JP4294691B2 - Injection tube and grout injection method - Google Patents
Injection tube and grout injection method Download PDFInfo
- Publication number
- JP4294691B2 JP4294691B2 JP2007000840A JP2007000840A JP4294691B2 JP 4294691 B2 JP4294691 B2 JP 4294691B2 JP 2007000840 A JP2007000840 A JP 2007000840A JP 2007000840 A JP2007000840 A JP 2007000840A JP 4294691 B2 JP4294691 B2 JP 4294691B2
- Authority
- JP
- Japan
- Prior art keywords
- injection
- tube
- flow path
- pipe
- annular slit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
本発明は、地盤改良及び土壌改良に使用することが可能である注入管及びこの注入管を用いたグラウト注入方法に関するものである。 The present invention relates to an injection pipe that can be used for ground improvement and soil improvement, and a grout injection method using the injection pipe.
わが国は、地盤条件の悪い軟弱地盤が多いため、たとえ軟弱地盤の上であっても建設工事をやむなく行なわなければならない場合が少なくなく、近年では、特に、耐震対策としての砂質地盤の液状化防止対策が重要視されている。また、平成7年の阪神・淡路大震災を契機に、耐震基準が改訂され、既存構造物の直下やその付近の液状化対策なども緊急の課題とされている。 In Japan, there are many soft grounds with poor ground conditions, so there are many cases where construction work must be carried out even on soft ground. Prevention measures are regarded as important. In addition, the earthquake resistance standards were revised following the 1995 Great Hanshin-Awaji Earthquake, and measures to liquefy directly under and near existing structures are also urgent issues.
液状化対策としては、例えば、a.締固めにより砂地盤の密度を増大させるサンドコンパクションパイル工法、振動棒工法、重錘落下締固め工法等、b.セメント、薬剤などにより固結させる深層混合処理工法、生石灰パイル工法、注入固化工法、c.液状化しない別の材料に置換する砕石置換方法、d.発生した間隙水圧の消散を図るグラベルドレーン工法、各種ドレーン工法等が挙げられる。 As measures against liquefaction, for example, a. Sand compaction pile method, vibrating rod method, weight drop compaction method, etc. that increase the density of sand ground by compaction, b. Deep-mixing treatment method, quick lime pile method, injection solidification method, which is solidified by cement, chemicals, etc., c. A method for replacing crushed stone with another material that does not liquefy, d. Examples include a gravel drain construction method and various drain construction methods for dissipating the generated pore water pressure.
ここで、既設構造物の直下やその付近、空頭制限のある場所などのような大型施工機械を使用することができない施工条件下における液状化対策としては、注入固化工法が最適である。 Here, the injection solidification method is optimal as a countermeasure for liquefaction under construction conditions in which a large construction machine such as directly under or near an existing structure or in a place where there is a sky head restriction cannot be used.
注入固化工法で使用される薬剤(グラウト剤)は、対象地盤が砂質土であるという関係上、砂質土層の土粒子間の間隙部(間隙水)に浸透し易い性質が要求されるため、現在使用されている薬剤は、第一に水溶液型であること、第二に粘性が低く浸透性が高いこと、第三に浸透範囲を延ばすため緩結性であること、第四に硬化薬剤を使用する場合には超微粒子であること、第五に注入された材料が劣化せずに恒久性であること等の性質を備えている。 The agent (grouting agent) used in the injection solidification method is required to have a property of easily penetrating into the gaps (pore water) between the soil particles of the sandy soil layer because the target ground is sandy soil. Therefore, the drugs currently in use are firstly aqueous solutions, secondly low in viscosity and high in permeability, thirdly slow to extend the penetration range, and fourthly cured. When a drug is used, it has properties such as being ultrafine particles, and fifthly, the injected material is permanent without deterioration.
上述した性質を備えた薬剤を、改良対象地盤としての砂質土へ浸透注入することにより改良対象地盤を固化する方法としては、概ね、イ)特許文献1に示されたダブルパッカー工法、ロ)浸透固化処理工法、ハ)特許文献2に示された超多点注入工法、ニ)多段マルチパッカー工法などが挙げられる。 As a method for solidifying the improvement target ground by infiltrating and injecting the agent having the above-described properties into the sandy soil as the improvement target ground, a) the double packer construction method disclosed in Patent Document 1, b) Examples thereof include a permeation solidification method, c) a super multi-point injection method disclosed in Patent Document 2, and d) a multi-stage multipacker method.
イ)ダブルパッカー工法は、(1)φ100mm前後のケーシングを用いて所定深度まで削孔した後、(2)注入パイプを挿入してシールグラウトを孔内へ充填し、(3)孔内へ環状ゴムに覆われた吐出口を有する注入用外管を挿入して外管を建て込んで、ケーシングを引き抜き、(4)外管の中ヘパッカーつきの内管を挿入した後、一次注入(CB液)を行って地盤の均一化を図り、(5)一次注入完了後、内管のパッカーを膨張させ、内管から外管を介し、浸透注入(二次注入:毎分5〜10リットル)を行う。 B) Double packer construction method: (1) After drilling to a predetermined depth using a casing of around φ100mm, (2) Inserting the injection pipe and filling the seal grout into the hole, (3) Ringing into the hole Insert an outer pipe for injection having a discharge port covered with rubber, install the outer pipe, pull out the casing, and (4) insert an inner pipe with a heaper inside the outer pipe, then primary injection (CB liquid) (5) After completing the primary injection, expand the inner tube packer and perform osmotic injection (secondary injection: 5 to 10 liters per minute) from the inner tube through the outer tube. .
ロ)浸透固化処理工法は、(1)φ100mm前後のケーシングを用いて所定深度まで削孔した後、(2)特殊ストレーナ及び布製スリーブパッカーを装着した注入用外管を孔内に建て込んで、ケーシングを引き抜き、(3)布製スリープ膨潤・パッカーを形成した後、管内ヘダブルパッカーを装着した吐出口を有する注入装置を挿入し、(4)特殊ストレーナ部から注入(毎分5〜15リットル)する。 B) The permeation solidification processing method is as follows: (1) After drilling to a predetermined depth using a casing of about φ100 mm, (2) An injection outer tube equipped with a special strainer and cloth sleeve packer is built in the hole, Pull out the casing, (3) After forming the sleep swell and packer made of cloth, insert an injection device with a discharge port fitted with a pipe double packer, and (4) Inject from the special strainer (5-15 liters per minute) To do.
ハ)超多点注入工法は、(1)φ100mm前後のケーシングを用いて所定深度まで削孔した後、(2)注入パイプを挿入し、シール剤を孔内へ注入して、ケーシングを引き抜き、(3)注入深度を夫々変えた細い多点注入用ホース(10本程度)束を孔内へ挿入し、(4)前記(1)〜(3)の手順を繰り返して多点注入用ホース束を設置し、(5)1ポイント毎分2〜4リットルの注入速度で、1ユニット32連ポイントの同時注入を行う。 C) Super multi-point injection method: (1) After drilling to a predetermined depth using a casing of about φ100 mm, (2) Inserting an injection pipe, injecting a sealant into the hole, pulling out the casing, (3) Insert a thin multi-point injection hose (about 10) bundle with different injection depths into the hole, and (4) repeat the steps (1) to (3) above to repeat the multi-point injection hose bundle. (5) One unit of 32 consecutive points is injected simultaneously at an injection rate of 2 to 4 liters per minute per point.
ニ)多段マルチパッカー工法は、(1)ケーシングを用いて所定深度まで削孔した後、(2)特殊注入パッカーとストレーナ構造の多段式注入孔を有する注入管を建て込んで、ケーシングを引き抜き、(3)パッカー注入剤を注入し、外周布地から外部地盤にパッカー注入剤が浸透して、シール効果を保持した後、(4)超微粒子系グラウト剤を用い、毎分20〜30リットルの注入速度で浸透注入を図る。
しかしながら、改良対象地盤内へ注入した時点では、薬剤は、非硬化状態であって、注入管に設けられた吐出口から逸走して地上に漏出しやすいため、上述したいずれの方法も、薬剤を改良対象地盤内へ注入する時点で薬剤が地上に漏出することを防止する種々の工夫が必要となる。即ち、上述したいずれの方法も、例えば、本来の目的である改良対象地盤内へ薬剤を注入する作業を行う前に、ケーシングパイプを用いて削孔した後、孔内にシール剤(セメント・ベントナイト液)を充填するか又は直接孔内ヘパッカーを装着した注入管若しくは注入ホース等を挿入した後、パッカー効果を保持する必要があるため、作業工程が増加してしまうことから、注入固化工法において、多大な時間と費用がかかることになる。 However, at the time of injection into the ground to be improved, the drug is in a non-hardened state and easily escapes from the discharge port provided in the injection pipe and leaks to the ground. Various devices for preventing the medicine from leaking to the ground at the time of injection into the ground to be improved are required. That is, in any of the above-described methods, for example, before performing the work of injecting the chemical into the ground to be improved, which is the original purpose, after drilling with a casing pipe, a sealant (cement / bentonite is placed in the hole. In order to maintain the packer effect after inserting an injection tube or an injection hose fitted directly with a heaper in the hole, the work process will increase, so in the injection solidification method, It will take a lot of time and money.
また、上述したいずれの方法も、注入管に設けられた吐出口の形状は、ストレーナの微細穴又は細孔であるため、注入管の軸方向と直角方向の一箇所の数孔又は注入管の軸方向と水平方向の数点という、特定方向のみに薬剤が吐出することから、吐出圧力による薬剤の指向性が限定され、吐出された薬剤の改良対象地盤への受入面積が小さくなり、浸透効率が低く、薬剤を注入するために多くの時間が必要となる。それ故、改良対象地盤への薬剤の受入抵抗、即ち改良対象地盤への浸透速度は、薬剤の性質、土質条件はもちろんのこと、改良対象地盤への薬剤の受入面積、注入手段である注入管に設けられた吐出口の構造及び面積も重要な要素となる。即ち、従来用いられている注入管の吐出口は、いずれも特定の一方向であり、吐出口付近に存在する改良対象地盤への薬剤の受入面積が少ないため、吐出口1箇所当りの浸透速度も必然的に小さくなり、薬剤の注入施工時間がどうしても多くなってしまうという問題点がある。 In any of the methods described above, since the shape of the discharge port provided in the injection tube is a fine hole or a fine hole of the strainer, several holes or a single injection tube in a direction perpendicular to the axial direction of the injection tube are used. Since the drug is discharged only in a specific direction (several points in the axial direction and the horizontal direction), the directivity of the drug due to the discharge pressure is limited, the area for receiving the discharged drug on the ground to be improved is reduced, and the penetration efficiency And requires a lot of time to inject the drug. Therefore, the drug acceptance resistance to the ground to be improved, that is, the penetration speed into the ground to be improved, is not only the nature of the drug and the soil conditions, but also the area for receiving the drug to the ground to be improved, and the injection pipe which is the injection means The structure and area of the discharge port provided in the are also important factors. In other words, the discharge ports of the injection tube used in the past are all in one specific direction, and since the area for receiving the drug on the ground to be improved existing in the vicinity of the discharge port is small, the permeation rate per one discharge port However, there is a problem that the time required for injecting the drug is inevitably increased.
一方、注入管の吐出口を注入管の長手方向の任意の間隔で複数個配設した場合には、上方の吐出口と下方の吐出口とでは圧力が均等にならないため、上方の吐出口から吐出される流体(薬剤、圧縮空気など)の吐出量と下方の吐出口から吐出される流体の吐出量はかなり大きな違いが生じ、すべての注入管の吐出口から均等に外周の全方位へ面状状態で吐出しなくなるという問題点があり、注入管の吐出口がゴムなどの弾性体を用いて構成されているときは、一カ所の吐出口から流体が吐出すると、弾性体を押し広げる力によって圧力が抜けた状態となり、流体を吐出した吐出口より下方に位置する吐出口の圧力は急激に低下するため、流体を吐出することが不可能になるという重大な問題点がある。それ故、従来は、注入一工程毎に注入管をステップアップする作業工程又はパッカー形成後に注入する作業工程を繰り返して行う必要があった。 On the other hand, when a plurality of discharge ports of the injection tube are arranged at arbitrary intervals in the longitudinal direction of the injection tube, the pressure is not uniform between the upper discharge port and the lower discharge port. There is a considerable difference between the discharge amount of fluid (medicine, compressed air, etc.) and the discharge amount of fluid discharged from the lower discharge port. If the discharge port of the injection tube is made of an elastic body such as rubber, the force that pushes the elastic body when fluid is discharged from a single discharge port As a result, the pressure is released, and the pressure at the discharge port located below the discharge port from which the fluid has been discharged drops rapidly, which makes it impossible to discharge the fluid. Therefore, conventionally, it has been necessary to repeatedly perform an operation process for stepping up the injection tube every injection process or an injection process after forming the packer.
本発明の目的とするところは、改良対象地盤内に流体(薬剤、圧縮空気など)を注入する際、薬剤が地上へ漏出することを防止して、例えば、注入固化工法における時間及び費用の節約が可能となり、従来の注入一工程毎に注入管をステップアップする作業工程又はパッカー形成後に注入する作業工程を繰り返す必要がなく、吐出口を注入管の長手方向の任意の間隔で複数個配設した場合においても、流体がどの吐出口からも外周の全方位へ面状状態で吐出して、流体を短時間で効率的に改良対象地盤内に注入することができ、流体の注入施工時間が飛躍的に短縮される、注入管及びこの注入管を用いたグラウト注入方法を提供することにある。 The object of the present invention is to prevent leakage of chemicals to the ground when injecting fluid (chemicals, compressed air, etc.) into the ground to be improved, for example, saving time and cost in the injection solidification method. This eliminates the need to repeat the conventional process of stepping up the injection tube for each injection process or the process of injecting after the formation of the packer, and a plurality of discharge ports are arranged at arbitrary intervals in the longitudinal direction of the injection pipe. In this case, the fluid can be discharged from any discharge port in a planar state in all directions on the outer periphery, and the fluid can be efficiently injected into the ground to be improved in a short time. An object of the present invention is to provide an injection tube and a grouting method using the injection tube, which are drastically shortened.
注入管の吐出口から薬剤を改良対象地盤内に注入する場合、注入管の吐出口から吐出する薬剤の単位時間当たりの吐出量は、薬剤の改良対象地盤内への浸透速度によって制限されることになるが、本発明の発明者は、薬剤の改良対象地盤内への受入面積を増大させることにより、薬剤の改良対象地盤内への浸透速度が増加し、注入管の吐出口から吐出する薬剤の単位時間当たりの吐出量が従来の数倍となることに着目し、本発明を完成するに至った。 When the drug is injected into the ground to be improved from the discharge port of the injection tube, the discharge amount per unit time of the drug discharged from the discharge port of the injection tube is limited by the penetration rate of the drug into the ground to be improved However, the inventor of the present invention increases the permeation speed of the medicine into the ground to be improved by increasing the receiving area of the medicine into the ground to be improved, and the medicine discharged from the discharge port of the injection tube Focusing on the fact that the discharge amount per unit time is several times the conventional amount, the present invention has been completed.
即ち、本発明の注入管は、外管と内管を同心状に配列した注入部材と、該注入部材の先端に設置した無水用掘削刃とを備えた注入管であって、前記外管の外周面には、周方向の全周にわたって開口する第一の環状スリット吐出口と、周方向の全周にわたって開口する複数個の第二の環状スリット吐出口とを、前記注入管の長手方向の任意の間隔で配設し、該第一の環状スリット吐出口は、前記外管の内側と前記内管の外側とから形成される外管流路の先端と接続し、前記外管流路の先端より下方に配置される複数の導入管と、該複数の導入管の各々と接続する複数の第一の接続通路と、該複数の第一の接続通路のすべてと接続する一つの第一の環状空隙部とを介して、前記外管流路と連通し、該第二の環状スリット吐出口は、前記内管の内側に形成される内管流路の外周面に配置された複数の第二の接続通路と、該複数の第二の接続通路のすべてと接続する一つの第二の環状空隙部とを介して、前記内管流路と連通することを特徴とする。 That is, the injection tube of the present invention is an injection tube comprising an injection member in which an outer tube and an inner tube are arranged concentrically, and an anhydrous drilling blade installed at the tip of the injection member, On the outer peripheral surface, a first annular slit outlet that opens over the entire circumference in the circumferential direction and a plurality of second annular slit outlets that open over the entire circumference in the circumferential direction are provided in the longitudinal direction of the injection tube. Arranged at an arbitrary interval, the first annular slit outlet is connected to the tip of an outer pipe flow path formed from the inner side of the outer pipe and the outer side of the inner pipe, A plurality of introduction pipes disposed below the tip, a plurality of first connection passages connected to each of the plurality of introduction pipes, and a first first connection connected to all of the plurality of first connection passages The second annular slit outlet is connected to the inner side of the inner pipe through an annular gap. Via a plurality of second connection passages arranged on the outer peripheral surface of the formed inner pipe flow path, and a second annular gap portion connected to all of the plurality of second connection passages, It is characterized by communicating with the inner pipe flow path .
また、吐出圧力をもってグラウト剤を改良対象地盤内に浸透させる場合において、改良対象地盤中の地下水(間隙水)をグラウト剤で押し出して排除しつつ、間隙水とグラウト剤とを置換するグラウト注入方法では、グラウト剤を改良対象地盤中の土粒子間に浸透させる際、地下水(土粒子間の間隙水)によるグラウト剤の受入抵抗(浸透抵抗)が発生するため、このグラウト剤の受入抵抗によってグラウト剤の改良対象地盤内への浸透速度が制限されるが、本発明の発明者は、グラウト剤の代わりに圧縮空気を用いたとしても、間隙水を排除することが可能であることに着眼し、改良対象地盤内からグラウト剤の受入抵抗の発生原因となる間隙水を圧縮空気を用いて排除した後、改良対象地盤内にグラウト剤を注入することにより、改良対象地盤内のグラウト剤の受入抵抗がより低下し、その結果、改良対象地盤内へのグラウト剤の浸透速度がより増加して、改良対象地盤中にグラウト剤をより効率的に浸透注入させることができることを見い出し、本発明を完成するに至った。 In addition, when the grout agent is allowed to penetrate into the improvement target ground with the discharge pressure, the grout injection method for replacing the pore water and the grout agent while extruding and removing the groundwater (pore water) in the improvement target ground with the grout agent. Then, when the grout agent is infiltrated between the soil particles in the ground to be improved, the acceptance resistance (permeation resistance) of the grout agent due to the groundwater (pore water between the soil particles) is generated. Although the rate of penetration of the agent into the ground to be improved is limited, the inventors of the present invention are aware that it is possible to eliminate pore water even if compressed air is used instead of the grout agent. After removing the pore water that causes the resistance of acceptance of grout agent from the ground to be improved using compressed air, the grout agent is injected into the ground to be improved. The acceptance resistance of the grouting agent in the ground is further reduced, and as a result, the penetration rate of the grouting agent into the ground to be improved is further increased, so that the grouting agent can be more efficiently infiltrated into the ground to be improved. The present inventors have found what can be done and have completed the present invention.
即ち、本発明のグラウト注入方法は、外管と内管を同心状に配列した注入部材と、該注入部材の先端に設置した無水用掘削刃とを備え、該外管の外周面には、該外管の内側と該内管の外側とから形成される外管流路の先端と接続し、該外管流路の先端より下方に配置される複数の導入管と、該複数の導入管の各々と接続する複数の第一の接続通路と、該複数の第一の接続通路のすべてと接続する一つの第一の環状空隙部とを介して、前記外管流路と連通し、該外管の外周面の周方向の全周にわたって開口する第一の環状スリット吐出口と、該内管の内側に形成される内管流路の外周面に配置された複数の第二の接続通路と、該複数の第二の接続通路のすべてと接続する一つの第二の環状空隙部とを介して、該内管流路と連通し、該外管の外周面の周方向の全周にわたって開口する複数個の第二の環状スリット吐出口とを、長手方向の任意の間隔で配設した注入管を用いたグラウト注入方法であって、前記注入管を用いて無水状態で改良対象地盤内の所定深度まで穿孔した後、前記注入部材と外周地盤とが密着した状態で、前記内管流路に圧縮空気を送り込み、前記複数個の第二の環状スリット吐出口から同時に圧縮空気を前記注入管の軸方向と直角の方向となる水平方向の全方位へ面状状態で吐出して、改良対象地盤中の間隙水を該圧縮空気により押し出して排出し、その後、前記外管流路に圧縮空気を送り込み、前記第一の環状スリット吐出口から圧縮空気を前記注入管の軸方向と直角の方向となる水平方向の全方位へ面状状態で吐出すると共に、前記内管流路にグラウト剤を送り込み、前記複数個の第二の環状スリット吐出口から同時にグラウト剤を前記注入管の軸方向と直角の方向となる水平方向の全方位へ面状状態で吐出することを特徴とする。 That is, grout injection method of the present invention comprises an injection member having an array of outer and inner tubes coaxially, and installed the digging edge for anhydrous tip of the infusion penetration member, the outer peripheral surface of the outer tube , connected to the distal end of the outer tube flow path formed by the inner and outer of the inner tube of the outer tube, and a plurality of inlet pipes arranged from the distal end of the outer tube passage downward, the introduction of said plurality of A plurality of first connection passages connected to each of the pipes, and one first annular gap connected to all of the plurality of first connection passages, communicated with the outer pipe flow path; A first annular slit discharge port that opens over the entire circumference of the outer peripheral surface of the outer tube, and a plurality of second connections arranged on the outer peripheral surface of the inner tube channel formed inside the inner tube The outer pipe communicates with the inner pipe flow path via a passage and one second annular gap connected to all of the plurality of second connection passages. Circumferential direction and a plurality of second annular slit discharge port opened over the entire periphery, a grout injection method using the injection tube which is disposed at arbitrary intervals in the longitudinal direction, with said injection tube After drilling to a predetermined depth in the ground to be improved in an anhydrous state, with the injection member and the outer peripheral ground in close contact with each other, compressed air is fed into the inner pipe flow path, and the plurality of second annular slit discharge ports At the same time, the compressed air is discharged in a planar state in all directions in the horizontal direction , which is a direction perpendicular to the axial direction of the injection pipe, and the pore water in the ground to be improved is pushed out by the compressed air and discharged. Compressed air is sent to the outer pipe flow path, and compressed air is discharged from the first annular slit outlet in a planar state in all horizontal directions that are perpendicular to the axial direction of the injection pipe, and Grouting agent is sent to the inner pipe flow path. Inclusive, wherein the discharging by the plurality of second planar state simultaneously grout agent from the annular slit discharge port horizontally in all directions as the axial direction and the perpendicular direction of the injection tube.
本発明の注入管を用い、例えば、注入管に設けられた第一の環状スリット吐出口から圧縮空気を吐出させると共に、注入管に設けられた複数個の第二の環状スリット吐出口から薬剤を改良対象地盤内に浸透注入した場合には、注入管に設けられた第一の環状スリット吐出口の外周の全方位にエアーカーテンが形成され、注入管に設けられた複数個の第二の環状スリット吐出口から吐出された薬剤が注入管に設けられた第一の環状スリット吐出口の外周方向から上方に吐出しにくくなり、薬剤の地上への漏出を効果的に防止することができるという利点がある。 Using the injection tube of the present invention, for example, compressed air is discharged from a first annular slit discharge port provided in the injection tube, and a drug is supplied from a plurality of second annular slit discharge ports provided in the injection tube. When infiltrating into the ground to be improved, an air curtain is formed in all directions on the outer periphery of the first annular slit outlet provided in the injection pipe, and a plurality of second annular rings provided in the injection pipe Advantage that medicine discharged from the slit outlet becomes difficult to discharge upward from the outer peripheral direction of the first annular slit outlet provided in the injection pipe, and leakage of the medicine to the ground can be effectively prevented. There is.
本発明の注入管を用い、例えば、改良対象地盤内に流体を注入した場合には、注入管の長手方向の任意の間隔に配設した複数個の第二の環状スリット吐出口から同時に注入管の外管の外周の全方位へ面状状態で流体を吐出することができ、この吐出された流体が、吐出圧力をもって、改良対象地盤中の間隙水を押し出しながら、注入管の外周方向の全方位へ波紋状に拡散し、注入管の軸方向と垂直方向のみならず、注入管の軸方向と水平方向へ立体的に拡大していくため、従来実現できなかった、同一時間内の注入管に対する立体的な施工が可能となり、改良対象地盤への流体の受入面積が増加する結果、改良対象地盤内への浸透速度が増大して、流体の注入施工時間として重要な要素となる注入管からの単位時間当たりの流体の吐出量も従来工法の数倍となり、流体を改良対象地盤内に短時間で効率的に注入させることができ、流体の注入施工時間が飛躍的に短縮されるという利点がある。なお、本発明の注入管を用いることにより、従来の仮設用に用いられてきた薬液注入工法のゲルタイムの長い浸透注入においても、薬剤の注入時間を大幅に短縮することができ、より経済的な施工が可能になるという利点もある。 For example, when a fluid is injected into the ground to be improved using the injection pipe of the present invention, the injection pipe is simultaneously supplied from a plurality of second annular slit outlets arranged at arbitrary intervals in the longitudinal direction of the injection pipe. The fluid can be discharged in a planar state in all directions on the outer periphery of the outer pipe of the outer pipe, and the discharged fluid extrudes pore water in the ground to be improved with the discharge pressure, while Because it spreads in a ripple shape in the direction and expands three-dimensionally not only in the axial direction and the vertical direction of the injection tube but also in the axial direction and horizontal direction of the injection tube, the injection tube within the same time that could not be realized in the past As a result of the increase in the fluid receiving area to the ground to be improved, the penetration rate into the ground to be improved will increase, and from the injection pipe that will be an important factor for the fluid injection construction time The fluid discharge rate per unit time Becomes several times the method, the fluid can be efficiently injected in a short time in an improved target the ground, there is an advantage that the injection construction time of the fluid is shortened dramatically. In addition, by using the injection tube of the present invention, even in the osmotic injection with a long gel time of the chemical solution injection method conventionally used for temporary installation, the injection time of the drug can be greatly shortened, which is more economical. There is also an advantage that construction is possible.
また、本発明のグラウト注入方法を用いることより、改良対象地盤内の所定深度まで穿孔した注入管に設けられた複数個の第二の環状スリット吐出口から同時に注入管の外周の全方位へ面状状態で吐出した圧縮空気が、土粒子間の間隙水と置き換わって間隙水を排出し、グラウト剤の受入抵抗が小さくなった後、注入管に設けられた複数個の第二の環状スリット吐出口から同時にグラウト剤が注入管の外周の全方向へ面状状態で吐出していくため、改良対象地盤内のグラウト剤の受入抵抗がより低下し、その結果、改良対象地盤内へのグラウト剤の浸透速度がより増加して、地下水のある在来地盤に注入する従来の方法と比較し、改良対象地盤内により短時間で効率的にグラウト剤を浸透注入させることができ、グラウト剤の注入施工時間がさらに飛躍的に短縮されるという利点がある。 Further, from the use of the grout injection method of the present invention, in all directions of the outer periphery of the simultaneously injection tube from the plurality of second annular slit discharge port provided in the injection pipe drilled to a predetermined depth within improvement target ground A plurality of second annular slits provided in the injection pipe after compressed air discharged in a planar state replaces the pore water between the soil particles and discharges the pore water, reducing the acceptance resistance of the grout agent. Since the grouting agent is discharged from the discharge port in a planar state in all directions on the outer periphery of the injection pipe, the acceptance resistance of the grouting agent in the ground to be improved is further reduced. As a result, the grouting into the ground to be improved Compared with the conventional method in which the penetration rate of the agent is increased and injected into the existing ground with groundwater, the grout agent can be infiltrated and injected more efficiently in the ground to be improved. Injection construction time There is an advantage that dramatically be reduced in La.
本発明の実施形態について図面を参照して説明する。本発明の注入管1は、注入部材2と、注入部材2の先端に設置した無水用掘削刃7とを備える(図1)。 Embodiments of the present invention will be described with reference to the drawings. The injection tube 1 of the present invention includes an injection member 2 and an anhydrous drilling blade 7 installed at the tip of the injection member 2 (FIG. 1).
注入部材2は、外管3と内管4とを同心状に配列した二重管構造となっている。注入部材2は、外周面に第一の環状スリット吐出口5を配置した第一の注入部材2aと、第一の注入部材2aの下方に位置し、外周面に複数個の第二の環状スリット吐出口6を配置した第二の注入部材2bとから構成される。なお、注入部材2は、第一の注入部材2aと第二の注入部材2bとを螺着して形成したものであってもよく(図1,図4)、一体形成したものであってもよい。また、第二の注入部材2bは、一個の第二の環状スリット吐出口6を配置した第二の注入部材の一部分2cを二個以上螺着して形成したものであってもよく(図1,図4)、一つの部材に複数個の第二の環状スリット吐出口6を配置して形成したものであってもよい。 The injection member 2 has a double tube structure in which the outer tube 3 and the inner tube 4 are concentrically arranged. The injection member 2 includes a first injection member 2a having a first annular slit discharge port 5 disposed on the outer peripheral surface, and a plurality of second annular slits on the outer peripheral surface, which are positioned below the first injection member 2a. It is comprised from the 2nd injection | pouring member 2b which has arrange | positioned the discharge outlet 6. FIG. The injection member 2 may be formed by screwing the first injection member 2a and the second injection member 2b (FIGS. 1 and 4), or may be formed integrally. Good. Further, the second injection member 2b may be formed by screwing two or more portions 2c of the second injection member in which one second annular slit discharge port 6 is disposed (FIG. 1). 4), a plurality of second annular slit outlets 6 may be formed on one member.
第一の環状スリット吐出口5は、環状弾性体を用いることなく構成され、外管の外周面の周方向の全周にわたって開口する。第一の環状スリット吐出口5のスリット幅は、例えば、外管3の直径を40mmとした場合には、0.3〜1mmが好ましい。第一の環状スリット吐出口5は、例えば、外管流路3aの先端と接続し、内管4の外周に90度間隔で四方向に配置され、内管4の長手方向に延びる四本の導入管11,11,11,11と、四本の導入管11,11,11,11の各々の下方先端付近から長手方向と垂直に突設した四つの第一の接続通路12,12,12,12と、四つの第一の接続通路12,12,12,12のすべてと接続した一つの第一の環状空隙部13と、第一の環状空隙部13の上端13aとを介して、外管流路3aと連通する(図2(a),同(c))。 First annular slit discharge port 5 is constructed without using the ring-like elastic member, it opens over the entire circumference in the circumferential direction of the outer peripheral surface of the outer tube. For example, when the diameter of the outer tube 3 is 40 mm, the slit width of the first annular slit outlet 5 is preferably 0.3 to 1 mm. The first annular slit outlet 5 is, for example, connected to the tip of the outer tube flow path 3 a, arranged in four directions at intervals of 90 degrees on the outer periphery of the inner tube 4, and extending in the longitudinal direction of the inner tube 4. Four first connection passages 12, 12, 12 projecting perpendicularly to the longitudinal direction from the vicinity of the lower end of each of the introduction pipes 11, 11, 11, 11 and the four introduction pipes 11, 11, 11, 11. , 12, one first annular gap 13 connected to all four first connection passages 12, 12, 12, 12, and the upper end 13 a of the first annular gap 13, and the outside It communicates with the pipe flow path 3a (FIGS. 2A and 2C).
注入部材2の外管流路3aに、例えば、圧縮空気を圧送すると、圧縮空気は、外管流路3aから、四本の導入管11,11,11,11、四つの第一の接続通路12,12,12,12を経て、一つの第一の環状空隙部13に送られ、第一の環状空隙部13の上端13aと接続された第一の環状スリット吐出口5から注入管1の軸方向と直角の方向となる水平方向の全方位へ面状状態で吐出し、後述するエアーカーテン5aを形成する。 For example, when compressed air is pumped to the outer pipe flow path 3a of the injection member 2, the compressed air is transferred from the outer pipe flow path 3a to the four introduction pipes 11, 11, 11, 11, and the four first connection passages. 12, 12, 12, 12, sent to one first annular gap 13, and from the first annular slit outlet 5 connected to the upper end 13 a of the first annular gap 13. The sheet is discharged in a planar state in all directions in the horizontal direction , which is a direction perpendicular to the axial direction, to form an air curtain 5a described later.
なお、第一の環状空隙部13が存在するため、注入部材2の外管流路3aに圧送した流体は、第一の環状スリット吐出口5から注入管1の軸方向と直角の方向となる水平方向の全方位へ面状状態5aで吐出するようになる。 Since the first annular gap 13 is present, the fluid pressure-fed to the outer tube flow path 3a of the injection member 2 is in a direction perpendicular to the axial direction of the injection tube 1 from the first annular slit discharge port 5. The liquid is discharged in the planar state 5a in all horizontal directions .
第二の環状スリット吐出口6も、環状弾性体を用いることなく構成され、外管の外周面の周方向の全周にわたって開口する。第二の環状スリット吐出口6のスリット幅は、例えば、外管3の直径を40mmとした場合には、0.3〜1mmが好ましい。第二の環状スリット吐出口6は、例えば、内管4と接続し、内管4の外周面に90度間隔で配置され、内管4の軸方向と垂直方向へ延びる四つの第二の接続通路21,21,21,21と、四つの第二の接続通路21,21,21,21のすべてと接続する一つの第二の環状空隙部22と、第二の環状空隙部22の下端22aとを介して、内管流路4aと連通する(図3(a),同(c))。 Also second annular slit discharge port 6, is constructed without using the ring-like elastic member, it opens over the entire circumference in the circumferential direction of the outer peripheral surface of the outer tube. The slit width of the second annular slit outlet 6 is preferably 0.3 to 1 mm, for example, when the diameter of the outer tube 3 is 40 mm. The second annular slit outlet 6 is connected to, for example, the inner tube 4, and is disposed on the outer peripheral surface of the inner tube 4 at an interval of 90 degrees, and extends in the direction perpendicular to the axial direction of the inner tube 4. The passages 21, 21, 21, 21, one second annular gap 22 connected to all four second connection passages 21, 21, 21, 21, and the lower end 22 a of the second annular gap 22 And communicates with the inner pipe flow path 4a (FIGS. 3A and 3C).
注入部材2の内管流路4aに流体を圧送すると、流体は、内管流路4aから、四つの第二の接続通路21,21,21,21を経て、一つの第二の環状空隙部22に送られ、第二の環状空隙部22の下端22aと接続された第二の環状スリット吐出口6から注入管1の軸方向と直角の方向となる水平方向の全方位へ面状状態6aで吐出する。 When a fluid is pumped to the inner pipe flow path 4a of the injection member 2, the fluid passes through the four second connection passages 21, 21, 21, 21 from the inner pipe flow path 4a to form one second annular gap portion. The planar state 6a from the second annular slit discharge port 6 connected to the lower end 22a of the second annular gap 22 to all directions in the horizontal direction that is perpendicular to the axial direction of the injection tube 1 To discharge.
なお、例えば、複数個の第二の環状空隙部22,22,22,22,22が存在するため、注入部材2の内管流路4aに圧送した流体は、複数個の第二の環状スリット吐出口6,6,6,6,6の各々から同時に、注入管1の軸方向と直角の方向となる水平方向の全方位へ面状状態6a,6a,6a,6a,6aで吐出するようになる。 For example, since there are a plurality of second annular gaps 22, 22, 22, 22, and 22, the fluid pumped to the inner pipe flow path 4a of the injection member 2 has a plurality of second annular slits. At the same time, each of the discharge ports 6, 6, 6, 6, 6 is discharged in a planar state 6 a, 6 a, 6 a, 6 a, 6 a in all horizontal directions that are perpendicular to the axial direction of the injection tube 1. become.
注入管1を用いて改良対象地盤内に注入する流体としては、特に限定されないが、例えば、グラウト剤、中和剤、圧縮空気などが挙げられ、グラウト剤、圧縮空気が好ましい。 Although it does not specifically limit as a fluid inject | poured in the improvement object ground using the injection pipe 1, For example, a grout agent, a neutralizing agent, compressed air etc. are mentioned, A grout agent and compressed air are preferable.
なお、注入管1を用いて流体を改良対象地盤内に注入するためには、例えば、図7に示すような、ボーリングマシン31、注入管理装置32、グラウトミキサー33、グラウトポンプ34、注入流量・圧力記録計35、コンプレッサー36及び発電機37を備えた流体注入システム30を注入管1に接続する必要がある。 In order to inject the fluid into the ground to be improved using the injection tube 1, for example, as shown in FIG. 7, a boring machine 31, an injection management device 32, a grout mixer 33, a grout pump 34, an injection flow rate / A fluid injection system 30 including a pressure recorder 35, a compressor 36 and a generator 37 needs to be connected to the injection pipe 1.
注入管1に接続する注入管理装置32としては、例えば、圧縮空気の流路に接続された配管部分に、圧縮空気のフィルタ、減圧弁制御用ハンドル及び圧力計が装着された、一体型のフィルタレギュレータを接続し、フィルタレギュレータの一端に、圧縮空気の単位時間当たりの吐出風量が制御可能となるコントローラを接続して、更にコントローラの吐出側に圧縮空気の単位時間当たりの吐出風量を感知するセンサーヘッドと、圧縮空気の単位時間当たりの吐出風量の数値及び積算吐出風量の数値をデジタル表示するデジタルアンプを装備した圧縮空気管理装置と、圧縮空気管理装置より上流の配管部分に、流路切替弁、コック及び切替ハンドルが一体となった流路切替部材を必要個数取り付け、グラウト剤の流路に接続された配管部分を接続して連通させ、注入管1の内管流路4aに圧送する圧縮空気とグラウト剤の切替がハンドル操作により可能となる流路切替装置を配備したものが挙げられるが、注入管1の環状スリット吐出口6への吐出圧力並びに注入管1の環状スリット吐出口6から吐出する流体の単位時間当たりの吐出量の制御を可能にすると共に、注入管1の内管流路4aに圧送する流体を切替可能とするものであれば、特に限定されない。 As the injection management device 32 connected to the injection pipe 1, for example, an integrated filter in which a compressed air filter, a pressure reducing valve control handle, and a pressure gauge are attached to a pipe portion connected to a compressed air flow path. Connect a regulator to one end of the filter regulator, and connect a controller that can control the discharge air volume per unit time of compressed air, and also sense the discharge air volume per unit time of compressed air on the discharge side of the controller Compressed air management device equipped with a digital amplifier that digitally displays the head, the numerical value of the discharge air volume per unit time of compressed air and the numerical value of the integrated discharge air volume, and a flow path switching valve on the upstream of the compressed air management device Attach the required number of flow path switching members with integrated cocks and switching handles, and connect the piping connected to the grout flow path. In this case, there is provided a flow path switching device that enables switching between compressed air to be pumped to the inner pipe flow path 4a of the injection pipe 1 and the grout agent by a handle operation. The discharge pressure to the discharge port 6 and the discharge amount per unit time of the fluid discharged from the annular slit discharge port 6 of the injection pipe 1 can be controlled, and the fluid to be pumped to the inner pipe flow path 4a of the injection pipe 1 can be controlled. There is no particular limitation as long as it can be switched.
グラウト剤の注入施工の際は、例えば、複数個の第二の環状スリット吐出口6,6,6,6,6の各々におけるグラウト剤の吐出圧力及び単位時間当たりのグラウト剤の吐出量を注入流量圧力記録計で確認しつつ、第二の環状スリット吐出口6,6,6,6,6の各々におけるグラウト剤の吐出圧力及び単位時間当たりのグラウト剤の吐出量に応じ、注入管理装置32の圧力制御ハンドル及びスピードコントローラ等を操作して、第一の環状スリット吐出口5における圧縮空気の最適な吐出圧力及び単位時間当たりの圧縮空気吐出量を調整する。 At the time of the grouting agent injection construction, for example, the grouting agent discharge pressure and the grouting agent discharge amount per unit time at each of the plurality of second annular slit discharge ports 6, 6, 6, 6 and 6 are injected. While checking with a flow rate pressure recorder, the injection management device 32 according to the discharge pressure of the grouting agent at each of the second annular slit outlets 6, 6, 6, 6 and 6 and the discharge amount of the grouting agent per unit time. The pressure control handle, the speed controller, and the like are operated to adjust the optimum discharge pressure of compressed air and the amount of compressed air discharged per unit time at the first annular slit outlet 5.
なお、流路切替装置の流路切替ハンドルを操作することにより、注入管1の内管流路4aにも圧縮空気を圧送することもできるため、例えば、注入管1に設けられた複数個の第二の環状スリット吐出口6,6,6,6,6の各々から同時に圧縮空気を注入管1の軸方向と直角の方向となる水平方向の全方位へ面状状態6a,6a,6a,6a,6aで吐出させることも可能である。 Note that by operating the flow path switching handle of the flow path switching device, compressed air can also be pumped to the inner pipe flow path 4a of the injection pipe 1; Compressed air is simultaneously supplied from each of the second annular slit outlets 6, 6, 6, 6 and 6 into the plane states 6a, 6a, 6a in all horizontal directions that are perpendicular to the axial direction of the injection tube 1. It is also possible to discharge with 6a, 6a.
本発明のグラウト注入方法は、例えば、注入管1を用いて無水状態で改良対象地盤内の所定深度まで穿孔した後、注入部材2と外周地盤とが密着した状態で、内管流路4aに圧縮空気を送り込み、複数個の第二の環状スリット吐出口6,6,6,6,6の各々から同時に圧縮空気を注入管1の軸方向と直角の方向となる水平方向の全方位へ面状状態6a,6a,6a,6a,6aで吐出して、改良対象地盤中の間隙水を圧縮空気により押し出して排出し、その後、外管流路3aに圧縮空気を送り込み、第一の環状スリット吐出口5から圧縮空気を注入管1の軸方向と直角の方向となる水平方向の全方位へ面状状態5aで吐出すると共に、内管流路4aにグラウト剤を送り込み、複数個の第二の環状スリット吐出口6,6,6,6,6の各々から同時にグラウト剤を注入管1の軸方向と直角の方向となる水平方向の全方位へ面状状態6a,6a,6a,6a,6aで吐出するものである。 Grout injection method of the present invention, for example, by drilling to a predetermined depth within an improved target ground in an anhydrous state using an infusion tube 1, in a state where the inlet member 2 and the outer ground are in close contact, the inner tube channel 4a Compressed air is fed into the plurality of second annular slit outlets 6, 6, 6, 6 and 6 at the same time in all horizontal directions that are perpendicular to the axial direction of the injection tube 1. It is discharged in the planar state 6a, 6a, 6a, 6a, 6a, the pore water in the ground to be improved is pushed out by the compressed air and discharged, and then the compressed air is fed into the outer pipe flow path 3a to form the first annular shape Compressed air is discharged from the slit discharge port 5 in a planar state 5a in all horizontal directions that are perpendicular to the axial direction of the injection tube 1, and a grouting agent is fed into the inner tube flow path 4a. Each of the two annular slit outlets 6, 6, 6, 6, 6 At the same time it is to eject the grout agent becomes perpendicular to the axial direction of the direction of the injection tube 1 horizontal planar state 6a in all directions, 6a, 6a, 6a, in 6a.
本発明のグラウト注入方法では、まず、ボーリングマシン31を用いて改良対象地盤内の所定深度まで直接削孔して、注入管1を改良対象地盤内に設置した後、注入部材2と外周地盤とが密着した状態で、注入管1に接続した上述の注入管理装置32に配備された流路切替装置のハンドルを切り替える操作を行い、例えば、注入管1の内管流路4aに圧縮空気を圧送して、圧縮空気を注入管1に設けられた複数個の第二の環状スリット吐出口6,6,6,6,6の各々から同時に注入管1の軸方向と直角の方向となる水平方向の全方位へ面状状態6a,6a,6a,6a,6aで吐出する(図6(a))。このとき、注入管1に設けられた複数個の第二の環状スリット吐出口6,6,6,6,6の各々から同時に吐出された圧縮空気は、改良対象地盤内の間隙水を押し出して排出するため、改良対象地盤内の間隙水が少なくなり、グラウト剤の受入抵抗が小さくなる(図6(b))。 The grout injection method of the present invention, first, drilling directly to a predetermined depth within improvement target ground using a boring machine 31, after the setting of the injection tube 1 to an improved target the ground, the injection member 2 and the outer ground Are in close contact with each other, an operation of switching the handle of the flow path switching device provided in the above-described injection management apparatus 32 connected to the injection pipe 1 is performed. For example, compressed air is supplied to the inner pipe flow path 4a of the injection pipe 1. Compressed air is sent from each of the plurality of second annular slit discharge ports 6, 6, 6, 6, 6 provided in the injection pipe 1 at the same time in a direction perpendicular to the axial direction of the injection pipe 1. direction of the planar state 6a in all directions, 6a, 6a, 6a, and discharges in 6a (FIG. 6 (a)). At this time, the compressed air simultaneously discharged from each of the plurality of second annular slit discharge ports 6, 6, 6, 6, 6 provided in the injection pipe 1 pushes out the pore water in the ground to be improved. Since it is discharged, the pore water in the ground to be improved is reduced and the acceptance resistance of the grout agent is reduced (FIG. 6 (b)).
その後、圧縮空気の内管流路4aへの送気弁を閉鎖してから、流路切替装置のハンドルを切り替える操作を行い、例えば、注入管1の内管流路4aにグラウト剤を送圧して、グラウト剤を複数個の第二の環状スリット吐出口6,6,6,6,6の各々から同時に注入管の軸方向と直角の方向となる水平方向の全方位へ面状状態6a,6a,6a,6a,6aで吐出する(図6(c))。これにより、グラウト剤の受入抵抗が小さくなった改良対象地盤内へグラウト剤が注入されるため、浸透速度の増加が図られ、地下水のある在来地盤に注入する従来の方法よりグラウト剤をさらに効率的に改良対象地盤内に浸透注入させることが可能となる。 Then, after closing the air supply valve of the compressed air to the inner pipe flow path 4a, the operation of switching the handle of the flow path switching device is performed, for example, the grouting agent is fed to the inner pipe flow path 4a of the injection pipe 1 Then, the grouting agent is applied to each of the plurality of second annular slit outlets 6, 6, 6, 6 and 6 in the planar state 6a in all horizontal directions that are perpendicular to the axial direction of the injection tube. It discharges by 6a, 6a, 6a, 6a (FIG.6 (c)). As a result, the grouting agent is injected into the ground to be improved where the acceptance resistance of the grouting agent is reduced, so that the infiltration rate is increased, and the grouting agent is further added to the conventional method of injecting into the ground with the groundwater. It is possible to efficiently infiltrate into the ground to be improved.
これと同時に、例えば、注入管1の外管流路3aに圧縮空気を圧送して、圧縮空気を第一の環状スリット吐出口5から注入管1の軸方向と直角の方向となる水平方向の全方位へ面状状態5aで吐出する(図6(c))。これにより、第一の環状スリット吐出口5から吐出された圧縮空気はエアーカーテン5aを形成する(図6(c))ため、エアーカーテン5aの下方にある複数個の第二の環状スリット吐出口6,6,6,6,6の各々から吐出されたグラウト剤のうち、改良対象地盤内への浸透速度を超えて吐出されたグラウト剤は、複数個の第二の環状スリット吐出口6,6,6,6,6から矢示6bの方向に進み、グラウト剤の逸走が発生するが、逸走したグラウト剤は、圧縮空気によるエアーカーテン5aのエアー圧力により、第一の環状スリット吐出口5における注入管1の軸方向と直角の方向となる水平方向から上方への逸走が遮断され(図6(c))、第一の環状スリット吐出口5から上方に逸走しにくくなり、地上への漏出が効果的に防止される。 At the same time, for example, compressed air is pumped to the outer pipe flow path 3 a of the injection pipe 1, and the compressed air flows in a horizontal direction that is perpendicular to the axial direction of the injection pipe 1 from the first annular slit outlet 5. The ink is discharged in the planar state 5a in all directions (FIG. 6C). Thus, the compressed air discharged from the first annular slit outlet 5 forms an air curtain 5a (FIG. 6C), and therefore a plurality of second annular slit outlets below the air curtain 5a. Among the grouting agents discharged from each of 6, 6, 6, 6 and 6, the grouting agent discharged exceeding the penetration speed into the ground to be improved is a plurality of second annular slit outlets 6, The grout agent escapes from 6, 6, 6, 6 in the direction of the arrow 6b. The escape grout agent is generated by the first annular slit outlet 5 due to the air pressure of the air curtain 5a by the compressed air. In the direction perpendicular to the axial direction of the injection tube 1 in the horizontal direction is blocked (FIG. 6C), and it is difficult to escape upward from the first annular slit outlet 5, Leakage is effectively prevented That.
本発明の注入管及びこの注入管を用いたグラウト注入方法は、例えば、耐震対策としての砂質地盤の液状化防止対策、公害対策としての汚染土壌の改良、恒久性・高強度が必要とされる既設構造物の直下やその付近の基礎地盤の改良、既設護岸・岸壁の荷役施設・擁壁等の基礎地盤の改良及び大型施工機械の使用が不可能な場所の地盤改良などに有用である。 The injection pipe of the present invention and the grouting method using this injection pipe require, for example, measures to prevent liquefaction of sandy ground as a seismic measure, improvement of contaminated soil as a measure against pollution, and durability and high strength. It is useful for improvement of foundation ground directly under or near existing structures, improvement of foundation ground such as existing revetment / quayside cargo handling facilities / retaining walls, and improvement of ground where large construction machines cannot be used. .
1 注入管
2 注入部材
2a 第一の注入部材
2b 複数個の第二の注入部材
2c 第二の注入部材の一部分
3 外管
3a 外管流路
4 内管
4a 内管流路
5 第一の環状スリット吐出口
5a エアーカーテン(面状状態)
6 第二の環状スリット吐出口
6a 面状状態
7 無水用掘削刃
11 導入管
12 第一の接続通路
13 第一の環状空隙部
13a 第一の環状空隙部の上端
21 第二の接続通路
22 第二の環状空隙部
22a 第二の環状空隙部の下端
30 流体注入システム
31 ボーリングマシン
32 注入管理装置
33 グラウトミキサー
34 グラウトポンプ
35 注入流量・圧力記録計
36 コンプレッサー
37 発電機
DESCRIPTION OF SYMBOLS 1 Injection pipe 2 Injection member 2a First injection member 2b A plurality of second injection members 2c A part of the second injection member 3 Outer pipe 3a Outer pipe flow path 4 Inner pipe 4a Inner pipe flow path 5 First annular Slit outlet 5a Air curtain (planar state)
6 Second annular slit outlet 6a Planar state 7 Excavation blade 11 for water removal Introducing pipe 12 First connection passage 13 First annular gap 13a Upper end 21 of first annular gap Second connection passage 22 Second annular gap 22a Lower end 30 of second annular gap 30 Fluid injection system 31 Boring machine 32 Injection management device 33 Grout mixer 34 Grout pump 35 Injection flow rate / pressure recorder 36 Compressor 37 Generator
Claims (2)
前記外管の外周面には、周方向の全周にわたって開口する第一の環状スリット吐出口と、周方向の全周にわたって開口する複数個の第二の環状スリット吐出口とを、前記注入管の長手方向の任意の間隔で配設し、該第一の環状スリット吐出口は、前記外管の内側と前記内管の外側とから形成される外管流路の先端と接続し、前記外管流路の先端より下方に配置される複数の導入管と、該複数の導入管の各々と接続する複数の第一の接続通路と、該複数の第一の接続通路のすべてと接続する一つの第一の環状空隙部とを介して、前記外管流路と連通し、該第二の環状スリット吐出口は、前記内管の内側に形成される内管流路の外周面に配置された複数の第二の接続通路と、該複数の第二の接続通路のすべてと接続する一つの第二の環状空隙部とを介して、前記内管流路と連通することを特徴とする注入管。 An injection tube comprising an injection member in which an outer tube and an inner tube are arranged concentrically, and an anhydrous drilling blade installed at the tip of the injection member,
On the outer peripheral surface of the outer tube, a first annular slit discharge port that opens over the entire circumference in the circumferential direction and a plurality of second annular slit discharge ports that open over the entire circumference in the circumferential direction are provided on the injection tube. The first annular slit discharge port is connected to a distal end of an outer pipe flow path formed from the inner side of the outer pipe and the outer side of the inner pipe, and A plurality of introduction pipes disposed below the tip of the pipe flow path, a plurality of first connection passages connected to each of the plurality of introduction pipes, and one connected to all of the plurality of first connection passages The second annular slit discharge port is disposed on the outer peripheral surface of the inner tube flow path formed inside the inner tube. A plurality of second connection passages, and a second annular gap portion connected to all of the plurality of second connection passages. Through it, infusion tube, characterized in that communicating with the inner tube flow path.
