内に移動自在に挿入され、長手方向に三個以上の膨縮パッカ8,8・・・8が間隔をあけて設けられて複数の噴出位置9、図2では二個の連続した噴出位置9,9を形成する。さらに、内管10には複数の注入液流路12およびパッカ流路13がそれぞれ独立して備えられる。注入液流路12は吐出口11がそれぞれ別々の噴出位置9,9に位置し、A液およびB液をそれぞれ別々の噴出位置9,9の吐出口11,11に送液する。
Similarly to FIG. 1, the
また、パッカ流路13は吐出口11aがそれぞれの膨縮パッカ8に位置し、空気、水等の流体を膨縮パッカ8に送って膨脹させ、三個以上の膨縮パッカ8を形成する。この結果、内外管7,8のすき間14には、互いに隣接する三個以上の膨縮パッカ8,8・・・8によって挟まれた二個以上の連続した管内空間15,15が形成される。
Further, the discharge passage 11a is located in each expansion /
このように構成される本発明装置は二個の連続した噴出位置9,9を共通した柱状管外空間6に合わせ、吐出口11から注入液をそれぞれ別々の管内空間15、外管吐出口17を経て、ゴムスリーブ16を開き、同じ柱状管外空間6を経て地盤1中に注入する。さらに、内管10を上方に移動して二個の連続した噴出位置9,9を他の柱状管外空間6(図示せず)に合致させ、同様にして注入を続ける。
The device of the present invention configured as described above aligns two
これにより柱状管外空間を大きくし、削孔壁の崩壊があっても、複数の吐出口から独立した流路を通してそれぞれ独立したポンプによって注入液が地盤中に圧入される。このため、崩壊砂を押し分けてそれぞれの分担領域に注入液が注入され、長尺の柱状浸透が可能になる。 As a result, the space outside the columnar tube is enlarged, and even if the drilling wall is collapsed, the injected liquid is pressed into the ground by independent pumps through the flow paths independent from the plurality of discharge ports. For this reason, the collapsed sand is pushed apart, and the injection solution is injected into each of the shared areas, thereby enabling long columnar penetration.
図2の注入装置は図1と同様の効果を奏する他、さらにこの装置を用いてゲル化時間の異なるA液、B液を連続する二つの噴出位置9,9からそれぞれ同時に注入した場合、それぞれの注入液流路12,12に独立して設置されている流量計21、圧力計22、注入ポンプ20で注入管理し、地盤条件や、注入目的に応じて最適の注入が可能である。
2 has the same effect as that of FIG. 1, and when the A liquid and the B liquid having different gelation times are simultaneously injected from the two
さらに、図2の注入装置を用い、粗い土層と細い土層が互層になっている地盤1に注入する場合、A液を懸濁型グラウトあるいはゲル化時間の短いグラウトとし、B液をゲル化時間の長い溶液型グラウトとし、粗い土層をA液で、細い土層をB液で、噴出位置9,9を移動して注入ステージを変えながら注入し、あるいはA液を注入した土層にB液を重ねて注入する。これにより、懸濁型グラウトによる高強度の地盤改良を行うとともに、溶液型グラウトで土粒子間浸透注入を行い、固結と止水の同時処理を行うことができる。 Furthermore, when injecting into the ground 1 in which the rough soil layer and the thin soil layer are alternately formed using the injection device of FIG. 2, the liquid A is a suspension type grout or a grout with a short gelation time, and the liquid B is a gel. A solution type grout with a long crystallization time, a rough soil layer with A liquid, a thin soil layer with B liquid, and injection while changing the injection stage by moving the ejection positions 9 and 9, or a soil layer into which A liquid was injected Inject B liquid in layers. Thereby, while performing the high intensity | strength ground improvement by suspension type grout, it can carry out the simultaneous process of solidification and water stop by performing the infiltration injection | pouring between soil particles with a solution type grout.
さらに、図2の注入装置を用い、水ガラスをA液として地盤1に浸透させ、これにB液としての塩化カルシウムを重ねて注入することにより、水ガラスと塩化カルシウムが土粒子間で反応して広範囲に固結することができる。A液、B液を同時に注入してもよくまた、膨縮パッカ8の作動を繰り返してA液、B液を別々に注入してもよく、さらに、ステージを移動しながらA液、B液を交互に注入し、地盤中で反応させてもよい。本発明は注入固定が2倍に早まって施工能率が2倍になるのみならず、流量計21、圧量計22、注入ポンプ20で注入管理して地盤条件や注入目的に応じて最適の注入が可能である。
Further, by using the injection apparatus of FIG. 2, water glass is infiltrated into the ground 1 as the A liquid, and calcium chloride as the B liquid is superposed and injected thereon, whereby the water glass and calcium chloride react between the soil particles. Can be consolidated in a wide range. Liquid A and liquid B may be injected at the same time, or the operation of the expansion /
図3は本発明にかかるさらに他の地盤注入装置の断面図であって、この装置も上述の図1,2の装置と同様、外管7と内管10とから基本的に構成される。外管7は図1,2と同様、地盤1の削孔2中に挿入され、外壁3の長手方向に間隔をあけて複数の袋パッカ4,4・・・4が設けられ、互いに隣接する上下の袋パッカ4,4間にはゴムスリーブ16で覆われた少なくとも一つの外管吐出口17を有し、さらに互いに隣接する上下の袋パッカ4,4と削孔壁5との間に柱状管外空間6を形成する。
内管10もまた図1,2と同様、外管7内に移動自在に挿入され、長手方向に複数の膨縮パッカ8,8・・・8が間隔をあけて設けられ、複数の噴出位置9,9・・・9、図3では隣接する袋パッカ4,4間にそれぞれ一個づつ、噴出位置9,9・・・9を形成する。すなわち、複数の噴出位置9,9・・・9は少なくとも一個づつ、柱状管外空間6に位置するように配置される。
FIG. 3 is a cross-sectional view of still another ground injection device according to the present invention, and this device is basically composed of an
The
さらに、内管10には複数の注入液流路12およびパッカ流路13がそれぞれ独立して備えられる。注入液流路12は吐出口11がそれぞれ別々の噴出位置9,9に位置し、A液およびB液をそれぞれ中間に袋パッカ4が介在した別々の噴出位置9,9の吐出口11,11に送液する。
Further, the
また、パッカ流路13は吐出口13aがそれぞれの膨縮パッカ8に位置し、空気、水、窒素などの不活性気体等の流体を膨縮パッカ8中に導入して膨縮パッカ8,8・・・8を形成する。この結果、内外管7,8のすき間14には、互いに隣接する複数の膨縮パッカ8,8・・・8によって挟まれた複数の管内空間15,15・・・15が形成される。
Further, the discharge passages 13a of the packer passages 13a are located in the respective expansion /
このように構成される本発明装置は各噴出位置9をそれぞれ別々の管外空間6に合わせ、それぞれの吐出口11から注入液を別々の管内空間15、外管吐出口17を経て、ゴムスリーブ16を押し開き、別々の管外空間6を経て地盤1中に注入する。さらに、内管10を上方に移動して各噴出位置9をそれぞれ別々の管外空間6(図示せず)に合致させ、同様にして注入を続ける。
The apparatus of the present invention configured as described above is adapted to align each
図3の注入装置は図1および図2と同様の効果を奏するほか、さらにこの装置を用いて上下に位置する注入ステージに上下の噴出位置9,9から同時に注入することにより、上下の注入液が互いに拘束し合って、水平方向に均等に浸透する。すなわち、管外空間6を長くしても、注入液が水平方向に互いに拘束し合って平行に浸透し、上下に隣接する柱状浸透源に一方が流入して浸透を阻害することが防止される。このため所定の形状の浸透固結が可能になる。
3 has the same effect as that of FIGS. 1 and 2, and the upper and lower injection liquids are simultaneously injected from the upper and
図4(a)乃至図4(d)は本発明の地盤注入工程を表した説明図であって、これを図1に示される地盤注入装置を用いて説明する。まず、図4(a)に示されるように、改良すべき地盤1に削孔2を形成する。この削孔に当っては、一般に知られた通常の削孔機が使用される。
4 (a) to 4 (d) are explanatory views showing the ground injection process of the present invention, and this will be described using the ground injection apparatus shown in FIG. First, as shown in FIG. 4A, a
次いで、図4(b)に示されるように、削孔2中に、外壁3の長手方向に間隔をあけて複数の袋パッカ4,4・・・4が設けられ、互いに隣接する袋パッカ4,4間にはゴムスリーブ16で覆われた少なくとも一つの外管吐出口17を有する外管7を挿入する。挿入時には袋パッカ4は膨脹されていないので、挿入は容易である。
Next, as shown in FIG. 4B, a plurality of
削孔2に挿入された外管7は図4(c)に示されるように、袋パッカ4内に外管吐出口17を通して固結材を圧入し、膨脹させてパッカ4を形成する。このとき、袋パッカ4は削孔壁5内に食い込んで周辺を圧密し、外管径よりも大きな土中パッカを形成する。、この結果、外管7は削孔2中に固定されるとともに、外管の引張強度が地盤中に付加されて地盤を補強する。
As shown in FIG. 4C, the
さらに、図4(d)に示されるように、外管7中に内管10を挿入する。内管10は外側長手方向に一対の膨縮パッカ8,8が間隔をあけて設けられて噴出位置9を形成し、かつ内側に注入液を送液し、吐出口11がそれぞれ噴出位置9に位置する複数の注入液流路12と、膨縮パッカ8に流体を送って膨張させるパッカ流路13とをそれぞれ独立して備え、さらにパッカ流路13を通して一対の膨縮パッカ8,8に流体を送って膨脹させ、一対の膨縮パッカ8,8によって挟まれるすき間14に管内空間15を形成して構成される。
Further, as shown in FIG. 4 (d), the
膨縮パッカ8が膨脹しているときには内管10は外管7内に固定され、膨縮パッカ8が縮んだときには内管10は外管7内で移動自在である。図4(d)は膨縮パッカ8が縮んで内管10が移動自在な状態を示す。内管10の噴出位置9を管外空間6に合わせ、吐出口11から注入液を管内空間15および外管吐出口17を通し、管外空間6を経て地盤1中に注入する。注入液流路12,12はそれぞれ図1と同様、A液貯槽18、B液貯槽19に別々に独立して連通され、ポンプ20の作動により、圧力計22、流量計21で調整されながら、最適の注入が行われる。図2および図3の注入装置も図1と同様である。
When the expansion /
本発明は特に、注入工程が二倍以上に早まるのみならず、地盤条件や注入目的に応じて最適の注入が可能であり、さらに柱状管外空間を長くしても注入液が水平方向に互いに拘束し合って平行に浸透するから、地盤注入技術分野での利用可能性は極めて高い。 In particular, the present invention not only accelerates the injection process more than twice, but also enables optimal injection according to the ground conditions and the purpose of injection. Because they are constrained and penetrate in parallel, the applicability in the field of ground injection technology is extremely high.
1 地盤
2 削孔
3 外壁
4 袋パッカ
5 削孔壁
6 柱状管外空間
7 外管
8 膨縮パッカ
9 噴出位置
10 内管
11 吐出口
12 注入液流路
13 パッカ流路
13a パッカ流体吐出口
14 すき間
15 管内空間
17 外管吐出口
DESCRIPTION OF SYMBOLS 1
9
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003346885A JP3919727B2 (en) | 2003-10-06 | 2003-10-06 | Ground injection device and ground injection method |
TW93123952A TWI260361B (en) | 2003-10-06 | 2004-08-10 | Ground grouting device and ground grouting construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003346885A JP3919727B2 (en) | 2003-10-06 | 2003-10-06 | Ground injection device and ground injection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005113444A JP2005113444A (en) | 2005-04-28 |
JP3919727B2 true JP3919727B2 (en) | 2007-05-30 |
Family
ID=34539660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003346885A Expired - Lifetime JP3919727B2 (en) | 2003-10-06 | 2003-10-06 | Ground injection device and ground injection method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3919727B2 (en) |
TW (1) | TWI260361B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101045727B1 (en) | 2010-04-13 | 2011-07-04 | (주)한토건설 | A multistaged equipment of pipe grouting by double packer system and its constructing method |
KR101259952B1 (en) | 2011-08-11 | 2013-05-02 | (주)동운엔지니어링 | Simply Pressurized Grouting Method Using Bi-liquid Foam |
KR101849145B1 (en) * | 2017-07-24 | 2018-04-16 | (주)전엔지니어링 | The ground reinforcement apparatus |
CN109209483B (en) * | 2018-10-11 | 2024-06-21 | 徐州中矿岩土技术股份有限公司 | Goaf grouting method and grouting device |
CN113107531B (en) * | 2021-05-20 | 2022-09-27 | 中铁四局集团第四工程有限公司 | Tunnel segment wall post-grouting method |
-
2003
- 2003-10-06 JP JP2003346885A patent/JP3919727B2/en not_active Expired - Lifetime
-
2004
- 2004-08-10 TW TW93123952A patent/TWI260361B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI260361B (en) | 2006-08-21 |
JP2005113444A (en) | 2005-04-28 |
TW200513576A (en) | 2005-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3275039B2 (en) | Ground injection device and construction method | |
JP4581013B2 (en) | Injection pipe device and ground injection method | |
JP4827109B1 (en) | Injection pipe device and ground injection method | |
JP4848553B2 (en) | Injection pipe device and injection method | |
CN110259383B (en) | Advancing drilling and grouting integrated device and using method | |
JP4097671B2 (en) | Ground injection method | |
KR100420502B1 (en) | Pouring pipe apparatus and the ground pouring method of construction | |
JP5942161B1 (en) | Ground injection method and ground injection device | |
JP4036303B2 (en) | Ground injection method | |
JP3919727B2 (en) | Ground injection device and ground injection method | |
JP3889408B2 (en) | Ground injection method and injection pipe device | |
JP4358207B2 (en) | Ground reinforcement method for excavated bottom | |
JP3919739B2 (en) | Ground injection device and ground injection method | |
JP6182804B1 (en) | Ground injection device and ground injection method | |
JP3386425B2 (en) | Injection pipe device and ground injection method | |
JP3449613B2 (en) | Ground injection method and its equipment | |
JP2006132301A (en) | Ground injector | |
JP3500464B2 (en) | Ground injection method | |
JP5870438B1 (en) | Ground injection method and ground injection device | |
JP2006312811A (en) | Grouting construction method | |
JP3961510B2 (en) | Ground injection method | |
JP4157531B2 (en) | Ground injection method | |
JP2000080640A (en) | Chemical injection method and injection device used therefor | |
WO2021064620A1 (en) | An injection lance | |
JPH089862B2 (en) | Chemical injection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060407 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060613 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060922 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3919727 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140223 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |