JP2008231709A - Method and device for injecting into ground at multiple points - Google Patents

Method and device for injecting into ground at multiple points Download PDF

Info

Publication number
JP2008231709A
JP2008231709A JP2007069873A JP2007069873A JP2008231709A JP 2008231709 A JP2008231709 A JP 2008231709A JP 2007069873 A JP2007069873 A JP 2007069873A JP 2007069873 A JP2007069873 A JP 2007069873A JP 2008231709 A JP2008231709 A JP 2008231709A
Authority
JP
Japan
Prior art keywords
injection
ground
point
injection material
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007069873A
Other languages
Japanese (ja)
Other versions
JP4672693B2 (en
Inventor
Shunsuke Shimada
俊介 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2007069873A priority Critical patent/JP4672693B2/en
Publication of JP2008231709A publication Critical patent/JP2008231709A/en
Application granted granted Critical
Publication of JP4672693B2 publication Critical patent/JP4672693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for injecting into a ground at multiple points capable of eliminating the occurrence of disconnected parts in the ground and having high reliability. <P>SOLUTION: This device for injecting into a ground at multiple points comprises injecting pipes 1 for injecting a ground injection material into the ground at injection points; liquid feed pipes 4 for connecting the injection pipes to each other; unit pumps U1-U8 for feeding the ground injection material to the injection points through the liquid feed pipes and an injection material into the ground through the injection pipes; a flow passage selector valve 8 for changing the flow passages for the ground injection material at the injection points; a flow-pressure measuring devices 7 for measuring the flow and/or pressure of the ground injection material; a concentrated control device 6 for controlling the unit pumps and the flow-pressure measuring device; and an injection monitor for monitoring the injection state of the ground injection material at the injection points. Each unit pump has a power source. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、軟弱地盤などの地盤中に地盤注入材を効率的に注入するための多点地盤注入工法および多点地盤注入装置に関し、主として地盤状況が各層ごとに異なる地盤に対しては各層ごとに最適量の地盤注入材を同時にあるいは選択的に注入することを可能とし、また注入地点(注入ポイント)を地盤中の鉛直向および水平方向へと移動して立体的な注入をも可能とし、さらに複数の注入管による複数の注入地点への注入を任意に制御することにより、複数の注入地点に地下水が排水されるように同時注入することを可能にし、これにより微細土層への浸透注入の信頼性が向上し、地下水が注入材によって閉じ込められて未改良部分が発生するのを防止でき、かつ急速施工によって工期の短縮化も可能になる。   The present invention relates to a multipoint ground injection method and a multipoint ground injection device for efficiently injecting a ground injection material into a ground such as a soft ground, and for each ground mainly for a ground whose ground condition is different for each layer. It is possible to inject the optimum amount of ground injection material simultaneously or selectively, and to move the injection point (injection point) in the vertical and horizontal directions in the ground, making it possible to inject three-dimensionally, Furthermore, by arbitrarily controlling injection to multiple injection points by multiple injection pipes, it is possible to inject simultaneously so that groundwater is drained to multiple injection points, thereby osmotic injection into fine soil layers This improves the reliability, prevents the groundwater from being confined by the injection material, and prevents the occurrence of unmodified parts, and shortens the construction period by rapid construction.

通常、地盤は各層ごとに透水係数や間隙率が異なることから、当然地盤状況も各層ごとに異なる。このため、この種の地盤に対して薬液注入を行なうに際しては、従来、図示しないが地盤中に注入管を単独であるいは複数本間隔をあけて埋設し、これら注入管を介して注入ステージを上方または下方に移動し、層ごとに地盤注入材を注入していた。   Usually, since the ground has different hydraulic conductivity and porosity for each layer, the ground condition naturally varies from layer to layer. For this reason, when injecting a chemical solution to this type of ground, conventionally, although not shown, the injection pipe is embedded in the ground alone or with a plurality of intervals, and the injection stage is moved upward through these injection pipes. Or it moved downward and the ground injection material was injected for every layer.

ところで、薬液注入の実施に際して最も大きな課題は、透水係数の小さい微細砂層に注入材を確実に浸透させること、地盤性状の異なる複数の土層からなる地盤に注入材を均質に浸透させること、そして改良領域内に発生している地下水を貯溜した地下水ポケットの存在による未改良部分が掘削に際して部分的な漏水を生じさせ、それが全体的な破壊をもたらすことであった。   By the way, the biggest problems in implementing chemical solution injection are to ensure that the injected material penetrates into a fine sand layer having a small water permeability coefficient, to uniformly infuse the injected material into the ground consisting of a plurality of soil layers having different ground properties, and The unimproved part due to the presence of the groundwater pocket storing the groundwater generated in the improved area caused partial leakage during excavation, which resulted in total destruction.

一般に、微細砂層の透水性は通常、k=10-3〜10-4cm/秒であり、このような土層に対して地盤の破壊を起こさないように薬液を注入するには、浸透理論上、一注入地点から毎分1リットル〜10数リットル以下の低吐出量で低圧注入しなければならない。 In general, the water permeability of the fine sand layer is usually k = 10 −3 to 10 −4 cm / sec. In order to inject a chemical solution to such a soil layer so as not to cause the destruction of the ground, an infiltration theory is used. In addition, low pressure injection must be performed at a low discharge rate of 1 to 10 liters or less per minute from one injection point.

しかし、上述の公知の注入工法では、一本の注入管に対してそれぞれ一セットの注入ポンプを使用し、しかも工期をできるだけ短くしたいという経済的な理由や注入ポンプの能力といった性能的な理由などから、注入材の注入量を毎分10〜20リットル程度とせざるを得ないため、注入圧が高くなって地盤が破壊することがあり、このため地盤が隆起したり微細な土層の浸透固結が充分に行なわれないでしまうという課題があった。   However, in the above-described known infusion method, one set of infusion pump is used for each infusion tube, and the economic reason for shortening the construction period as much as possible and the performance reason such as the capacity of the infusion pump, etc. Therefore, since the injection amount of the injection material must be about 10 to 20 liters per minute, the injection pressure may be increased and the ground may be destroyed. For this reason, the ground is raised or the fine soil layer is infiltrated and solidified. There was a problem that the knot was not performed sufficiently.

また、地盤性状の異なる複数の土層からなる地盤に注入材を注入する際、土層の変化に対応して地盤注入材の注入速度を変えたり、注入量をコントロールすることは実際上難しく、このため、ある層では注入材が多量に拡がり、またある層では僅かしか浸透されない等の注入のむらが起こり、隣接する固結体どうしの連続性が得られないという課題があった。   Also, when injecting the injection material into the ground consisting of multiple soil layers with different ground properties, it is practically difficult to change the injection rate of the ground injection material according to the change of the soil layer, or to control the injection amount, For this reason, the injection material spreads in a large amount in a certain layer, and uneven injection occurs such that the injection material is slightly permeated in a certain layer, and there is a problem that continuity between adjacent consolidated bodies cannot be obtained.

このような問題を解決するために、当出願人は先に特許文献1、2および3にそれぞれ開示するような地盤注入工法を開発し、これについて出願もしている。   In order to solve such a problem, the present applicant has previously developed a ground injection method as disclosed in Patent Documents 1, 2, and 3, and has filed an application for this.

特許文献1に記載された注入工法は、複数の注入管を地盤中に設置し、当該複数の注入管を介して地盤中に地盤改良材を注入するに当たり、一プラント中に多数のユニットポンプを備え、これら多数のユニットポンプを一台の駆動源で同時に作動させる多連装ユニットポンプによって各注入管に改良材を圧送し地盤中に注入するものである。   In the injection method described in Patent Document 1, a plurality of injection pipes are installed in the ground, and when a ground improvement material is injected into the ground through the plurality of injection pipes, a large number of unit pumps are installed in one plant. The improvement material is pumped into each injection pipe and injected into the ground by a multi-unit pump that operates these multiple unit pumps simultaneously with a single drive source.

また、特許文献2に記載された注入工法は、上述したように前記低圧浸透注入による多点同時注入ポンプの利点を生かしながら、各注入管の注入状況に応じてそれぞれのユニットポンプが独立して作動し、かつ全体として一括管理することにより、地盤性状、注入状況に応じてそれぞれのユニットポンプの注入速度、注入圧、注入の中止、再開、ゲル化時間などを任意に管理し得、しかも多数のユニットポンプの作動を同時に管理して注入状況の全体を把握管理することによって、複数の注入地点に注入材を同時に注入する方法で、前者の公知技術の欠点を改良したものである。   In addition, as described above, the injection method described in Patent Document 2 makes use of the advantages of the multi-point simultaneous injection pump by the low-pressure osmotic injection, and each unit pump is independent depending on the injection situation of each injection pipe. By operating and managing collectively as a whole, it is possible to arbitrarily manage the injection speed, injection pressure, injection stop, restart, gelation time etc. of each unit pump according to the ground properties and injection conditions, and many By simultaneously managing the operation of the unit pumps and grasping and managing the whole injection situation, the disadvantage of the former known technique is improved by a method of injecting an injection material into a plurality of injection points simultaneously.

そして、特許文献3に記載された地盤注入工法は、一注入地点に対して一本の注入管に主材注入材(A液)を送液するための送液管と反応材注入材(B液)を送液するための送液管の2系統の送液管を接続し、この2系統の送液管から供給されたA液とB液の両液を注入管内で混合し、所定のゲル化タイムでゲル化するように地盤中に注入する方法、あるいは一注入地点に対して2本の注入管を用い、一方から浸透型注入材や浸透性の悪い注入材を注入し、他方の注入管から浸透性の良い注入材を注入する方法である。   And the ground injection method described in patent document 3 is a liquid feeding pipe and a reaction material injection material (B for feeding main material injection material (A liquid) to one injection pipe with respect to one injection point. 2 liquid supply pipes for supplying liquid) are connected, and both liquid A and liquid B supplied from the two liquid supply pipes are mixed in the injection pipe. A method of injecting into the ground so as to gel at the time of gelation, or using two injection pipes for one injection point, injecting an osmotic injection material or an injection material with poor permeability from one side, This is a method of injecting an injection material with good permeability from an injection tube.

特開平12−45259号公報JP-A-12-45259 特開2003−232020号公報Japanese Patent Laid-Open No. 2003-232020 特開平9−291526号公報Japanese Patent Laid-Open No. 9-291526

しかし、特許文献1に記載された注入方法では、地盤中に設けた複数の注入孔に対して、一台の駆動源で一台の注入ポンプを駆動して注入地点を順次切換えながら注入するか、多連装注入ポンプを構成する多数のユニットポンプを同時に駆動するため、それぞれの吐出口における地盤条件が異なり、そのため最適の注入条件が異なるにもかかわらず、1セットのユニットポンプのすべてが同一条件で駆動するため、それぞれの注入地点に最適の注入を行うことができないという課題があった。   However, in the injection method described in Patent Document 1, is it possible to inject a plurality of injection holes provided in the ground while driving one injection pump with one drive source and sequentially switching the injection points? Because multiple unit pumps that make up a multi-unit infusion pump are driven simultaneously, the ground conditions at each discharge port are different, so the optimal infusion conditions are different, so all of a set of unit pumps have the same conditions Therefore, there is a problem that optimal injection cannot be performed at each injection point.

また、1台のユニットポンプに詰まる等のトラブルや故障が発生した場合、一セット全体が作動しなくなり、またユニットポンプの台数が多くなるに伴なってトラブルや故障などが頻繁に発生しやすくなり、作業性を低下させるという課題があった。   Also, if a trouble or failure such as clogging of one unit pump occurs, the entire set will not operate, and trouble and failure will occur more frequently as the number of unit pumps increases. There was a problem of reducing workability.

一方、特許文献2に記載された注入法では、数十ケ所の注入地点に地盤注入材を同時注入しようとする場合、それぞれ独立して稼動するユニットポンプを数十台必要とするため、その分だけトラブルが頻繁に発生することになるし、また大きさや重量が大きくなり、作業性が低下するという課題があった。   On the other hand, in the injection method described in Patent Document 2, when simultaneously injecting ground injection material into dozens of injection points, dozens of unit pumps that operate independently are required. As a result, troubles frequently occur, and the size and weight increase, resulting in reduced workability.

また、複数の注入地点に注入材を同時注入する場合、地盤中の地下水が地盤改良領域内に閉じ込められ(地下水ポケット)、その領域への注入材の浸透が不可能になり、地盤改良が不十分になるという課題があった。   In addition, when the injection material is injected at multiple injection points at the same time, the groundwater in the ground is confined in the ground improvement area (groundwater pocket), and the penetration of the injection material into that area becomes impossible, and ground improvement is not possible. There was a problem of becoming sufficient.

特に特許文献2に記載された注入方法は、多数の注入地点に対する注入をそれぞれ一台のユニットポンプで注入することはできるものの、注入地点を多くするとその分ユニットポンプも多数台必要とする。すなわち、60地点の同時注入には60台のユニットポンプを必要とし、それだけトラブルが頻繁に発生しやすくなり、またメンテナンスにも手間がかかりコストも増大するという課題があった。   In particular, the injection method described in Patent Document 2 can inject injections for a number of injection points with a single unit pump, but if the number of injection points is increased, more unit pumps are required. That is, 60 unit pumps are required for simultaneous injection at 60 points, so that troubles are likely to occur frequently, and there is a problem that maintenance is troublesome and costs increase.

また、地盤注入は、地下水と注入材とを置き換えることを地盤改良の基本とするにもかかわらず、複数の注入ポイントに対して地盤注入を同時に行なうと、注入材によって地下水を封じ込めてしまうという問題(地下水ポケット)があるため、特に特許文献2に示す注入工法の場合、注入材の浸透が不十分な部分、すなわち未改良部分が発生しやすいことから、地下水の移動に配慮して注入地点を選択しながら注入を行うと、使用されないポンプが生じて装置として無駄が生じるという問題があった。   In addition, although ground injection is based on replacing groundwater and injection material as the basis for ground improvement, if ground injection is performed simultaneously at multiple injection points, groundwater is contained by the injection material. Since there is a (groundwater pocket), especially in the case of the injection method shown in Patent Document 2, the portion where the infusion of the injected material is insufficient, that is, the unmodified portion is likely to occur. If injection is performed while selecting, there is a problem that a pump that is not used is generated and the apparatus is wasted.

そして、特許文献3に記載された注入方法は、一本の注入管に当該注入管に接続された二本の送液管の一方から主材注入材(A液)を、他方の送液管から反応材注入材(B液)をそれぞれ送液し、注入管内においてA液とB液を合流し、所定のゲル化タイムでゲル化するように地盤中に注入する方法、あるいは一注入地点に対し、2本の注入管から二種類の注入材を注入する方法であり、複数の注入地点に同時注入する注入方法ではなく、注入地点ごとに切り換えながら注入する注入方法であることから、注入工程を大幅に短縮することができないという課題があった。   And the injection | pouring method described in patent document 3 is a main injection material (A liquid) from one of the two liquid feeding pipes connected to the said injection pipe in one injection pipe, and the other liquid feeding pipe. The reaction material injecting material (liquid B) is sent from each side, the liquid A and the liquid B are merged in the injection pipe, and injected into the ground so as to gel at a predetermined gelation time, or at one injection point. On the other hand, it is a method of injecting two types of injection materials from two injection tubes, and is not an injection method of injecting simultaneously into a plurality of injection points, but an injection method of injecting while switching at each injection point. There was a problem that it was not possible to significantly reduce the time.

本発明は、以上の課題を解決するためになされたもので、地盤状況が各層ごとに異なる地盤に対しては各層ごとに最適量の地盤注入材を同時にあるいは選択的に注入することを可能とし、また注入ステージを鉛直向および水平方向へと移動して立体的な注入をも可能とし、さらに複数の注入管による複数の注入地点への注入を任意に制御することにより、複数の注入地点に地下水を排水しつつ同時注入することを可能にして微細土層への浸透注入の信頼性を向上させると共に、地下水が注入材によって閉じ込められて未改良部分(地下水ポケット)が発生するのを防止し、さらに各注入地点に地盤注入材を送液するためのユニットポンプの設置台数が少ないながらも、効率的な地盤注入、急速施工によって工期の短縮化等をも可能した多点地盤注入工法および多点地盤注入装置を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and for the ground having different ground conditions for each layer, it is possible to simultaneously or selectively inject an optimum amount of ground injection material for each layer. In addition, by moving the injection stage in the vertical and horizontal directions, three-dimensional injection is also possible, and by controlling the injection to multiple injection points by multiple injection tubes, multiple injection points can be controlled. Improves the reliability of osmotic injection into fine soil layers by allowing simultaneous injection while draining groundwater, and prevents groundwater from being trapped by the injection material and generating unmodified parts (groundwater pockets). Furthermore, while there are few unit pumps installed to deliver ground injection material to each injection point, the multi-site can shorten the construction period by efficient ground injection and rapid construction. It is an object to provide an infusion method and multipoint ground implanter.

本発明は、複数のユニットポンプを用いて複数の注入管による複数の注入地点への地盤注入材の同時・連続注入を可能にしたものであり、主として以下の2点の課題を解決すべく開発されたものである。   The present invention enables simultaneous and continuous injection of ground injection material to a plurality of injection points by a plurality of injection pipes using a plurality of unit pumps, and is mainly developed to solve the following two problems. It has been done.

その課題の一つは、ユニットポンプの設置台数が多くなればなるほど、それだけ1セットの多連装注入装置の重量が大きくなり、またユニットポンプの設置台数だけトラブルが発生しやくなり、それに伴ないその整備の工数が多くなり、作業性が低下する。   One of the problems is that as the number of unit pumps installed increases, the weight of one multi-unit injection device increases, and the number of unit pumps installed is more likely to cause trouble. Maintenance man-hours increase and workability decreases.

残る課題の一つは、複数の注入地点に地盤注入材を同時に注入すると、注入材によって地下水が取り囲まれて排水されにくくなり、その結果として、地盤中の随所に地下水が閉じ込められることにより形成される、いわゆる「地下水のポケット」が発生して未改良部分ができ均質な地盤改良ができない。   One of the remaining issues is that if ground injection material is injected simultaneously at multiple injection points, groundwater is surrounded by the injection material, making it difficult to drain, and as a result, groundwater is confined everywhere in the ground. So-called “groundwater pockets” are generated, and unmodified parts are formed, and a homogeneous ground improvement cannot be performed.

一括管理システムによって制御するユニットポンプの必要設置台数は、4台以上から100台以内であって、すなわち、4ヶ所の注入地点〜100ヶ所の注入地点に対し実用上は、4〜60台のユニットポンプを設置し、流路切換えバルブを連続的に切り換えながら注入領域を移行させて地下水を一定方向に押しやりながら注入材と置き換えることができる。   The required number of unit pumps to be controlled by the batch management system is between 4 and 100, that is, 4-60 units practically for 4 injection points to 100 injection points. It is possible to replace the injection material while installing a pump and moving the injection region while continuously switching the flow path switching valve and pushing the groundwater in a certain direction.

本発明は、上記課題を解決するために注入材貯蔵槽から各注入地点に送液管を介し、ユニットポンプによって送液され、各注入地点の地盤中に注入管を介して注入される地盤注入材を、当該注入材の流路を送液管の各注入地点に接続された流路切換えバルブによって適宜切換えながら各注入地点に同時にまたは選択的に必要量を注入するようにしたものである。   In order to solve the above-mentioned problems, the present invention provides a ground injection which is fed from a casting material storage tank to each injection point via a liquid feed pipe and fed by a unit pump and injected into the ground at each injection point via the injection pipe. The required amount of material is injected simultaneously or selectively into each injection point while appropriately switching the flow path of the injection material by a flow path switching valve connected to each injection point of the liquid feeding pipe.

その際、各注入地点における注入材の流路の切換えは、地盤中に注入される注入材によって地下水が一定の方向に押しやられて排水されるように複数の注入地点で連続的に行うことができる。   At that time, switching of the flow path of the injection material at each injection point can be continuously performed at a plurality of injection points so that the groundwater is pushed and drained in a certain direction by the injection material injected into the ground. it can.

また、上述のユニットポンプと流路切換えバルブは複数台設置し、当該ユニットポンプおよび流路切換えバルブの作動は集中管理装置で一括して制御することができる。なお、流路切換えバルブには電磁バルブや流体圧などによって機械的に作動するもの、さらには手動で作動するもの等を用いることができる。   Further, a plurality of the unit pumps and the flow path switching valves described above are installed, and the operations of the unit pumps and the flow path switching valves can be collectively controlled by the central management device. As the flow path switching valve, there can be used one that is mechanically operated by an electromagnetic valve, fluid pressure, or the like, or one that is manually operated.