前記注入管を用いて無水状態で改良対象地盤内の所定深度まで穿孔した後、前記注入部材と外周地盤とが密着した状態で、前記内管流路に圧縮空気を送り込み、前記複数個の第二の環状スリット吐出口から同時に圧縮空気を前記注入管の軸方向と直角の方向となる水平方向の全方位へ面状状態で吐出して、改良対象地盤中の間隙水を該圧縮空気により押し出して排出し、
その後、前記外管流路に圧縮空気を送り込み、前記第一の環状スリット吐出口から圧縮空気を前記注入管の軸方向と直角の方向となる水平方向の全方位へ面状状態で吐出すると共に、前記内管流路にグラウト剤を送り込み、前記複数個の第二の環状スリット吐出口から同時にグラウト剤を前記注入管の軸方向と直角の方向となる水平方向の全方位へ面状状態で吐出することを特徴とするグラウト注入方法。 An injection member having an array of outer and inner tubes coaxially, and a set up the digging edge for anhydrous tip of the infusion penetration member, on the outer peripheral surface of the outer tube, of the outer tube inside and the inner tube A plurality of introduction pipes connected to the outer tube flow path formed from the outside and disposed below the front end of the outer pipe flow path, and a plurality of first pipes connected to each of the plurality of the introduction pipes Through the connection passage and one first annular gap connected to all of the plurality of first connection passages, the outer pipe flow passage is communicated, and the entire circumference of the outer peripheral surface of the outer pipe is arranged. A first annular slit outlet opening over the circumference; a plurality of second connection passages disposed on an outer peripheral surface of an inner pipe flow path formed inside the inner pipe; and the plurality of second connection paths. via the second annular space portion of the one connecting to all, communicating with the inner tube flow path, which opens over the entire circumference in the circumferential direction of the outer peripheral surface of the outer tube And several second annular slit discharge port, a grout injection method using the injection tube which is disposed at arbitrary intervals in the longitudinal direction,
After drilling to a predetermined depth in the ground to be improved using the injection pipe in a dry state, compressed air is fed into the inner pipe flow path in a state where the injection member and the outer peripheral ground are in close contact with each other, Compressed air is simultaneously discharged from the two annular slit outlets in a planar state in all horizontal directions that are perpendicular to the axial direction of the injection pipe, and pore water in the ground to be improved is pushed out by the compressed air. Discharge
Thereafter, compressed air is sent to the outer pipe flow path, and the compressed air is discharged from the first annular slit outlet in a planar state in all horizontal directions that are perpendicular to the axial direction of the injection pipe. The grouting agent is fed into the inner pipe flow path, and the grouting agent is simultaneously supplied from the plurality of second annular slit outlets in a planar state in all horizontal directions that are perpendicular to the axial direction of the injection pipe. A grout injection method characterized by discharging.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007000840A JP4294691B2 (en) | 2007-01-05 | 2007-01-05 | Injection tube and grout injection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007000840A JP4294691B2 (en) | 2007-01-05 | 2007-01-05 | Injection tube and grout injection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008169546A JP2008169546A (en) | 2008-07-24 |
JP4294691B2 true JP4294691B2 (en) | 2009-07-15 |
Family
ID=39697892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007000840A Expired - Fee Related JP4294691B2 (en) | 2007-01-05 | 2007-01-05 | Injection tube and grout injection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4294691B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5216477B2 (en) * | 2008-08-21 | 2013-06-19 | 株式会社不動テトラ | Ground injection method |
JP2015004251A (en) * | 2013-06-24 | 2015-01-08 | 平成テクノス株式会社 | Ground improvement method |
JP6485686B2 (en) * | 2014-12-18 | 2019-03-20 | 東鉄工業株式会社 | Ground improvement method |
JP6661230B2 (en) * | 2016-02-01 | 2020-03-11 | 太洋基礎工業株式会社 | Chemical solution injection system and chemical solution injection method using the same |
CN114411727B (en) * | 2022-02-25 | 2024-02-20 | 南京东土建设科技有限公司 | Built-in post grouting device for realizing multi-depth grouting of tubular piles |
CN116011087B (en) * | 2023-03-15 | 2023-07-11 | 陕西华邦建设工程有限公司 | Construction method and system for collapsible loess foundation waterproof curtain |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54160007A (en) * | 1978-06-07 | 1979-12-18 | Mizushima Chika Kougiyou Kk | Method of construction of liquid chemicals injection for strengthening ground and injection nozzle |
JP2586984B2 (en) * | 1993-04-14 | 1997-03-05 | 強化土エンジニヤリング株式会社 | Ground injection method and injection pipe |
JPH06330520A (en) * | 1993-05-20 | 1994-11-29 | Japan Found Eng Co Ltd | Ground improvement method of poor subsoil |
JPH1136281A (en) * | 1997-07-17 | 1999-02-09 | Toko Giken Kk | Grout solidifying method and grouting device |
JP4292044B2 (en) * | 2003-09-26 | 2009-07-08 | 原工業株式会社 | Chemical injection device for ground improvement |
-
2007
- 2007-01-05 JP JP2007000840A patent/JP4294691B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008169546A (en) | 2008-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4827109B1 (en) | Injection pipe device and ground injection method | |
JP4294691B2 (en) | Injection tube and grout injection method | |
JP4848553B2 (en) | Injection pipe device and injection method | |
KR20120004672A (en) | Tublar member, chemical injection apparatus and chemical injection method using the same | |
JP2011074591A (en) | Grouting pipe and grouting method | |
KR101868086B1 (en) | drive rod apparatus for a drilling and grouting | |
JP5942161B1 (en) | Ground injection method and ground injection device | |
JP2949484B2 (en) | Injection solidification method and its injection device | |
JP4074313B2 (en) | Structure of steel sheet pile for water flow and water retaining wall, and its construction method. | |
JP4358207B2 (en) | Ground reinforcement method for excavated bottom | |
JP6182804B1 (en) | Ground injection device and ground injection method | |
KR100856846B1 (en) | A Grouting Unit of Pressurize Multi Injection | |
JP3940735B2 (en) | Earth retaining method | |
JP5870438B1 (en) | Ground injection method and ground injection device | |
JP3919739B2 (en) | Ground injection device and ground injection method | |
JP3833943B2 (en) | Chemical injection method and chemical injection device | |
JP2006009401A (en) | Soil grouting method | |
TWI260361B (en) | Ground grouting device and ground grouting construction method | |
JP2011111874A (en) | Water conducting structure and method for preventing flow inhibition of groundwater | |
JP2004176498A (en) | Continuous underground wall with water passing passage, and method and pipe member for forming water passing passage thereof | |
JPH0476110A (en) | Installation method for medical fluid injection strainer pipe and strainer pipe therefor | |
CN205077490U (en) | Prevent suck -back and prevent slip casting device that deposits in deep full water sand bed | |
JP4903650B2 (en) | Liquefaction prevention method for sandy ground and air injection structure to sandy ground | |
JP2949485B2 (en) | Injection solidification method and its injection device | |
JP2772637B2 (en) | Injection pipe device and ground injection method using this device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20080916 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20081003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081009 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090408 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4294691 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20180417 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |