JP4180075B2 - Ground injection method - Google Patents

Ground injection method Download PDF

Info

Publication number
JP4180075B2
JP4180075B2 JP2005237939A JP2005237939A JP4180075B2 JP 4180075 B2 JP4180075 B2 JP 4180075B2 JP 2005237939 A JP2005237939 A JP 2005237939A JP 2005237939 A JP2005237939 A JP 2005237939A JP 4180075 B2 JP4180075 B2 JP 4180075B2
Authority
JP
Japan
Prior art keywords
injection
pressure
ground
inner tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005237939A
Other languages
Japanese (ja)
Other versions
JP2007051480A (en
Inventor
俊介 島田
由紀夫 志波
貫司 檜垣
俊介 川井
力 勝田
毅彦 鈴木
亮之祐 小泉
茂 所崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2005237939A priority Critical patent/JP4180075B2/en
Publication of JP2007051480A publication Critical patent/JP2007051480A/en
Application granted granted Critical
Publication of JP4180075B2 publication Critical patent/JP4180075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は位置情報発信器を内蔵したボーリングロッドを用いて地盤を湾曲または水平の任意方向に削孔して地盤中に注入管を設置し、この注入管を通して注入液を地盤中に注入し、建造物直下の液状化防止注入や基礎の補強や空洞填充や、土壌浄化材の注入に適した地盤注入工法に係り、特に、軸方向の異なる位置に複数の外管吐出口を有する外管と、複数の内管パッカを間隔をあけて備え、かつ、互いに隣接する内管パッカ間には内管吐出口を有する、前記外管内に挿入される内管とからなる地盤注入装置を用いた地盤注入工法に係り、詳細には、位置情報発信器を用いて地盤中に注入管を屈曲して、または水平に、または屈曲と水平を任意に組み合わせて設置し、この注入管を通して内管パッカ間に位置する内管吐出口から注入材を外管吐出口を通して地盤中に注入するに当り、地盤中における注入圧力を正確に把握し得る地盤注入工法に関する。   The present invention uses a boring rod with a built-in position information transmitter to drill the ground in a curved or horizontal arbitrary direction and install an injection pipe in the ground, and inject the injection liquid into the ground through this injection pipe. It relates to ground injection method suitable for liquefaction prevention injection, foundation reinforcement, cavity filling, and soil purification material injection directly under the building, especially with outer pipes having multiple outlets at different axial positions. A ground using a ground injection device comprising a plurality of inner tube packers spaced apart and having an inner tube discharge port between adjacent inner tube packers and an inner tube inserted into the outer tube More specifically, the injection pipe is bent in the ground using a position information transmitter or installed horizontally, or any combination of bending and horizontal, and the inner pipe packer is passed through this injection pipe. Injection material from the inner pipe outlet located in the outer pipe Per To injected into the ground through the outlet, to ground grouting method which can accurately grasp the injection pressure in the ground.

外管および外管内に挿入された内管からなる地盤注入装置を用いて地盤中に注入材を注入するに際して、従来、注入管路中の注入圧力を地表面に位置する圧力計で測定していた。   When injecting an injection material into the ground using a ground injection device consisting of an outer pipe and an inner pipe inserted into the outer pipe, conventionally, the injection pressure in the injection pipe has been measured with a pressure gauge located on the ground surface. It was.

しかし、この注入圧力は実際には、注入管路の抵抗圧や内管吐出口の抵抗圧が土粒子間に浸透する本来の地盤注入圧力に加算されたものであって、正確に地盤注入圧力を示すものではない。特に内管流路に注入液を送液することにより前記膨縮性内管パッカを注入液の送液圧力で膨張してパッカが形成され、かつ内管吐出口が細孔からなる噴射口の場合、噴射口の抵抗力により内管内圧力は高くなり、実際の地盤中における圧力は把握出来ず、したがって、注入が地盤中でどのように行われているかの判断は注入圧力の変化によって確認することができないという問題があった。   However, this injection pressure is actually the resistance pressure of the injection pipe and the resistance pressure of the inner pipe outlet added to the original ground injection pressure penetrating between the soil particles, It does not indicate. In particular, by supplying an injection liquid to the inner pipe flow path, the expandable inner pipe packer is expanded by the liquid supply pressure of the injection liquid to form a packer, and the inner pipe discharge port is an injection port composed of pores. In this case, the pressure in the inner pipe becomes high due to the resistance of the injection port, and the actual pressure in the ground cannot be grasped. Therefore, the judgment of how the injection is performed in the ground is confirmed by the change in the injection pressure. There was a problem that I could not.

すなわち、この圧力は単に地上部における送液圧力と内管流路と吐出口の抵抗圧力が大きく影響しているため、注入ステージで適切な土粒子間浸透がなされているかどうか、あるいは圧力がかかり過ぎて地盤を破壊し、注入液が逸脱してしまっているかどうか、不明である。
特願2004−341933号明細書
In other words, this pressure is largely influenced by the liquid supply pressure in the ground part and the resistance pressure of the inner pipe flow path and the discharge port. It is unclear whether the ground has been destroyed and the infusion has gone.
Japanese Patent Application No. 2004-341933

そこで、本発明が解決しようとする課題は地盤中に地盤注入装置を屈曲して、または水平に、または屈曲と水平を任意に組み合わせて設置し、この地盤注入装置を用いて内管パッカ間に位置する内管吐出口から固結材を外管吐出口を通して地盤中に注入するに当り、吐出口からの地盤中への注入圧力を直接、正確に把握し、上述の公知技術に存する欠点を改良した地盤注入工法を提供することにある。   Therefore, the problem to be solved by the present invention is that the ground injection device is bent in the ground or installed horizontally, or any combination of bending and horizontal is used, and this ground injection device is used between the inner tube packers. When injecting the consolidated material from the inner pipe discharge port to the ground through the outer pipe discharge port, the injection pressure from the discharge port into the ground is directly and accurately grasped, and there is a drawback existing in the above-mentioned known technology. It is to provide an improved ground injection method.

上述の課題を解決するため、本発明の地盤注入工法によれば、地盤に注入管(地盤注入装置)を屈曲して、または水平に、または屈曲と水平を任意に組み合わせて設置し、この注入管を通して地盤中に注入液を注入する地盤注入工法であって、前記注入管は軸方向の異なる位置に複数の外管吐出口を有する外管と、この外管内に遊挿され、複数の膨縮性内管パッカを前記外管吐出口をはさむように間隔をあけて備え、さらに、これら内管パッカ内にパッカ内吐出口を有し、かつ前記間隔をあけて備えられた内管パッカ間に内管吐出口を有する内管とを備えた注入管であって、先端に位置情報発信器を内蔵したボーリングロッドで削孔された削孔内に設置され、内管流路に注入液を送液することにより、前記膨縮性内管パッカを注入液の送液圧力によって膨張して複数の内管パッカ間に外管内空間を形成するとともに、この外管内空間内に内管吐出口から注入液を吐出し、注入液を外管内空間から外管吐出口を通して地盤中に注入する地盤注入工法において、前記外管内空間内の圧力を感知して伝達する圧力伝達部材を前記注入管内に設置し、この圧力伝達部材を通して前記空間内で感知された圧力を伝達して測定し、地盤の注入圧力を把握することを特徴とする。 To solve the problems described above, according to the ground grouting of the present invention, bent inlet tube to the ground (the ground injection apparatus), or horizontally, or a bent and horizontal placed in any combination, this injection A ground injection method for injecting an injection solution into a ground through a pipe , wherein the injection pipe is loosely inserted into the outer pipe having a plurality of outer pipe discharge ports at different positions in the axial direction, and a plurality of swellings are provided. A retractable inner tube packer is provided with an interval so as to sandwich the outer tube discharge port. Further, the inner tube packer has a discharge port in the packer in the inner tube packer, and is provided between the inner tube packers provided with the interval. And an inner pipe having an inner pipe discharge port, which is installed in a drilling hole drilled by a boring rod having a built-in position information transmitter at the tip, and injecting the injection liquid into the inner pipe flow path. by feeding, liquid feeding pressure of the infusion solution the inflation and deflation of the tube packer Ground to together to form an outer tube space between inflated plurality of inner tubes packer, ejecting injection liquid from the inner tube the discharge port to the outer tube space, the infusate from outside tube space through the outer tube discharge port by In the ground injection method for injecting into the inside, a pressure transmission member that senses and transmits the pressure in the outer pipe space is installed in the injection pipe, and the pressure sensed in the space is transmitted through the pressure transmission member. It is characterized by measuring and grasping the injection pressure of the ground.

上述の本発明は地盤中に地盤注入装置を屈曲して、または水平に、または屈曲と水平を任意に組み合わせて設置し、この地盤注入装置を通して地盤中に固結材を注入して該地盤を固結するに際し、前記地盤注入装置として、外管と、この外管内に挿入された内管とを備えた地盤注入装置を用い、前記外管は外管表面に一個の外管吐出口、あるいは軸方向の異なる位置に複数の外管吐出口を有し、前記内管は複数の内管パッカを間隔をあけて備え、かつ互いに隣接する内管パッカ間には内管吐出口を有し、前記外管内に前記内管を挿入するに際して、隣接する内管パッカ間に外管吐出口が位置し、かつ前記外管内の内管パッカ間に空間が形成されるように挿入し、さらに前記注入装置内に、空間内の圧力を感知して伝達する圧力伝達部材を設置することにより、圧力伝達部材を通して前記空間内で感知された圧力を伝達し、この伝達された圧力を測定して内管吐出口の正確な注入圧力を直接把握する。   In the present invention described above, the ground injection device is bent in the ground, or installed horizontally, or any combination of bending and horizontal, and the solidified material is injected into the ground through the ground injection device. When consolidating, as the ground injection device, a ground injection device comprising an outer tube and an inner tube inserted into the outer tube is used, and the outer tube has one outer tube discharge port on the outer tube surface, or A plurality of outer tube discharge ports at different positions in the axial direction, the inner tube is provided with a plurality of inner tube packers spaced apart, and an inner tube discharge port between adjacent inner tube packers; When inserting the inner tube into the outer tube, the inner tube is inserted so that an outer tube discharge port is located between adjacent inner tube packers and a space is formed between the inner tube packers in the outer tube, and the injection Installed in the device is a pressure transmission member that senses and transmits the pressure in the space. Rukoto by, transmitting a pressure sensed by the space through the pressure transmitting member, to grasp the precise injection pressure of the inner tube the discharge port directly by measuring the transfer pressure.

さらに、上述の本発明は前述注入装置内に前記空間内に位置するひずみ抵抗式圧力センサーと、一端がアンプを介して前記圧力センサーに連結し、他端が地盤上の圧力表示装置に連結した信号ケーブルとからなる圧力伝達部材を設置し、前記圧力センサーが空間内圧力を感知し、この感知された空間内圧力をアンプを介して信号ケーブルを通して電気信号として圧力表示装置に伝達し、内管吐出口の正確な注入圧力を直接把握する。   Further, in the present invention, the strain resistance type pressure sensor located in the space in the injection device, one end connected to the pressure sensor via an amplifier, and the other end connected to a pressure display device on the ground. A pressure transmission member comprising a signal cable is installed, the pressure sensor senses the pressure in the space, and the sensed pressure in the space is transmitted as an electrical signal to the pressure display device through the signal cable via the amplifier, Directly know the exact injection pressure at the outlet.

さらに、上述の本発明は圧力伝達部材が前記空間内にチューブを介して接続されたひずみ抵抗式圧力センサーと、この圧力センサーに連結されたアンプと、このアンプに信号ケーブルを介して連結された地盤上の圧力表示装置とからなる圧力伝達部材を地盤注入装置内に設置し、前記空間内に位置するチューブの一端が空間内圧力を感知し、この感知された圧力を圧力センサーおよびアンプを介して圧力表示装置に伝達して測定し、地盤注入圧力を直接把握する。   Further, in the present invention described above, the pressure transmission member is connected to the space via a tube, a strain resistance type pressure sensor, an amplifier connected to the pressure sensor, and the amplifier connected to the amplifier via a signal cable. A pressure transmission member consisting of a pressure display device on the ground is installed in the ground injection device, and one end of the tube located in the space senses the pressure in the space, and this sensed pressure is transmitted via a pressure sensor and an amplifier. Measured by transmitting to the pressure display device and directly grasping the ground injection pressure.

以下、本発明を添付図面を用いて詳述する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明にかかる地盤注入装置の一具体例の断面図であり、図2は本発明にかかる地盤注入装置の他の具体例の一部断面図であり、図3は本発明にかかる地盤注入装置のさらに他の具体例の断面図であり、図4は本発明にかかる地盤注入装置さらに他の具体例の断面図である。   FIG. 1 is a cross-sectional view of a specific example of a ground injection device according to the present invention, FIG. 2 is a partial cross-sectional view of another specific example of a ground injection device according to the present invention, and FIG. FIG. 4 is a cross-sectional view of still another specific example of the ground injection device, and FIG. 4 is a cross-sectional view of still another specific example of the ground injection device according to the present invention.

図1において、本発明にかかる地盤注入装置Aは外管1と、この外管1内に挿入された内管2とを備えて構成され、地盤3中に固結材(地盤注入液)を注入して地盤3を固結する。   In FIG. 1, a ground injection device A according to the present invention includes an outer tube 1 and an inner tube 2 inserted into the outer tube 1, and a solidified material (ground injection solution) is placed in the ground 3. The ground 3 is consolidated by pouring.

外管1は軸方向の異なる位置に複数の外管吐出口4を有し、また、内管2は複数の内管パッカ5を間隔をあけて備え、かつ、互いに隣接する内管パッカ5、5間には内管吐出口6を有して構成される。内管吐出口6は細孔からなる噴射口である。   The outer tube 1 has a plurality of outer tube discharge ports 4 at different positions in the axial direction, and the inner tube 2 includes a plurality of inner tube packers 5 at intervals, and the inner tube packers 5 adjacent to each other, 5 is configured to have an inner tube discharge port 6. The inner tube discharge port 6 is an injection port composed of fine holes.

そして、上述の外管1内に内管2を挿入するに際して、隣接する内管パッカ5、5間に外管吐出口4が位置し、かつ、外管1内の内管パッカ5、5間に空間7が形成されるように挿入する。内管パッカ5、5は内管流路に注入液を送液することにより、膨縮性内管パッカ5を注入液の送液圧力によって膨張して複数の内管パッカ5、5間に外管内空間を形成するとともに、この外管内空間7内に内管吐出口6から注入液を吐出する。 When the inner tube 2 is inserted into the outer tube 1 described above, the outer tube discharge port 4 is positioned between the adjacent inner tube packers 5 and 5, and the inner tube packers 5 and 5 in the outer tube 1 are disposed. It inserts so that the space 7 may be formed. The inner tube packers 5 and 5 are supplied between the plurality of inner tube packers 5 and 5 by inflating the expandable inner tube packer 5 due to the liquid feeding pressure of the injected solution by sending the injected solution to the inner tube flow path. A tube inner space is formed, and an injection solution is discharged from the inner tube discharge port 6 into the outer tube inner space 7.

本発明の特徴は地盤3中に屈曲して、または水平に、または屈曲と水平を任意に組み合わせて設置された上述の本発明注入装置Aにおいて、空間7内の圧力を感知して伝達する圧力伝達部材8を地盤注入装置A内に設置し、この圧力伝達部材8を通して空間7内で感知された圧力を伝達して測定し、内管吐出口6の正確な注入圧力を把握することに存する。   A feature of the present invention is that the pressure in the space 7 is sensed and transmitted in the above-described injection device A of the present invention which is bent in the ground 3 or installed horizontally or in any combination of bending and horizontal. The transmission member 8 is installed in the ground injection device A, and the pressure sensed in the space 7 is transmitted and measured through the pressure transmission member 8 to measure the accurate injection pressure of the inner pipe discharge port 6. .

具体的には、圧力伝達部材8はチューブ8であって、一端11が空間7内の圧力検出部12に位置して空間7内の圧力を感知するとともに、他端13が内管2を通して地盤3上の圧力計14に連結され、感知された空間7内圧力を圧力計14で測定し、内管吐出口6の外側の外管1と内管2の間の空間7の圧力を測定する。この空間7は外管吐出口4のゴムスリーブ19を介して所定のステージの注入領域に通じており、ゴムスリーブ19はゆるく外管吐出口4を覆っているに過ぎないから、空間7内圧力がその注入ステージにおける注入液の注入地盤の注入圧力に外ならない   Specifically, the pressure transmission member 8 is a tube 8, and one end 11 is positioned at the pressure detection unit 12 in the space 7 to sense the pressure in the space 7, and the other end 13 passes through the inner pipe 2 to the ground. The pressure in the space 7 is measured by the pressure gauge 14 and the pressure in the space 7 between the outer pipe 1 outside the inner pipe discharge port 6 and the inner pipe 2 is measured. . This space 7 communicates with an injection region of a predetermined stage via a rubber sleeve 19 of the outer tube discharge port 4, and the rubber sleeve 19 only covers the outer tube discharge port 4 loosely. Does not exceed the injection pressure of the injection ground of the injection solution at the injection stage

すなわち、貯留槽15からの注入材は注入ポンプ16、流量計17、圧力計18および内管2を通し、さらに、内管吐出口6から空間7を通し、外管吐出口4を経て、ゴムスリーブ19を押し拡げて地盤3に注入される。このときの内管吐出口6から出た注入液の注入地盤における注入圧力は空間7内の圧力をチューブ8を介し、地盤3上の圧力計14で直接測定することにより正確な注入状況を把握できる。もちろん、ゲル化時間が長い注入液を注入する場合には、チューブ8内は空間7を満たす注入液がそのまま填充されてその圧力を直接圧力計14で測定して注入圧力を知ることができる。ゲル化時間が長ければ、チューブ8内でゲル化する恐れがないが、ゲル化する恐れがある場合には、チューブ8内を時々、手押しポンプ20で水洗すれば良い。   That is, the injection material from the storage tank 15 passes through the injection pump 16, the flow meter 17, the pressure gauge 18, and the inner tube 2, and further passes through the space 7 from the inner tube discharge port 6, passes through the outer tube discharge port 4, and rubber. The sleeve 19 is expanded and injected into the ground 3. At this time, the injection pressure of the injection solution from the inner pipe discharge port 6 is determined in the injection ground by directly measuring the pressure in the space 7 with the pressure gauge 14 on the ground 3 through the tube 8. it can. Of course, when injecting an infusion solution having a long gelation time, the inside of the tube 8 is filled with the infusion solution filling the space 7 as it is, and the pressure can be directly measured by the pressure gauge 14 to know the injection pressure. If the gelation time is long, there is no possibility of gelation in the tube 8, but if there is a possibility of gelation, the tube 8 may be washed with water with the hand pump 20 occasionally.

従来の注入装置では、注入ポンプ16の注入圧力は圧力計18で地盤注入圧を測定していたが、その表示圧力は注入管内の抵抗圧、内管吐出口からの抵抗圧が本来の地盤への注入液の注入圧力に加算されたもので、実際の地盤における圧力は不明である。特に、内管吐出口6が細管からなる噴射ノズルの場合、その噴射口の抵抗圧が大きいため、地盤注入圧の変化を把握することは困難である。本発明装置は直接、地盤注入圧を測定するため、注入ステージにおける注入圧の変化を知り、これにより土粒子間浸透しているか、その状況変化を知り、割裂注入した場合の変化も知り得る。   In the conventional injection device, the injection pressure of the injection pump 16 is measured by the pressure gauge 18 and the ground injection pressure is measured, but the display pressure is the resistance pressure in the injection pipe and the resistance pressure from the inner pipe discharge port to the original ground. The actual pressure in the ground is unknown. In particular, when the inner tube discharge port 6 is an injection nozzle made of a thin tube, it is difficult to grasp the change in the ground injection pressure because the resistance pressure of the injection port is large. Since the apparatus of the present invention directly measures the ground injection pressure, it knows the change in the injection pressure at the injection stage, thereby knowing whether it has infiltrated between the soil particles, the change in the situation, and the change in the case of split injection.

上記において、空間7内に位置するチューブ8の一端11は図示しない膜で被覆することもできる。この場合、空間7内の圧力は手押しポンプ20によりチューブ8内に水等の液体を充填しておけば、膜で感知された空間7内の地盤内注入圧力を液体を介して圧力計14に伝達し、この圧力を読み取ることにより測定される。上記膜は薄膜であって、好ましくは膨縮膜である。   In the above, one end 11 of the tube 8 located in the space 7 can be covered with a film (not shown). In this case, if the pressure in the space 7 is filled with a liquid such as water in the tube 8 by the hand pump 20, the injection pressure in the ground in the space 7 detected by the membrane is applied to the pressure gauge 14 via the liquid. Measured by transmitting and reading this pressure. The film is a thin film, preferably an expansion / contraction film.

なお、空間7が複数の場合、図2に示されるように、内管2に分岐内管2aを分岐し、それぞれチューブ8、8を内管2および分岐内管2aを通して圧力検出部12から圧力計14、14aに伝達し、それぞれの圧力計14、14での別々の空間7内圧力を測定することもできる。   In the case where there are a plurality of spaces 7, as shown in FIG. 2, the branch inner pipe 2a is branched into the inner pipe 2, and the tubes 8, 8 are respectively connected to the pressure detector 12 through the inner pipe 2 and the branch inner pipe 2a. The pressure can be transmitted to the gauges 14 and 14a, and the pressures in the separate spaces 7 at the respective pressure gauges 14 and 14 can be measured.

さらに、圧力伝達部材8として、図3に示されるように、外管1と、この外管1内に挿入された内管2とを備え、地盤3中に固結材を注入して地盤3を固結する地盤注入装置Aであって、外管1は軸方向の異なる位置に複数の外管吐出口4を有し、内管2は複数の内管パッカ5を間隔をあけて備え、かつ、互いに隣接する内管パッカ5、5間には内管吐出口6を有し、外管1内に内管2を挿入するに際し、隣接する内管パッカ5、5間に外管吐出口4が位置するように挿入し、これにより外管1内の内管パッカ5、5間に空間7が形成されてなる地盤注入装置Aにおいて、空間7内に配置されたひずみ抵抗式圧力センサー21と、このひずみ抵抗式圧力センサー21に信号ケーブル26を介して接続されたアンプ24と、このアンプ24に信号ケーブル26を介して接続された地盤3上の圧力表示装置25とからなる圧力伝達部材8を地盤注入装置A内に設置することもできる。   Further, as shown in FIG. 3, the pressure transmission member 8 includes an outer tube 1 and an inner tube 2 inserted into the outer tube 1. The outer tube 1 has a plurality of outer tube discharge ports 4 at different positions in the axial direction, the inner tube 2 includes a plurality of inner tube packers 5 at intervals, In addition, an inner tube discharge port 6 is provided between the adjacent inner tube packers 5 and 5, and when the inner tube 2 is inserted into the outer tube 1, the outer tube discharge port is disposed between the adjacent inner tube packers 5 and 5. 4 in the ground injection device A in which the space 7 is formed between the inner tube packers 5 and 5 in the outer tube 1, and thereby the strain resistance type pressure sensor 21 disposed in the space 7. An amplifier 24 connected to the strain resistance pressure sensor 21 via a signal cable 26, and a signal transmitted to the amplifier 24. The pressure transmitting member 8 made of a pressure display device 25. on the ground 3 which is connected via a cable 26 may be installed in the ground implanter A.

この場合、圧力センサー21が空間7内圧力を感知し、この感知された空間7内圧力をアンプ24を介し、信号ケーブル26を通して電気信号として圧力表示装置25に伝達し、正確な地盤注入圧力を把握することができる。   In this case, the pressure sensor 21 senses the pressure in the space 7 and transmits the sensed pressure in the space 7 through the amplifier 24 and the signal cable 26 to the pressure display device 25 as an electrical signal, so that an accurate ground injection pressure can be obtained. I can grasp it.

また、圧力伝達部材8として、図4に示されるように、外管1と、外管1内に挿入された内管2とを備え、地盤3中に固結材を注入して地盤3を固結する地盤注入装置Aであって、外管1は軸方向の異なる位置に複数の外管吐出口4を有し、内管2は複数の内管パッカ5を間隔をあけて備え、かつ、互いに隣接する内管パッカ5、5間に内管吐出口6を有し、外管1内に内管2を挿入するに際し、隣接する内管パッカ5、5間に外管吐出口4が位置するように挿入し、これにより外管1内の内管パッカ5、5間に空間7が形成されてなる地盤注入装置Aにおいて、空間内にチューブ8を介して接続されたひずみ抵抗式圧力センサー21、この圧力センサー21に連結されたアンプ24と、該アンプ24に信号ケーブル26を介して連結された地盤3上の圧力表示装置25とからなる圧力伝達部材8を地盤注入装置A内に設置することもできる。   Further, as shown in FIG. 4, the pressure transmission member 8 includes an outer tube 1 and an inner tube 2 inserted into the outer tube 1. A ground injection device A for consolidation, wherein the outer tube 1 has a plurality of outer tube discharge ports 4 at different positions in the axial direction, the inner tube 2 includes a plurality of inner tube packers 5 at intervals, and When the inner tube 2 is inserted into the outer tube 1, the outer tube discharge port 4 is provided between the adjacent inner tube packers 5 and 5. In the ground injection device A, in which the space 7 is formed between the inner tube packers 5 and 5 in the outer tube 1 by being inserted so as to be positioned, the strain resistance type pressure connected to the space through the tube 8 A sensor 21, an amplifier 24 connected to the pressure sensor 21, and a signal cable 26 connected to the amplifier 24. The pressure transmitting member 8 made of a pressure display device 25. on board 3 may be installed in the ground implanter A.

この場合、空間7内に位置するチューブ8の一端11が空間7内圧力を感知し、この感知された圧力を圧力センサー21およびアンプ24を介して圧力表示装置25に伝達して測定し、正確な地盤注入圧力を把握する。   In this case, one end 11 of the tube 8 located in the space 7 senses the pressure in the space 7, and the sensed pressure is transmitted to the pressure display device 25 via the pressure sensor 21 and the amplifier 24, and is measured. Understand proper ground injection pressure.

上述のように構成される本発明地盤注入装置Aは、隣接する内管パッカ5、5間に外管吐出口4が位置し、かつ、外管1内の内管パッカ間5、5に空間7が形成されるように外管1に内管2を挿入し、さらに、注入装置A内に空間7内の圧力を感知して伝達する圧力伝達部材8を設置し、この圧力伝達部材8を通して前期空間7内で感知された圧力を伝達して測定し、正確な地盤注入圧力を把握する。   In the ground injection device A of the present invention configured as described above, the outer tube discharge port 4 is located between the adjacent inner tube packers 5 and 5 and the space between the inner tube packers 5 and 5 in the outer tube 1 is a space. The inner tube 2 is inserted into the outer tube 1 so that 7 is formed, and a pressure transmission member 8 that senses and transmits the pressure in the space 7 is installed in the injection device A. The pressure sensed in the previous space 7 is transmitted and measured, and the accurate ground injection pressure is grasped.

上述の本発明地盤注入装置Aは例えば、図5(a)乃至図5(d)に示されるように地盤3に設置される。これを詳述すると、まず、図5(a)に示されるように、地盤3をボーリングし、この中にケーシング27を挿入する。次いで、図5(b)に示されるように、ケーシング27の中に外管1を挿入する。この外管1には、管壁1a軸方向の異なる位置に複数の外管吐出口4、4・・4が所定の間隔をあけて開口され、これら外管吐出口4、4・・4はそれぞれゴムスリーブ19で覆われている。   The above-described ground injection device A of the present invention is installed on the ground 3 as shown in FIGS. 5 (a) to 5 (d), for example. This will be described in detail. First, as shown in FIG. 5A, the ground 3 is bored, and the casing 27 is inserted therein. Next, as shown in FIG. 5 (b), the outer tube 1 is inserted into the casing 27. The outer tube 1 has a plurality of outer tube discharge ports 4, 4, 4 opened at predetermined intervals at different positions in the axial direction of the tube wall 1 a, and the outer tube discharge ports 4, 4, 4 are Each is covered with a rubber sleeve 19.

さらに、図5(b)に示されるようにケーシング27にシールグラウト28を注入した後、図5(c)に示されるように、ケーシング27を引き抜く。これにより外管1はシールグラウト28でシールされる。   Further, after the seal grout 28 is injected into the casing 27 as shown in FIG. 5 (b), the casing 27 is pulled out as shown in FIG. 5 (c). As a result, the outer tube 1 is sealed with the seal grout 28.

次いで、図5(d)に示されるように、外管1内に内管2を挿入する。外管1は軸方向の異なる位置に複数の外管吐出口4を有し、内管2は複数の内管パッカ5を間隔をあけて備え、互いに隣接する内管パッカ5、5間には内管吐出口6を有して構成される。   Next, as shown in FIG. 5 (d), the inner tube 2 is inserted into the outer tube 1. The outer tube 1 has a plurality of outer tube discharge ports 4 at different positions in the axial direction, and the inner tube 2 is provided with a plurality of inner tube packers 5 at intervals, and between the adjacent inner tube packers 5 and 5. An inner tube discharge port 6 is provided.

そして、外管1内に内管2を挿入するに際して、隣接する内管パッカ5、5間に外管吐出口4が位置し、かつ、外管1内の内管パッカ5、5間には空間7が形成されるように挿入される。   When inserting the inner tube 2 into the outer tube 1, the outer tube discharge port 4 is located between the adjacent inner tube packers 5 and 5, and between the inner tube packers 5 and 5 in the outer tube 1. It is inserted so that the space 7 is formed.

さらに、注入装置Aの内管2内には圧力伝達部材としてチューブ8を設置する。このチューブ8は一端11が空間7内に位置して空間7内圧力を感知するとともに、他端が図示しない地盤3上の圧力計に連結され、感知された空間7内圧力をこの圧力計で測定する。   Furthermore, a tube 8 is installed in the inner tube 2 of the injection device A as a pressure transmission member. One end 11 of the tube 8 is located in the space 7 and senses the pressure in the space 7, and the other end is connected to a pressure gauge on the ground 3 (not shown). taking measurement.

内管パッカ5、5は内管流路に注入液を送液することにより注入液の送液圧力によって膨張して複数の内管パッカ5、5間に外管内空間7を形成する。空間7内の圧力は圧力伝達部材としてのチューブ8を通して地盤3上の圧力計で正確に測定される。 The inner pipe packers 5 and 5 are expanded by the liquid feeding pressure of the injected liquid by sending the injected liquid to the inner pipe flow path to form an outer pipe inner space 7 between the plurality of inner pipe packers 5 and 5. The pressure in the space 7 is accurately measured by a pressure gauge on the ground 3 through a tube 8 as a pressure transmission member.

さらに、本発明にかかる地盤注入装置Aとして図6に示す構造のものも用いられる。図6において、外管1は外管吐出口4をはさむように複数の外管パッカ29を備え、外管パッカ29内に外管パッカ内吐出口30を通して固結材を、ゴムスリーブ31を押し拡げて填充し、膨張させて地盤3中に定着、設置する。そして、内管2を外管1内に挿入し、内管2の流路に注入液を送液することにより、膨縮性の内管パッカ5が注入液の送液圧力によって膨張して上下に隣接する複数の内管パッカ5、5間に外管1内の空間7を形成する。   Furthermore, the thing of the structure shown in FIG. 6 is used as the ground injection apparatus A concerning this invention. In FIG. 6, the outer tube 1 is provided with a plurality of outer tube packers 29 so as to sandwich the outer tube discharge port 4, and the consolidated material is pushed into the outer tube packer 29 through the discharge port 30 in the outer tube packer and the rubber sleeve 31 is pushed. It expands, fills, expands, settles in the ground 3 and is installed. Then, by inserting the inner tube 2 into the outer tube 1 and feeding the injected solution into the flow path of the inner tube 2, the expandable inner tube packer 5 expands due to the pressure of the injected solution and moves up and down. A space 7 in the outer tube 1 is formed between the plurality of inner tube packers 5 and 5 adjacent to each other.

注入液はさらに、内管吐出口6から外管1内の空間7および外管吐出口4を通して外管1外空間32に吐出され、ここから地盤3中に注入される。さらに、内管2を移動し、注入を繰り返す。この外管外空間32は大きな表面積を有する柱状の注入源となるので、多量の注入速度で注入しても、注入源の単位面積からの注入速度は小さいので、低圧で土粒子間注入でき、急速浸透注入が可能になる。なお、外管パッカ29は透水性袋体であって、外管パッカ29内に固結材を填充し、削孔33の径よりも大きな径に膨張させて土中にパッカを形成し、外管1を地盤3に定着、設置する。図6中、34は締め金具である。   The injected liquid is further discharged from the inner tube discharge port 6 into the outer tube 1 outer space 32 through the space 7 in the outer tube 1 and the outer tube discharge port 4 and is injected into the ground 3 from here. Further, the inner tube 2 is moved and the injection is repeated. Since the outer space 32 is a columnar injection source having a large surface area, even if it is injected at a large injection rate, the injection rate from the unit area of the injection source is small, so that it can be injected between soil particles at a low pressure. Rapid osmotic injection is possible. The outer tube packer 29 is a water-permeable bag, and the outer tube packer 29 is filled with a caking material and expanded to a diameter larger than the diameter of the hole 33 to form a packer in the soil. The pipe 1 is fixed and installed on the ground 3. In FIG. 6, 34 is a fastener.

また、本発明において、内管2の流路は図7に示すように、内管2を複数本備えることにより複数本とすることもできる。この場合、各内管吐出口6、6・・・6はそれぞれ異なる外管内空間7に開口するようにする。これにより、複数の注入ステージを同時に注入して長尺の注入区間の急速施工が可能であるのみならず、浸透性や強度の異なる注入材を土層の状態に合わせて注入でき、かつ主材を注入した注入ステージに反応剤を重ね合わせて注入することもでき、あるいは懸濁液を注入した領域に溶液型グラウトを重ね合わせて注入することもできる。このとき、図示しないが、複数の内管吐出口を同一の外管内空間に開口させておけば、2種類の注入液、たとえば主剤配合液(A液)と反応剤配合液(B液)が空間7で混合され、この混合液が外管吐出口4から地盤3に注入することになる。なお、複数の内管は並列管でもよく、多重管でもよい。   Moreover, in this invention, as shown in FIG. 7, the flow path of the inner tube | pipe 2 can also be made into multiple by providing the multiple inner tubes 2. As shown in FIG. In this case, each of the inner pipe discharge ports 6, 6... 6 is opened to a different outer pipe inner space 7. As a result, not only can multiple injection stages be injected at the same time to enable rapid construction of long injection sections, but also injection materials with different permeability and strength can be injected according to the state of the soil layer, and the main material It is also possible to superimpose and inject the reactant on the injection stage in which the solution is injected, or to inject the solution type grout on the region where the suspension is injected. At this time, although not shown, if a plurality of inner pipe discharge ports are opened in the same outer pipe inner space, two types of injection liquids, for example, a main ingredient compounding liquid (A liquid) and a reactant compounding liquid (B liquid) can be obtained. The mixed liquid is mixed in the space 7 and injected into the ground 3 through the outer tube discharge port 4. The plurality of inner pipes may be parallel pipes or multiple pipes.

さらに、内管吐出口6は次の(a)乃至(c)のいずれかを満たすように形成される。
(a)内管吐出口6を細孔に形成する。この状態を図8(a)に示す。
(b)内管吐出口6を内管パッカ5内吐出口10よりも細孔に形成する。この状態を図8(a)、(b)に示す。
(c)内管吐出口の面積を内管2流路の断面積よりも小さく形成する。この状態を図8(a)、(b)に示す。
Further, the inner pipe discharge port 6 is formed so as to satisfy any of the following (a) to (c).
(A) The inner pipe discharge port 6 is formed in a fine hole. This state is shown in FIG.
(B) The inner tube discharge port 6 is formed in a smaller pore than the inner tube packer 5 discharge port 10. This state is shown in FIGS. 8 (a) and 8 (b).
(C) The area of the inner pipe discharge port is formed smaller than the cross-sectional area of the inner pipe 2 flow path. This state is shown in FIGS. 8 (a) and 8 (b).

なお、内管吐出口6は図8(c)に示されるように、ゴムスリーブ31などの抵抗体で覆うか、図8(d)に示されるように、逆止弁35を取り付ける。逆止弁35は例えば、内管吐出口6に外側からボール36を当てがい、このボール36をバネ37で押えつけるように構成される。また、細孔は噴射ノズルとして形成される。   The inner pipe discharge port 6 is covered with a resistor such as a rubber sleeve 31 as shown in FIG. 8C, or a check valve 35 is attached as shown in FIG. 8D. The check valve 35 is configured, for example, such that a ball 36 is applied from the outside to the inner tube discharge port 6 and the ball 36 is pressed by a spring 37. The pores are formed as injection nozzles.

さらに、内管2流路には図9に示されるように、脱圧装置38を設けることができる。さらに、内管2は図10に示されるように、フレキシブルジョイントで連結して形成してもよい。図10において、図10(a)は一本の内管をフレキシブルジョイントで連結した例であり、図10(b)は複数本の内管をフレキシブルジョイントで連結した例である。   Furthermore, as shown in FIG. 9, a decompression device 38 can be provided in the inner pipe 2 flow path. Furthermore, as shown in FIG. 10, the inner tube 2 may be formed by connecting with a flexible joint. 10A is an example in which one inner pipe is connected by a flexible joint, and FIG. 10B is an example in which a plurality of inner pipes are connected by a flexible joint.

内管パッカ5は不透水性で弾力性に富んだ合成ゴムの袋体で形成される。したがって、内管パッカ5内に注入液による内圧が作用すると、内管パッカ5は膨張して外管1の内壁に密着し、パッカを形成する。しかし、注入液の送液を中止したり、あるいは注入液の圧力を図9に示すような内管流路に設けられた脱圧装置38により減圧すると、パッカ5の弾性によって収縮し、外管1の内壁から離れる。したがって、所定ステージで所定量の注入を完了したのち、直ちに次の注入ステージに移向できる。脱圧装置38は注入ポンプより下流側にあればよく、図中の三方コック等、バルブだけでもよい。内管の加圧された注入液はバルブが開けば外部に排出されて、内管パッカは収縮する。さらに、吸水ポンプで内管内の注入液を吸い上げてしまえば、注入ステージを移向する際に、内管内の注入液が外管内に漏出するのを最小限におさえることができる。   The inner tube packer 5 is formed of a synthetic rubber bag which is impermeable and rich in elasticity. Therefore, when the internal pressure due to the injected liquid acts on the inner tube packer 5, the inner tube packer 5 expands and comes into close contact with the inner wall of the outer tube 1 to form a packer. However, when the feeding of the injected liquid is stopped or the pressure of the injected liquid is reduced by the depressurizing device 38 provided in the inner pipe flow path as shown in FIG. 1 away from the inner wall. Therefore, it is possible to immediately move to the next injection stage after completing a predetermined amount of injection at a predetermined stage. The depressurization device 38 only needs to be downstream from the infusion pump, and may be only a valve such as a three-way cock in the figure. When the valve is opened, the injected liquid pressurized in the inner pipe is discharged to the outside, and the inner pipe packer contracts. Furthermore, if the injection liquid in the inner pipe is sucked up by the water absorption pump, it is possible to minimize the leakage of the injection liquid in the inner pipe into the outer pipe when moving the injection stage.

注入深度が大きくなったり、水平方向の注入管設置長が長くなると、外管1は土圧によって変形する。したがって内管2の挿入や移動が困難になる。しかし、図10(a)、図10(b)に示されるように内管2の所定の位置に合成ゴムのホース状フレキシブルジョイント39を設けることにより、内管2は外管1の変形に対応して外管1内を移向し得る。また、内管パッカ5はゴムパッカであって、所定のステージでの注入完了時に収縮する。このため、内管2は容易に外管1内で移向できる。さらに、従来のようなエアパッカが不用なため、内管2の径を細くすることができ、この点からも外管の変形に順応する。また、本発明において、内管は硬質パイプで形成してもよいが、内管吐出口が存在する範囲よりも手前側の内管をホースで形成することにより、捲取装置つきの昇降装置で自由に外管内を移動することが可能である。   When the injection depth becomes large or the horizontal length of the injection pipe is increased, the outer pipe 1 is deformed by earth pressure. Therefore, it becomes difficult to insert and move the inner tube 2. However, as shown in FIGS. 10A and 10B, the inner tube 2 can cope with the deformation of the outer tube 1 by providing a hose-like flexible joint 39 made of synthetic rubber at a predetermined position of the inner tube 2. Thus, the inside of the outer tube 1 can be turned. Further, the inner tube packer 5 is a rubber packer and contracts upon completion of injection at a predetermined stage. For this reason, the inner tube 2 can be easily transferred within the outer tube 1. Further, since the conventional air packer is unnecessary, the diameter of the inner tube 2 can be reduced, and from this point, the outer tube can be adapted to deformation. In the present invention, the inner pipe may be formed of a hard pipe, but by forming the inner pipe with a hose on the near side from the range where the inner pipe discharge port exists, it is free with a lifting device with a scraper. It is possible to move in the outer tube.

本発明に使用される注入材は内管パッカ5内でゲル化すると、パッカが機能しなくなるため、ゲル化時間が長く、かつ詰まりにくい材料が望ましい。したがって、気中のゲル化時間が土中のゲル化時間よりも長いものが良い。このような注入材は土中に注入した注入液がゲル化したあとでも、内管流路や内管パッカ中ではゲル化が生じておらず、このため所定ステージで所定量注入後、次の注入ステージに移向して注入するまで、パッカの収縮、膨張を繰り返してパッカ機能を継続することができる。また、チューブ内を通ってもゲル化することなく、外管内空間7の圧力を圧力計14に伝達することができる。この種の注入材としては、非アルカリ性水ガラスグラウト、あるいは水ガラスをイオン交換樹脂や、イオン交換膜で脱アルカリして得られた活性シリカを主材とするグラウトが挙げられる。これらのグラウトは気中で10時間以上のゲル化時間を有するが、土中では数時間のゲル化時間を保持する。したがって、これらは長時間、広範囲の注入を可能とする。また、ゲル化時間が1時間以上のアルカリ系水ガラスグラウトも用いることができる。   When the injection material used in the present invention is gelled in the inner tube packer 5, the packer will not function. Therefore, a material that has a long gelation time and is difficult to clog is desirable. Accordingly, it is preferable that the gelation time in the air is longer than the gelation time in the soil. Such an injection material does not cause gelation in the inner pipe flow path or the inner pipe packer even after the injection solution injected into the soil has gelled. The packer function can be continued by repeatedly contracting and expanding the packer until it is transferred to the injection stage and injected. Further, the pressure in the outer tube inner space 7 can be transmitted to the pressure gauge 14 without gelation even when passing through the tube. Examples of this type of injection material include non-alkaline water glass grout, or grout mainly composed of activated silica obtained by dealkalizing water glass with an ion exchange resin or ion exchange membrane. These grouts have a gel time of 10 hours or more in the air, but retain a gel time of several hours in the soil. Thus, they allow a wide range of injections for a long time. An alkaline water glass grout having a gel time of 1 hour or longer can also be used.

ここで、上述パッカ機能の基本原理を図9を用いて説明する。図9は外管1およびその中に遊挿された内管2を備えた実験装置の説明であって、吐出バルブ40を閉じて外管1と、内管2と、内管パッカ5と、外管内空間7と、外管吐出口4とからなる本発明装置Aの最小単位に関して圧力の関係を説明する。   Here, the basic principle of the packer function will be described with reference to FIG. FIG. 9 is an explanation of an experimental apparatus including the outer tube 1 and the inner tube 2 loosely inserted therein, and the discharge valve 40 is closed to close the outer tube 1, the inner tube 2, the inner tube packer 5, The relationship of the pressure with respect to the minimum unit of the device A of the present invention composed of the outer pipe inner space 7 and the outer pipe outlet 4 will be described.

まず、内管2の内管流路から注入液を圧力Pおよび流量Fで送液する。圧力Pは圧力計41により、流量Fは流量計42によりそれぞれ測定される。内管2と膨張性の内管パッカ5は内管パッカ内吐出口10を通じて連通しており、内管パッカ5は膨張する。この内圧は注入液の圧力Pと同じである。 First, the injection solution is sent from the inner tube flow path of the inner tube 2 at the pressure P 0 and the flow rate F 0 . The pressure P 0 is measured by the pressure gauge 41, and the flow rate F 0 is measured by the flow meter 42. The inner tube 2 and the inflatable inner tube packer 5 communicate with each other through the inner tube packer outlet 10 and the inner tube packer 5 expands. This internal pressure is the same as the pressure P 0 of the injected liquid.

一方、外管1の外管吐出口4には流量圧力調整装置43が備えられる。この装置43の圧力調整弁44を開放しておけば、外管内空間7の圧力Pは空間7が外部に開放された状態にあるから、当然Pよりも低くなる。このときの圧力および流量は流量圧力調整装置43の圧力計45および流量計46で測定される。したがって、内管2内に注入液の送液圧力が加わっている限り、内管パッカ5は膨張してパッカとして形成され、内管吐出口6から吐出された注入液は外管内空間7を経て外管吐出口4から外部に吐出される。 On the other hand, the outer tube discharge port 4 of the outer tube 1 is provided with a flow pressure adjusting device 43. If the pressure regulating valve 44 of the device 43 is opened, the pressure P 1 in the outer pipe inner space 7 is naturally lower than P 0 because the space 7 is open to the outside. The pressure and flow rate at this time are measured by the pressure gauge 45 and the flow meter 46 of the flow rate pressure adjusting device 43. Therefore, as long as the feeding pressure of the injected liquid is applied to the inner pipe 2, the inner pipe packer 5 expands and is formed as a packer, and the injected liquid discharged from the inner pipe discharge port 6 passes through the outer pipe inner space 7. It is discharged from the outer tube discharge port 4 to the outside.

圧力調整弁44を徐々に閉じてその開口度を低くすると、圧力計45の圧力は上昇する(P11)。この際、送液流量Fを同一にすると、内管圧力Pは圧力Pよりも高くなる。この場合、圧力P11は地盤の浸透抵抗圧に相当する。しかし、地盤に注入が行われている限り、圧力Pは圧力P11よりも高いわけであるから、当然、内管パッカ5内圧力は圧力Pとなって、外管内空間7内の圧力P11よりも高く維持されるので注入が継続することになる。 When the pressure regulating valve 44 is gradually closed to lower the opening degree, the pressure of the pressure gauge 45 rises (P 11 ). At this time, if the liquid feeding flow rate F 0 is the same, the inner pipe pressure P 1 becomes higher than the pressure P 0 . In this case, the pressure P 11 is equivalent to the osmotic resistance pressure of the ground. However, as long as injection is performed in the ground, the pressure P 1 is higher than the pressure P 11 , so the pressure in the inner tube packer 5 naturally becomes the pressure P 1 and the pressure in the outer tube inner space 7. since it is maintained higher than the P 11 so that the injection continues.

しかるに、内管2内の注入液が内管吐出口6から出て、外管吐出口4を経て地盤に注入されるまでの間に内管パッカ5が膨張し、内管パッカ5が形成される前は外管内空間7が充分に形成されないので、注入液が外管内を上下方向に移動してしまう。したがって、外管内を注入液が移動し、不特定の外管吐出口4から地盤中に注入されることになるので、所定の注入領域に注入されず、好ましくない。このため、内管吐出口6から外管内空間7に吐出される時点ですでに内管パッカ5が形成されていることが好ましい。そのためには内管2からの吐出に際して、加圧状態になっていることが好ましい。すなわち初期圧が生じていることが望ましい。   However, the inner tube packer 5 is formed until the injected liquid in the inner tube 2 comes out of the inner tube discharge port 6 and is injected into the ground through the outer tube discharge port 4. Since the outer tube inner space 7 is not sufficiently formed before the injection, the injected liquid moves up and down in the outer tube. Therefore, the injected solution moves in the outer tube and is injected into the ground from the unspecified outer tube discharge port 4, which is not preferable because it is not injected into a predetermined injection region. For this reason, it is preferable that the inner tube packer 5 has already been formed at the time of discharge from the inner tube discharge port 6 to the outer tube inner space 7. For this purpose, it is preferable to be in a pressurized state when discharging from the inner tube 2. That is, it is desirable that an initial pressure is generated.

初期圧とは空気中で注入液を吐出口から吐出した時に生じる管内圧を言う。普通、1ステージ当たりの注入、すなわち、上下のパッカ間の1注入区間からの注入速度は2〜30リットル/分で行われるが、そのような注入速度に対して初期圧が0.1kgf/cm以上になるのが好ましく、その場合、内管吐出口から注入液が吐出する際に内管パッカがすでに膨張している。 The initial pressure refers to the pressure inside the tube that is generated when the injected liquid is discharged from the discharge port in the air. Usually, the injection rate per stage, that is, the injection rate from one injection section between the upper and lower packers is 2-30 liters / minute, but the initial pressure is 0.1 kgf / cm for such an injection rate. preferably it becomes 2 or more, in which case, the inner pipe packer when infusate from the inner tube discharge port for discharging already inflated.

初期圧として0.1kgf/cm以上の管内圧力を生じれば、パッカが外管管壁に密着する。その場合の吐出口径は0.1〜3mm程度の細孔が好ましい。実際には1ステージ当たりの注入速度に対応して一つの吐出口径と、吐出口数と、膨縮性パッカの弾力性とを適切に設計することによって初期圧を任意に設定でき、また、注入圧力に耐える強度のパッカを形成できる。したがって、本発明は以下の方法を行えることにより初期圧が容易に形成され、内管パッカを内管吐出口からの吐出よりも早く膨張しやすくすることができる。 If an internal pressure of 0.1 kgf / cm 2 or more is generated as an initial pressure, the packer is brought into close contact with the outer tube wall. In that case, the discharge port diameter is preferably about 0.1 to 3 mm. Actually, the initial pressure can be arbitrarily set by appropriately designing one discharge port diameter, the number of discharge ports, and the elasticity of the inflatable packer corresponding to the injection speed per stage. Can form a strong packer that can withstand Therefore, according to the present invention, the initial pressure can be easily formed by performing the following method, and the inner tube packer can be easily expanded faster than the discharge from the inner tube discharge port.

(a)内管吐出口を噴射孔等の細孔にする。
(b)内管吐出口の面積は内管流路の断面積よりも小さい。
(c)内管パッカ内吐出口を内管吐出口よりも大きくする。
(d)内管吐出口に逆止弁を設ける。図8(d)はバネ37の力よりも内管内の注入液の圧力が大きくなってはじめて外管内空間に注入液が吐出される。
(e)内管吐出口を吐出抵抗体で覆う。図8(c)において、ゴムスリーブ31を用い、吐出口を覆っておけば、ゴムスリーブ31の弾力性に対応した内管内注入液の圧力が高まった時点で注入液が外管内空間に吐出される。
以上の基本原理に基づいて本発明は完成された。図9中、38は脱圧装置であって、送液バルブ47、三方コック48、吸水ポンプ49から構成される。50は排水管であり、三方コック51を備える。
(A) The inner pipe discharge port is made into a fine hole such as an injection hole.
(B) The area of the inner pipe discharge port is smaller than the cross-sectional area of the inner pipe flow path.
(C) The inner tube packer discharge port is made larger than the inner tube discharge port.
(D) A check valve is provided at the inner pipe discharge port. In FIG. 8D, the injection solution is discharged into the outer tube space only after the pressure of the injection solution in the inner tube becomes larger than the force of the spring 37.
(E) Cover the inner tube discharge port with a discharge resistor. In FIG. 8C, if the rubber sleeve 31 is used and the discharge port is covered, the injected liquid is discharged into the outer pipe inner space when the pressure of the injected liquid in the inner pipe corresponding to the elasticity of the rubber sleeve 31 increases. The
The present invention has been completed based on the above basic principle. In FIG. 9, reference numeral 38 denotes a depressurizing device, which includes a liquid feed valve 47, a three-way cock 48, and a water absorption pump 49. A drain pipe 50 includes a three-way cock 51.

図9からわかるように、注入圧力は圧力計41によって測定される。したがって、内管吐出口6から吐出された後、注入中における実際の地盤注入圧力を知るには、上述の本発明にしたがって、外管内空間7にストレインゲージに相当するひずみ抵抗圧力センサーまたは間隙水圧計に相当するチューブ(圧力伝達部材)のいずれかを設置して外管内空間7における注入液の液圧を計算し、その情報をリアルタイムで有線または無線により地上部の管理室に集め、その情報に基づき、注入速度や、注入圧力や、注入の中断、完了等の注入管操作を管理することにより、最適の注入を行うことができる。もちろん、本発明のように、空間に圧力伝達部材を設け、その情報を得ることによって内管内圧力と外部浸透圧力の変動や、圧力の差の情報を得ることによって内管の吐出口の状況や外部のゲル化の状況を正確に把握して注入管理にフィードバックすることができる。   As can be seen from FIG. 9, the injection pressure is measured by the pressure gauge 41. Therefore, in order to know the actual ground injection pressure during injection after being discharged from the inner pipe discharge port 6, according to the present invention described above, the strain resistance pressure sensor or pore water pressure corresponding to the strain gauge is placed in the outer pipe inner space 7. One of the tubes (pressure transmission member) corresponding to the meter is installed to calculate the liquid pressure of the injected liquid in the outer pipe inner space 7, and the information is collected in the management room of the ground part by wire or wireless in real time. Based on the above, optimal injection can be performed by managing the injection speed, injection pressure, and injection tube operations such as injection interruption and completion. Of course, as in the present invention, a pressure transmission member is provided in the space, and by obtaining the information, fluctuations in the internal pipe pressure and the external osmotic pressure, and information on the pressure difference are obtained by obtaining information on the pressure difference. It is possible to accurately grasp the external gelation status and feed back to the injection management.

これらの計測センサーは通常、図8(d)あるいは図9の内管吐出口6の出口流路に設置することもできるが、さらに内管のパッカ間の外側壁にストレインゲージをはりつけることもできる。もちろん、外管内側の壁面に埋め込むこともできる。そして、その情報は内管を通して、または外管に設けた溝等に沿って、有線または無線により地上に送られる。   These measurement sensors can usually be installed in the outlet flow path of the inner pipe discharge port 6 of FIG. 8D or FIG. 9, but a strain gauge can be attached to the outer wall between packers of the inner pipe. . Of course, it can also be embedded in the wall surface inside the outer tube. The information is sent to the ground by wire or wirelessly through the inner tube or along a groove or the like provided in the outer tube.

なお、本発明装置において、内管として複数の内管パッカ付きと注入液流路を構成した内管を用い、注入液を多数の内管パッカ間に設けた内管吐出口の噴射ノズルから複数の外管吐出口を通してシールグラウトを破って地盤内に同時注入することもできる。この場合も複数の外管内空間にひずみ抵抗圧力計あるいは圧力伝達部材としてのチューブの一端を設けることにより正確に複数の注入ステージにおける注入圧力を同時に計測することができる。   In the apparatus of the present invention, an inner tube having a plurality of inner tube packers and an infusion liquid flow path is used as the inner tube, and a plurality of injection liquids are injected from the injection nozzles at the inner tube discharge port provided between the many inner tube packers. It is possible to break the seal grout through the outer tube discharge port and simultaneously inject it into the ground. Also in this case, it is possible to accurately measure the injection pressures at a plurality of injection stages simultaneously by providing one end of a strain resistance pressure gauge or a tube as a pressure transmission member in a plurality of outer tube internal spaces.

図11(a)〜(g)は地盤注入装置(注入管)を地盤中に設置するための施工例の説明図であって、図11(a)はボーリングロッド52のヘッド部53付近を示す。ボーリングロッド52の(単管ロッド)のヘッド部53は先端がテーパー面54に形成され、螺着体55で螺着されている。   FIGS. 11A to 11G are explanatory views of a construction example for installing the ground injection device (injection pipe) in the ground, and FIG. 11A shows the vicinity of the head portion 53 of the boring rod 52. . The head portion 53 of the boring rod 52 (single tube rod) has a tip formed on a tapered surface 54 and is screwed by a screwed body 55.

ヘッド部53は図11(b)に示されるように、地盤3中の位置情報を発信する発信器、すなわち、位置情報発信器56を内蔵し、牽引バー57に連結されている。位置情報発信器56から発信された情報は後述の図11(c)に示されるように、地表面58に設置された受信ロケーター59によって受信される。   As shown in FIG. 11 (b), the head portion 53 incorporates a transmitter that transmits position information in the ground 3, that is, a position information transmitter 56, and is connected to a tow bar 57. The information transmitted from the position information transmitter 56 is received by a receiving locator 59 installed on the ground surface 58 as shown in FIG.

図11(c)はボーリングロッド52(単管ロッド52)を構造物60真下の地盤3中に掘進している状態を表した説明図であって、地表面58上に設置された削孔機61にヘッド部53に位置情報発信器56の内蔵された単管ロッド52を接続し、屈曲と水平を任意に組み合わせながら、水等のボーリング流体の噴射とともに地盤3中に掘進する。そして、地表面58には受信ロケーター59を設置し、この受信ロケーター59が地下の位置情報発信器56からの位置情報の電波を受信する。削孔機61はその情報に基づき、ボーリングロッド52(単管ロッド52)の削孔方向や位置を確認し、コントロールしながら単管ロッド52を地盤3中に掘進する。   FIG. 11C is an explanatory view showing a state in which the boring rod 52 (single tube rod 52) is dug into the ground 3 just below the structure 60, and a drilling machine installed on the ground surface 58. The single tube rod 52 in which the position information transmitter 56 is built in is connected to the head portion 53, and digs into the ground 3 together with the injection of a boring fluid such as water while arbitrarily combining bending and horizontal. A reception locator 59 is installed on the ground surface 58, and the reception locator 59 receives radio waves of location information from the underground location information transmitter 56. The drilling machine 61 confirms the drilling direction and position of the boring rod 52 (single pipe rod 52) based on the information, and digs the single pipe rod 52 into the ground 3 while controlling it.

ボーリングロッド52のヘッド部53の先端はテーパー面54に形成されているため、ボーリングロッド52を回転すれば直進し、回転を止めて圧入すればテーパーの方向に応じて屈曲し、この結果、ボーリングロッド52は任意の方向に掘進される。ヘッド部53の位置はコントロール(図示せず)で把握し、これをボーリング操作にフィードバックできる。また、ボーリングロッド52の先端には位置情報装置としてジャイロを設けることによりボーリングロッド52内を通してヘッド部53の位置を把握することもできる。   Since the tip of the head portion 53 of the boring rod 52 is formed on the tapered surface 54, if the boring rod 52 is rotated, it goes straight, and if the rotation is stopped and press-fitted, it bends according to the direction of the taper. The rod 52 is dug in an arbitrary direction. The position of the head portion 53 is grasped by a control (not shown), and this can be fed back to the boring operation. Further, the position of the head portion 53 can be grasped through the boring rod 52 by providing a gyro as a position information device at the tip of the boring rod 52.

単管ロッド52を地盤3中の所定の位置まで掘進した後、図11(d)に示されるように、牽引バー57を引っ張って位置情報発信器56を地上に回収する。この結果、ボーリングロッド52の先端から末端まで空洞になる。このボーリングロッド52内空洞に、次いで、図11(e)に示されるように、先端にメカニカルアンカー62の装着された外管1をシールグラウト28を圧入させながら挿入する。   After excavating the single tube rod 52 to a predetermined position in the ground 3, as shown in FIG. 11D, the tow bar 57 is pulled to collect the position information transmitter 56 on the ground. As a result, the boring rod 52 is hollow from the tip to the end. Next, as shown in FIG. 11 (e), the outer tube 1 fitted with a mechanical anchor 62 at the tip is inserted into the cavity in the boring rod 52 while the seal grout 28 is press-fitted.

次に、外管1を押しながら単管ロッド52を引き抜くと、図11(f)に示されるように、メカニカルアンカー62が開いて削孔壁9aにかみ込み、これにより外管1はアンカーされ、かつシールグラウト28によって削孔9内に定着する。   Next, when the single tube rod 52 is pulled out while pushing the outer tube 1, as shown in FIG. 11 (f), the mechanical anchor 62 is opened and bites into the drilling wall 9 a, thereby the outer tube 1 is anchored. And, it is fixed in the hole 9 by the seal grout 28.

さらに、シールグラウト28が固化して後、図11(g)に示されるように、複数の膨縮性内管パッカ5、5、・・5を間隔をあけて備え、パッカ間に内管吐出口6を有する内管2を外管1に遊挿する。次いで、内管2内に注入液を圧入すると、注入液がパッカ内吐出口10からパッカ内に入り内管パッカ5、5、・・5を膨張して外管1の内壁に圧着し、外管内空間7を形成する。さらに、注入液は内管吐出口6および外管吐出口4を経てシールグラウト28を破壊しながら地盤中に浸透、注入する。   Further, after the seal grout 28 is solidified, as shown in FIG. 11 (g), a plurality of inflatable inner tube packers 5, 5,... 5 are provided at intervals, and the inner tube discharges between the packers. The inner tube 2 having the outlet 6 is loosely inserted into the outer tube 1. Next, when the injection solution is press-fitted into the inner tube 2, the injection solution enters the packer through the discharge port 10 in the packer and expands the inner tube packers 5, 5,. An in-pipe space 7 is formed. Further, the injected solution penetrates and injects into the ground through the inner tube discharge port 6 and the outer tube discharge port 4 while breaking the seal grout 28.

注入の後、内管2内の注入液の内圧を脱圧することにより、内管パッカ5を収縮し、内管2を次の注入ステージに移動する。この操作を繰り返して所定注入領域を浸透固結する。なお、外管1はシールグラウト28の代わりに図6に示すように外管パッカ29を用いて定着することもできる。外管パッカ29には図示しないダブルパッカを有する内管を用い、外管パッカ内吐出口30から外管パッカ29内にセメントベントナイト等を圧入し、膨張して外管パッカ29を形成し、外管1を削孔内に定着する。   After the injection, the inner pressure of the injected liquid in the inner tube 2 is released to contract the inner tube packer 5 and move the inner tube 2 to the next injection stage. This operation is repeated to permeate and consolidate the predetermined injection region. The outer tube 1 can be fixed using an outer tube packer 29 as shown in FIG. 6 instead of the seal grout 28. As the outer tube packer 29, an inner tube having a double packer (not shown) is used. Cement bentonite or the like is press-fitted into the outer tube packer 29 from the discharge port 30 in the outer tube packer and expanded to form the outer tube packer 29. 1 is fixed in the drilling hole.

以上のとおり、本発明にかかる注入工法は建物等の構造物60下方の液状化防止注入に適している。例えば構造物60下方の深さ方向に複数層積層して同時注入することもでき、あるいはさらに、構造物60の下方に水平方向に注入管を複数本並列して設定して同時注入することもでき、あるいはさらに、深さ方向と水平方向に複数層同時に固結層を形成することもできる。なお、本発明において、注入管設置のためのボーリングは構造物付近の地表面から行ってもよく、たて杭から先端に情報発信機を内蔵したボーリングロッドで水平に構造物の基礎地盤中に行ってもよい。   As described above, the injection method according to the present invention is suitable for liquefaction prevention injection under the structure 60 such as a building. For example, a plurality of layers can be stacked in the depth direction below the structure 60 and simultaneously injected, or a plurality of injection tubes can be set in parallel in the horizontal direction below the structure 60 and simultaneously injected. Alternatively, a plurality of layers can be formed simultaneously in the depth direction and the horizontal direction. In the present invention, the boring for installing the injection pipe may be performed from the ground surface near the structure, and horizontally into the foundation ground of the structure with a boring rod incorporating an information transmitter from the vertical pile to the tip. You may go.

上述の本発明は空間内圧力を感知して伝達する圧力伝達部材を注入装置内に設置し、この圧力伝達部材を通して前期空間内で感知した圧力を圧力計に伝達し、この伝達された圧力を地盤上の圧力計で測定することにより、内管パッカ間に位置する内管吐出口から注入液(固結材)を外管吐出口を通して地盤中に注入するに当り、地盤中への注入圧力を地盤上で正確に把握し得、地盤注入分野において、利用可能性が高い。   In the present invention described above, a pressure transmission member that senses and transmits the pressure in the space is installed in the injection device, and the pressure sensed in the previous space is transmitted to the pressure gauge through the pressure transmission member, and the transmitted pressure is transmitted to the pressure gauge. By measuring with a pressure gauge on the ground, the injection pressure (solidified material) from the inner pipe outlet located between the inner pipe packers into the ground through the outer pipe outlet is injected into the ground. Can be accurately grasped on the ground and is highly available in the field of ground injection.

本発明にかかる地盤注入装置の一具体例の断面図である。It is sectional drawing of one specific example of the ground injection apparatus concerning this invention. 本発明にかかる地盤注入装置の他の具体例の断面図である。It is sectional drawing of the other specific example of the ground injection apparatus concerning this invention. 本発明にかかる地盤注入装置のさらに他の具体例の断面図である。It is sectional drawing of the other specific example of the ground injection apparatus concerning this invention. 本発明にかかる地盤注入装置のさらに他の具体例の断面図である。It is sectional drawing of the other specific example of the ground injection apparatus concerning this invention. 本発明注入装置の地盤への設置工程の一工程図を表す。The one process figure of the installation process to the ground of this invention injection apparatus is represented. 本発明注入装置の地盤への設置工程の一工程図を表す。The one process figure of the installation process to the ground of this invention injection apparatus is represented. 本発明注入装置の地盤への設置工程の一工程図を表す。The one process figure of the installation process to the ground of this invention injection apparatus is represented. 本発明注入装置の地盤への設置工程の完成図を表す。The completion figure of the installation process to the ground of this invention injection apparatus is represented. 本発明にかかる地盤注入装置のさらに他の具体例の断面図である。It is sectional drawing of the other specific example of the ground injection apparatus concerning this invention. 内管を複数本備えた本発明注入装置の説明図である。It is explanatory drawing of this invention injection apparatus provided with multiple inner tubes. 内管パッカ内吐出口と内管吐出口を表した説明図であって、大きさの関係を表す。It is explanatory drawing showing the discharge port in an inner tube packer, and an inner tube discharge port, Comprising: The relationship of a magnitude | size is represented. 内管パッカ内吐出口と内管吐出口を表した説明図であって、大きさの関係を表す。It is explanatory drawing showing the discharge port in an inner tube packer, and an inner tube discharge port, Comprising: The relationship of a magnitude | size is represented. 内管吐出口に覆われるゴムスリーブを表す。Represents a rubber sleeve covered by the inner tube discharge port. 内管吐出口に取り付けられる逆止弁の説明図である。It is explanatory drawing of the non-return valve attached to an inner pipe discharge port. 本発明のパッカ機能の原理を説明するための実験装置の説明図である。It is explanatory drawing of the experimental apparatus for demonstrating the principle of the packer function of this invention. 内管をフレキシブルジョイントで連結した状態の説明図である。It is explanatory drawing of the state which connected the inner pipe | tube with the flexible joint. 内管をフレキシブルジョイントで連結した状態の説明図である。It is explanatory drawing of the state which connected the inner pipe | tube with the flexible joint. 本発明に用いられるボーリングロッドの平面図である。It is a top view of the boring rod used for this invention. 本発明に用いられるボーリングロッドのヘッド部の断面図である。It is sectional drawing of the head part of the boring rod used for this invention. 構造物直下にボーリングロッドを掘進している状態を表した説明図である。It is explanatory drawing showing the state which is excavating the boring rod directly under a structure. 牽引バーを引っ張って発信ロケーターを地上に回収している状態の断面図である。It is sectional drawing of the state which is pulling the tow bar and collect | recovering the transmission locator on the ground. 外管をボーリングロッド内空洞に挿入している状態の断面図である。It is sectional drawing of the state which has inserted the outer tube | pipe into the cavity in a boring rod. 外管を削孔内に定着させた状態の断面図である。It is sectional drawing of the state which fixed the outer pipe | tube in the drilling hole. 外管内に内管を遊挿し、内管パッカを膨張して外管内に定着させた状態の断面図を表す。 ^Sectional drawing of the state which inserted the inner pipe | tube in the outer pipe | tube, expanded the inner pipe | tube packer, and was fixed in the outer pipe | tube is represented. ^

符号の説明Explanation of symbols

A 地盤注入装置
X 注入液送液装置
1 外管
1a 管壁
2 内管
2a 分岐内管
2b 内管流路
3 地盤
4 外管吐出口
5 内管パッカ
6 内管吐出口
7 空間
8 圧力伝達部材(チューブ)
9 削孔
10 パッカ内吐出口
11 一端
12 圧力検出部
13 他端
14 圧力計
14a 圧力計
19 ゴムスリーブ
20 手押しポンプ
21 ひずみ抵抗式圧力センサー
22 一端
23 他端
24 アンプ
25 圧力表示装置
26 信号ケーブル
29 外管パッカ
30 外管パッカ内吐出口
A Ground injection device X Injection liquid feeding device 1 Outer tube 1a Tube wall 2 Inner tube 2a Branch inner tube 2b Inner tube flow path 3 Ground 4 Outer tube discharge port 5 Inner tube packer 6 Inner tube discharge port 7 Space 8 Pressure transmission member (tube)
DESCRIPTION OF SYMBOLS 9 Drilling hole 10 Packer discharge port 11 One end 12 Pressure detection part 13 Other end 14 Pressure gauge 14a Pressure gauge 19 Rubber sleeve 20 Hand pump 21 Strain resistance type pressure sensor 22 One end 23 Other end 24 Amplifier 25 Pressure display device 26 Signal cable 29 Outer tube packer 30 Outer port packer outlet

Claims (2)

地盤に注入管を屈曲して、または水平に、または屈曲と水平を任意に組み合わせて設置し、この注入管を通して地盤中に注入液を注入する地盤注入工法であって、前記注入管は軸方向の異なる位置に複数の外管吐出口を有する外管と、この外管内に遊挿され、弾力性のある不透水性袋体からなる複数の膨縮性内管パッカを前記外管吐出口をはさむように間隔をあけて備え、さらに、これら内管パッカ内にパッカ内吐出口を有し、かつ前記間隔をあけて備えられた内管パッカ間に内管吐出口を有する内管とを備え、先端に位置情報発信器を内臓したボーリングロッドで削孔された削孔内に設置されてなり、前記内管吐出口は以下の(a)ないし(c)のいずれかを満たすように形成され、膨縮性内管パッカは内管パッカを膨張させるためのパッカ流体用管路を設けることなく、内管流路に注入液を送液することにより、前記膨縮性内管パッカを注入液の送液圧力によって膨張して複数の内管パッカ間に外管内空間を形成するとともに、この外管内空間内に内管吐出口から注入液を吐出し、注入液を外管内空間から外管吐出口を通して地盤中に注入し、次いで、注入液の送液を停止することにより、あるいは内管内の注入液の圧力を減圧することにより、前記膨縮性内管パッカを収縮し、内管を外管内で移動自在として所定の位置で同様にして注入を繰り返すことを特徴とし、前記空間内には空間内の圧力を感知して伝達する圧力伝達部材を設置し、この圧力伝達部材を通して前記空間内で感知された圧力を地盤上の圧力計に伝達して測定し、地盤の注入圧力を把握することを特徴とする地盤注入工法。
(a)内管吐出口を細孔に形成する。
(b)内管吐出口を内管パッカ内吐出口よりも細孔に形成する。
(c)内管吐出口の面積を内管流路の断面積よりも小さく形成する。
A ground injection method in which an injection pipe is bent in the ground or installed horizontally or in any combination of bending and horizontal, and an injection solution is injected into the ground through the injection pipe, the injection pipe being axial An outer tube having a plurality of outer tube discharge ports at different positions, and a plurality of expandable and contractible inner tube packers made of an elastically impermeable bag body which are loosely inserted into the outer tube. The inner tube packer further includes an inner tube discharge port, and the inner tube packer has an inner tube discharge port between the inner tube packers provided with the interval. The inner pipe discharge port is formed so as to satisfy one of the following (a) to (c), and is installed in a drilled hole drilled by a boring rod with a built-in position information transmitter at the tip. An inflatable inner tube packer is used to expand the inner tube packer. By supplying the injection liquid to the inner pipe flow path without providing the fluid pipe line, the expandable inner pipe packer is expanded by the liquid supply pressure of the injection liquid, and the inner pipe packer is expanded between the inner pipe packers. In addition to forming a space, the injection solution is discharged from the inner tube discharge port into the inner space of the outer tube, the injection solution is injected from the inner tube space into the ground through the outer tube discharge port, and then the liquid supply of the injection solution is stopped. Or by reducing the pressure of the injection solution in the inner tube, the expandable inner tube packer is contracted, and the inner tube is movable in the outer tube, and injection is repeated in the same manner at a predetermined position. A pressure transmission member that senses and transmits pressure in the space is installed in the space, and the pressure sensed in the space is transmitted to the pressure gauge on the ground through the pressure transmission member and measured. It is characterized by grasping the injection pressure of the ground Ground injection method.
(A) An inner tube discharge port is formed in a pore.
(B) The inner tube discharge port is formed in a smaller pore than the inner tube packer discharge port.
(C) The area of the inner pipe discharge port is formed smaller than the cross-sectional area of the inner pipe flow path.
請求項1において、前記圧力伝達部材が液体の満たされたチューブであって、一端が前記空間内に位置し、他端が地盤上の圧力計に連通され、空間内の注入液の圧力を地盤上の圧力計で感知する請求項1に記載の地盤注入工法。2. The tube according to claim 1, wherein the pressure transmission member is a tube filled with a liquid, one end is located in the space, the other end is communicated with a pressure gauge on the ground, and the pressure of the injected liquid in the space is controlled by the ground. The ground injection method according to claim 1, wherein the ground injection method is sensed by the upper pressure gauge.
JP2005237939A 2005-08-18 2005-08-18 Ground injection method Active JP4180075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237939A JP4180075B2 (en) 2005-08-18 2005-08-18 Ground injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237939A JP4180075B2 (en) 2005-08-18 2005-08-18 Ground injection method

Publications (2)

Publication Number Publication Date
JP2007051480A JP2007051480A (en) 2007-03-01
JP4180075B2 true JP4180075B2 (en) 2008-11-12

Family

ID=37916095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237939A Active JP4180075B2 (en) 2005-08-18 2005-08-18 Ground injection method

Country Status (1)

Country Link
JP (1) JP4180075B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018719B (en) * 2021-11-04 2024-01-26 中国矿业大学 Supercritical carbon dioxide fracturing temperature and pressure accurate monitoring test device and method

Also Published As

Publication number Publication date
JP2007051480A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4581013B2 (en) Injection pipe device and ground injection method
EP2494136B1 (en) A device and a system and a method of moving in a tubular channel
JP4036303B2 (en) Ground injection method
US9435188B2 (en) Formation pressure sensing system
US20140054031A1 (en) Method and system for well and reservoir management in open hole completions as well as method and system for producing crude oil
US8286476B2 (en) Downhole 4D pressure measurement apparatus and method for permeability characterization
US20100178115A1 (en) Systems and Methods for Securing Foundation Members in a Substrate
CN211824858U (en) Shield constructs around originating/arrival section tunnel stratum water and soil pressure monitoring devices
JP4034305B2 (en) Ground injection method
CN113236181B (en) Water stopping device for water pumping test of exploration well
JP4180075B2 (en) Ground injection method
JP2002276277A (en) Multipoint water pressure measurement method in tunnel horizontal boring
JP5155761B2 (en) Measuring device and measuring method of spring water pressure and amount
JP2007046320A (en) Grouting apparatus and grouting method
JP4358207B2 (en) Ground reinforcement method for excavated bottom
CN111424670A (en) Occlusive pile pouring and pile body quality detection device and method for waterproof curtain
JP4537978B2 (en) Ground injection device
JP3961510B2 (en) Ground injection method
CN111980044B (en) Dewatering well structure for separating adjacent aquifers and method for backfilling outside well wall
JP3353714B2 (en) Pore water measurement method and apparatus
JP2804995B2 (en) Multi-point packer type permeation test method and test equipment
JP3832457B2 (en) Fixing method of bundling injection capillaries in the ground
JP2006226058A (en) Grouting construction method and injection pipe device
JPH09222369A (en) Method for measuring slack displacement of rock ground
JP4707863B2 (en) Ground independence tester and ground independence test method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Ref document number: 4180075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350