このため、多数のユニットポンプは、一方では独立してそれぞれの注入地点に注入材を最適に注入する機能を有しながら、他方では多数の注入地点の注入を全体として一括管理する一セットの注入装置を構成して同時注入かつ他の注入地点への同時連続注入を可能にしている。   For this reason, a large number of unit pumps, on the one hand, have the function of optimally injecting injection material into each injection point, while on the other hand, a set of injections that collectively manage injections at a large number of injection points as a whole The device is configured to allow simultaneous injection and simultaneous continuous injection to other injection points.

本発明において、各注入地点の間隔は、平面的には0.5m〜4.0m程度、すなわち、一注入地点における浸透性固結径が0.5m〜4.0m程度である。また、縦断面的には0.3m〜4.0m程度で、場合によっては一層を固結層としてもよい。   In this invention, the space | interval of each injection | pouring point is about 0.5m-4.0m planarly, ie, the permeable consolidation diameter in one injection | pouring point is about 0.5m-4.0m. Moreover, it is about 0.3 m to 4.0 m in the longitudinal section, and one layer may be a consolidated layer depending on the case.

このように本発明は、複数のユニットポンプが複数の注入地点に、注入材を当該注入材の注入量、注入圧、および注入速度を管理しながら同時注入し、ユニットポンプは複数の流路切換えバルブを介して複数の注入地点に連続注入することができ、しかも各注入地点ごとの注入状況の把握と管理を可能とし、それぞれのユニットポンプにおける圧力、注入地点ごとに圧力性状を検出することができ、かつ注入地点を任意に選択し、かつ切り換えながら連続注入することにより小規模の注入装置でありながら、1セットで大吐出量の注入で大容量土の急速注入が可能で施工時間が短縮し、地盤改良を効率的に、かつ確実に行なうことができる。   As described above, according to the present invention, a plurality of unit pumps simultaneously inject an injection material into a plurality of injection points while managing the injection amount, injection pressure, and injection speed of the injection material. It is possible to inject continuously into multiple injection points via a valve, and also to grasp and manage the injection status at each injection point, and to detect the pressure at each unit pump and the pressure property at each injection point It is possible to select the injection point arbitrarily, and continuously inject while switching, but it is a small-scale injection device. And ground improvement can be performed efficiently and reliably.

また、流路切換えバルブの作動による同時連続注入により、各注入地点における注入材の注入を、当該注入材によって地下水が一定方向に押しやられて、排水されるように行なうことにより、地下水の滞留部分(地下水ポケット)をなくして均一な地盤改良を行なうことができる。   In addition, by the simultaneous continuous injection by the operation of the flow path switching valve, the injection material is injected at each injection point so that the ground water is pushed and drained in a certain direction by the injection material, so that the retained portion of the ground water (Groundwater pockets) can be eliminated and uniform ground improvement can be performed.

また、本発明によれば、可塑性ゲルを用いて具体例に示すように地下水を所定方向に押しやりながら可塑性ゲルそのものによる塊状固結体によって地盤改良を行なうことができる。   Moreover, according to this invention, as shown in a specific example using a plastic gel, ground improvement can be performed by the massive solidified body by a plastic gel itself, pushing groundwater in a predetermined direction.

また、地盤状況が各層ごとに異なる地盤に対しては、各層ごとに最適量の地盤注入材を同時にあるいは選択的に行なうことができ、また注入ステージを鉛直方向および/または横方向に適宜移動して地盤中の鉛直向および横方向への立体的な注入をも可能で、さらに複数の注入管による複数の注入地点への注入を任意に制御することを可能にして、複数の注入管を通して複数の注入地点に同時に注入することもできるため、これにより微細土層への浸透注入の信頼性を向上させ、かつ急速施工によって工期の短縮化も可能になる。   For ground with different ground conditions for each layer, the optimum amount of ground injection material can be simultaneously or selectively applied to each layer, and the injection stage is moved appropriately in the vertical and / or lateral directions. It is also possible to inject vertically and laterally in the ground, and to control arbitrarily the injection to multiple injection points by multiple injection pipes. This can improve the reliability of infiltration into the fine soil layer and shorten the construction period by rapid construction.

また、複数の注入地点に横方向あるいは縦方向に同時にあるいは選択的にかつ連続的に注入することにより平面的かつ立体的に注入材の地下水との置き換えの方向性を制御して、これによって同時注入するにもかかわらず、注入領域内に地下水の貯留による未改良部分の形成を防ぎ、確実な注入効果を期待できる。   In addition, the direction of the replacement of the injected material with the groundwater is controlled two-dimensionally and three-dimensionally by simultaneously or selectively and continuously injecting a plurality of injection points in the horizontal direction or the vertical direction. Regardless of the injection, the formation of unmodified parts due to the storage of groundwater in the injection region can be prevented, and a reliable injection effect can be expected.

さらに、以上を一括集中管理装置によって制御することにより、少ない台数のユニットポンプを用いて多数の注入地点に地盤注入材を効果的に注入できるようにし、かつ注入材によって地下水が閉じ込められることにより形成される未改良部分、いわゆる「地下水のポケット」の発生を防止して作業性のすぐれた注入効果が得られる。また、地中構造物に対する間隙水圧の上昇に伴なう変形や破壊にも対処することができる。   Furthermore, by controlling the above using a centralized centralized control device, it is possible to effectively inject ground injection material into a large number of injection points using a small number of unit pumps, and the groundwater is confined by the injection material. This prevents the occurrence of unmodified parts, so-called “groundwater pockets”, and provides an injection effect with excellent workability. In addition, it is possible to cope with deformation and destruction associated with an increase in pore water pressure with respect to underground structures.

なぜなら、地中構造物の周辺に注入地点を均等な間隔で配置し、複数の注入地点から注入材を同時注入することにより間隙水圧を均等に上昇させ、かつ流路切換えバルブを連続して切り換えて注入領域を地中構造物の外周部に移行させることによって間隙水圧を均等に低減させることができるため、地中構造物に間隙水圧が不均等に圧が加わることはないので、地中構造物に破壊や変位が生じにくい。   This is because the injection points are arranged at equal intervals around the underground structure, the injection water is injected from multiple injection points at the same time, the pore water pressure is increased uniformly, and the flow path switching valve is continuously switched. Since the pore water pressure can be reduced evenly by moving the injection area to the outer periphery of the underground structure, the underground water pressure is not applied unevenly to the underground structure. It is difficult for objects to be destroyed or displaced.

なお、地盤注入材には軟弱地盤等の地盤を強化ないしは止水するための地盤固結用注入材、産業廃棄物等、公害物質の固化のための注入材、軟弱地盤に固結材そのものによる塊状固化物を造成してその周辺地盤を圧縮して強化するための可塑性グラウト、公害物質からの有害物質の漏出を防止する止水層を形成するための固結材、公害物質の無公害化のための化学物質を含む注入薬材、あるいは重金属等を化学的に不活性化する重金属固定材などを利用することができ、本発明は、使用し得る地盤注入材が溶液型注入材のみならず、懸濁型注入材も可能であり、これにより注入地点ごとのの地盤状況に応じた任意注入材を選択することができる。   In addition, the ground injection material depends on the ground solid injection material for strengthening or stopping the ground such as soft ground, the solid waste injection material for industrial waste, etc. Plastic grout for creating a solidified solid and compressing and strengthening the surrounding ground, solidified material for forming a water blocking layer to prevent leakage of harmful substances from pollutants, and eliminating pollution of pollutants Injection chemicals containing chemical substances for heavy metals, or heavy metal fixing materials that chemically inactivate heavy metals, etc. can be used. In addition, a suspension-type injection material is also possible, whereby an arbitrary injection material can be selected according to the ground condition for each injection point.

請求項1記載の地盤注入工法は、吐出口を有する複数の注入管を介して複数の注入地点に地盤注入材を注入する多点地盤注入工法であって、各注入地点の地盤中に地盤注入材を注入するための複数の注入管と、当該各注入管どうしを相互に接続するための複数の送液管と、当該送液管を介して各注入地点に地盤注入材を液送すると共に、前記注入管を介して地盤中に注入材を注入するための複数のユニットポンプと、各注入地点において地盤注入材の流路を切り換えるための複数の流路切換えバルブと、送液される地盤注入材の流量および/または圧力を計測するための流量・圧力計測装置と、前記ユニットポンプおよび流量・圧力計測装置を制御するための集中管理装置を備えた多連注入装置を用い、前記ユニットポンプを作動させ、当該ユニットポンプおよび流量・圧力計測装置を前記集中管理装置によって制御しつつ、地盤注入材を当該地盤注入材の流路を切換えながら複数の注入地点に同時にかつ連続的に注入することを特徴とするものである。   The ground injection method according to claim 1 is a multi-point ground injection method in which a ground injection material is injected into a plurality of injection points via a plurality of injection pipes having discharge ports, and the ground injection is injected into the ground at each injection point. A plurality of injection pipes for injecting the material, a plurality of liquid supply pipes for connecting the injection pipes to each other, and a ground injection material to be fed to each injection point via the liquid supply pipe A plurality of unit pumps for injecting injection material into the ground via the injection pipe, a plurality of flow path switching valves for switching the flow path of the ground injection material at each injection point, and the ground to be fed A unit pump using a multiple injection device comprising a flow rate / pressure measurement device for measuring the flow rate and / or pressure of an injection material, and a centralized control device for controlling the unit pump and the flow rate / pressure measurement device. Actuate The ground injection material is simultaneously and continuously injected into a plurality of injection points while switching the flow path of the ground injection material while controlling the knit pump and the flow rate / pressure measurement device by the central control device. It is.

請求項2記載の地盤注入工法は、請求項1記載の地盤注入工法において、地盤注入材の流路切換えは、地盤中に注入された地盤注入材によって地下水が押しやられて排水されるように複数の注入地点において行なうことを特徴とするものである。   The ground injecting method according to claim 2 is the ground injecting method according to claim 1, wherein the flow of the ground injecting material is switched so that groundwater is pushed and drained by the ground injecting material injected into the ground. It is characterized by being performed at the injection point.

請求項3記載の地盤注入工法は、請求項1または2記載の地盤注入工法において、複数の注入管の吐出口が平面方向の異なる注入地点および/または鉛直方向の異なる注入地点に設置されてなることを特徴とするものである。   The ground injection method according to claim 3 is the ground injection method according to claim 1 or 2, wherein the discharge ports of the plurality of injection pipes are installed at different injection points in the plane direction and / or different injection points in the vertical direction. It is characterized by this.

請求項4記載の地盤注入工法は、請求項1〜3のいずれかに記載の地盤注入工法において、送液管に流量・圧力計測装置を接続し、当該流量・圧力計測装置で計測された地盤注入材の流量および/または圧力データの信号を集中管理装置に送信し、当該情報に基づいて複数の注入地点に地盤注入材を注入することを特徴とするものである。   The ground injection method according to claim 4 is the ground injection method according to any one of claims 1 to 3, wherein a flow rate / pressure measuring device is connected to the liquid feeding pipe, and the ground is measured by the flow rate / pressure measuring device. A flow rate and / or pressure data signal of the injection material is transmitted to the central control device, and the ground injection material is injected into a plurality of injection points based on the information.

請求項5記載の地盤注入工法は、請求項1〜4のいずれかに記載の地盤注入工法において、集中管理装置に注入監視盤を接続し、当該注入監視盤に流量・圧力計測装置で計測された地盤注入材の流量および/または圧力データの信号を画面表示して、地盤注入材の注入状況の一括監視を行うことにより、各注入地点におけるそれぞれの注入圧力および/または流量を所定の範囲に維持しながら注入するとともに、上記データの情報に基づき、注入の完了、中止、継続あるいは流路切替えバルブの操作を行うことを特徴とするものである。   The ground injection construction method according to claim 5 is the ground injection construction method according to any one of claims 1 to 4, wherein an injection monitoring board is connected to the central control device, and the injection monitoring board is measured by a flow rate / pressure measuring device. The ground injection material flow rate and / or pressure data signals are displayed on the screen, and the injection status of the ground injection material is collectively monitored, so that the injection pressure and / or flow rate at each injection point is within a predetermined range. While maintaining the injection, the injection is completed, stopped, continued, or the flow path switching valve is operated based on the information of the data.

請求項6記載の地盤注入装置は、吐出口を有する複数の注入管を介して複数の注入地点に地盤注入材を注入する多点地盤注入装置であって、各注入地点の地盤中に地盤注入材を注入するための複数の注入管と、当該各注入管どうしを相互に接続するための複数の送液管と、当該送液管を介して各注入地点に地盤注入材を液送すると共に、前記注入管を介して地盤中に注入材を注入するための複数のユニットポンプと、各注入地点において地盤注入材の流路を切り換えるための複数の流路切換えバルブと、前記地盤注入材の流量および/または圧力を計測するための流量・圧力計測装置と、前記ユニットポンプおよび流量・圧力計測装置を制御するための集中管理装置と、各注入地点における地盤注入材の注入状況を監視するための注入監視装置を備え、前記ユニットポンプは個々に動力源を備えてなることを特徴とするものである。   The ground injection device according to claim 6 is a multi-point ground injection device for injecting a ground injection material into a plurality of injection points via a plurality of injection pipes having discharge ports, and injecting the ground into the ground at each injection point. A plurality of injection pipes for injecting the material, a plurality of liquid supply pipes for connecting the injection pipes to each other, and a ground injection material to be fed to each injection point via the liquid supply pipe A plurality of unit pumps for injecting an injection material into the ground via the injection pipe, a plurality of flow path switching valves for switching the flow path of the ground injection material at each injection point, and the ground injection material A flow rate / pressure measurement device for measuring the flow rate and / or pressure, a centralized control device for controlling the unit pump and the flow rate / pressure measurement device, and monitoring the injection status of the ground injection material at each injection point Injection monitoring equipment Wherein the unit pump is to characterized in that it comprises individually powered.

請求項7記載の地盤注入工法は、請求項6記載の地盤注入装置において、各ユニットポンプには、集中管理装置から送信された地盤注入材の流量および/または圧力データの信号に基づいて制御され、各注入地点に送液される地盤注入材の流量および/または圧力を調整するための変速機構が備えつけられていることを特徴とするものである。   The ground injection method according to claim 7 is the ground injection device according to claim 6, wherein each unit pump is controlled based on the flow rate and / or pressure data signal of the ground injection material transmitted from the central control device. In addition, a speed change mechanism for adjusting the flow rate and / or pressure of the ground injection material fed to each injection point is provided.

本発明は、各注入地点の地盤中に注入管を介して注入される地盤注入材を、当該注入材の流路を路切換えバルブによって切換えながら各注入地点に同時にまたは選択的に必要量を注入することが可能なため、地盤中に注入される注入材によって地下水が一定の方向に押しやられて排水されるように注入材の注入を行うことにより、いわゆる「地下水のポケット」の発生を防止して地盤全体を均一に地盤改良することができる等の効果を有する。   The present invention injects the required amount of ground injection material injected through the injection pipe into the ground at each injection point simultaneously or selectively at each injection point while switching the flow path of the injection material with a path switching valve. Therefore, it is possible to prevent the occurrence of so-called “groundwater pockets” by injecting the injection material so that the underground water is pushed in a certain direction and drained by the injection material injected into the ground. Thus, the entire ground can be improved uniformly.

