JP2006312811A - Grouting construction method - Google Patents

Grouting construction method Download PDF

Info

Publication number
JP2006312811A
JP2006312811A JP2005134918A JP2005134918A JP2006312811A JP 2006312811 A JP2006312811 A JP 2006312811A JP 2005134918 A JP2005134918 A JP 2005134918A JP 2005134918 A JP2005134918 A JP 2005134918A JP 2006312811 A JP2006312811 A JP 2006312811A
Authority
JP
Japan
Prior art keywords
injection
ground
packer
pipe
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134918A
Other languages
Japanese (ja)
Inventor
Shunsuke Shimada
俊介 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2005134918A priority Critical patent/JP2006312811A/en
Publication of JP2006312811A publication Critical patent/JP2006312811A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To not only enable grouting operations best suited to respective layers of the ground to be simultaneously or selectively applied to the ground where ground conditions of the respective layers are different from one another but also enable three-dimensional grouting to be performed in vertical and horizontal directions in the ground. <P>SOLUTION: This grouting construction method is used for injecting an injection liquid through an injection pipe device A. In the device A, a plurality of bag packers 6 are provided at intervals in the longitudinal direction of a pipe wall 10; an outer-pipe ejection port 5 is formed between the bag packers 6 adjacent to each other; and an outer pipe 9 forming an out-of-pipe space 8, and an inner pipe 13 forming an injection position 27 are provided. An injection-liquid channel 15 and a packer channel 16 are each independently provided in the inner pipe 13; a fluid is fed into an expandable/contractible packer 12 through the packer channel 16, so that the packer 12 can be expanded; and an in-pipe space 17 is formed in a gap 31 between the inner and outer pipes which is sandwiched by the packer 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は軟弱地盤等の地盤中に地盤注入液を多点的に注入する多点地盤注入工法に係り、特に、地盤状況が各層毎に異なる地盤に対して、これら各層毎に最適な注入を同時に、あるいは選択的に達成し得るのみならず、地盤中の縦方向、横方向への立体的な注入をも可能にし、かつ、複数の注入管装置からの注入を任意に制御し得るとともに、複数の注入管装置を通して同時に注入し得、このため、微細土層への浸透注入の信頼性が向上し、かつ急速施工によって注入工期も短縮され、特に液状化防止工事のように大容土の地盤改良を急速、かつ確実に施工し得る地盤注入工法に関する。   The present invention relates to a multi-point ground injection method in which ground injection liquid is injected into a ground such as soft ground in particular, and in particular, for the ground whose ground condition is different for each layer, optimal injection for each of these layers is performed. Not only can it be achieved simultaneously or selectively, but also allows three-dimensional injection in the vertical and horizontal directions in the ground, and can arbitrarily control injection from a plurality of injection tube devices, It is possible to inject simultaneously through a plurality of injection pipe devices, which improves the reliability of infiltration injection into the fine soil layer and shortens the injection period by rapid construction, especially for large soils such as liquefaction prevention work. The present invention relates to a ground injection method capable of performing ground improvement quickly and reliably.

ここで、地盤注入液とは軟弱地盤等の地盤を強化ないしは止水するための地盤固結用注入材、産業廃棄物等、公害物質の固化のための注入材、公害物質からの有害物質の漏出を防止する止水層を形成するための固結材、公害物質の無公害化のための化学物質を含む注入薬液材、あるいは重金属等を化学的に不活性化する重金属固定材等を言う。   Here, the ground injection solution is an injection material for solidifying the ground, such as a solid consolidation injection material for strengthening or stopping the ground such as soft ground, industrial waste, etc., and a harmful material from the pollution material. A solidifying material for forming a water-stopping layer that prevents leakage, an injectable liquid material containing chemical substances for pollution-free pollution, or a heavy metal fixing material that chemically inactivates heavy metals, etc. .

地盤は通常、各層毎に透水係数や間隙率が異なるため、各層毎に地盤状況が異なるものである。この種の地盤への薬液注入に際して、従来、図示しないが、地盤中に注入管を単独で、あるいは複数本間隔をあけて挿入、これら注入管を通して注入ステージを上または下に移向しながら順次に注入液を注入していた。   Since the ground usually has different hydraulic conductivity and porosity for each layer, the ground conditions are different for each layer. Conventionally, when injecting chemicals into this type of ground, although not shown in the figure, injection tubes are inserted into the ground individually or at intervals, and the injection stage is sequentially moved up or down through these injection tubes. The injection solution was injected.

ところで、薬液注入に際して最も大きな課題は透水係数の小さな微細砂層への浸透、あるいは異なる土層からなる地盤への均質な浸透にある。   By the way, the biggest problem in injecting a chemical solution is infiltration into a fine sand layer having a small hydraulic conductivity or homogeneous infiltration into the ground composed of different soil layers.

微細砂層への透水性は通常、k=10−3〜10−4cm/秒であり、このような土層に対して地盤の破壊を起こさないように薬液を注入するには、浸透理論上、毎分1リットル以下〜数リットルの低吐出量で低圧注入しなければならない。 The water permeability to the fine sand layer is usually k = 10 −3 to 10 −4 cm / sec. In order to inject the chemical solution to such a soil layer so as not to cause the destruction of the ground, in terms of penetration theory The low pressure injection must be performed at a low discharge rate of 1 liter or less per minute to several liters.

しかし、上述の公知の注入工法では、一本の注入管に対して、それぞれ一セットの注入ポンプを使用する。このような注入方式では、工期をできるだけ短くしたいという経済性の面から、また、ポンプの性能限界の面から毎分10〜20リットルの吐出量とせざるを得ず、注入圧が高くなって地盤の破壊を起こす。このため、地盤が隆起したり、微細な土層の浸透固結が不充分となってしまう。 However, in the known injection method described above, one set of injection pump is used for each injection tube. In such an injection method, from the economical aspect that it is desirable to shorten the construction period as much as possible, and from the aspect of the performance limit of the pump, the discharge amount must be 10 to 20 liters per minute, and the injection pressure becomes high. Cause destruction. For this reason, the ground rises and the penetration and consolidation of a fine soil layer becomes insufficient.

また、異なる土層の地盤に対する注入では、土層が変化した際に、この土層変化に対応して注入速度を変化させたり、注入量をコントロールすることは実用上難しく、このため、ある層では注入液が多量に拡がったり、また、ある層では僅かしか浸透しなかったり等が起こり、このような注入状態では、隣接する固結体同志の連続性が得られないという問題が生じる。   In addition, when injecting into different soil layers, when the soil layer changes, it is practically difficult to change the injection rate in response to the soil layer change or to control the injection amount. Then, the injection solution spreads in a large amount, or a certain layer penetrates only a little. In such an injection state, there is a problem that the continuity between adjacent solid bodies cannot be obtained.

なお、本出願人による先願として特開平12−45259号公報記載の発明が出願されている。これによれば、複数の注入管を地盤中に配置し、これら複数の注入管を通してそれぞれの吐出口から地盤改良材を地盤中に注入するに当り、一プラント中に多数のユニットポンプを備え、これら多数のユニットポンプを一つの駆動源で同時に作動する多連装ポンプにより前記注入液を各注入管に圧送し、吐出口から地盤中に注入するものである。   As an earlier application by the present applicant, an invention described in JP-A-12-45259 has been filed. According to this, a plurality of injection pipes are arranged in the ground, and when a ground improvement material is injected into the ground from each discharge port through the plurality of injection pipes, a plurality of unit pumps are provided in one plant, The injection solution is pumped to each injection pipe by a multi-unit pump that simultaneously operates a large number of these unit pumps with a single drive source, and injected into the ground from the discharge port.

上述の公知技術では、注入細管がポンププラントから注入孔まで長距離を要するため、低粘度で長いゲルタイムの注入液を用いる必要があった。ところが、長いゲルタイムの時間の注入液は一度地表面、あるいは、地盤中の粗い層に逸脱を始めるとゲル化時間を短縮できないため注入を中止せざるを得ず、その間に注入細管内でグラウトがゲル化してしまう等の不都合があった。   In the known technique described above, since the injection capillary tube requires a long distance from the pump plant to the injection hole, it is necessary to use an injection solution having a low viscosity and a long gel time. However, once the infusion solution with a long gel time begins to deviate from the ground surface or a rough layer in the ground, the gelation time cannot be shortened, so the infusion must be stopped, and during that time grout is generated in the infusion capillary. There were inconveniences such as gelation.

また、一台の駆動源で多連装ポンプを構成する多数のユニットポンプを同時に駆動するため、それぞれの吐出口における地盤条件が異なり、したがって、最適の注入条件が異なるにもかかわらず、全てのユニットポンプが同一条件で駆動するため、それぞれの吐出口に対して最適の注入を行うことが不可能だった。
特開2003−232030号公報 特開2002−256542号公報
In addition, since a large number of unit pumps constituting a multi-unit pump are driven simultaneously by a single drive source, the ground conditions at each discharge port are different, and therefore all units are in spite of the optimum injection conditions being different. Since the pump was driven under the same conditions, it was impossible to optimally inject each outlet.
JP 2003-232030 A JP 2002-256542 A

そこで、本発明の課題は上述に示されるように、これまでの開発されている広域な地盤に対するグラウトの低圧浸透注入をさらに発展させ、大吐出量による低圧浸透注入を可能にし、しかも各グラウト注入管の注入状況に応じて、それぞれのユニットポンプによる注入速度、注入圧、注入の中止、再開、ゲル化時間等を任意に管理し得、さらに、多数のユニットポンプの作動を同時に管理して注入状況の全体を把握管理することを可能にする、上述の公知技術の欠点を改良した多点地盤注入工法を提供することにある。   Therefore, as described above, the object of the present invention is to further develop the low-pressure osmotic injection of grouting to a wide area of ground that has been developed so far, enabling low-pressure osmotic injection with a large discharge amount, and each grouting injection. Depending on the injection status of the pipe, the injection speed, injection pressure, injection stop, restart, gelation time, etc. of each unit pump can be controlled arbitrarily, and the operation of many unit pumps can be controlled simultaneously for injection It is an object of the present invention to provide a multi-point ground injection method that improves the above-mentioned drawbacks of the known technology, which makes it possible to grasp and manage the entire situation.

さらに、本発明の他の課題は一次注入による粗詰注入の際、あるいは注入中に長いゲル化時間のグラウトが逸脱し始めた際、ゲル化時間の短いグラウトを注入してこれを防止することを可能とし、ゲル化時間の長いグラウトや、短いグラウトの単独注入、あるいは組み合わせ注入、多ステージの同時注入等も自由自在に注入でき、多点注入の実用性を飛躍的に発展させることにある。   Furthermore, another object of the present invention is to prevent this by injecting a grout with a short gelation time when a coarse filling by primary injection or when a grout with a long gelation time starts to deviate during the injection. It is possible to freely inject a grout with a long gelation time, a single injection of a short grout, a combination injection, a multi-stage simultaneous injection, etc., and to dramatically improve the practicality of multi-point injection. .

さらにまた、本発明の他の課題は透水性が少ない細粒土層、あるいは地盤状況が各層毎に異なる地盤に対して、ユニットポンプ1リットル程度から30リットル/分の可変吐出量により最適な注入を同時にあるいは選択的に達成するのみならず、一注入ユニット当り4〜50リットル程度のユニットポンプを組み合わせることができ、したがって、一度に1セット当り4〜50ユニットのポンプ分、すなわち、1×(4〜50)l/分から30×(4〜50)l/分、原理的には1セット当り4〜1500l/分、実用的には1セット当り50〜500l/分の大吐出量の注入速度で、かつ一注入ステージ当り低圧の浸透注入による土粒子間浸透が可能である。また、地盤中に縦方向、横方向への立体的な注入も可能であり、このため、微細土層への浸透注入の信頼性が向上し、かつ、急速施工によって注入工期の短縮も達成され、上述の公知技術に存する欠点を改良した多点地盤注入工法を提供することにある。   Furthermore, another object of the present invention is to provide an optimal injection with a variable discharge rate of about 1 liter to 30 liters / minute for a fine-grained soil layer with little water permeability or a ground with different ground conditions for each layer. At the same time or selectively, unit pumps on the order of 4-50 liters per infusion unit can be combined, so that 4-50 units of pump per set at a time, ie 1 × ( From 4 to 50) l / min to 30 x (4 to 50) l / min, in principle 4 to 1500 l / min per set, practically 50 to 500 l / min injection rate per set In addition, permeation between soil particles is possible by low pressure permeation injection per injection stage. In addition, three-dimensional injection in the vertical and horizontal directions is possible in the ground, which improves the reliability of infiltration into the fine soil layer and shortens the injection period by rapid construction. An object of the present invention is to provide a multi-point ground injection method that improves the above-described drawbacks of the known techniques.

さらに、本発明の課題は使用し得る地盤注入液が溶液型注入液のみならず、懸濁型注入液も可能であり、これにより注入ポイント毎の地盤状況に応じた任意注入を選択し得、上述の公知技術に存する欠点を改良した多点地盤注入工法を提供することにある。   Furthermore, the problem of the present invention is that the ground injection solution that can be used is not only a solution-type injection solution, but also a suspension-type injection solution, whereby an arbitrary injection according to the ground situation for each injection point can be selected, An object of the present invention is to provide a multi-point ground injection method that improves the above-mentioned drawbacks of the known technology.

上述の課題を達成するため、本発明の地盤注入工法によれば、注入管装置を複数本、地盤中に埋設し、これら注入管装置を通して注入液を注入する地盤注入工法であって、独立した駆動源で作動し、かつ集中管理装置で制御される個々に独立したユニットポンプをそれぞれの注入管装置に接続し、ユニットポンプの作動により注入液を地盤中に注入する地盤注入工法において、前記注入管装置は管壁長手方向に間隔をあけて、硬化性流体で膨張する複数の袋パッカを設け、互いに隣接する袋パッカ間にはゴムスリーブで覆われた少なくとも一つの外管吐出口を有し、かつ互いに隣接する袋パッカと削孔壁との間に管外空間を形成する外管と、外管内に移動自在に挿入され、長手方向に一対の膨縮パッカが間隔をあけて設けられ、噴出位置を形成する内管とを有し、該内管には、注入液を送液し、吐出口が噴出位置に位置する注入液流路と、前記膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、該パッカ流路を通して一対の膨縮パッカに流体を送って膨張させ、一対の膨縮パッカによって挟まれる内外管のすき間に管内空間を形成してなり、該噴出位置を管外空間に合致させ、外管吐出口から注入液を管内空間、外管吐出口および管外空間を経て地盤中に注入することを特徴とする。   In order to achieve the above-mentioned problems, according to the ground injection method of the present invention, a plurality of injection pipe devices are embedded in the ground, and the ground injection method for injecting an injection solution through these injection pipe devices is an independent method. In the ground injection method in which an individual unit pump operated by a driving source and controlled by a central control device is connected to each injection pipe device, and an injection liquid is injected into the ground by the operation of the unit pump. The tube device is provided with a plurality of bag packers that are inflated with a curable fluid at intervals in the tube wall longitudinal direction, and has at least one outer tube discharge port covered with a rubber sleeve between adjacent bag packers. And an outer tube that forms an outer space between the bag packer and the drilling wall adjacent to each other, and a movably inserted into the outer tube, and a pair of expansion / contraction packers are provided at intervals in the longitudinal direction, Shape of ejection position An inner pipe that feeds the infusate and has an ejection port positioned at the ejection position, and a packer channel that sends the fluid to the expansion / contraction packer and inflates the same. Respectively, and a fluid is sent to the pair of expansion / contraction packers through the packer flow path to inflate, thereby forming a space in the pipe between the inner and outer pipes sandwiched by the pair of expansion / contraction packers. The injection liquid is injected into the ground through the inner tube space, the outer tube discharge port, and the outer space through the outer tube discharge port so as to match the outer tube space.

上述構成からなる本発明は地盤状況が各層毎に異なる地盤に対して、これら各層毎に最適な注入を同時に、あるいは選択的に達成し得るのみならず、地盤中の縦方向、横方向への立体的な注入をも可能とし、かつ、複数の注入管からの注入を任意に制御し得るとともに、複数の注入管を通して同時に注入し得、このため、微細土層への浸透注入の信頼性が向上し、かつ急速施工によって注入工期も短縮され、特に液状化防止工事のように大容土の地盤改良を急速、かつ確実に施工し得る。   The present invention having the above-described configuration can not only achieve optimum injection simultaneously or selectively for each layer, but also in the vertical and horizontal directions in the ground, with respect to the ground having different ground conditions for each layer. Three-dimensional injection is also possible, and injection from a plurality of injection pipes can be arbitrarily controlled, and injection can be performed simultaneously through a plurality of injection pipes. Improving and shortening the pouring period due to rapid construction, it is possible to construct the soil of large volume soil quickly and reliably, especially as liquefaction prevention construction.

一般に、従来の注入工法では、注入管ピッチを0.8m〜1mとし、また注入ステージについては0.25〜0.5mを一単位として注入土量1m当り300l〜400l、経済性を考慮して注入速度8〜20l/分の注入量で注入することを基本としていた。しかし、実際の地盤では、注入液を地盤破壊を起こさずに土粒子間浸透させるためには、注入速度を8l/分以下、例えば1〜5l/分にしなければならないことが多い。しかし、従来の一つの注入ポイントに対して一つの注入ポンプで注入する方式では、こうのような
注入速度では経済的に不可能であった。
In general, in the conventional injection method, the injection pipe pitch is set to 0.8 m to 1 m, and the injection stage is set to 0.25 to 0.5 m as a unit, and 300 l to 400 l per 1 m 3 of the injected soil volume, considering the economy. The injection rate was basically 8 to 20 l / min. However, in the actual ground, in order to infiltrate the injected solution between the soil particles without causing the ground destruction, it is often necessary to set the injection rate to 8 l / min or less, for example, 1 to 5 l / min. However, the conventional method of injecting with one injection pump for one injection point is economically impossible at such an injection rate.

一方、近年、液状化防止工事等、大容量土の地盤改良の急速施工が要求されるようになった。この場合、経済性の点から注入孔間隔を広くとって一本の注入管から大量の注入液を長時間にわたって注入することが必要である。すなわち、液状化防止工事では、経済性の点から注入孔間隔を1.5〜4mとせざるを得ない。   On the other hand, in recent years, rapid construction of ground improvement of large-capacity soil such as liquefaction prevention work has been required. In this case, it is necessary to inject a large amount of injection liquid from a single injection tube over a long period of time from the economical viewpoint. That is, in the liquefaction prevention construction, the injection hole interval must be 1.5 to 4 m from the economical point of view.

例えば、注入孔間隔を2mの正方向配置にする場合、
(1)注入管の埋設間隔 P=2m×2mの正方形配置
(2)注入速度 f=20l/分
(3)注入管1孔当り改良平面積は Ap=2m×2m=4mであり、
(4)1ステージ当り改良土量(m)を
V=2m(1ステージ当りの改良厚さ)×4m=8mとすると、
(5)1ステージ当り注入量(kl)
Q=Vx(0.35〜0.04)=8×(0.35〜0.04)m
=2.8m〜3.2m=3.0m(平均)
(0.35〜0.04:注入率、すなわち、改良土量1m当りの注入薬液の比 率)
(6)1ステージ当り注入時間
=3kl÷0.02kl/分=150分
=2.5時間(注入継続時間)
と長時間による注入を行わなくてはならない。この場合、毎分の注入流量を5l/分とすると、上述の4倍の注入時間、すなわち、10時間を必要とする。
For example, when the injection hole interval is set to 2 m in the positive direction,
(1) Injection pipe embedding interval P = 2 m × 2 m square arrangement (2) Injection speed f = 20 l / min (3) Improved flat area per hole in the injection pipe is Ap = 2 m × 2 m = 4 m 2
(4) When the amount of improved soil per stage (m 3 ) is V = 2 m (the improved thickness per stage) × 4 m 2 = 8 m 3 ,
(5) Injection amount per stage (kl)
Q = Vx (0.35-0.04) = 8 × (0.35-0.04) m 3
= 2.8 m 3 to 3.2 m = 3.0 m 3 (average)
(0.35-0.04: Injection rate, that is, ratio of injected chemical solution per 1 m 3 of improved soil volume)
(6) Injection time per stage t 1 = 3 kl ÷ 0.02 kl / min = 150 minutes
= 2.5 hours (infusion duration)
And you have to inject for a long time. In this case, if the injection flow rate per minute is 5 l / min, the above four times injection time, that is, 10 hours are required.

同じく、注入孔間隔を4mの正方向配置にする場合、
Ap=4m×4m=16m
1ステージの改良土量は、
V=2m(改良厚さ)×16m
=32m
1ステージ注入量(kl)は
Q=Vx(0.35〜0.40)
=32×(0.35〜0.40)
=11.2〜12.8kl≒12kl(平均)であり、
注入速度f=20l=/分とすると、
1ステージ当り注入時間
t=12kl÷0.02kl
=600分
=10時間である。この場合、毎分の注入流量を5l/分とすると、上述の4倍の注入時間、すなわち、40時間を必要とする。
Likewise, when the injection hole interval is 4 m in the positive direction,
Ap = 4 m × 4 m = 16 m 2 ,
One stage of improved soil volume is
V = 2 m (improved thickness) × 16 m 3 ,
= 32m 3
One-stage injection amount (kl) is Q = Vx (0.35-0.40)
= 32 × (0.35-0.40)
= 11.2 to 12.8 kl≈12 kl (average),
If the injection rate f = 20 l = / min,
Injection time per stage t = 12 kl / 0.02 kl
= 600 minutes = 10 hours. In this case, if the injection flow rate per minute is 5 l / min, the above four times the injection time, that is, 40 hours are required.

ところが、このような注入では注入に長時間を要するため、また、一本当りの注入受け持ち範囲が広いため、注入液は分散して地表面や周辺に逸脱しやすく、均質な注入効果が得られにくい。また、長時間にわたる注入中に土中でゲル化が進行し、このため地盤の注入条件が変化してしまい、注入効果も不確実になる。さらにまた、長時間の注入作業を要するため、施工期間が長くなるのみならず、施工期間中、その区域の利用が不可能になる。これを防ぐため、注入孔間隔を狭くすると、1ステージ当りの注入量は少なくなり、かつ注入時間も短くなるものの、多数の注入孔を削孔しなくてはならず、工期が非常に長くなる。   However, since such injection requires a long time for injection, and the injection coverage per one is wide, the injection liquid is dispersed and easily deviates to the ground surface and the periphery, and a uniform injection effect is obtained. Hateful. In addition, gelation proceeds in the soil during the injection over a long period of time, which changes the ground injection conditions and makes the injection effect uncertain. Furthermore, since a long injection work is required, not only the construction period becomes longer, but also the use of the area becomes impossible during the construction period. In order to prevent this, if the interval between the injection holes is reduced, the injection amount per stage is reduced and the injection time is shortened. However, a large number of injection holes must be drilled, and the construction period becomes very long. .

そこで、本発明では地盤注入液を集中管理装置による一括管理により複数のユニットポンプから複数の注入液送液系統を通して地盤中の複数の注入ポイントに注入し、このとき、注入液送液系統からの注入状況を画面表示し、一括監視を行って注入管理するとともに、袋パッカによる大きな浸透源を有する注入管装置を複数本地盤に埋設して注入し、これにより注入ポイント当りの毎分吐出量を大きくして土粒子間浸透を可能にし、かつ多数の注入ポイントから同時に注入することにより大量の注入を達成して大容量土の経済的地盤改良を可能にする。   Therefore, in the present invention, the ground injection liquid is injected into a plurality of injection points in the ground from a plurality of unit pumps through a plurality of injection liquid supply systems by collective management by a central control device, and at this time, from the injection liquid supply system The injection status is displayed on the screen, and monitoring is performed by batch monitoring, and injection pipe devices with a large penetration source by bag packer are embedded in the ground and injected, thereby reducing the discharge amount per injection point per minute. Larger allows inter-soil particle infiltration and achieves large volume injection by simultaneously injecting from multiple injection points to allow economic ground improvement of large volume soil.

さらに、具体的に説明すれば、本発明工法では、袋パッカ長を1m、隣接する袋パッカ間隔を1mとすると、1ステージ長は2mとなり、1ステージの注入長さ1m、直径約10cmの円柱状の浸透源から注入することになる。1ステージ当り注入毎分注入量を25リットル/分にしても、通常の従来注入における、直径ほぼ10cmの球浸透源からの約
8リットル/分の注入量にくらべて約3倍の浸透速度となるが、浸透源の大きさは10倍なので、浸透抵抗は従来より低くなる。このため、注入速度が3倍でも充分に低圧での浸透注入が可能になる。したがって、注入所要時間は前者では約0.3時間、後者では約200分で済むことになる。
More specifically, in the method of the present invention, when the bag packer length is 1 m and the interval between adjacent bag packers is 1 m, the length of one stage is 2 m, and the injection length is 1 m for one stage and the circle is about 10 cm in diameter. It is injected from a columnar penetration source. Even if the injection rate per stage per injection is 25 liters / minute, the penetration rate is about 3 times higher than the injection rate of about 8 liters / minute from a spherical infiltration source having a diameter of about 10 cm in normal conventional injection. However, since the size of the penetration source is 10 times, the penetration resistance is lower than the conventional one. For this reason, osmotic injection at a sufficiently low pressure is possible even when the injection speed is three times. Therefore, the time required for injection is about 0.3 hours for the former and about 200 minutes for the latter.

さらに、1セット当り10ユニットのポンプで同時注入が可能とすれば、10箇所の同時注入が可能になり、したがって、10倍の大容量土の地盤改良が同一所要時間で行うことができ、従来の注入工法に比べて同一時間で注入可能な注入量の差ははかりしれない。しかも、10本分のユニットポンプの注入を一つの集中管理システムで一括管理することによりその利点は図り知れない。   Furthermore, if simultaneous injection is possible with a pump of 10 units per set, simultaneous injection at 10 locations is possible. Therefore, ground improvement of 10 times larger capacity soil can be performed in the same required time. The difference in the amount of injection that can be injected in the same time is not measured compared to the conventional injection method. Moreover, the advantages of the unit pump injection for 10 units cannot be realized by managing them collectively with one centralized management system.

以下、本発明を添付図面を用いて具体的に詳述する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の地盤注入工法に用いられる多点地盤注入システムの原理図を表した説明図である。図1における多点地盤注入システムXは注入管装置Aを複数本、地盤1中に埋設し、これら注入管装置Aを通して貯蔵タンク22中の注入液を注入する地盤注入工法であって、モータ等の独立した駆動源2で作動され、かつ、集中管理装置3で制御される個々に独立したユニットポンプ4を導管21を通して地盤1中の注入管装置Aに接続し、ユニットポンプ4の作動により、貯蔵タンク22中の注入液を導管21を通して、地盤1中の注入管装置Aの外管吐出口5から地盤中に注入する。   FIG. 1 is an explanatory diagram showing the principle diagram of a multipoint ground injection system used in the ground injection method of the present invention. A multi-point ground injection system X in FIG. 1 is a ground injection construction method in which a plurality of injection pipe devices A are embedded in the ground 1 and the injection liquid in the storage tank 22 is injected through these injection pipe devices A. Are connected to an infusion pipe device A in the ground 1 through a conduit 21, and operated by the independent drive source 2 and controlled by the central control device 3. The injection liquid in the storage tank 22 is injected into the ground through the conduit 21 from the outer pipe discharge port 5 of the injection pipe device A in the ground 1.

さらに、前述の独立した多数のユニットポンプ4、4・・4にはインバータ等の回転数変速機32、32・・32が備えられ、集中管理装置3に接続して制御される。さらにまた、ユニットポンプ4、4・・4を注入管装置A、A・・Aに連結する導管21、21・・21には、上述と同様にそれぞれ集中管理装置3に接続して制御される流量圧力検出器26、26・・26が備えられる。   Further, the aforementioned independent unit pumps 4, 4... 4 are provided with rotational speed transmissions 32, 32... 32 such as inverters, and are connected to the centralized management device 3 and controlled. Further, the conduits 21, 21,... 21 connecting the unit pumps 4, 4,... 4 to the injection pipe devices A, A..A are respectively connected to the central control device 3 and controlled in the same manner as described above. Flow rate pressure detectors 26, 26,.

上述の構成により、本発明では、流量圧力検出器26からの流量/およびまたは圧力データの信号を集中管理装置3に送信し、貯蔵タンク22中の地盤注入液を各ユニットポンプ4、4・・4の作動により任意の注入速度、注入圧力あるいは注入量で各注入管装置A、A・・Aに圧送し、複数の外管吐出口5、5・・5から注入ポイント25に多点注入する。   With the above-described configuration, in the present invention, a flow rate / and / or pressure data signal from the flow pressure detector 26 is transmitted to the central control device 3, and the ground injection liquid in the storage tank 22 is sent to each unit pump 4, 4,. 4 is pumped to each injection pipe device A, A,... A at an arbitrary injection speed, injection pressure, or injection amount, and multiple points are injected into the injection point 25 from the plurality of outer pipe discharge ports 5, 5,. .

本発明に用いられるユニットポンプ4としては、ピストンポンプ、プランジャーポンプ、ダイヤフラムポンプ、スクイズポンプ、スネクポンプ等が挙げられる。これらのポンプはピストンポンプを除いて、いずれも小型で、かつ、構造が簡単で、さらに故障しにくく、このため、溶液型のみならず懸濁型のグラウトも使用でき、本発明のユニットポンプとして適している。   Examples of the unit pump 4 used in the present invention include a piston pump, a plunger pump, a diaphragm pump, a squeeze pump, and a snake pump. These pumps, except for the piston pump, are all small in size, simple in structure, and less likely to break down. Therefore, not only solution type but also suspension type grout can be used. Is suitable.

本発明に用いられる注入管装置Aは図2および図3に示すように、管壁10の長手方向に間隔をあけて、硬化性流体で膨張する複数の袋パッカ6、6・・6を設け、互いに隣接する袋パッカ6、6間にはゴムスリーブ11で覆われた少なくとも一個の外管吐出口5を有し、かつ互いに隣接する袋パッカ6、6と削孔壁7との間に管外空間8を形成する外管9と、外管9内に移動自在に挿入され、長手方向に一対の膨縮パッカ12、12が間隔をあけて設けられ、噴出位置27を形成する内管13とを有してなる。   As shown in FIGS. 2 and 3, the injection tube apparatus A used in the present invention is provided with a plurality of bag packers 6, 6... 6 that are inflated with a curable fluid at intervals in the longitudinal direction of the tube wall 10. Between the adjacent bag packers 6, 6, there is at least one outer tube discharge port 5 covered with a rubber sleeve 11 and between the adjacent bag packers 6, 6 and the bore wall 7. An outer tube 9 that forms the outer space 8 and an inner tube 13 that is movably inserted into the outer tube 9 and that is provided with a pair of expansion / contraction packers 12 and 12 spaced apart in the longitudinal direction to form an ejection position 27. It has.

上述の内管13には注入液を送液し、吐出口14が噴出位置27に位置する注入液流路15と、膨縮パッカ12、12に流体を送って膨張させるパッカ流路16とをそれぞれ独立して備える。そして、噴出位置27をまず、袋パッカ6に合わせ、パッカ流路16を通して一対の膨縮パッカ12、12に水、空気、不活性気体等の流体を送って膨張させ、一対の膨縮パッカ12、12によって挟まれる内外管のすき間に管内空間17を形成する。この状態で袋パッカ6に注入液流路15を通してセメント等の硬化性懸濁液を送液し、吐出口14および管内空間17を通して袋パッカ6を膨張させる。さらに、膨縮パッカ12、12を収縮させ、内管13を移動しながら、上述と同様にして袋パッカ6を膨張させる。   An injection liquid is supplied to the inner tube 13 described above, and an injection liquid flow path 15 in which the discharge port 14 is located at the ejection position 27 and a packer flow path 16 that sends the fluid to the expansion / contraction packers 12 and 12 and expands them. Prepare each independently. First, the ejection position 27 is aligned with the bag packer 6, and a pair of expansion / contraction packers 12, 12 are inflated by sending a fluid such as water, air, or inert gas through the packer flow path 16, and the pair of expansion / contraction packers 12. , 12 is formed between the inner and outer tubes sandwiched between the inner and outer tubes. In this state, a curable suspension such as cement is sent to the bag packer 6 through the injection liquid flow path 15, and the bag packer 6 is expanded through the discharge port 14 and the pipe inner space 17. Further, the bag packer 6 is expanded in the same manner as described above while contracting the expansion / contraction packers 12 and 12 and moving the inner tube 13.

袋パッカ6は透水性袋体で形成され、削孔19の径よりも1.2〜5.0倍の直径を有し、かつ袋体の長さをLとし、隣接する袋体間の間隙をAとした場合、A≦2Lである。したがって、袋体中に硬化性懸濁液を填充し、膨らませて袋パッカ6を形成すると、袋体の直径が削孔径よりも大きいため、袋パッカ6によってパッカ周りの地盤領域に注入液の浸透しにくい密な地盤内パッカ20を形成する。   The bag packer 6 is formed of a water-permeable bag body, has a diameter 1.2 to 5.0 times the diameter of the hole 19 and has a bag body length L, and a gap between adjacent bag bodies. When A is A, A ≦ 2L. Accordingly, when the bag packer 6 is formed by filling the bag body with a curable suspension and inflating it, the bag body 6 has a diameter larger than the drilling diameter, so that the bag packer 6 penetrates the injected solution into the ground area around the packer. A dense ground packer 20 that is difficult to form is formed.

内管の移動は図2に示される内管昇降装置18を作動させて行う。この作動は図1に示されるように、内管昇降装置18を集中管理装置3に接続し、内管13の昇降を集中管理装置3で制御することにより行う。19は削孔である。   The movement of the inner pipe is performed by operating the inner pipe lifting device 18 shown in FIG. As shown in FIG. 1, this operation is performed by connecting the inner pipe lifting device 18 to the central management device 3 and controlling the elevation of the inner pipe 13 by the central management device 3. 19 is a drilling hole.

次いで、図3に示されるように、内管13の噴出位置27を管外空間8に合致させ、外管吐出口5から注入液を管内空間17、外管吐出口5および管外空間8を経て地盤1中に注入する。   Next, as shown in FIG. 3, the ejection position 27 of the inner tube 13 is made to coincide with the outer space 8, and the injection solution is injected from the outer tube discharge port 5 into the inner space 17, the outer tube discharge port 5 and the outer space 8. Then, it is injected into the ground 1.

集中管理装置3は図1に示されるように、パッカ流体貯蔵タンク23を経てパッカ流路16に接続され、一対の膨縮パッカ12、12への流体の送液を制御する流体送液制御部と、個々に独立した複数のユニットポンプ4の駆動源2に備えられた回転数変速機32に接続され、各駆動源2を制御する駆動制御部と、各ユニットポンプ4から地盤1中の注入管装置Aに通じる導管21に配置された流量圧力検出器26に接続され、注入圧力、および注入速度に関する注入情報を記録表示する記録表示部とを備え、さらに上述のように内管昇降装置18に接続され、内管の昇降を制御する昇降制御部を備える。   As shown in FIG. 1, the central management device 3 is connected to the packer flow path 16 via the packer fluid storage tank 23, and controls the fluid feed control unit that controls the fluid feed to the pair of expansion / contraction packers 12, 12. And a drive control unit for controlling each drive source 2 connected to the rotational speed transmission 32 provided in the drive source 2 of each of the plurality of independent unit pumps 4 and injection into the ground 1 from each unit pump 4 And a recording display unit for recording and displaying injection information relating to the injection pressure and the injection speed, and further to the inner pipe lifting device 18 as described above. And an elevation control unit that controls the elevation of the inner pipe.

図4は本発明に用いられる多点地盤注入システムXの他の具体例の説明図であって、貯蔵タンク22と、複数のユニットポンプ4、4・・4と、複数の注入管装置A、A・・Aとを基本的に備える。   FIG. 4 is an explanatory view of another specific example of the multi-point ground injection system X used in the present invention. The storage tank 22, the plurality of unit pumps 4, 4..., The plurality of injection pipe devices A, A ・ ・ A is basically provided.

貯蔵タンク22はA液用タンク22aと、B液用タンク22bとからなり、これらタンク中のA液およびB液をそれぞれ別々に注入管装置Aに導き、合流させる構造となっている。地盤1の注入ポイント25に2本の注入管装置を配設し、これら2本の注入管装置A、AにそれぞれA液およびB液を圧送し、外管吐出口5から注入ポイント25に注入した後、地盤1中で合流し、反応させたり、あるいは異なるタイプの注入液を同時に、あるいは時間差をもって注入する。   The storage tank 22 includes an A liquid tank 22a and a B liquid tank 22b, and has a structure in which the A liquid and the B liquid in these tanks are separately guided to the injection pipe device A and merged. Two injection pipe devices are arranged at the injection point 25 of the ground 1, and liquid A and liquid B are pumped to the two injection pipe devices A and A, respectively, and injected from the outer tube discharge port 5 to the injection point 25. After that, they merge in the ground 1 and react, or different types of injection solutions are injected simultaneously or with a time difference.

一連のユニットポンプ4、4・・4は一プラント中に独立した多数のユニットポンプ4、4・・4を備えるとともに、これらユニットポンプ4、4・・4がそれぞれモータ等、独立した駆動源2で一つの集中管理装置3によって1セットの注入装置として一緒に作動し、かつ導管21、21・・21を介してA液用タンク22aおよびB液用タンク22bに接続している。   The series of unit pumps 4, 4... 4 includes a large number of independent unit pumps 4, 4... 4, and these unit pumps 4, 4. The central control device 3 operates as a set of injection devices together, and is connected to the A liquid tank 22a and the B liquid tank 22b via conduits 21, 21,.

注入管装置Aは先端に外管吐出口5を有するものであって、地盤1の複数の注入ポイント25、25・・25に複数本埋設され、A液用タンク22aに通じるユニットポンプ4、4・・4およびB液用タンク22bに通じるユニットポンプ4、4・・4にそれぞれ接続される。   The injection pipe device A has an outer pipe discharge port 5 at its tip, and a plurality of unit pumps 4, 4 are embedded in a plurality of injection points 25, 25,. .. And 4 and unit pumps 4, 4... 4 connected to the B liquid tank 22b, respectively.

さらに、上述の独立した多数のユニットポンプ4、4・・4はそれぞれ回転数変速機32、32・・32を備える。これら回転数変速機32、32・・32はそれぞれ集中管理装置3に接続され(図中、破線で示す)、制御される。この結果、A液用タンク22aおよびB液用タンク22b中の地盤注入液A、B液は各ユニットポンプ4、4・・4の作動により任意の注入速度で合流され、導管21を通じて各注入管装置A、A・・Aに圧送され、各吐出口5、5・・5から地盤1に多点注入される。   Furthermore, the above-described independent unit pumps 4, 4... 4 are respectively provided with rotational speed transmissions 32, 32. These rotational speed transmissions 32, 32,... 32 are respectively connected to the central control device 3 (indicated by broken lines in the figure) and controlled. As a result, the ground injection liquids A and B in the liquid A tank 22 a and the liquid B tank 22 b are joined at an arbitrary injection speed by the operation of the unit pumps 4, 4. It is pumped to the devices A, A... A, and is injected into the ground 1 from the discharge ports 5, 5.

さらに、ユニットポンプ4、4・・4から注入管装置A、A・・Aに通じる導管21、21・・21には、それぞれ流量検出器26が設置される。これら検出器26から検出された地盤注入液の流量および/または圧力データ信号は破線で示されるように集中管理装置3に送信される。そして、図4に示されるように注入状況を集中管理装置3の注入監視盤33で一括監視しながら地盤注入液を独立した多数のユニットポンプ4、4・・4から複数の注入管装置Aを通して地盤1中の複数の注入ポイント25に多点注入する。   Further, a flow rate detector 26 is installed in each of the conduits 21, 21... 21 leading from the unit pumps 4, 4. The flow rate and / or pressure data signals of the ground injection liquid detected from these detectors 26 are transmitted to the centralized management device 3 as indicated by broken lines. Then, as shown in FIG. 4, the ground injection solution is independently monitored from a plurality of unit pumps 4, 4... Multi-point injection is performed at a plurality of injection points 25 in the ground 1.

多数のユニットポンプ4、4・・4の作動は集中管理装置3に送信された地盤注入液の流量および/または圧力データ信号に基づいて回転数変速機32を介して制御される。この制御により地盤注入液は所望の圧力および/または流量に保持され、各注入管装置A、A・・Aの送液される。   The operation of the multiple unit pumps 4, 4... 4 is controlled via the rotational speed transmission 32 based on the flow rate and / or pressure data signal of the ground injection solution transmitted to the central control device 3. By this control, the ground injection solution is maintained at a desired pressure and / or flow rate, and is supplied to each of the injection pipe devices A, A,.

さらに、また、流量圧力検出器26から検出された地盤注入液の流量および/または圧力データ信号を集中管理装置3に送信し、これらデータを集中管理装置3の注入監視盤33に画面表示することにより、注入状況の一括監視を行って、注入管装置Aにおけるそれぞれの注入圧力および/または流量を所定の範囲に維持しながら注入するとともに、上記データの情報に基づき、注入の完了、中止、継続あるいは再注入に行う。なお、34は切り換えバルブ、ストップバルブ、リターンバルブ等のバルブであって、図4に示されるように、バルブ34を集中管理装置3と接続し、制御することもできる。   Furthermore, the flow rate and / or pressure data signal of the ground injection liquid detected from the flow rate pressure detector 26 is transmitted to the central management device 3, and these data are displayed on the injection monitoring panel 33 of the central management device 3. By performing the batch monitoring of the injection status, the injection is performed while maintaining the respective injection pressure and / or flow rate in the injection tube device A within a predetermined range, and the injection is completed, stopped, or continued based on the information of the above data. Or re-injection. Reference numeral 34 denotes a valve such as a switching valve, a stop valve, or a return valve. As shown in FIG. 4, the valve 34 can be connected to the centralized management device 3 and controlled.

注入監視盤33には注入年月日、注入時間等の「時データ」、注入ブロックNo.、注入孔の孔番、注入ポイント等の「場所データ」、注入圧力、流量(単位時間流量や積算流量)等の「注入データ」が表示され、かつ集中管理装置3ではこれらの注入データに記録される。このようにして、複数の注入管装置A、A・・Aに通じる多数のユニットポンプ4、4・・4毎の作動をそれぞれの注入管装置Aの注入状況に応じて最適に制御でき、しかもこれらの複数のユニットポンプ4、4・・4を一括して管理することができる。30は施工表示盤、31は日報作業装置である。   The injection monitoring panel 33 includes “time data” such as injection date, injection time, “location data” such as injection block number, injection hole number, injection point, injection pressure, and flow rate (unit time flow rate and totalization). The “injection data” such as the flow rate) is displayed and recorded in the injection data in the centralized management device 3. In this way, the operation of each of a large number of unit pumps 4, 4,... 4 leading to the plurality of injection pipe devices A, A... A can be optimally controlled according to the injection situation of each injection pipe device A. The plurality of unit pumps 4, 4,... 4 can be managed collectively. 30 is a construction display panel, and 31 is a daily report working device.

図5は10本のそれぞれ各注入管装置A、A・・Aの圧力流量、積算流量を一括監視した一例である。図5の画面を詳述すると、以下のとおりである。
上半分の2画面:
グループ1:1号〜5号の積算流量、最大圧力デジタル表示
グループ2:6号から10号の積算流量、最大圧力デジタル表示
積算流量は20分間の注入量である。また、最大圧力は30秒毎に表示され、19分30秒から20分までの間の最大値を表示した。最大圧力が設定圧力以上になり続けたら、その送液系統の注入は終了することの判断になる。また、積算流量が設定積算流量に達した場合も、この送液系統の注入は終了することの判断になる。
FIG. 5 is an example in which the pressure flow rate and the integrated flow rate of each of the 10 injection pipe devices A, A,. The screen of FIG. 5 is described in detail as follows.
Upper two screens:
Group 1: No. 1 to No. 5 integrated flow rate and maximum pressure digital display Group 2: No. 6 to No. 10 integrated flow rate and maximum pressure digital display integrated flow rate are infusions for 20 minutes. The maximum pressure was displayed every 30 seconds, and the maximum value from 19 minutes 30 seconds to 20 minutes was displayed. If the maximum pressure continues to be higher than the set pressure, it is judged that the injection of the liquid delivery system is finished. Further, when the integrated flow rate reaches the set integrated flow rate, it is determined that the injection of the liquid feeding system is finished.

下半分の2画面:
グループ3:1号〜5号の流量、圧力 トレンド表示
グループ4:6号〜10号の流量、圧力 トレンド表示
2画面のそれぞれの左側は各送液系統における時間(t)の経過に対応した瞬時流量と瞬時圧力のチャートを示し、右側は19分30秒から20分までの平均瞬時流量(l/分)と平均瞬時圧力(MPa)を示す。
Lower half 2 screens:
Group 3: Flow and pressure trend display for No. 1 to No. 5
Group 4: Flow and pressure trend display of No. 6 to No. 10
The left side of each of the two screens shows the instantaneous flow rate and instantaneous pressure chart corresponding to the passage of time (t) in each liquid delivery system, and the right side shows the average instantaneous flow rate (l / min) from 19 minutes 30 seconds to 20 minutes. And mean instantaneous pressure (MPa).

図6に集中管理装置3の操作フローチャートを示しながら、図4の装置について説明する。図4において、まず、送液系統のNo.1〜No.10についての注入仕様ファイルの圧力規定値(適正圧力範囲)、規定注入量(適正積算注入量範囲)、すなわち、所望の注入圧力、流量(単位時間当り流量および/または積算流量)を集中管理装置3に予め設定しておき(システム仕様設定登録)、次いで集中管理装置3のNo.1〜No.10の開始スイッチをONにしてデータ記録を開始する。   4 will be described with reference to an operation flowchart of the central management apparatus 3 shown in FIG. In FIG. 4, first, the specified pressure value (appropriate pressure range), specified injection amount (appropriate integrated injection amount range) of the injection specification file for No. 1 to No. 10 of the liquid delivery system, that is, the desired injection pressure, The flow rate (flow rate per unit time and / or integrated flow rate) is preset in the central control device 3 (system specification setting registration), and then the No. 1 to No. 10 start switches of the central control device 3 are turned ON. Start data recording.

このとき、施工表示盤35にもランプでON表示がなされる。注入監視盤33では、注入液送液系統からの注入データを画面に表示し、これらデータが設定値に達したときに、
集中管理装置3は完了信号を出力してこれを注入監視盤33に表示するとともに、施工表示盤35にランプで完了状態を表示し、送液系統のストップバルブを閉める信号を出力する。
At this time, the construction display panel 35 is also turned ON by a lamp. The injection monitoring board 33 displays the injection data from the injection liquid feeding system on the screen, and when these data reach the set value,
The central control device 3 outputs a completion signal and displays it on the injection monitoring board 33, and also displays a completion state with a lamp on the construction display board 35 and outputs a signal for closing the stop valve of the liquid feeding system.

全ての送液系統の注入が完了の後、集中管理装置3の開始スイッチをオフにすることにより集中管理装置3によるデータの記録が終了する。これら記録データに基づいて日報作成装置36で日報等の帳票を作成し、プリンタでプリントアウトする。   After the injection of all the liquid supply systems is completed, the data recording by the centralized management device 3 is completed by turning off the start switch of the centralized management device 3. Based on the recorded data, a daily report creation device 36 creates a report such as a daily report and prints it out with a printer.

図4において、集中管理装置3は10本の送液系統にそれぞれ配置された流量圧力検出器26からの流量ないしは圧力データを記録し、監視する。また、この装置3は予め設定された、それぞれ規定圧力値(あるいは規定圧力範囲)、規定瞬時流量値(あるいは規定瞬時流量範囲)、および規定積算注入量(あるいは規定積算注入量範囲)により注入完了の自動判断を行う。   In FIG. 4, the centralized management device 3 records and monitors the flow rate or pressure data from the flow rate pressure detectors 26 arranged in each of the 10 liquid supply systems. In addition, the apparatus 3 completes injection according to a predetermined pressure value (or a specified pressure range), a specified instantaneous flow rate value (or a specified instantaneous flow rate range), and a specified integrated injection amount (or a specified integrated injection amount range). Automatic judgment is made.

この詳細は次のとおりである。
測定ダータ 流量 :0〜30.0 l/分
圧力 :0〜3.00 MPa
演算ダータ 積算流量:0〜99999l
最大圧力:0〜3.00 MPa
記録媒体 フラッシュメモリカード
記録時間 1分データ記録(30秒や10秒データでもよい)
(10系統分の流量、圧力、積算流量、最大圧力)
The details are as follows.
Measurement data flow rate: 0 to 30.0 l / min
Pressure: 0 to 3.00 MPa
Calculation data Accumulated flow rate: 0 to 99999 l
Maximum pressure: 0 to 3.00 MPa
Recording medium Flash memory card recording time 1 minute data recording (30 seconds or 10 seconds data is acceptable)
(Flow rate, pressure, integrated flow rate, maximum pressure for 10 systems)

注入監視:注入仕様ファイルに基づき登録された規定注入量、規定圧力をもって積算注入量データ、圧力データが監視する。注入圧力が定められた規定圧力以上であった場合、または、注入量(積算流量)が規定積算注入量(規定積算流量)に達した場合、集中管理装置3はストップバルブの閉信号を出力するとともに、ランプを点灯させて完了であることを表示する。(圧力規定による完了か、規定注入量による完了かは画面に表示される。)   Injection monitoring: Accumulated injection volume data and pressure data are monitored with the specified injection volume and pressure registered based on the injection specification file. When the injection pressure is equal to or higher than the specified pressure, or when the injection amount (integrated flow rate) reaches the specified integrated injection amount (specified integrated flow rate), the central control device 3 outputs a stop valve closing signal. At the same time, the lamp is turned on to indicate completion. (Completion by pressure regulation or completion by regulation injection amount is displayed on the screen.)

監視画面:図3に示される10本の送液系統分のデータ(流量、圧力、積算流量、最大圧力の合計40データ)を注入監視盤33上に一つの画面で表示する。   Monitoring screen: The data for 10 liquid feeding systems shown in FIG. 3 (total 40 data of flow rate, pressure, integrated flow rate and maximum pressure) are displayed on the injection monitoring board 33 on one screen.

図7は注入液流路15を複数本設けた例の断面図であって、注入液として、A液およびB液をそれぞれ別々の注入液流路15、15を通して一対の膨縮パッカ12、12間の噴出位置27に送液し、混合して外管吐出口5から地盤1中に注入する。この場合、噴出位置27は袋パッカ6、6間に挟まれ、A、B液は一対の膨縮パッカ12、12間で混合されて所定の地盤1に注入される。   FIG. 7 is a cross-sectional view of an example in which a plurality of injection liquid channels 15 are provided. A pair of expansion / contraction packers 12 and 12 are supplied as the injection liquids A and B through separate injection liquid channels 15 and 15, respectively. The liquid is fed to the ejection position 27 between them, mixed and injected into the ground 1 from the outer tube discharge port 5. In this case, the ejection position 27 is sandwiched between the bag packers 6 and 6, and the A and B liquids are mixed between the pair of expansion / contraction packers 12 and 12 and injected into the predetermined ground 1.

図8〜図10は複数の注入流路および複数の膨縮パッカを有する注入管装置の例の断面図であって、外管9内に移動自在に挿入される内管13は長手方向に複数の膨縮パッカ12、12・・12が間隔をあけて設けられ、複数の噴出位置27、27・・27を形成し、これら複数の噴出位置27、27・・27は少なくとも一個づつ、管外空間8に位置するように配置される。内管13には注入液を送液し、吐出口14が各噴出位置27に別々に位置する複数の注入液流路15と、膨縮パッカ12に流体を送って膨張させるパッカ流路16とをそれぞれ独立して備える。これにより、パッカ流路16を通して複数の膨縮パッカ12、12・・12に流体を送って膨張させ、隣接する膨縮パッカ12、12によって挟まれる内外管すき間31に管内空間17を形成してなり、各噴出位置27を管外空間8に合致させ、吐出口14から注入液を管内空間17および外管吐出口5を通し、管外空間8を経て地盤1中に注入する。   8 to 10 are cross-sectional views of an example of an injection tube device having a plurality of injection channels and a plurality of expansion / contraction packers, and a plurality of inner tubes 13 movably inserted into the outer tube 9 are arranged in the longitudinal direction. Are provided at intervals to form a plurality of ejection positions 27, 27,... 27, each of the plurality of ejection positions 27, 27,. It arrange | positions so that it may be located in the space 8. A plurality of injection liquid flow paths 15 in which an injection liquid is sent to the inner tube 13 and the discharge ports 14 are separately located at the respective ejection positions 27, and a packer flow path 16 that sends the fluid to the expansion / contraction packer 12 and expands it. Are provided independently. As a result, a fluid is sent to the plurality of expansion / contraction packers 12, 12... 12 through the packer flow path 16 to inflate, thereby forming a pipe inner space 17 in the inner / outer pipe gap 31 sandwiched between the adjacent expansion / contraction packers 12, 12. Thus, each ejection position 27 is made to coincide with the extra-tube space 8, and an injection solution is injected from the discharge port 14 through the intra-pipe space 17 and the outer tube discharge port 5 and into the ground 1 through the extra-tube space 8.

さらに、注入管装置Aは地盤1の削孔19中に挿入され、外壁長手方向に間隔をあけて複数の流体で膨張する袋パッカ6が設けられ、互いに隣接する袋パッカ6、6間にはゴムスリーブ11で覆われた少なくとも二つの外管吐出口5を有し、かつ、互いに隣接する袋パッカ6、6と削孔壁7との間に管外空間8を形成する外管9と、外管9内に移動自在に挿入され、長手方向に三個以上の膨縮パッカ12が間隔をあけて設けられ、複数の噴出位置27を形成する内管13とを有する。内管13には注入液を送液し、吐出口14が別々の噴出位置27にそれぞれ位置する複数の注入液流路15と、膨縮パッカ12に流体を送って膨張させるパッカ流路16とをそれぞれ独立して備える。そしてパッカ流路16を通して三個以上の膨縮パッカ12に流体を送って膨張させ、互いに隣接する膨縮パッカ12によって挟まれる内外管のすき間31に複数個の管内空間17を形成する。これら複数個の噴出位置27を同一の管外空間8に合致させ、吐出口14から注入液をそれぞれ別々の管内空間17を経て、外管吐出口5を通し、同一の管外空間8から地盤1中に注入する。   Further, the injection tube device A is inserted into the hole 19 of the ground 1, and is provided with a bag packer 6 that is inflated with a plurality of fluids at intervals in the longitudinal direction of the outer wall, and between the bag packers 6 and 6 adjacent to each other. An outer tube 9 having at least two outer tube discharge ports 5 covered with a rubber sleeve 11 and forming a tube outer space 8 between the adjacent bag packers 6 and 6 and the drilling wall 7; The inner tube 13 is inserted into the outer tube 9 so as to be movable, and three or more expansion / contraction packers 12 are provided at intervals in the longitudinal direction, and form a plurality of ejection positions 27. A plurality of injection liquid flow paths 15 for supplying an injection liquid to the inner tube 13 and having discharge ports 14 located at different ejection positions 27, and a packer flow path 16 for supplying the fluid to the expansion / contraction packer 12 for expansion. Are provided independently. Then, a fluid is sent to three or more expansion / contraction packers 12 through the packer flow path 16 to expand, and a plurality of internal spaces 17 are formed in the gaps 31 between the internal and external tubes sandwiched between the expansion / contraction packers 12 adjacent to each other. The plurality of ejection positions 27 are made to coincide with the same external space 8, and the injection solution passes through the separate internal space 17 from the discharge port 14, passes through the external tube discharge port 5, and passes from the same external space 8 to the ground. Inject into 1.

各図毎に具体的に説明すると、図8は注入液流路15を複数本設け、さらに、膨縮パッカ12を3個以上設けて噴出位置27を複数個にしたり例の断面図であって、注入液としてA液およびB液をそれぞれ別々の注入液流路15を通して別々の噴出位置27、27に送液し、外管吐出口5から地盤1中に注入する。この場合、注入領域は円柱状に長く、大きな浸透源を得るという利点を有する。   Specifically, FIG. 8 is a cross-sectional view of an example in which a plurality of injection liquid channels 15 are provided, and three or more expansion / contraction packers 12 are provided to provide a plurality of ejection positions 27. The liquid A and the liquid B are supplied to the different ejection positions 27 and 27 through the separate injection liquid flow paths 15 as injection liquids, and injected into the ground 1 from the outer tube discharge port 5. In this case, the injection region is long in a columnar shape, and has the advantage of obtaining a large penetration source.

図9は噴出位置27を袋パッカを挟んで複数個設けた例の断面図であって、A液、B液はそれぞれ別々に地盤1に注入される。この場合、例えば、A液として瞬結性注入液、B液として緩結性注入液を別々に注入し得、複合注入を可能にする。   FIG. 9 is a cross-sectional view of an example in which a plurality of ejection positions 27 are provided with a bag packer interposed therebetween. A liquid and B liquid are separately injected into the ground 1. In this case, for example, a quick-set injection solution as the A solution and a slow-release injection solution as the B solution can be injected separately to enable combined injection.

図10は噴出位置27を複数個隣接して設けた例の断面図であって、隣接した噴出位置27、27は上下の袋パッカ6、6に挟まれて配置される。この場合、A液、B液は外管9の外側で混合されるので、混合によって瞬結になる注入液の注入に適している。なお、図7、図8、図9において、28はポンプ、29は流量計、30は圧力計、31はすき間である。   FIG. 10 is a cross-sectional view of an example in which a plurality of ejection positions 27 are provided adjacent to each other, and the adjacent ejection positions 27 and 27 are disposed between the upper and lower bag packers 6 and 6. In this case, since the A liquid and the B liquid are mixed outside the outer tube 9, the liquid A and B are suitable for injecting an injection liquid that is instantly combined. 7, 8, and 9, 28 is a pump, 29 is a flow meter, 30 is a pressure gauge, and 31 is a gap.

図11は図1の本発明にかかる注入システムを模型的に表した説明図である。図11から注入液の地盤1への注入状況が模型的に理解される。   FIG. 11 is an explanatory view schematically showing the injection system according to the present invention shown in FIG. The injection | pouring condition to the ground 1 of an injection liquid is understood modelly from FIG.

上述構成からなる本発明は地盤状況が各層毎に異なる地盤に対して、これら各層毎に最適な注入を同時にあるいは選択的に達成し得るのみならず、地盤中の縦方向、横方向への立体的な注入をも可能とし、かつ、複数の注入管からの注入を任意に制御し得るとともに、複数の注入管を通して同時に注入し得、このため、微細土層への浸透注入の信頼性が向上し、かつ急速施工によって注入工期も短縮され、特に液状化防止工事のように大容土の地盤改良への利用可能性が高い。   The present invention having the above-described configuration can not only simultaneously or selectively achieve optimum injection for each layer, but also three-dimensionally in the vertical and horizontal directions in the ground. Injection can be controlled and injection from multiple injection pipes can be controlled arbitrarily, and simultaneous injection through multiple injection pipes improves the reliability of osmotic injection into fine soil layers. However, due to the rapid construction, the pouring period is shortened, and it is highly possible to improve the ground of large volumes of soil, especially as liquefaction prevention work.

本発明に用いられる地盤注入システムの一具体例のフローシートである。It is a flow sheet of one specific example of the ground injection system used for the present invention. 本発明に用いられる注入管装置の袋パッカを膨張させる一具体例の断面図である。It is sectional drawing of one specific example which expands the bag packer of the injection tube apparatus used for this invention. 本発明に用いられる注入管装置の注入状態を表した断面図である。It is sectional drawing showing the injection | pouring state of the injection tube apparatus used for this invention. 本発明に用いられる他の注入システムのフローシートである。It is a flow sheet of another injection system used for the present invention. 送液系統10本についての積算流量と最大圧、および流量と圧力を注入監視盤に表した画面表示の例である。It is an example of the screen display which represented the integrated flow volume and the maximum pressure about 10 liquid feeding systems, and the flow volume and the pressure on the injection | pouring monitoring board. 集中管理装置の操作フローチャートである。It is an operation flowchart of a centralized management apparatus. 本発明に用いられる注入管装置の他の具体例の断面図である。It is sectional drawing of the other specific example of the injection tube apparatus used for this invention. 本発明に用いられる注入管装置の他の具体例の断面図である。It is sectional drawing of the other specific example of the injection tube apparatus used for this invention. 本発明に用いられる注入管装置の他の具体例の断面図である。It is sectional drawing of the other specific example of the injection tube apparatus used for this invention. 本発明に用いられる注入管装置の他の具体例の断面図である。It is sectional drawing of the other specific example of the injection tube apparatus used for this invention. 本発明の注入システムの原理を表した模型図である。It is a model figure showing the principle of the injection system of the present invention.

符号の説明Explanation of symbols

A 注入管装置
X 多点地盤注入システム
1 地盤
2 駆動源
3 集中管理装置
4 ユニットポンプ
5 外管吐出口
6 袋パッカ
7 削孔壁
8 管外空間
9 外管
10 管壁
11 ゴムスリーブ
12 膨縮パッカ
13 内管
14 吐出口
15 注入液流路
16 パッカ流路
17 管内空間
18 内管昇降装置
19 削孔
20 地盤内パッカ
21 導管
22 貯蔵タンク
23 パッカ流体貯蔵タンク
24 バルブ
25 注入ポイント
26 流体圧力検出器
27 噴出位置
28 ポンプ
29 流量計
30 圧力計
31 すき間
32 回転数変速機
33 注入監視盤
34 バルブ
35 施工表示盤
36 日報作業装置
A Injection tube device X Multi-point ground injection system 1 Ground 2 Drive source 3 Centralized control device 4 Unit pump 5 Outer tube outlet 6 Bag packer 7 Drilling wall 8 Outer space 9 Outer tube 10 Tube wall 11 Rubber sleeve 12 Expansion / contraction Packer 13 Inner pipe 14 Discharge port 15 Injection liquid flow path 16 Packer flow path 17 Pipe inner space 18 Inner pipe lifting device 19 Drilling hole 20 Ground packer 21 Conduit 22 Storage tank 23 Packer fluid storage tank 24 Valve 25 Injection point 26 Fluid pressure detection 27 Ejection position 28 Pump 29 Flow meter 30 Pressure gauge 31 Clearance 32 Rotational speed transmission 33 Injection monitoring panel 34 Valve 35 Construction display panel 36 Daily report work device

Claims (10)

注入管装置を複数本、地盤中に埋設し、これら注入管装置を通して注入液を注入する地盤注入工法であって、独立した駆動源で作動し、かつ集中管理装置で制御される個々に独立したユニットポンプをそれぞれの注入管装置に接続し、ユニットポンプの作動により注入液を地盤中に注入する地盤注入工法において、前記注入管装置は管壁長手方向に間隔をあけて、硬化性流体で膨張する複数の袋パッカを設け、互いに隣接する袋パッカ間にはゴムスリーブで覆われた少なくとも一つの外管吐出口を有し、かつ互いに隣接する袋パッカと削孔壁との間に管外空間を形成する外管と、外管内に移動自在に挿入され、長手方向に一対の膨縮パッカが間隔をあけて設けられ、噴出位置を形成する内管とを有し、該内管には、注入液を送液し、吐出口が噴出位置に位置する注入液流路と、前記膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、該パッカ流路を通して一対の膨縮パッカに流体を送って膨張させ、一対の膨縮パッカによって挟まれる内外管のすき間に管内空間を形成してなり、該噴出位置を管外空間に合致させ、外管吐出口から注入液を管内空間、外管吐出口および管外空間を経て地盤中に注入することを特徴とする地盤注入工法。   A ground injection method in which a plurality of injection pipe devices are buried in the ground, and an injection solution is injected through these injection pipe devices, which are operated by an independent drive source and individually controlled by a central control device. In the ground injection method in which unit pumps are connected to each injection pipe device, and the injection liquid is injected into the ground by the operation of the unit pump, the injection pipe devices are expanded with a curable fluid at intervals in the longitudinal direction of the pipe wall. A plurality of bag packers that have at least one outer tube discharge port covered with a rubber sleeve between adjacent bag packers, and an extra-tube space between the adjacent bag packer and the drilled wall And an inner tube that is movably inserted into the outer tube and is provided with a pair of expansion / contraction packers spaced apart in the longitudinal direction to form an ejection position. The injection liquid is fed and the discharge port is An infusate flow path located at the exit position and a packer flow path for sending and inflating fluid to the expansion / contraction packer are provided independently, and the fluid is sent to the pair of expansion / contraction packers through the packer flow path for expansion. A space between the inner and outer pipes sandwiched between the pair of expansion / contraction packers is formed, the pipe inner space is made to coincide with the outer space of the pipe, and the injection liquid is supplied from the outer pipe outlet to the inner space, the outer pipe outlet and the pipe. Ground injection method characterized by injecting into the ground through the outer space. 請求項1において、内管は吐出口がそれぞれ噴出位置に位置する複数の注入液流路を有してなる請求項1の地盤注入工法。   2. The ground injection method according to claim 1, wherein the inner pipe has a plurality of injection liquid passages each having a discharge port located at an ejection position. 請求項1において、さらに、内管昇降装置を設け、内管はこの昇降手段により外管内を所定の注入ステージに上下移動される請求項1の地盤注入工法。   2. The ground injection method according to claim 1, further comprising an inner pipe lifting device, wherein the inner pipe is moved up and down in the outer pipe to a predetermined injection stage by the lifting means. 請求項1において、集中管理装置はパッカ流路に接続され、一対の膨縮パッカへの流体の送液を制御する流体送液制御部と、個々に独立した複数のユニットポンプの駆動源に接続され、各駆動源を制御する駆動制御部と、各ユニットポンプから地盤中の注入管装置に通じる導管に配置された流量圧力検出器に接続され、注入圧力、注入量および注入速度に関する注入情報を記録表示する記録表示部とを備えた請求項1の地盤注入工法。 2. The central control device according to claim 1, wherein the central control device is connected to the packer flow path, and is connected to a fluid feed control unit that controls the fluid feed to the pair of expansion / contraction packers, and a drive source of a plurality of independent unit pumps. It is connected to a drive control unit that controls each drive source and a flow rate pressure detector arranged in a conduit that leads from each unit pump to the injection pipe device in the ground, and provides injection information regarding injection pressure, injection volume, and injection speed. The ground injection method according to claim 1, further comprising a recording display unit for recording and displaying. 請求項4において、集中管理装置はさらに、内管昇降装置に接続され、内管の昇降を制御する昇降制御部を有してなる請求項4の地盤注入工法。   5. The ground injection construction method according to claim 4, wherein the central management device further includes a lifting control unit that is connected to the inner tube lifting device and controls the lifting of the inner tube. 請求項1において、外管内に移動自在に挿入される内管は長手方向に複数の膨縮パッカが間隔をあけて設けられ、複数の噴出位置を形成し、これら複数の噴出位置は少なくとも一個づつ、管外空間に位置するように配置され、該内管には注入液を送液し、吐出口が各噴出位置に別々に位置する複数の注入液流路と、前記膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、該パッカ流路を通して複数の膨縮パッカに流体を送って膨張させ、隣接する膨縮パッカによって挟まれる内外管すき間に管内空間を形成してなり、各噴出位置を管外空間に合致させ、吐出口から注入液を管内空間および外管吐出口を通し、管外空間を経て地盤中に注入する請求項1の地盤注入工法。   2. The inner tube movably inserted into the outer tube according to claim 1, wherein a plurality of expansion / contraction packers are provided at intervals in the longitudinal direction to form a plurality of ejection positions, and each of the plurality of ejection positions is at least one by one. Arranged to be located in the space outside the tube, the injection solution is sent to the inner tube, and a plurality of injection solution passages whose discharge ports are separately located at the respective ejection positions and fluid to the expansion / contraction packer A packer flow path that is sent and expanded independently, and a fluid is sent to a plurality of expansion / contraction packers through the packer flow path to be expanded to form an internal space between inner and outer pipes sandwiched between adjacent expansion / contraction packers. The ground injection method according to claim 1, wherein each ejection position is made to coincide with the space outside the tube, and the injection solution is injected from the discharge port through the space inside the tube and the discharge port of the outer tube, and into the ground through the space outside the tube. 請求項6において、内管を移動して複数個の噴出位置を他の管外空間に少なくとも一個づつ合致させ、吐出口から注入液を各管内空間を経て外管吐出口を通し、別々の管外空間から地盤中に注入する請求項6の地盤注入工法。   7. The method according to claim 6, wherein the inner pipe is moved so that a plurality of ejection positions are matched to at least one other pipe outer space one by one, and the injection liquid is passed from the outlet through the inner pipe through the outer pipe outlet. The ground pouring method according to claim 6, wherein the ground pouring method is poured into the ground from outside space. 請求項1において、注入管装置は地盤の削孔中に挿入され、外壁長手方向に間隔をあけて複数の流体で膨張する袋パッカが設けられ、互いに隣接する袋パッカ間にはゴムスリーブで覆われた少なくとも二つの外管吐出口を有し、かつ、互いに隣接する袋パッカと削孔壁との間に管外空間を形成する外管と、該外管内に移動自在に挿入され、長手方向に三個以上の膨縮パッカが間隔をあけて設けられ、複数の噴出位置を形成する内管とを有し、該内管には注入液を送液し、吐出口が別々の噴出位置にそれぞれ位置する複数の注入液流路と、前記膨縮パッカに流体を送って膨張させるパッカ流路とをそれぞれ独立して備え、該パッカ流路を通して三個以上の膨縮パッカに流体を送って膨張させ、互いに隣接する膨縮パッカによって挟まれる内外管のすき間に複数個の管内空間を形成してなり、これら複数個の噴出位置を同一の管外空間に合致させ、吐出口から注入液をそれぞれ別々の管内空間を経て、外管吐出口を通し、同一の管外空間から地盤中に注入することを特徴とする地盤注入工法。   3. The injection tube device according to claim 1, wherein the bag packer is inserted into a hole in the ground, and is provided with a bag packer that is inflated by a plurality of fluids at intervals in the longitudinal direction of the outer wall, and is covered with a rubber sleeve between adjacent bag packers. An outer tube having at least two outer tube discharge ports and forming a space outside the tube between the adjacent bag packer and the drilling wall, and is inserted into the outer tube so as to be movable, in the longitudinal direction. And three or more expansion / contraction packers are provided at intervals, and an inner pipe that forms a plurality of ejection positions, and an injection liquid is fed into the inner pipe, and the discharge ports are arranged at different ejection positions. A plurality of infusion liquid channels positioned respectively and a packer channel for sending and inflating fluid to the expansion / contraction packer are provided independently, and the fluid is sent to three or more expansion / contraction packers through the packer channel. Inner and outer tubes that are inflated and sandwiched between adjacent expansion and contraction packers A plurality of inner spaces are formed in the gaps, and the plurality of ejection positions are matched with the same outer space, and the injection solution is passed through the outer tube discharge port through each separate tube space, A ground injection method characterized by injecting into the ground from the same extra-space. 請求項8において、内管を移動して複数個の噴出位置を他の管外空間に合致させ、吐出口から注入液をそれぞれ別々の管内空間を経て、外管吐出口を通して同一の管外空間から地盤中に注入する請求項8の地盤注入工法。   9. The same extra-tube space according to claim 8, wherein the inner pipe is moved so that a plurality of ejection positions coincide with other extra-tube spaces, and the injection solution passes through the outer pipe discharge ports through the separate inner pipe spaces. The ground pouring method according to claim 8, wherein the ground pouring method is poured into the ground. 請求項1において、前記袋パッカは透水性袋体で形成され、削孔径よりも1.2〜5.0倍の直径を有し、かつ袋体の長さをLとし、隣接する袋体間の間隙をAとした場合、A≦2Lとしてなり、袋体中に懸濁液を填充し、膨らませて袋パッカを形成する際、袋体の直径が削孔径よりも大きいため、袋パッカによってパッカ周りの削孔壁が圧密され、これにより袋パッカ周りの地盤領域に注入液の浸透しにくい密な地盤内パッカを形成する請求項1の地盤注入工法。
2. The bag packer according to claim 1, wherein the bag packer is formed of a water permeable bag body, has a diameter of 1.2 to 5.0 times the hole diameter, and the length of the bag body is L, and between adjacent bag bodies. When the gap of A is assumed to be A ≦ 2L, when the bag packer is filled with the suspension and inflated to form the bag packer, the bag packer is packed with the bag packer because the bag body has a diameter larger than the hole diameter. The ground injection construction method according to claim 1, wherein the surrounding hole wall is consolidated, thereby forming a dense ground packer in which the injected solution is difficult to penetrate into the ground region around the bag packer.
JP2005134918A 2005-05-06 2005-05-06 Grouting construction method Pending JP2006312811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134918A JP2006312811A (en) 2005-05-06 2005-05-06 Grouting construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134918A JP2006312811A (en) 2005-05-06 2005-05-06 Grouting construction method

Publications (1)

Publication Number Publication Date
JP2006312811A true JP2006312811A (en) 2006-11-16

Family

ID=37534400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134918A Pending JP2006312811A (en) 2005-05-06 2005-05-06 Grouting construction method

Country Status (1)

Country Link
JP (1) JP2006312811A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062790A1 (en) 2006-11-20 2008-05-29 Asahi Glass Company, Limited Method for producing polymer-dispersed polyol
JP2008231709A (en) * 2007-03-19 2008-10-02 Kyokado Eng Co Ltd Method and device for injecting into ground at multiple points
JP2019105095A (en) * 2017-12-13 2019-06-27 日特建設株式会社 Evaluation method and evaluation system
CN110644310A (en) * 2019-09-24 2020-01-03 山东大学 Controllable mold bag grouting method for reinforcing roadbed of underlying goaf

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062790A1 (en) 2006-11-20 2008-05-29 Asahi Glass Company, Limited Method for producing polymer-dispersed polyol
JP2008231709A (en) * 2007-03-19 2008-10-02 Kyokado Eng Co Ltd Method and device for injecting into ground at multiple points
JP4672693B2 (en) * 2007-03-19 2011-04-20 強化土エンジニヤリング株式会社 Multi-point ground injection method and multi-point ground injection equipment
JP2019105095A (en) * 2017-12-13 2019-06-27 日特建設株式会社 Evaluation method and evaluation system
JP6990006B2 (en) 2017-12-13 2022-01-12 日特建設株式会社 Evaluation method and evaluation system
CN110644310A (en) * 2019-09-24 2020-01-03 山东大学 Controllable mold bag grouting method for reinforcing roadbed of underlying goaf

Similar Documents

Publication Publication Date Title
JP4581013B2 (en) Injection pipe device and ground injection method
JP4827109B1 (en) Injection pipe device and ground injection method
JP4848553B2 (en) Injection pipe device and injection method
JP2010270446A (en) Filling construction method and filling system
US7775271B2 (en) Device and system for well completion and control and method for completing and controlling a well
CN110984900A (en) Device and method for stopping water in drilling
JP2011074591A (en) Grouting pipe and grouting method
JP2011074720A (en) Soil improvement construction method and soil improvement device
JP2006312811A (en) Grouting construction method
CA2730228A1 (en) A device and system for well completion and control and method for completing and controlling a well
JP4036303B2 (en) Ground injection method
JP4672693B2 (en) Multi-point ground injection method and multi-point ground injection equipment
JP4294691B2 (en) Injection tube and grout injection method
KR101721494B1 (en) Simultaneous multi-stage pressure grouting apparatus
JP4034305B2 (en) Ground injection method
JP6182804B1 (en) Ground injection device and ground injection method
TW201520402A (en) Improvement device for ground desaturation and improvement method for ground desaturation
JP4051368B2 (en) Ground injection method and equipment
JP5728694B1 (en) Liquefaction countermeasures for existing buried pipes
WO2022199701A1 (en) Experimental apparatus for simulating substance exchange between wellbore and formation
JP3919727B2 (en) Ground injection device and ground injection method
JP3919739B2 (en) Ground injection device and ground injection method
JP2006009401A (en) Soil grouting method
JP3832457B2 (en) Fixing method of bundling injection capillaries in the ground
JP4903650B2 (en) Liquefaction prevention method for sandy ground and air injection structure to sandy ground

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070906

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023

A521 Written amendment

Effective date: 20071122

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20071228

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20080125

Free format text: JAPANESE INTERMEDIATE CODE: A912