JP4036303B2 - Ground injection method - Google Patents

Ground injection method Download PDF

Info

Publication number
JP4036303B2
JP4036303B2 JP2004341933A JP2004341933A JP4036303B2 JP 4036303 B2 JP4036303 B2 JP 4036303B2 JP 2004341933 A JP2004341933 A JP 2004341933A JP 2004341933 A JP2004341933 A JP 2004341933A JP 4036303 B2 JP4036303 B2 JP 4036303B2
Authority
JP
Japan
Prior art keywords
injection
ground
pipe
tube
packer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004341933A
Other languages
Japanese (ja)
Other versions
JP2006152594A (en
Inventor
俊介 島田
由紀夫 志波
貫司 檜垣
俊介 川井
力 勝田
毅彦 鈴木
亮之祐 小泉
敬次郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2004341933A priority Critical patent/JP4036303B2/en
Publication of JP2006152594A publication Critical patent/JP2006152594A/en
Application granted granted Critical
Publication of JP4036303B2 publication Critical patent/JP4036303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は軟弱地盤等、漏水地盤等、液状化の恐れのある地盤、汚染地盤などの地盤注入工法に係り、特に、地盤注入を施し難い既設構造物下方の支持地盤、廃棄物処理場の底盤あるいは溜め池や貯水池下方等(以下、「構造物」という)の地盤注入工法に係り、詳細には、地盤注入を施し難い既設構造物下方の支持地盤を急速かつ確実に、かつ経済的に地盤注入し、地盤沈下や、地震時における地盤の液状化を未然に防止し得、さらに廃棄物処理場からの有害物質の溶出を防止し得、さらに溜め池や貯水地からの漏水を防止し得る地盤注入方法に関する。   The present invention relates to a method for injecting ground such as soft ground, water leaking ground, ground that may be liquefied, contaminated ground, etc. Or, it is related to the ground injection method below the reservoir or reservoir (hereinafter referred to as “structure”). Specifically, the support ground below the existing structure, which is difficult to perform ground injection, can be quickly and reliably grounded economically. Injecting can prevent land subsidence and liquefaction of the ground in the event of an earthquake, and also prevent the release of harmful substances from the waste disposal site, and also prevent leakage from reservoirs and reservoirs It relates to the ground injection method.

建造物基礎の液状化対策工では、従来、例えば図1に示されるように、構造物54の基礎下に水平方向にボーリングして複数の吐出口を有する注入外管を設置し、さらにその外管内に注入内管を挿入して外管吐出口から順次に地盤中に注入液を注入して地盤を固結する方法が用いられている。   In a conventional liquefaction countermeasure for a building foundation, for example, as shown in FIG. 1, for example, an injection outer pipe having a plurality of discharge ports bored horizontally below the foundation of the structure 54 is installed. A method is used in which an injection inner tube is inserted into the tube, an injection solution is injected into the ground sequentially from the outer tube discharge port, and the ground is consolidated.

液状化防止工は既設構造物直下の大容量土地盤改良となる場合が多く、このため、経済的に、かつ確実に地盤改良を行う必要がある。このためには、所定領域に確実に注入されなければならず、かつ、注入は低吐出速度で土粒子間浸透を行わなければならない。この場合、地盤改良には構造物下に屈曲と水平を任意に組み合わせて長距離の注入管を設置し、注入しなければならない。このため注入には長い時間を要し、かつ工期が長くなり、工事費が高くなる。これを防ぐためには注入管の削孔径を小さくし、注入操作を簡単にして施工能率を高めなければならない。このためには、一つの吐出口からは低吐出速度で注入して土粒子間浸透を図りながら、しかも、全体的には大吐出速度での注入を可能にして経済性の向上を計ることが考えられる。   In many cases, liquefaction prevention works are to improve large-capacity ground directly under existing structures. Therefore, it is necessary to improve the ground economically and reliably. For this purpose, it must be reliably injected into a predetermined region, and the injection must be performed between soil particles at a low discharge rate. In this case, in order to improve the ground, it is necessary to install a long-distance injection tube under any combination of bending and horizontal, and inject it. For this reason, injection takes a long time, and the construction period becomes long and the construction cost becomes high. In order to prevent this, it is necessary to reduce the hole diameter of the injection tube, simplify the injection operation, and increase the construction efficiency. For this purpose, it is possible to inject from a single discharge port at a low discharge rate to infiltrate between the soil particles, and overall, it is possible to inject at a high discharge rate to improve economic efficiency. Conceivable.

一般に、地盤は粒度や透水性の異なった層が互層になって形成されているため、地盤に注入管を挿入し、この注入管から注入液を通して地盤を固結する際、注入液は透水性の大きな層に逸脱してしまい、全体を均質に固結することができない。   In general, since the ground is composed of layers with different particle sizes and water permeability, when the injection pipe is inserted into the ground and the ground is consolidated through the injection liquid, the injection liquid is permeable to water. The entire layer cannot be consolidated uniformly.

そこで、この問題を解決する手段として図10(a)乃至(d)に示される工法が開発されている。これを詳述すると、まず、図10(a)に示されるように、地盤1をボーリングし、この中にケーシング2を挿入する。次いで、図10(b)に示されるようにケーシング2の中に外管3を挿入する。この外管3の管壁4には軸方向の異なる位置に複数の吐出口5、5・・5が所定の間隔をあけて開口され、これら吐出口5、5・・5はそれぞれゴムスリーブ6で覆われている。 Therefore, a construction method shown in FIGS. 10A to 10D has been developed as means for solving this problem. In detail this, first, as shown in FIG. 10 (a), the ground 1 and boring, inserts the casing 2 in this. Then inserted outer tube 3 into the casing 2 as shown in Figure 10 (b). A plurality of discharge ports 5, 5.. 5 are opened at predetermined intervals on the tube wall 4 of the outer tube 3 at different positions in the axial direction. The discharge ports 5, 5. Covered with.

さらに、ケーシング2にシールグラウト7を注入した後、図10(c)に示されるようにケーシング2を引き抜く。これにより外管3はシールグラウト7でシールされる。 Further, after injecting the sealed grout 7 to the casing 2, pulling the casing 2 as shown in Figure 10 (c). As a result, the outer tube 3 is sealed with the seal grout 7.

次に図10(d)に示されるように先端にストレーナ8、8・・8が穿設され、この上下にパッカ9、9が配置された内管10を外管3中に挿入し、この内管10の管路を通して注入液を注入すると、注入液は矢印のようにストレーナ8ならびに上下のパッカ9、9間に形成された空間11を経て、外管3の吐出口からゴムスリーブ6を押し拡げ、シールグラウト7を割ってそのステージ周辺の地盤1中に浸透する。 Next, as shown in FIG. 10 (d) , strainers 8, 8,... 8 are drilled at the tip, and the inner tube 10 in which the packers 9, 9 are arranged above and below is inserted into the outer tube 3. When the injection solution is injected through the conduit of the inner tube 10, the injection solution passes through the strainer 8 and the space 11 formed between the upper and lower packers 9 and 9 as indicated by the arrow, and passes through the rubber sleeve 6 from the discharge port of the outer tube 3. It spreads and breaks the seal grout 7 and penetrates into the ground 1 around the stage.

上述図10に示される工法では注入液はシールグラウト7の存在により外管3に沿って上下方向に逸脱することがなく、所定の注入深度毎に確実に浸透して固結する。また、削孔と外管埋設という工程と注入という工程のそれぞれ異なる工種をそれぞれ別々に行うことができるので作業が単純化できるという作業上の利点も有している。 In the construction method shown in FIG. 10 described above, the injected liquid does not deviate in the vertical direction along the outer tube 3 due to the presence of the seal grout 7, and reliably penetrates and solidifies at every predetermined injection depth. In addition, since the different types of work in the drilling and outer pipe embedding process and the injection process can be performed separately, there is also an operational advantage that the operation can be simplified.

しかし、上述の工法では内管10のパッカ9、9はリング状の硬質合成樹脂で形成されており、このような硬質パッカ9、9では注入深度が深くなると土圧によって外管が変形し、内管10の挿入あるいは引き上げが不能になる。また、パッカ9、9を軟質材料にするとパッカ効果が得られなくなる。このため、本出願人の特許第2772637号に示されるように、複数のパッカを有する内管を用いて複数の外管吐出口から同時に注入する方法も提案されているが、内管パッカとして硬質合成樹脂を用いており、上記問題は解決されていない。   However, in the construction method described above, the packers 9 and 9 of the inner tube 10 are formed of a ring-shaped hard synthetic resin. With such hard packers 9 and 9, the outer tube is deformed by earth pressure when the injection depth is deep, The inner tube 10 cannot be inserted or pulled up. If the packers 9 and 9 are made of a soft material, the packer effect cannot be obtained. For this reason, as shown in Japanese Patent No. 2772637 of the present applicant, a method of simultaneously injecting from a plurality of outer tube discharge ports using an inner tube having a plurality of packers has also been proposed. A synthetic resin is used, and the above problem has not been solved.

このため、硬質パッカの代わりに、特許第2814475号に示すエアパッカを用いる工法が開発されているが、この工法ではエアパッカの管路を内管内に形成しなくてはならないので、内管の径が大きくなる。したがって、外管の径も大きくなるのみならず、外管を挿入するボーリング孔も太くなり、経済性が低下し、作業工程も一つ増えるため、作業工程も一つ増え、施工が繁雑になる。   For this reason, a construction method using an air packer shown in Japanese Patent No. 2814475 has been developed instead of a hard packer. However, in this construction method, since the air packer pipe must be formed in the inner pipe, the diameter of the inner pipe is reduced. growing. Therefore, not only the diameter of the outer pipe is increased, but the bore hole for inserting the outer pipe is also thickened, the economy is reduced, and the number of work processes is increased. Therefore, the work process is increased and the construction is complicated. .

さらに、二重管ロッドの内管先端部にゴムの袋体を設け、外管と内管の二つの流路を通る主材と反応剤水溶液を混合させ、得られるゲル化時間の短いグラウトとゲル化時間の長いグラウトと吐出口位置を切り換え二重管ロッドを引き上げながら注入する工法も本出願人によって提案されている。(特公昭63−64567号公報参照。)   Furthermore, a rubber bag is provided at the tip of the inner tube of the double tube rod, the main material passing through the two channels of the outer tube and the inner tube and the aqueous solution of the reactant are mixed, and the resulting grout with a short gel time is obtained. The applicant has also proposed a construction method in which the grout having a long gelation time and the position of the discharge port are switched and the double tube rod is pulled up and injected. (See Japanese Patent Publication No. 63-64567.)

しかし、この方法はゲル化時間の異なるグラウトの切り換えが繁雑であり、かつ二重管ロッドを引き上げながら注入するため、ある注入深度での注入が不完全な場合、再注入して確実な注入効果を得ることは不可能である。また、多数の注入孔毎に、異なった種類の工程であるボーリング削孔工程と、注入工程を連続して行わなくてはならないため、作業の合理化が困難である。また、特開平7−71028および特開平8−226119には、注入管に袋体あるいはダンベル状の袋体からなるパッカを装着し、パッカ間の内管吐出口から外管吐出口を通して地盤に注入する工法が提案されている。しかし、いずれも袋体のパッカを膨らます流体はパッカ用の流路を通して圧入するものであって、内管吐出口から地盤中に注入される注入液の流路とは異なるものである。したがって、外管内に挿入する内管径は、それぞれ別々のパッカ用流路と注入液用流路からなるため太くなり、したがって、外管を埋設するための削孔径も大きくなり、経済性と作業性の点で問題がある。
特公昭63−64567号公報 特開平1−52910号公報 特許第2814475号 特開平7−71028号公報 特開平8−226119号公報
However, this method involves complicated switching of grouts with different gelation times, and the injection is performed while pulling up the double tube rod. Therefore, if injection at a certain injection depth is incomplete, reinjection ensures reliable injection effect. It is impossible to get. In addition, it is difficult to rationalize the operation because a boring hole drilling process and an injection process, which are different types of processes, must be successively performed for each of a large number of injection holes. Further, in JP-A-7-71028 and JP-A-8-226119, a packer consisting of a bag body or a dumbbell-shaped bag body is attached to the injection tube, and the inner tube discharge port between the packers is injected into the ground through the outer tube discharge port. A construction method has been proposed. However, in any case, the fluid that inflates the packer of the bag body is press-fitted through the flow path for the packer, and is different from the flow path of the injected liquid injected into the ground from the inner tube discharge port. Therefore, the inner pipe diameter to be inserted into the outer pipe becomes thicker because it is composed of separate packer flow path and injection liquid flow path, and therefore, the diameter of the hole for embedding the outer pipe is also increased. There is a problem in terms of sex.
Japanese Examined Patent Publication No. 63-64567 JP-A-1-52910 Japanese Patent No. 2814475 Japanese Patent Laid-Open No. 7-71028 JP-A-8-226119

解決しようとする課題は構造物下方の液状化防止工に際し、水平方向または屈曲してボーリングし、ボーリング孔内に設置した注入管から注入液を注入する地盤注入工法において、注入管の管径を小さくして構造を単純化することにより削孔径(ボーリング孔径)を小さくし、かつ作業性を向上させて経済性を得、さらに構造物下への長区間の注入を可能にし、さらには、地盤中に定着した外管内を内管が容易にパッカを形成しながら所定の注入ステージに移向し、これにより何回も繰り返し注入を可能にし、あるいは長尺の多数の注入ステージを同時注入して注入効果を確実にし、上述の公知技術に存する欠点を改良した地盤注入工法を提供することにある。 Upon liquefaction prevention Engineering challenges structure downwardly to be solved, and boring and horizontal or bent, in ground grouting method for injecting an injection fluid from an injection pipe which is installed in the borehole, the pipe diameter of the injection tube By reducing the size and simplifying the structure, the drilling hole diameter (boring hole diameter) is reduced, the workability is improved, the economy is obtained, and the long section can be injected under the structure. Inside the outer tube, the inner tube easily moves to a predetermined injection stage while forming a packer. This allows multiple injections to be repeated many times, or multiple long injection stages can be injected simultaneously. An object of the present invention is to provide a ground injection method that ensures the injection effect and improves the above-mentioned drawbacks of the known technology.

上述の課題を解決するため、本発明の地盤注入工法によれば、建造物下方の地盤に注入管を屈曲して、または水平に、または屈曲と水平を任意に組み合わせて設置し、この注入管を通して地盤中に注入液を注入する地盤注入工法において、前記注入管は軸方向の異なる位置に複数の外管吐出口を有する外管と、この外管内に遊挿され、複数の膨縮性内管パッカを前記外管吐出口をはさむように間隔をあけて備え、さらに、これら内管パッカ内にパッカ内吐出口を有し、かつ前記間隔をあけて備えられた内管パッカ間に内管吐出口を有する内管とを備えた注入管であって、先端に位置情報発信器を内蔵したボーリングロッドで削孔された削孔内に設置され、内管流路に注入液を送液することにより、前記膨縮性内管パッカを注入液の送液圧力によって膨張して複数の内管パッカ間に外管内空間を形成するとともに、この外管内空間内に内管吐出口から注入液を吐出し、注入液を外管内空間から外管吐出口を通して地盤中に注入することを特徴とする。   In order to solve the above-mentioned problems, according to the ground injection method of the present invention, the injection pipe is bent on the ground below the building, or installed horizontally, or any combination of bending and horizontal is installed. In the ground injection method for injecting an injection solution into the ground through the outer tube, the injection tube is loosely inserted into the outer tube and a plurality of inflatable / retractable inner tubes. A tube packer is provided with an interval so as to sandwich the outer tube discharge port, and further, an inner tube packer is provided in the inner tube packer, and an inner tube is provided between the inner tube packers provided with the interval. An injection tube having an inner tube having a discharge port, which is installed in a drilling hole drilled by a boring rod having a built-in position information transmitter at the tip, and sends the injection solution to the inner tube flow path Thus, the inflatable inner tube packer is adjusted to the liquid feeding pressure. The outer tube inner space is formed between a plurality of inner tube packers by expanding, and the injection solution is discharged from the inner tube discharge port into the outer tube inner space, and the injection solution is grounded from the outer tube inner space through the outer tube discharge port. It is characterized by being injected inside.

本発明の地盤注入工法では、注入管は先端に位置情報発信器を内蔵したボーリングロッドで削孔されたボーリング孔内に設置され、外管と、外管内に遊挿された内管からなり、この内管は内管パッカを膨張させるためのパッカ流体用管路を設けることなく、内管流路に送液される注入液の送液圧で内管パッカを膨張させ、パッカ流体用管路の設置を省略することにより内管径を小さくし、また、パッカ操作を省略しながら内管を外管内に自由に移向して所定のステージで注入し得、これにより構造物下の長大な地盤注入の経済性ならびに作業性を得るという効果を奏する。   In the ground injection method of the present invention, the injection pipe is installed in a boring hole drilled by a boring rod with a built-in position information transmitter at the tip, and consists of an outer pipe and an inner pipe loosely inserted in the outer pipe, This inner pipe expands the inner pipe packer with the feeding pressure of the injection liquid fed to the inner pipe flow path without providing a packer fluid pipe for expanding the inner pipe packer. The inner tube diameter can be reduced by omitting the installation of the inner tube, and the inner tube can be freely redirected into the outer tube and injected at a predetermined stage while omitting the packer operation. There is an effect of obtaining economic efficiency and workability of ground injection.

以下、本発明を添付図面を用いて詳述する。
図1は構造物下方の地盤注入例の基本図である。図2は本発明工法の一具体例の断面図である。図3は本発明工法の他の具体例の断面図である。図4は本発明工法のさらに他の具体例の断面図である。図5は本発明工法のパッカ機能の原理を説明するための説明図である。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a basic view of an example of ground injection below a structure. FIG. 2 is a cross-sectional view of a specific example of the method of the present invention. FIG. 3 is a cross-sectional view of another specific example of the method of the present invention. FIG. 4 is a sectional view of still another specific example of the method of the present invention. FIG. 5 is an explanatory diagram for explaining the principle of the packer function of the method of the present invention.

本発明は図1の基本図に示されるように、構造物54下方に深さ方向に、削孔23を複数本重ねるようにしてほぼ水平に形成し、この削孔23中に注入管(地盤注入管A)を挿入、設置し、この注入管Aを通して地盤1中に注入液を注入する。本発明工法に用いられる地盤注入管Aは具体的には例えば図2に示される。   In the present invention, as shown in the basic view of FIG. 1, a plurality of holes 23 are formed in a depth direction below the structure 54 in a depth direction so as to be substantially horizontal, and an injection pipe (ground) is formed in the hole 23. The injection tube A) is inserted and installed, and the injection solution is injected into the ground 1 through the injection tube A. Specifically, the ground injection pipe A used in the method of the present invention is shown in FIG.

図2において、本発明工法に用いられる地盤注入管Aは外管20と、内管21とから基本的に構成される。外管20は軸方向の異なる位置に複数の外管吐出口22を有し、地盤1中に形成された削孔23に挿入され、削孔壁24と外管20との間の削孔23中にシールグラウト25を填充して地盤1中に定着、設置される。外管吐出口22は図1に示されるように、ゴムスリーブ26で覆われる。このゴムスリーブ26は逆止弁として作用する。   In FIG. 2, the ground injection pipe A used in the method of the present invention is basically composed of an outer pipe 20 and an inner pipe 21. The outer tube 20 has a plurality of outer tube discharge ports 22 at different positions in the axial direction, is inserted into a hole 23 formed in the ground 1, and a hole 23 between the hole wall 24 and the outer tube 20. The seal grout 25 is filled in and fixed and installed in the ground 1. The outer tube discharge port 22 is covered with a rubber sleeve 26 as shown in FIG. The rubber sleeve 26 functions as a check valve.

内管21は外管20内に遊挿され、複数の膨縮性内管パッカ27、27・・27を締め金具28、28・・28によって外管吐出口22をはさむように間隔をあけて備える。さらに、内管21は内管パッカ27内にパッカ内吐出口29を有し、かつ間隔をあけて備えられた内管パッカ内27、27間に内管吐出口30を備える。   The inner tube 21 is loosely inserted into the outer tube 20, and a plurality of inflatable inner tube packers 27, 27... 27 are spaced apart so that the outer tube discharge port 22 is sandwiched by the fasteners 28, 28. Prepare. Further, the inner tube 21 has a packer discharge port 29 in the inner tube packer 27, and an inner tube discharge port 30 between the inner tube packers 27, 27 provided at intervals.

上述のように構成される本発明工法に用いられる地盤注入管Aは内管21の内管流路31に注入液を送液することにより、膨縮性内管パッカ27が注入液の送液圧力によって膨張して上下に隣接する複数の内管パッカ27、27間に外管内空間32が形成され、この外管内空間32には内管吐出口30から注入液が吐出され、注入液は外管内空間32から外管吐出口22を通し、ゴムスリーブ26を押し拡げ、かつシールグラウト25を割裂して地盤1中に注入される。次いで、内管パッカ27から填充物を排出して収縮の後、内管21を内管吐出口30が他の外管吐出口22と合致するまで移動し、同様にして注入を繰り返す。   The ground injection pipe A used in the construction method of the present invention configured as described above sends the injection liquid to the inner pipe flow path 31 of the inner pipe 21 so that the expandable inner pipe packer 27 supplies the injection liquid. An outer pipe inner space 32 is formed between a plurality of upper and lower inner pipe packers 27, 27 that are expanded by pressure, and an injection liquid is discharged from the inner pipe discharge port 30 into the outer pipe inner space 32. Through the outer tube discharge port 22 from the inner space 32, the rubber sleeve 26 is pushed and expanded, and the seal grout 25 is split and injected into the ground 1. Next, after the filling material is discharged from the inner tube packer 27 and contracted, the inner tube 21 is moved until the inner tube discharge port 30 coincides with the other outer tube discharge port 22, and injection is repeated in the same manner.

図3は本発明に用いられる注入管Aの他の具体例を示す断面図であって、外管20は外管吐出口22をはさむように複数の外管パッカ33、33・・33を備え、外管パッカ33内に外管パッカ内吐出口34を通して固結材を、ゴムスリーブ26を押し拡げて填充し、膨張させて地盤1中に定着、設置する。そして、内管流路31に注入液を送液することにより、膨縮性内管パッカ27が図2と同様、注入液の送液圧力によって膨張して左右に隣接する複数の内管パッカ27、27間に外管内空間32を形成する。注入液はさらに、内管吐出口30から外管内空間32および外管吐出口22を通して外管外空間35に吐出され、ここから地盤1中に注入される。さらに図2と同様にして内管21を移動し、注入を繰り返す。この外管空間35は大きな表面積を有する柱状の注入源となるので、多量の注入速度で注入しても、注入源の単位面積からの注入速度は小さいので、低圧で土粒子間注入でき、急速浸透注入が可能になる。   3 is a cross-sectional view showing another specific example of the injection tube A used in the present invention. The outer tube 20 includes a plurality of outer tube packers 33, 33,... 33 so as to sandwich the outer tube discharge port 22. Then, the solidified material is filled into the outer tube packer 33 through the discharge port 34 in the outer tube packer by expanding the rubber sleeve 26, expanded, fixed and installed in the ground 1. Then, the infusible inner tube packer 27 is expanded by the liquid feeding pressure of the infusate by feeding the injection solution into the inner tube flow path 31 and is adjacent to the left and right inner tube packers 27 as in FIG. 27, an outer tube inner space 32 is formed. The injected liquid is further discharged from the inner tube discharge port 30 to the outer tube outer space 35 through the outer tube inner space 32 and the outer tube discharge port 22, and is injected into the ground 1 from here. Further, the inner tube 21 is moved in the same manner as in FIG. 2, and the injection is repeated. Since this outer tube space 35 becomes a columnar injection source having a large surface area, even if it is injected at a large injection rate, since the injection rate from the unit area of the injection source is low, it can be injected between soil particles at a low pressure, and it can be rapidly injected. Osmotic injection is possible.

また、上記外管パッカは透水性袋体からなり、パッカ内に固結材を圧入することによって、削孔径よりも大きな径に膨張するに充分な直径を有することが好ましい。特に、本発明の適用の対象となる液状化の危険のある地盤はルーズな細砂の滞積層であって、透水性が垂直方向よりも横方向の方が大きい。このため、注入液は水平方向に広く拡がりやすい。これを防いで横方向のステージ毎に所定の注入を行うには、外管パッカを土中に押し広げて孔壁よりも大きなパッカを形成することが望ましい。このようにすれば、パッカのまわりの土が周辺に圧蜜され、かつ固結材の一部が透水性袋体から周辺にしみ出して実際の袋体で形成されたパッカよりもさらに大きなパッカが土中に形成される。このため、注入液は横方向に無制限に逸脱することなく、所定のステージ毎に所定の注入量に対応した固結体が形成される。   The outer tube packer is preferably made of a water-permeable bag and has a diameter sufficient to expand to a diameter larger than the hole diameter by press-fitting a consolidated material into the packer. In particular, the ground subject to application of the present invention that has a risk of liquefaction is a loose layer of fine sand, and its water permeability is greater in the lateral direction than in the vertical direction. For this reason, the injection solution is likely to spread widely in the horizontal direction. In order to prevent this and perform predetermined injection for each stage in the lateral direction, it is desirable to spread the outer tube packer into the soil to form a packer larger than the hole wall. In this way, the soil around the packer is crushed to the periphery, and a part of the consolidated material oozes out from the water-permeable bag body to the periphery, and the packer is larger than the packer formed by the actual bag body. Is formed in the soil. For this reason, a solidified body corresponding to a predetermined injection amount is formed for each predetermined stage without the injection liquid deviating in the lateral direction without limitation.

さらに、本発明では、ボーリングロッドによる削孔の際に、孔壁保持材を含有する削孔液を用いて削孔することが望ましい。孔壁保持材としては、CMCやPVA等、高分子系材料が適している。もちろん、これらにさらにベントナイトを混入することもできる。これらは潤滑材でもあり、横方向ボーリングの際に削孔作業を容易にするのみならず、ボーリングロッドを引き抜くに当って、垂直方向の土圧が作用しても、孔壁が保持される。このため、引き抜きが容易になるのみならず、横方向の削孔壁が注入するまでに崩壊して注入が困難になるという問題を解決し、注入孔壁が高分子材の粘着力によって保持されて注入が容易になる。 Furthermore, in the present invention, it is desirable to drill using a drilling liquid containing a hole wall holding material when drilling with a boring rod. A polymer material such as CMC or PVA is suitable as the hole wall holding material. Of course, bentonite can also be mixed in these. These are also lubricants, which not only facilitate the drilling operation in the horizontal boring, but also hold the hole wall even when vertical earth pressure is applied when the boring rod is pulled out. This not only facilitates drawing, but also solves the problem that the horizontal drilling wall collapses by the time it is injected, making injection difficult, and the injection hole wall is held by the adhesive force of the polymer material. Injection becomes easier.

図4は本発明に用いられる注入管Aのさらに他の具体例の断面図であって、内管21が三個以上の膨縮性内管パッカ27、27・・27を備え、外管内空間32を複数形成した例である。この場合、複数の外管吐出口22、22・・22から注入液を同時に地盤1中に注入することができる。これにより、複数の注入ステージを同時に注入し得、長尺の注入区間の急速施工が可能である。すなわち、本発明は注入液自体でパッカを形成するため、多数のパッカを内管に形成でき、このため多数の外管吐出口から同時に注入することが可能である。   FIG. 4 is a cross-sectional view of still another specific example of the injection tube A used in the present invention. The inner tube 21 is provided with three or more inflatable inner tube packers 27, 27,. This is an example in which a plurality of 32 are formed. In this case, the injection solution can be simultaneously injected into the ground 1 from the plurality of outer tube discharge ports 22, 22. Thereby, a several injection | pouring stage can be inject | poured simultaneously and rapid construction of a long injection | pouring area is possible. That is, in the present invention, the packer is formed by the injection solution itself, so that a large number of packers can be formed in the inner tube, and therefore, it is possible to inject simultaneously from a large number of outer tube discharge ports.

なお、本発明において、内管流路31は図6に示すように、内管21を複数本備えることにより複数本設けることもできる。この場合、各内管吐出口30、30・・30はそれぞれ異なる外管内空間32に開口するようにする。すなわち、本発明は注入液自体でパッカを形成するため、複数の注入管路を有する内管による同時注入が可能である。これにより、複数の注入ステージを同時に注入して長尺の注入区間の急速施工が可能であるのみならず、浸透性や強度の異なる注入材を土層の状態に合わせて注入でき、かつ主材を注入した注入ステージに反応剤を重ね合わせて注入することもでき、あるいは懸濁液を注入した領域に溶液型グラウトを重ね合わせて注入することもできる。このとき、図示しないが、複数の内管吐出口を同一の外管内空間に開口させておけば、2種類の注入液、たとえば主剤配合液(A液)と反応剤配合液(B液)が外管内空間で混合され、この混合液が外管吐出口から地盤に注入することになる。なお、複数の内管は並列管でもよく、多重管でもよい。   In the present invention, as shown in FIG. 6, a plurality of inner pipe flow paths 31 can be provided by providing a plurality of inner pipes 21. In this case, the inner tube discharge ports 30, 30... 30 are opened to different outer tube inner spaces 32. That is, since the present invention forms a packer with the injection solution itself, simultaneous injection by an inner pipe having a plurality of injection pipes is possible. As a result, not only can multiple injection stages be injected at the same time to enable rapid construction of long injection sections, but also injection materials with different permeability and strength can be injected according to the state of the soil layer, and the main material It is also possible to superimpose and inject the reactant on the injection stage in which the solution is injected, or to inject the solution type grout on the region where the suspension is injected. At this time, although not shown, if a plurality of inner pipe discharge ports are opened in the same outer pipe inner space, two types of injection liquids, for example, a main ingredient compounding liquid (A liquid) and a reactant compounding liquid (B liquid) can be obtained. The mixture is mixed in the inner space of the outer tube, and this mixed solution is injected into the ground from the outlet of the outer tube. The plurality of inner pipes may be parallel pipes or multiple pipes.

さらに、内管吐出口30は次の(a)および(c)のいずれかを満たすように形成される。
(a)内管吐出口30を細孔に形成する。この状態を図7(a)に示す。
この細孔は内管21に直接所定の孔径で穿孔してもよいが、あらかじめ所定の径の細孔を穿設した摩耗しにくい金属製チップ(図示せず)を内管吐出口30に、取りはずし自在に螺着することが好ましい。この場合、注入液の噴射圧によってチップの細孔が摩耗し、径が大きくなった時点で新しいチップに取り換えることができるので、注入液の常に正確な吐出速度を保持することができる。
(b)内管吐出口30を内管パッカ内吐出口29よりも細孔に形成する。この状態を図7(a)、(b)に示す。
(c)内管吐出口30の面積を内管流路31の断面積よりも小さく形成する。この状態を図7(a)、(b)に示す。
Furthermore, the inner pipe discharge port 30 is formed so as to satisfy one of the following (a) and (c).
(A) The inner pipe discharge port 30 is formed in a fine hole. This state is shown in FIG.
These pores may be directly drilled into the inner tube 21 with a predetermined hole diameter, but a wear-resistant metal tip (not shown) previously drilled with a pore with a predetermined diameter is provided in the inner tube discharge port 30. It is preferable that the screw is detachably attached. In this case, since the pores of the tip are worn by the injection pressure of the injection solution and can be replaced with a new tip when the diameter becomes large, an accurate discharge speed of the injection solution can always be maintained.
(B) The inner tube discharge port 30 is formed in a smaller pore than the inner tube packer discharge port 29. This state is shown in FIGS. 7 (a) and 7 (b).
(C) The area of the inner pipe discharge port 30 is formed smaller than the cross-sectional area of the inner pipe flow path 31. This state is shown in FIGS. 7 (a) and 7 (b).

なお、内管吐出口30は図7(c)に示されるように、ゴムスリーブ26などの抵抗体で覆うか、図7(d)に示されるように、逆止弁50を取り付ける。逆止弁50は内管吐出口30に外側からボール51を当てがい、このボール51をバネ52で押えつけるように構成される。   The inner pipe discharge port 30 is covered with a resistor such as a rubber sleeve 26 as shown in FIG. 7 (c), or a check valve 50 is attached as shown in FIG. 7 (d). The check valve 50 is configured such that a ball 51 is applied to the inner pipe discharge port 30 from the outside, and the ball 51 is pressed by a spring 52.

さらに、内管流路31には図5に示されるように、脱圧装置44を設けることができる。また、内管21は図8に示されるように、フレキシブルジョイントで連結して形成してもよい。図8において、図8(a)は一本の内管をフレキシブルジョイントで連結した例であり、図8(b)は複数本の内管をフレキシブルジョイントで連結した例である。   Furthermore, as shown in FIG. 5, a decompression device 44 can be provided in the inner pipe flow path 31. Further, as shown in FIG. 8, the inner tube 21 may be formed by connecting with a flexible joint. 8A is an example in which one inner pipe is connected by a flexible joint, and FIG. 8B is an example in which a plurality of inner pipes are connected by a flexible joint.

内管パッカ27は不透水性で弾力性に富んだ合成ゴムの袋体で形成される。したがって、内管パッカ27内に注入液による内圧が作用すると、内管パッカ27は膨張して外管20の内壁に密着し、パッカを形成する。しかし、注入液の送液を中止したり、あるいは注入液の圧力を図8に示すような内管流路31に設けられた脱圧装置44により減圧すると、パッカ27の弾性によって収縮し、外管20の内壁から離れる。したがって、所定ステージで所定量の注入を完了したのち、直ちに次の注入ステージに移向できる。脱圧装置44は注入ポンプより下流側にあればよく、図中の三方コック等、バルブだけでもよい。内管の加圧された注入液はバルブが開けば外部に排出されて、内管パッカは収縮する。さらに、吸水ポンプで内管内の注入液を吸い上げてしまえば、注入ステージを移向する際に、内管内の注入液が外管内に漏出するのを最小限におさえることができる。   The inner pipe packer 27 is formed of a synthetic rubber bag body which is impermeable and rich in elasticity. Therefore, when the internal pressure due to the injected liquid acts on the inner tube packer 27, the inner tube packer 27 expands and comes into close contact with the inner wall of the outer tube 20 to form a packer. However, when the feeding of the injected liquid is stopped or the pressure of the injected liquid is reduced by the depressurizing device 44 provided in the inner pipe flow path 31 as shown in FIG. Move away from the inner wall of the tube 20. Therefore, it is possible to immediately move to the next injection stage after completing a predetermined amount of injection at a predetermined stage. The depressurization device 44 only needs to be downstream from the infusion pump, and may be only a valve such as a three-way cock in the figure. When the valve is opened, the injected liquid pressurized in the inner pipe is discharged to the outside, and the inner pipe packer contracts. Furthermore, if the injection liquid in the inner pipe is sucked up by the water absorption pump, it is possible to minimize the leakage of the injection liquid in the inner pipe into the outer pipe when moving the injection stage.

注入深度が大きくなったり、水平方向の注入管設置長が長くなると、外管20は土圧によって変形する。したがって、内管21の挿入や移動が困難になる。しかし、図8(a)、図8(b)に示されるように内管21の所定の位置に合成ゴムのホース状フレキシブルジョイント53を設けることにより、内管21は外管20の変形に対応して外管20内を移向し得る。また、内管パッカ27はゴムパッカであって、所定のステージでの注入完了時に収縮する。このため、内管21は容易に外管21内で移向できる。さらに、従来のようなエアパッカが不用なため、内管21の径を細くすることができ、この点からも外管の変形に順応する。また、本発明において、内管は硬質パイプで形成してもよいが、内管吐出口が存在する範囲よりも手前側の内管をホースで形成することにより、捲取装置つきの昇降装置で自由に外管内を移動することが可能である。   When the injection depth is increased or the horizontal length of the injection pipe is increased, the outer pipe 20 is deformed by earth pressure. Therefore, it becomes difficult to insert and move the inner tube 21. However, by providing a synthetic rubber hose-like flexible joint 53 at a predetermined position of the inner tube 21 as shown in FIGS. 8A and 8B, the inner tube 21 can cope with the deformation of the outer tube 20. Then, the inside of the outer tube 20 can be turned. Further, the inner tube packer 27 is a rubber packer and contracts upon completion of injection at a predetermined stage. For this reason, the inner tube 21 can be easily transferred within the outer tube 21. Furthermore, since the conventional air packer is unnecessary, the diameter of the inner tube 21 can be reduced, and from this point, the outer tube can be adapted to deformation. In the present invention, the inner pipe may be formed of a hard pipe, but by forming the inner pipe with a hose on the near side from the range where the inner pipe discharge port exists, it is free with a lifting device with a scraper. It is possible to move in the outer tube.

本発明の内管パッカ27は弾力性のある不透水性袋体であって、通常、合成ゴムが用いられる。これは内管21の内圧が作用しない時点では、筒状、好ましくは円筒状を呈し、パッカ内吐出口29が内部に位置するように両端を内管21に緊結し、水密性を保って形成される。このため、内管21を外管20内にスムーズに移向できる。なお、図2〜10における内管パッカ27は注入液の内管内圧力で袋体が膨張して外管20の内壁に密着した状態を示す。   The inner tube packer 27 of the present invention is an impermeable bag body having elasticity, and synthetic rubber is usually used. When the internal pressure of the inner tube 21 does not act, this is formed into a cylindrical shape, preferably a cylindrical shape, and both ends are tightly connected to the inner tube 21 so that the discharge outlet 29 in the packer is located inside, and watertightness is maintained. Is done. For this reason, the inner tube 21 can be smoothly transferred into the outer tube 20. The inner tube packer 27 in FIGS. 2 to 10 shows a state in which the bag body is inflated by the inner tube inner pressure of the injected liquid and is in close contact with the inner wall of the outer tube 20.

本発明に使用される注入材は内管パッカ27内でゲル化すると、パッカが機能しなくなるため、ゲル化時間が長く、かつ詰まりにくい材料が望ましい。したがって、気中のゲル化時間が土中のゲル化時間よりも長いものが良い。このような注入材は土中に注入した注入液がゲル化したあとでも、内管流路や内管パッカ中ではゲル化が生じておらず、このため所定ステージで所定量注入後、次の注入ステージに移向して注入するまで、パッカの収縮、膨張を繰り返してパッカ機能を継続することができる。この種の注入材としては、水ガラスのアルカリを酸で除去した非アルカリ性水ガラスグラウト、あるいは水ガラスをイオン交換樹脂や、イオン交換膜で脱アルカリして得られた活性シリカを主材とするグラウトが挙げられる。これらのグラウトは気中で10時間以上のゲル化時間を有するが、土中では数時間のゲル化時間を保持する。したがって、これらの注入液は長時間、広範囲の注入を可能とする。もちろん、注入時間が短い場合はゲル化時間が1時間以上のアルカリ系水ガラスグラウトも用いることができる。   When the injection material used in the present invention is gelled in the inner tube packer 27, the packer will not function. Therefore, a material that has a long gelation time and is difficult to clog is desirable. Accordingly, it is preferable that the gelation time in the air is longer than the gelation time in the soil. Such an injection material does not cause gelation in the inner pipe flow path or the inner pipe packer even after the injection solution injected into the soil has gelled. The packer function can be continued by repeatedly contracting and expanding the packer until it is transferred to the injection stage and injected. As this type of injection material, the main material is non-alkaline water glass grout obtained by removing the alkali of water glass with an acid, or active silica obtained by dealkalizing water glass with an ion exchange resin or ion exchange membrane. Grout. These grouts have a gel time of 10 hours or more in the air, but retain a gel time of several hours in the soil. Therefore, these injection solutions enable a wide range of injections for a long time. Of course, when the injection time is short, an alkaline water glass grout having a gel time of 1 hour or longer can also be used.

上述の注入材のうち、非アルカリ性水ガラスグラウトや活性シリカグラウトは溶液型であるため内管パッカ27内に詰まる心配がないのみならず、アルカリ分を含まないため粘性が低く、かつ内管パッカ27中にシリカのゲルを生じにくい。また、液状化対策を必要とする地盤は貝殻等のカルシウムを含むことが多く、弱アルカリ性を呈する。したがって、上述グラウトは地盤中でPHが上昇してゲル化が促進される。このため、地盤中におけるゲル化時間よりも注入管内から地上部におけるゲル化時間が長い。したがって、地盤中に注入している間に注入管の内管パッカ27中でゲル化する心配はない。このため、本発明の対象とする注入条件下、すなわち、建造物下を数十メートル、あるいは数百メートルの長距離に注入管を設置して数時間、あるいは十時間以上の長時間、注入し続ける注入条件下において、特に、非アルカリ性水ガラスグラウトと活性シリカグラウトは本発明工法の実施を可能ならしめ、本発明において優れた注入材ということができる。   Of the above-mentioned injection materials, non-alkaline water glass grout and activated silica grout are solution-type, so that they do not have to worry about clogging in the inner tube packer 27. 27 hardly produces a silica gel. In addition, the ground requiring countermeasures against liquefaction often contains calcium such as shells and exhibits weak alkalinity. Therefore, the above-mentioned grout promotes gelation by raising the pH in the ground. For this reason, the gelation time in the above-ground part from the injection tube is longer than the gelation time in the ground. Therefore, there is no fear of gelation in the inner tube packer 27 of the injection tube while injecting into the ground. For this reason, injection is performed for a long time of several hours, or more than ten hours by installing an injection tube at a long distance of several tens of meters or several hundreds of meters under the injection conditions targeted by the present invention. Under the continuing injection conditions, in particular, non-alkaline water glass grout and activated silica grout make it possible to carry out the method of the present invention and can be said to be excellent injection materials in the present invention.

ここで、本発明にかかるパッカ機能の基本原理を図5を用いて説明する。図5は外管20およびその中に遊挿された内管21を備えた実験装置の説明図であって、吐出バルブ37を閉じて外管20と、内管21と、内管パッカ27と、外管内空間35と、外管吐出口22とからなる本発明装置の最小単位に関して圧力の関係を説明する。   Here, the basic principle of the packer function according to the present invention will be described with reference to FIG. FIG. 5 is an explanatory view of an experimental apparatus provided with an outer tube 20 and an inner tube 21 loosely inserted therein. The discharge valve 37 is closed and the outer tube 20, the inner tube 21, the inner tube packer 27, The relationship of the pressure with respect to the minimum unit of the device of the present invention comprising the outer pipe inner space 35 and the outer pipe discharge port 22 will be described.

まず、内管21の内管流路31から注入液を圧力Pおよび流量Fで送液する。圧力Pは圧力計38により、流量Fは流量計39によりそれぞれ測定される。内管21と膨張性の内管パッカ27は内管パッカ内吐出口29を通じて連通しており、内管パッカ27は膨張する。この内圧は注入液の圧力Pと同じである。 First, the injection solution is sent from the inner tube flow path 31 of the inner tube 21 at the pressure P 0 and the flow rate F 0 . The pressure P 0 is measured by a pressure gauge 38, and the flow rate F 0 is measured by a flow meter 39. The inner tube 21 and the expandable inner tube packer 27 communicate with each other through the inner tube packer outlet 29, and the inner tube packer 27 expands. This internal pressure is the same as the pressure P 0 of the injected liquid.

一方、外管20の外管吐出口22には流量圧力調整装置40が備えられる。この装置40の圧力調整弁41を開放しておけば、外管内空間32の圧力Pは空間32が外部に開放された状態にあるから、当然Pよりも低くなる。このときの圧力および流量は流量圧力調整装置40の圧力計42および流量計43で測定される。したがって、内管21内に注入液の送液圧力が加わっている限り、内管パッカ27は膨張してパッカとして形成され、内吐出口30から吐出された注入液は外管内空間32を経て外管吐出口22から外部に吐出される。 On the other hand, a flow pressure adjusting device 40 is provided at the outer tube discharge port 22 of the outer tube 20. If the pressure regulating valve 41 of the device 40 is opened, the pressure P 1 in the outer pipe inner space 32 is naturally lower than P 0 because the space 32 is open to the outside. The pressure and flow rate at this time are measured by the pressure gauge 42 and the flow meter 43 of the flow rate pressure adjusting device 40. Accordingly, the inner tube packer 27 is expanded and formed as a packer as long as the feeding pressure of the injected solution is applied to the inner tube 21, and the injected solution discharged from the inner discharge port 30 flows outside through the outer tube inner space 32. It is discharged outside from the tube discharge port 22.

圧力調整弁41を徐々に閉じてその開口度を低くすると、圧力計42の圧力は上昇する(P11)。この際、送液流量Fを同一にすると、内管圧力Pは圧力Pよりも高くなる。この場合、圧力P11は地盤の浸透抵抗圧に相当する。しかし、地盤に注入が行われている限り、圧力Pは圧力P11よりも高いわけであるから、当然、内管パッカ27内圧力は圧力Pとなって、外管内空間32内の圧力P11よりも高く維持されるので注入が継続することになる。 When the pressure regulating valve 41 is gradually closed to lower its opening degree, the pressure of the pressure gauge 42 increases (P 11 ). At this time, if the liquid feeding flow rate F 0 is the same, the inner pipe pressure P 1 becomes higher than the pressure P 0 . In this case, the pressure P 11 is equivalent to the osmotic resistance pressure of the ground. However, as long as injection is performed in the ground, the pressure P 1 is higher than the pressure P 11 , and naturally, the pressure in the inner tube packer 27 becomes the pressure P 1 and the pressure in the outer tube inner space 32. since it is maintained higher than the P 11 so that the injection continues.

しかるに、内管21内の注入液が内管吐出口30から出て、外管吐出22を経て地盤に注入されるまでの間に内管パッカ27が膨張し、内管パッカ27が形成される前は外管内空間32が充分形成されないので、注入液が外管内空間32を横方向に移動してしまうので、外管内を注入液が移動し、不特定の外管吐出口22から地盤中に注入されることになるので、所定の注入領域に注入されず、好ましくない。このため、内管吐出口30から外管内空間32に吐出される時点ですでに内管パッカ27が形成されていることが好ましい。そのためには内管21からの吐出に際して、加圧状態になっていることが好ましい。すなわち初期圧が生じていることが望ましい。   However, the inner tube packer 27 is formed until the injected liquid in the inner tube 21 comes out from the inner tube discharge port 30 and is injected into the ground through the outer tube discharge 22. Since the outer tube inner space 32 is not sufficiently formed before, the injected liquid moves in the outer tube inner space 32 in the lateral direction, so that the injected solution moves in the outer tube and enters the ground from the unspecified outer tube discharge port 22. Since it is injected, it is not preferable because it is not injected into a predetermined injection region. For this reason, it is preferable that the inner tube packer 27 has already been formed at the time of discharge from the inner tube discharge port 30 to the outer tube inner space 32. For that purpose, it is preferable to be in a pressurized state when discharging from the inner tube 21. That is, it is desirable that an initial pressure is generated.

初期圧とは空気中で注入液を吐出口から吐出した時に生じる管内圧を言う。普通、1ステージ当たりの注入、すなわち、上下のパッカ間の1注入区間は区間長にもよるが、通常は0.5m〜4mとして、注入速度は2〜50リットル/分で行われるが、そのような注入速度に対して内管パッカの材質にもよるが、通常、初期圧が0.1kgf/cm以上、好ましく、1kgf/cm以上である。その場合、内管吐出口から注入液が吐出する際に内管パッカがすでに膨張している。また、図5における送液圧は1〜50kgf/cmが好ましい。 The initial pressure refers to the pressure inside the tube that is generated when the injected liquid is discharged from the discharge port in the air. Usually, the injection per stage, that is, one injection section between the upper and lower packers, although it depends on the section length, is usually 0.5m-4m, and the injection speed is 2-50 liters / minute, depending on the material of the inner tube packer against such infusion rate, typically the initial pressure 0.1 kgf / cm 2 or more, preferably, 1 kgf / cm 2 or more. In that case, the inner tube packer has already expanded when the injected liquid is discharged from the inner tube discharge port. Moreover, as for the liquid feeding pressure in FIG. 5, 1-50 kgf / cm < 2 > is preferable.

初期圧として、パッカの材質にもよるが、0.1kgf/cm以上、通常は1kgf/cm以上の管内圧力を生じれば、パッカが外管管壁に密着する。その場合の吐出口径は1ステージ当たりの吐出速度にもよるが、0.1〜5mm程度の細孔が好ましい。実際には1ステージ当たりの注入速度に対応して一つの吐出口径と、吐出口数と、膨縮性パッカの弾力性とを適切に設計することによって初期圧を任意に設定できる。したがって、本発明は以下の方法を行えることにより初期圧が容易に形成され、内管パッカを内管吐出口からの吐出よりも早く膨張しやすくすることができる。 As an initial pressure, depending on the material of the packer, 0.1 kgf / cm 2 or more, usually if Shojire a 1 kgf / cm 2 or more pipe pressure, packer comes into close contact with the outer tube wall. In this case, the diameter of the discharge port depends on the discharge speed per stage, but is preferably about 0.1 to 5 mm. Actually, the initial pressure can be arbitrarily set by appropriately designing one discharge port diameter, the number of discharge ports, and the elasticity of the inflatable packer corresponding to the injection speed per stage. Therefore, according to the present invention, the initial pressure can be easily formed by performing the following method, and the inner tube packer can be easily expanded faster than the discharge from the inner tube discharge port.

(a)内管吐出口を細孔にする。
(b)内管吐出口の面積は内管流路の断面積よりも小さい。
(c)内管パッカ内吐出口を内管吐出口よりも大きくする。
(d)内管吐出口は逆止弁を設けている。図7(d)はバネ52の力よりも内管内の注入液の圧力が大きくなってはじめて外管内空間に注入液が吐出される。
(e)内管吐出口は吐出抵抗体で覆われる。図7(c)において、ゴムスリーブ26を用い、吐出口を覆っておけば、ゴムスリーブ26の弾力性に対応した内管内注入液の圧力が高まった時点で注入液が外管内空間に吐出される。
以上において、細孔は上述のとおり、噴射孔にした方がさらに好ましい。
(A) The inner tube discharge port is made a fine hole.
(B) The area of the inner pipe discharge port is smaller than the cross-sectional area of the inner pipe flow path.
(C) The inner tube packer discharge port is made larger than the inner tube discharge port.
(D) The inner pipe discharge port is provided with a check valve. In FIG. 7D, the injection solution is discharged into the inner space of the outer tube only after the pressure of the injection solution in the inner tube becomes larger than the force of the spring 52.
(E) The inner tube discharge port is covered with a discharge resistor. In FIG. 7 (c), if the rubber sleeve 26 is used and the discharge port is covered, the injected liquid is discharged into the inner space of the outer pipe when the pressure of the injected liquid in the inner pipe corresponding to the elasticity of the rubber sleeve 26 increases. The
In the above, it is more preferable that the fine holes are injection holes as described above.

以上の基本原理に基づいて本発明は請求項に示すとおりに完成された。図5中、44は脱圧装置であって、送液バルブ45、三方コック46、吸水ポンプ47から構成される。48は排水管であり、三方コック49を備える。   Based on the above basic principle, the present invention has been completed as shown in the claims. In FIG. 5, reference numeral 44 denotes a depressurizing device, which includes a liquid feed valve 45, a three-way cock 46, and a water absorption pump 47. 48 is a drain pipe and includes a three-way cock 49.

図5からわかるように、注入圧力は圧力計38によって測定される。したがって、内管吐出口30から吐出された後、地盤中における注入圧力を知るには、空気中における吐出圧力を差し引いて算出すればよいことになるが、注入中における実際の圧力を知るには、外管内空間32に電気的土圧計、ストレインゲージまたは間隙水圧計のいずれかを設置して外管内空間32における注入液の液圧を計算し、その情報をリアルタイムで有線または無線により地上部の管理室に集め、その情報に基づき、注入速度や、注入圧力や、注入の中断、完了等の注入管操作を管理することにより、最適の注入を行うことができる。もちろん、同時に、内管パッカ27内にも同様の電気的土圧計や、ストレインゲージ間隙水圧計のいずれかを設け、その情報を得ることによって内管内圧力と外部浸透圧力の変動や、圧力の差の情報を得ることによって内管の吐出口の状況や外部のゲル化の状況を正確に把握して注入管理にフィードバックすることができる。   As can be seen from FIG. 5, the injection pressure is measured by a pressure gauge 38. Therefore, in order to know the injection pressure in the ground after being discharged from the inner pipe discharge port 30, it is only necessary to calculate by subtracting the discharge pressure in the air, but in order to know the actual pressure during the injection In the outer pipe inner space 32, either an electric earth pressure gauge, a strain gauge or a pore water pressure gauge is installed to calculate the liquid pressure of the injected liquid in the outer pipe inner space 32. Optimum injection can be performed by managing the injection speed, injection pressure, and injection tube operations such as injection interruption and completion based on the information collected in the management room. Of course, at the same time, either the same electric earth pressure gauge or the strain gauge pore water pressure gauge is provided in the inner tube packer 27, and by obtaining the information, fluctuations in the inner tube pressure and the external osmotic pressure, or the pressure difference By obtaining this information, it is possible to accurately grasp the condition of the discharge port of the inner tube and the condition of external gelation and feed back to the injection management.

これらの計測センサーは通常、図7(d)あるいは図5の内管吐出口30の出口流路に設置することもできるが、さらに内管のパッカ間の外側壁にストレインゲージや土圧計をはりつけることもできる。もちろん、外管内側の壁面に埋め込むこともできる。そして、その情報は内管を通して、または外管に設けた溝等に沿って、有線または無線により地上に送られる。また、本発明において、隣接する二つの内管パッカ27、27をはさむ1ステージ毎に注入する場合、図5の流量計39の計測値がそのままそのステージにおける注入速度を示すことになる。一方、図4、図6に示すように、一定の注入流量を複数の注入ステージに同時に注入する場合、通常、土層が平面的に滞積している地盤を対象としており、この場合、内管吐出口の孔径に対応してその吐出量が分配されるとみなすことができる。このため、水平方向に注入する液状化防止用注入工法として本発明における多ステージ同時注入は極めて有用である。しかし、その実際を計測する場合には、図5または図7におけるそれぞれのステージの内管吐出口部分に毎分流速を計測するセンサーを設け、その計測センサーの情報を有線または無線で地上部の管理室に集めることによって各ステージの注入速度と注入量をリアルタイムで把握し、前述した注入操作にフィードバックして最適の注入管理をすることが可能になる。   These measurement sensors can usually be installed in the outlet flow path of the inner pipe discharge port 30 in FIG. 7 (d) or FIG. 5, but a strain gauge or earth pressure gauge is also attached to the outer wall between the packers of the inner pipe. You can also. Of course, it can also be embedded in the wall surface inside the outer tube. The information is sent to the ground by wire or wirelessly through the inner tube or along a groove or the like provided in the outer tube. Moreover, in this invention, when inject | pouring for every stage which pinches | interposes two adjacent inner tube | pipe packers 27 and 27, the measured value of the flowmeter 39 of FIG. 5 will show the injection | pouring speed | velocity | rate in the stage as it is. On the other hand, as shown in FIGS. 4 and 6, when a constant injection flow rate is simultaneously injected into a plurality of injection stages, it is usually intended for the ground where the soil layer is stagnant in a plane. It can be considered that the discharge amount is distributed corresponding to the hole diameter of the tube discharge port. For this reason, the multistage simultaneous injection in the present invention is extremely useful as an injection method for preventing liquefaction that is injected in the horizontal direction. However, in the case of actual measurement, a sensor for measuring the flow velocity per minute is provided at the inner tube discharge port portion of each stage in FIG. 5 or FIG. By collecting in the management room, it is possible to grasp the injection speed and the injection amount of each stage in real time, and to feed back to the above-described injection operation for optimal injection management.

なお、流量計測センサーは定流量弁や、さらに積算流量計であって、これを図7(d)における逆止弁と内管吐出口の間の流路に設けてもよい。この場合、流量は内管に沿わせて外管内空間におさまるように設ければよい。また、積算流量計は注入が完了後、地上部に取り出して、そのステ−ジの注入量を確認してもよく、また、有線または無線により、
リアルタイムで地上部で情報を集めて記録してもよい。また、上述したように、注入圧力センサーと注入流量センサーを同時に設け、これにより、各注入ステージにおける外管内空間の注入圧力、吐出速度を把握して注入管理をすることができる。
The flow rate measuring sensor is a constant flow valve or an integrated flow meter, and this may be provided in the flow path between the check valve and the inner pipe discharge port in FIG. In this case, the flow rate may be provided so as to fit in the inner space of the outer tube along the inner tube. In addition, the integrated flow meter may be taken out to the ground after the injection is completed, and the injection amount of the stage may be confirmed.
Information may be collected and recorded on the ground in real time. Further, as described above, the injection pressure sensor and the injection flow rate sensor are provided at the same time, so that the injection management can be performed by grasping the injection pressure and the discharge speed of the space in the outer tube at each injection stage.

図9(a)〜(g)は注入管を地盤中に設置するための施工例の説明図であって、図9(a)はボーリングロッド55のヘッド部58付近を示す。ボーリングロッド55の(単管ヘッド)のヘッド部58は先端がテーパー面56に形成され、螺着体59で螺着されている。   FIGS. 9A to 9G are explanatory views of a construction example for installing the injection tube in the ground, and FIG. 9A shows the vicinity of the head portion 58 of the boring rod 55. The head portion 58 of the boring rod 55 (single tube head) has a tip formed on a tapered surface 56 and is screwed by a screw body 59.

ヘッド部58は図9(b)に示されるように、地盤1中の位置情報を発信する発信器、すなわち、位置情報発信器60を内蔵し、牽引バー61に連結されている。位置情報発信器60から発信された情報は後述の図9(c)に示されるように、地表面36に設置された受信ロケーター62によって受信される。   As shown in FIG. 9B, the head portion 58 includes a transmitter that transmits position information in the ground 1, that is, a position information transmitter 60, and is connected to the tow bar 61. Information transmitted from the position information transmitter 60 is received by a receiving locator 62 installed on the ground surface 36 as shown in FIG.

図9(c)はボーリングロッド55(単管ロッド55)を構造物54真下の地盤1中に掘進している状態を表した説明図であって、地表面36上に設置された削孔機57にヘッド部58に位置情報発信器60の内蔵された単管ロッド55を接続し、屈曲と水平を任意に組み合わせながら、水等のボーリング流体の噴射とともに地盤1中に掘進する。そして、地表面36には受信ロケーター62を設置し、この受信ロケーター62が地下の位置情報発信器60からの位置情報の電波を受信する。削孔機57はその情報に基づき、ボーリングロッド55(単管ロッド55)の削孔方向や位置を確認し、コントロールしながら単管ロッド55を地盤1中に掘進する。   FIG. 9C is an explanatory view showing a state in which the boring rod 55 (single tube rod 55) is being dug into the ground 1 directly below the structure 54, and a drilling machine installed on the ground surface 36. The single tube rod 55 in which the position information transmitter 60 is built in is connected to the head portion 58 to the head portion 58 and digs into the ground 1 together with the injection of a boring fluid such as water while arbitrarily combining bending and horizontal. A reception locator 62 is installed on the ground surface 36, and the reception locator 62 receives radio waves of position information from the underground position information transmitter 60. The drilling machine 57 confirms the drilling direction and position of the boring rod 55 (single pipe rod 55) based on the information, and digs the single pipe rod 55 into the ground 1 while controlling it.

ボーリングロッド55のヘッド部58の先端はテーパー面56に形成されているため、ボーリングロッド55を回転すれば直進し、回転を止めて圧入すればテーパーの方向に応じて屈曲し、この結果、ボーリングロッド55は任意の方向に掘進される。ヘッド部58の位置はコントローラ(図示せず)で把握し、これをボーリング操作にフイードバックできる。また、ボーリングロッド55の先端には位置情報装置としてジャイロを設けることによりボーリングロッド55内を通してヘッド部58の位置を把握することもできる。   Since the tip of the head portion 58 of the boring rod 55 is formed on the tapered surface 56, if the boring rod 55 is rotated, it goes straight, and if the rotation is stopped and press-fitted, it bends according to the direction of the taper. The rod 55 is dug in an arbitrary direction. The position of the head portion 58 can be grasped by a controller (not shown) and fed back to the boring operation. Further, by providing a gyro as a position information device at the tip of the boring rod 55, the position of the head portion 58 can be grasped through the boring rod 55.

単管ロッド55を地盤1中の所定の位置まで掘進した後、図9(d)に示されるように、牽引バー61を引っ張って位置情報発信器60を地上に回収する。この結果、ボーリングロッド55の先端から末端まで空洞になる。このボーリングロッド55内空洞に、次いで、図9(e)に示されるように、先端にメカニカルアンカー63の装着された外管20をシールグラウト25を圧入させながら挿入する。   After excavating the single tube rod 55 to a predetermined position in the ground 1, as shown in FIG. 9D, the tow bar 61 is pulled to collect the position information transmitter 60 on the ground. As a result, the boring rod 55 is hollow from the tip to the end. Next, as shown in FIG. 9 (e), the outer tube 20 with the mechanical anchor 63 attached to the tip is inserted into the cavity of the boring rod 55 while the seal grout 25 is press-fitted.

次に、外管20を押しながら単管ロッド55を引き抜くと、図9(f)に示されるように、メカニカルアンカー63が開いて削孔壁24にかみ込み、これにより外管20はアンカーされ、かつシールグラウト25によって削孔23内に定着する。   Next, when the single tube rod 55 is pulled out while pushing the outer tube 20, as shown in FIG. 9 (f), the mechanical anchor 63 is opened and bites into the drilling wall 24, whereby the outer tube 20 is anchored. And, it is fixed in the hole 23 by the seal grout 25.

さらに、シールグラウト25が固化して後、図9(g)に示されるように、複数の膨縮性内管パッカ27、27・・27を間隔をあけて備え、パッカ間に内管吐出口30を有する内管21を外管20に遊挿する。次いで、内管21内に注入液を圧入すると、注入液がパッカ内吐出口29からパッカ内に入り内管パッカ27、27・・27を膨張して外管20の内壁に圧着し、外管内空間32を形成する。さらに、注入液は内管吐出口30および外管吐出口22を経てシールグラウト25を破壊しながら地盤中に浸透、注入する。   Further, after the seal grout 25 is solidified, as shown in FIG. 9 (g), a plurality of inflatable inner tube packers 27, 27,... The inner tube 21 having 30 is loosely inserted into the outer tube 20. Next, when the injection solution is press-fitted into the inner tube 21, the injection solution enters the packer through the discharge port 29 in the packer and expands the inner tube packers 27, 27,. A space 32 is formed. Further, the injected solution penetrates and injects into the ground through the inner tube outlet 30 and the outer tube outlet 22 while breaking the seal grout 25.

注入の後、内管21内の注入液の内圧を脱圧することにより、内管パッカ27を収縮し、内管21を次の注入ステージに移動する。この操作を繰り返して所定注入領域を浸透固結する。なお、外管20はシールグラウト25の代わりに図3に示すように外管パッカ33を用いて定着することもできる。外管パッカ33には図示しないダブルパッカを有する内管を用い、外管パッカ内吐出口34から外管パッカ33内にセメントベントナイト等を圧入し、膨張して外管パッカ33を形成し、外管20を削孔内に定着する。   After the injection, the inner pressure of the injected liquid in the inner tube 21 is released to contract the inner tube packer 27 and move the inner tube 21 to the next injection stage. This operation is repeated to permeate and consolidate the predetermined injection region. The outer tube 20 can be fixed by using an outer tube packer 33 as shown in FIG. 3 instead of the seal grout 25. The outer tube packer 33 is an inner tube having a double packer (not shown). Cement bentonite or the like is press-fitted into the outer tube packer 33 from the discharge port 34 in the outer tube packer and expanded to form the outer tube packer 33. 20 is fixed in the drilling hole.

上述本発明の注入工法は注入液を注入液加圧部から複数の注入液送液系統を通して前記地盤中の注入ポイントに注入し、前記複数の注入液送液系統には流量圧力検出器を設け、これら検出器から検出された注入液の流量および/または圧力のデータを注入監視盤を備えた集中管理装置に送信し、注入液送液系統からの注入状況を前記注入監視盤の画面に表示し、一括監視を行いながら、選定した複数の注入ポイントから注入を同時に行い、それぞれの注入状況を把握することにより各注入管路における注入開始から終了に至るまでの工程はそれぞれ別々に行いながら、かつ、全体の注入管理を行うことが可能であり、したがって、所定の場所に所定の形状の固結体を急速に形成できる。   In the injection method of the present invention described above, an injection solution is injected from an injection solution pressurizing unit through a plurality of injection solution supply systems to an injection point in the ground, and a flow pressure detector is provided in the plurality of injection solution supply systems. The infusion liquid flow rate and / or pressure data detected from these detectors is transmitted to a central control device equipped with an infusion monitoring panel, and the infusion status from the infusion liquid feeding system is displayed on the screen of the infusion monitoring panel. While performing collective monitoring, performing injection from a plurality of selected injection points at the same time, and grasping the state of each injection, while performing the process from the start to the end of each injection line separately, And it is possible to perform the whole injection | pouring management, Therefore, the solidified body of a predetermined shape can be rapidly formed in a predetermined place.

なお、本発明では、内管21の外側の外管内空間32および内管パッカ27には図示しない電気式土圧計を設置して、注入時の注入圧力をリアルタイムで計測し、注入材の制御部130へのフィードバックとすることもできる。この場合、土圧計の情報は常に有線および無線で地上部に集められ、注入制御部に反映する。   In the present invention, an electric earth pressure gauge (not shown) is installed in the outer pipe inner space 32 and the inner pipe packer 27 outside the inner pipe 21, and the injection pressure at the time of injection is measured in real time. It can also be a feedback to 130. In this case, the earth pressure gauge information is always collected on the ground part by wire and wirelessly and reflected in the injection control part.

以上のとおり、本発明にかかる注入工法は建物等の構造物54下方の液状化防止注入に適している。例えば構造物54下方の深さ方向に複数層積層して同時注入することもでき、あるいはさらに、構造物54の下方に水平方向に注入管を複数本並列して設定して同時注入することもでき、あるいはさらに、深さ方向と水平方向に複数層同時に固結層を形成することもできる。なお、本発明において、注入管設置のためのボーリングは構造物付近の地表面から行ってもよく、たて杭から先端に情報発信機を内蔵したボーリングロッドで水平に構造物の基礎地盤中に行ってもよい。   As described above, the injection method according to the present invention is suitable for liquefaction prevention injection under the structure 54 such as a building. For example, a plurality of layers can be laminated in the depth direction below the structure 54 and simultaneously injected, or a plurality of injection tubes can be set in parallel in the horizontal direction below the structure 54 and simultaneously injected. Alternatively, a plurality of layers can be formed simultaneously in the depth direction and the horizontal direction. In the present invention, the boring for installing the injection pipe may be performed from the ground surface near the structure, and horizontally into the foundation ground of the structure with a boring rod incorporating an information transmitter from the vertical pile to the tip. You may go.

上述の本発明工法は管径を小さくして構造を単純化することにより削孔を小さくし、かつ作業性を向上させて経済性を得、さらに石油タンク基礎地盤や、飛行場の滑走路下や、建築物基礎地盤や、貯水池底盤や、産業廃棄物の底盤等の長区間注入を可能にし、かつ注入効果を確実する。   The above-described method of the present invention simplifies the structure by reducing the pipe diameter, thereby reducing the drilling hole and improving the workability to obtain economic efficiency. Further, the oil tank foundation ground, under the runway of the airfield, It enables long section injection of building foundation ground, reservoir bottom, industrial waste bottom, etc., and ensures the injection effect.

すなわち、本発明工法は簡便な構造で注入管径を小さくすることができ、かつ構造物直下に、水平方向にあるいは屈曲しながら長尺の注入管を挿入し、注入することができる。特に、地盤の改良すべき個所に、任意形状の削孔、すなわちボーリング孔を穿孔し、このボーリング孔から複数の吐出口を介して注入液を地盤中に同時に注入し、地盤改良するようにしたから、所定の位置に、所定の浸透固結形態に急速な浸透固結を可能にするとともに、地盤注入の施し難い既設構造物下方の支持地盤を急速かつ確実に、さらに広範に地盤改良を施工し得、産業上有用な発明である。   That is, the construction method of the present invention can reduce the injection tube diameter with a simple structure, and can insert and inject a long injection tube directly under the structure in the horizontal direction or while bending. In particular, drilling holes of arbitrary shape, that is, boring holes, are drilled in the ground to be improved, and the injection solution is simultaneously injected into the ground from the boring holes through a plurality of discharge ports to improve the ground. In addition, it enables rapid penetration and consolidation in a predetermined penetration and solidification form at a predetermined position, and the ground improvement under the existing structure that is difficult to inject ground is rapidly and reliably applied to further improve the ground. It is an industrially useful invention.

構造物下方の地盤注入例の基本図である。It is a basic view of an example of ground injection below the structure. 本発明工法に用いられる装置の一具体例の断面図である。It is sectional drawing of one specific example of the apparatus used for this invention construction method. 本発明にかかる地盤注入装置の他の具体例の断面図である。It is sectional drawing of the other specific example of the ground injection apparatus concerning this invention. 本発明にかかる地盤注入装置のさらに他の具体例の断面図である。It is sectional drawing of the other specific example of the ground injection apparatus concerning this invention. 本発明のパッカ機能の原理を説明するための実験装置の説明図である。It is explanatory drawing of the experimental apparatus for demonstrating the principle of the packer function of this invention. 内管を複数本備えた装置の説明図である。It is explanatory drawing of the apparatus provided with multiple inner tubes. 内管パッカ内吐出口と内管吐出口を表した説明図であって、大きさの関係を表す。It is explanatory drawing showing the discharge port in an inner tube packer, and an inner tube discharge port, Comprising: The relationship of a magnitude | size is represented. 内管パッカ内吐出口と内管吐出口を表した説明図であって、大きさの関係を表す。It is explanatory drawing showing the discharge port in an inner tube packer, and an inner tube discharge port, Comprising: The relationship of a magnitude | size is represented. 内管吐出口に覆われるゴムスリーブおよび逆止弁の説明図である。It is explanatory drawing of the rubber sleeve and check valve which are covered with an inner pipe discharge port. 内管吐出口に覆われるゴムスリーブおよび逆止弁の説明図である。It is explanatory drawing of the rubber sleeve and check valve which are covered with an inner pipe discharge port. 内管をフレキシブルジョイントで連結した状態の説明図であって、一本の内管を表す。It is explanatory drawing of the state which connected the inner pipe | tube with the flexible joint, Comprising: One inner pipe | tube is represented. 内管をフレキシブルジョイントで連結した状態の説明図であって、二本の内管を表す。It is explanatory drawing of the state which connected the inner pipe | tube with the flexible joint, Comprising: Two inner pipes are represented. 本発明に用いられるボーリングロッドの平面図である。It is a top view of the boring rod used for this invention. 本発明に用いられるボーリングロッドのヘッド部の断面図である。It is sectional drawing of the head part of the boring rod used for this invention. 構造物直下にボーリングロッドを掘進している状態を表した説明図である。It is explanatory drawing showing the state which is excavating the boring rod directly under a structure. 牽引バーを引っ張って発信ロケーターを地上に回収している状態の断面図である。It is sectional drawing of the state which is pulling the tow bar and collect | recovering the transmission locator on the ground. 外管をボーリングロッド内空洞に挿入している状態の断面図である。It is sectional drawing of the state which has inserted the outer tube | pipe into the cavity in a boring rod. 外管を削孔内に定着させた状態の断面図である。It is sectional drawing of the state which fixed the outer pipe | tube in the drilling hole. 外管内に内管を遊挿し、内管パッカを膨張して外管内に定着させた状態の断面図を表す。Sectional drawing of the state which inserted the inner pipe | tube in the outer pipe | tube, expanded the inner pipe | tube packer, and was fixed in the outer pipe | tube is represented. 従来の装置の断面図であって、工程図を表す。It is sectional drawing of the conventional apparatus, Comprising: Process drawing is represented. 従来の装置の断面図であって、工程図を表す。It is sectional drawing of the conventional apparatus, Comprising: Process drawing is represented. 従来の装置の断面図であって、工程図を表す。It is sectional drawing of the conventional apparatus, Comprising: Process drawing is represented. 従来の装置の断面図であって、工程図を表す。It is sectional drawing of the conventional apparatus, Comprising: Process drawing is represented.

符号の説明Explanation of symbols

A 地盤注入管
1 地盤
20 外管
21 内管
22 外管吐出口
23 削孔
24 削孔壁
25 シールグラウト
26 ゴムスリーブ
27 内管パッカ
28 締め金具
29 内管パッカ内吐出口
30 内管吐出口
31 内管流路
32 外管内空間
33 外管パッカ
34 外管パッカ内吐出口
35 外管外空間
54 構造物
55 ボーリングロッド
60 位置情報発信器
130 制御部
135 注入液槽
136 ポンプ
A Ground injection tube 1 Ground 20 Outer tube 21 Inner tube 22 Outer tube discharge port 23 Drilling hole 24 Drilling wall 25 Seal grout 26 Rubber sleeve 27 Inner tube packer 28 Fastener 29 Inner tube packer discharge port 30 Inner tube discharge port 31 Inner pipe flow path 32 Outer pipe inner space 33 Outer pipe packer 34 Outer pipe packer discharge port 35 Outer pipe outer space 54 Structure 55 Boring rod 60 Position information transmitter 130 Controller 135 Injection liquid tank 136 Pump

Claims (11)

地盤に注入管を屈曲して、または水平に、または屈曲と水平を任意に組み合わせて設置し、この注入管を通して地盤中に注入液を注入する地盤注入工法において、前記注入管は軸方向の異なる位置に複数の外管吐出口を有する外管と、この外管内に遊挿され、弾力性のある不透水性袋体からなる複数の膨縮性内管パッカを前記外管吐出口をはさむように間隔をあけて備え、さらに、これら内管パッカ内にパッカ内吐出口を有し、かつ前記間隔をあけて備えられた内管パッカ間に内管吐出口を有する内管とを備えた注入管であって、先端に位置情報発信器を内臓したボーリングロッドで削孔された削孔内に設置され、前記内管吐出口は以下の(a)ないし(c)のいずれかを満たすように形成されてなり、膨縮性内管パッカは内管パッカを膨張させるためのパッカ流体用管路を設けることなく、内管流路に注入液を送液することにより、前記膨縮性内管パッカを注入液の送液圧力によって膨張して複数の内管パッカ間に外管内空間を形成するとともに、この外管内空間内に内管吐出口から注入液を吐出し、注入液を外管内空間から外管吐出口を通して地盤中に注入し、注入液の送液を停止することにより、あるいは内管内の注入液の一部を脱液して内管内圧力を低下させることにより前記膨縮性内管パッカを収縮し、内管を外管内で移動自在として所定の位置で同様にして注入を繰り返すことを特徴とする地盤注入工法。
(a)内管吐出口を細孔に形成する。
(b)内管吐出口を内管パッカ内吐出口よりも細孔に形成する。
(c)内管吐出口の面積を内管流路の断面積よりも小さく形成する。
In the ground injection method in which the injection pipe is bent in the ground or installed horizontally, or in any combination of bending and horizontal, and the injection liquid is injected into the ground through the injection pipe, the injection pipe has different axial directions. An outer tube having a plurality of outer tube outlets at a position, and a plurality of inflatable inner tube packers made of elastic and impermeable bag bodies, which are loosely inserted into the outer tube, so as to sandwich the outer tube outlets And an inner tube having a discharge port in the packer in the inner tube packer, and an inner tube having an inner tube discharge port between the inner tube packers provided at the interval. It is a pipe and is installed in a drilling hole drilled by a boring rod with a built-in position information transmitter at the tip, so that the inner pipe discharge port satisfies any of the following (a) to (c) Formed, inflatable inner tube packer expands inner tube packer Without supplying a packer fluid conduit to cause the infusible inner tube packer to expand due to the liquid feed pressure of the infusible inner tube packer. A space is formed between the outer pipe and the injection liquid is discharged from the inner pipe discharge port into the outer pipe inner space, and the injection liquid is injected from the outer pipe inner space into the ground through the outer pipe discharge port. Or the inner tube packer is contracted by reducing the pressure in the inner tube by draining a part of the infusion solution in the inner tube to make the inner tube movable within the outer tube. A ground injection method characterized by repeating injection in the same manner at the position.
(A) An inner tube discharge port is formed in a pore.
(B) The inner tube discharge port is formed in a smaller pore than the inner tube packer discharge port.
(C) The area of the inner pipe discharge port is formed smaller than the cross-sectional area of the inner pipe flow path.
請求項1において、該注入管の削孔内の設置は以下(1)ないし(3)のように行われれる地盤注入工法。
(1)先端に位置情報発信器を内臓し、牽引バーに連結されたヘッド部を有する単管 ボーリンググロッドで削孔方向や位置を確認しながら地盤中に掘進する。
(2)単管ボーリングロッドを地盤中の所定位置に掘進した後、牽引バーを引っ張っ て位置情報発信器を地上に回収する。
(3)単管ボーリングロッドの空洞内に先端メカニカルアンカーの装着された外管を 挿入し、注入ロッドを引き抜いて外管をメカニカルアンカーで削孔内に定着す る。
The ground injection construction method according to claim 1, wherein the installation of the injection pipe in the drilling hole is performed as follows (1) to (3).
(1) A single-tube boring grod with a position information transmitter at the tip and a head connected to the tow bar is used to dig into the ground while checking the drilling direction and position.
(2) After excavating the single tube boring rod to a predetermined position in the ground, pull the tow bar and collect the position information transmitter on the ground.
(3) Insert the outer tube fitted with the tip mechanical anchor into the cavity of the single tube boring rod, pull out the injection rod, and fix the outer tube in the drilling hole with the mechanical anchor.
請求項1において、外管に外管吐出口をはさむように複数の外管パッカを設置し、該外管パッカ内に固結材を填充し、膨張させて地盤に定着、設置する請求項1に記載の地盤注入工法。   2. The outer tube packer according to claim 1, wherein a plurality of outer tube packers are installed so that the outer tube discharge port is sandwiched between the outer tubes, and the outer tube packer is filled with a caking agent and expanded to be fixed and installed on the ground. The ground injection method described in 1. 請求項3において、外管パッカは透水性袋体であって、該外管パッカ内に固結材を填充し、削孔径よりも大きな径に膨張させて土中にパッカを形成し、外管を地盤に定着、設置する請求項3に記載の地盤注入工法。   4. The outer tube packer according to claim 3, wherein the outer tube packer is a water-permeable bag, and the outer tube packer is filled with a caking material and expanded to a diameter larger than the drilling hole diameter to form a packer in the soil. 4. The ground injection method according to claim 3, wherein the ground is fixed and installed on the ground. 請求項1において、内管が三個以上の膨縮性内管パッカを備えることにより外管内空間を複数形成してなり、これにより複数の外管吐出口から注入液を同時に地盤中に注入する
請求項1に記載の地盤注入工法。
In Claim 1, the inner pipe is provided with three or more inflatable inner pipe packers to form a plurality of outer pipe inner spaces, whereby the injection liquid is simultaneously injected into the ground from the plurality of outer pipe discharge ports. The ground injection construction method according to claim 1.
請求項1において、内管流路を複数本設け、各内管吐出口を異なる外管内空間に開口するようにした請求項1に記載の地盤注入工法。   The ground injection method according to claim 1, wherein a plurality of inner pipe flow paths are provided, and each inner pipe outlet is opened to a different inner space of the outer pipe. 請求項1において、膨縮性内管パッカは弾力性のある不透水性袋体であって、注入液の送液による内圧で外管内壁に密着するまで膨張し、注入液の送液を停止することにより、あるいは内管内の注入液の一部を脱液して内管内圧力を低下させることにより収縮し、これにより内管を外管内で移動自在とする請求項1に記載の地盤注入工法。   2. The inflatable inner tube packer according to claim 1, which is an elastic and impermeable bag, expands until it comes into close contact with the inner wall of the outer tube by the internal pressure of the infusion solution, and stops the infusion solution delivery. The ground injection method according to claim 1, wherein the ground pipe is contracted by draining a part of the injected liquid in the inner pipe and reducing the pressure in the inner pipe, thereby making the inner pipe movable in the outer pipe. . 請求項7において、弾力性のある不透水性袋体は筒状体であって、パッカ内吐出口が筒状内に位置するように両端を内管に緊結して取付けられる請求項7に記載の地盤注入工法。   The elastic impermeable bag body according to claim 7, wherein the elastic impermeable bag body is a cylindrical body, and both ends thereof are tightly attached to the inner pipe so that the discharge outlet in the packer is located in the cylindrical shape. Ground injection method. 請求項1において、内管流路には脱圧装置が設けられる請求項1に記載の地盤注入工法。   The ground injection method according to claim 1, wherein the inner pipe flow path is provided with a depressurization device. 請求項1において、外管内空間および/または内管パッカ内に電気的土圧計、ストレインゲージあるいは間隙水圧計のいずれかを設置して注入時の注入圧を計測するようにした請求項1に記載の地盤注入工法。   2. The injection pressure at the time of injection according to claim 1, wherein any one of an electric earth pressure gauge, a strain gauge or a pore water pressure gauge is installed in the outer pipe inner space and / or the inner pipe packer. Ground injection method. 請求項1において、内管吐出口に流量計測センサを設け、注入時の注入速度と注入量を計測するようにした請求項1に記載の地盤注入工法。   The ground injection method according to claim 1, wherein a flow rate measuring sensor is provided at the inner tube discharge port to measure an injection speed and an injection amount at the time of injection.
JP2004341933A 2004-11-26 2004-11-26 Ground injection method Active JP4036303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341933A JP4036303B2 (en) 2004-11-26 2004-11-26 Ground injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341933A JP4036303B2 (en) 2004-11-26 2004-11-26 Ground injection method

Publications (2)

Publication Number Publication Date
JP2006152594A JP2006152594A (en) 2006-06-15
JP4036303B2 true JP4036303B2 (en) 2008-01-23

Family

ID=36631203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341933A Active JP4036303B2 (en) 2004-11-26 2004-11-26 Ground injection method

Country Status (1)

Country Link
JP (1) JP4036303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019418A (en) * 2007-07-12 2009-01-29 Toa Harbor Works Co Ltd Method and device for injecting soil improvement chemical

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074591A (en) * 2009-09-29 2011-04-14 Kyokado Kk Grouting pipe and grouting method
JP5158394B1 (en) * 2012-06-18 2013-03-06 強化土株式会社 Ground improvement device
JP6411099B2 (en) * 2014-07-07 2018-10-24 日本基礎技術株式会社 Ground injection method
KR101706461B1 (en) * 2015-07-07 2017-02-13 전기표 Tube assembly for grouting and grouting method using the same
JP6529176B2 (en) * 2015-11-06 2019-06-12 ケミカルグラウト株式会社 Chemical solution injection method
JP6535614B2 (en) * 2016-02-01 2019-06-26 株式会社不動テトラ Ground improvement construction machine
KR101933083B1 (en) * 2016-09-20 2018-12-27 군산대학교산학협력단 Soil nailing unit with sheets of public works textile and Ground reinforcement method using the same
CN107313745B (en) * 2017-07-18 2023-05-09 山西晋城无烟煤矿业集团有限责任公司 Well cementation method for reinforcing coal-bed gas well through multi-node intensive grouting in goaf
CN109539916B (en) * 2018-12-21 2023-11-21 中国矿业大学 Explosive loading device and loading method capable of accurately controlling loading quantity and loading position
KR102012708B1 (en) * 2019-03-19 2019-08-21 임광욱 Tunnel construction method by advanced simultaneous injection
CN111854199B (en) * 2020-07-30 2021-08-31 山东省物化探勘查院 Open type drilling wall device of middle-deep geothermal heat exchange well
CN113431958A (en) * 2021-06-17 2021-09-24 国家能源聊城发电有限公司 Pipeline anchor block arrangement method
CN114000714A (en) * 2021-12-16 2022-02-01 茅顾新 Assembly type building interior wall positioning device
KR102415391B1 (en) * 2022-02-08 2022-06-30 주식회사 세기엔지니어링 Grouting injection method using a simultaneous injection device that guarantees uniformity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019418A (en) * 2007-07-12 2009-01-29 Toa Harbor Works Co Ltd Method and device for injecting soil improvement chemical

Also Published As

Publication number Publication date
JP2006152594A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4036303B2 (en) Ground injection method
JP4581013B2 (en) Injection pipe device and ground injection method
JP4848553B2 (en) Injection pipe device and injection method
JP4827109B1 (en) Injection pipe device and ground injection method
EP2766569B1 (en) Formation pressure sensing system
CN105350953A (en) Measuring method for coal seam gas pressure in complicated geological condition
JP2000257057A (en) Ground injection device for ground and injection method
US5542786A (en) Apparatus for monitoring grout pressure during construction of auger pressure grouted piling
JP4034305B2 (en) Ground injection method
KR100687630B1 (en) Ground packer test apparatus measuring porewater pressure at the hole
JP4358207B2 (en) Ground reinforcement method for excavated bottom
JP4252070B2 (en) Ground stabilization method
JP5155761B2 (en) Measuring device and measuring method of spring water pressure and amount
CN111424670A (en) Occlusive pile pouring and pile body quality detection device and method for waterproof curtain
JP3961510B2 (en) Ground injection method
JP2008045352A (en) Landslide prevention construction method of valley-filling banking
JP4180075B2 (en) Ground injection method
JP5522685B2 (en) Sealing device
JP2005083002A (en) Ground grouting method and method of anchoring injection pipe to ground
JP4157531B2 (en) Ground injection method
CN116348655A (en) Methods and systems for subsurface deployment of materials and equipment
JP2007046320A (en) Grouting apparatus and grouting method
CN112096343A (en) Borehole closure device, and gravity drainage device and method for a dive borehole
JP3919727B2 (en) Ground injection device and ground injection method
JP3832457B2 (en) Fixing method of bundling injection capillaries in the ground

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071024

R150 Certificate of patent or registration of utility model

Ref document number: 4036303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350