また、複数のユニットポンプが注入材を当該注入材の注入量、注入圧、および注入速度を管理しながら複数の注入地点に同時注入し、かつ少なくとも1ケ以上のユニットポンプは複数の流路切換えバルブを介して複数の注入地点に連続注入することができ、しかも各注入地点ごとの注入状況の把握と管理が可能なため、それぞれのユニットポンプにおける圧力、注入地点ごとに圧力性状を検出することができ、注入地点を任意に選択でき、かつ注入材の流路を任意に切り換えることが可能なことにより、小規模の注入装置でありながら1セットで大吐出量の注入で大容量土の急速注入が可能で施工時間が短縮し、地盤改良を効率的に、かつ確実に行なうことができる等の効果を有する。   A plurality of unit pumps simultaneously inject the injection material into a plurality of injection points while controlling the injection amount, injection pressure, and injection speed of the injection material, and at least one unit pump switches a plurality of flow paths. Since it is possible to inject continuously into multiple injection points via a valve, and to understand and manage the injection status at each injection point, it is possible to detect the pressure at each unit pump and the pressure characteristics at each injection point Because the injection point can be selected arbitrarily and the flow path of the injection material can be arbitrarily switched, a large-capacity soil can be rapidly injected with a large amount of injection in one set even though it is a small-scale injection device. Injection is possible, construction time is shortened, and the ground can be improved efficiently and reliably.

図1は、本発明の多点地盤注入装置の一例を示す概念図である。図において、符号1は地盤注入材が注入される地盤の各注入地点(注入ポイント)に設置された注入管である。   FIG. 1 is a conceptual diagram showing an example of the multipoint ground injection apparatus of the present invention. In the figure, reference numeral 1 denotes an injection pipe installed at each injection point (injection point) of the ground into which the ground injection material is injected.

図示するように、各注入管1は、例えば地盤面上に複数の横軸X1,X2,X3,…と縦軸Y1,Y2,Y3,…とからなる格子枠を想定したときの横軸X1,X2,X3,…と縦軸Y1,Y2,Y3,…との各交点に鉛直に埋設されている。   As shown in the drawing, each injection tube 1 has, for example, a horizontal axis X1 when a lattice frame composed of a plurality of horizontal axes X1, X2, X3,... And vertical axes Y1, Y2, Y3,. , X2, X3,... And vertical axes Y1, Y2, Y3,.

注入管1には先端に地盤注入材の吐出口を供えた単管構造のものや二重管構造のもの、あるいは一個乃至複数の吐出口を備えた外管にダブルパッカーやマルチパッカー(3ヶ以上のパッカー)を備えた内管を挿入することにより構成された二重管構造のもの、さらには軸方向の異なる位置に吐出口を有する細管を複数束ねたもの、あるいは外管に当該外管の軸方向に複数の袋パッカーとこの袋パッカー間に位置して複数の吐出口を設けることにより構成されたものを用いることができる。   The injection tube 1 has a single tube structure or double tube structure with a ground injection material discharge port at the tip, or a double packer or multi-packer (3 pieces) on an outer tube having one or more discharge ports. A double-pipe structure constructed by inserting an inner pipe provided with the above packer), or a bundle of a plurality of thin tubes having discharge ports at different positions in the axial direction, or the outer pipe A plurality of bag packers and a plurality of discharge ports provided between the bag packers in the axial direction can be used.

そして、例えば、外管に複数の袋パッカーと吐出口を供えた注入管1を用いて地盤中に注入材を注入するには、地盤中で袋パッカーを当該袋パッカー内にモルタル等の固化材を地上から供給して膨張させた後、注入管1内に地上から地盤注入材を供給する。   For example, in order to inject an injection material into the ground using the injection tube 1 provided with a plurality of bag packers and discharge ports in the outer pipe, the bag packer is solidified in the bag packer in the ground such as mortar. Then, the ground injection material is supplied into the injection pipe 1 from the ground.

そうすると、地盤注入材は注入管1の吐出口から地盤中に吐出され、注入管1の周囲で柱状または球状の固結体を形成することにより周囲の地盤を押し広げ圧縮することで地盤強度は高められる。   Then, the ground injection material is discharged into the ground from the discharge port of the injection tube 1, and the ground strength is increased by forming a columnar or spherical solid body around the injection tube 1 to expand and compress the surrounding ground. Enhanced.

また、地下水の排水方向に配慮して複数の注入地点に対して同時に注入材を注入することにより、注入材の固結体によって地下水が一定方向に押しやられるため、注入材の注入と同時に地下水を一定方向に押しやって排水することができる。   In addition, by injecting the injection material into multiple injection points at the same time in consideration of the drainage direction of the groundwater, the groundwater is pushed in a certain direction by the consolidated body of the injection material. It can be drained by pushing in a certain direction.

なお、注入工法は特に、限定されるものではなく、例えば注入材を地盤中に均等に浸透させて地盤全体を均等に固結する浸透注入工法を採用することもできる。   The injection method is not particularly limited, and for example, an infusion method in which the injection material is uniformly permeated into the ground and the entire ground is uniformly consolidated may be employed.

複数の注入地点に設けられる隣接する各注入管1,1間の間隔は地盤の性状等に応じて0.5m〜4.0m程度の範囲で適宜設定されている。   The interval between adjacent injection pipes 1 and 1 provided at a plurality of injection points is appropriately set in a range of about 0.5 m to 4.0 m according to the properties of the ground.

符号2は、各注入地点の地盤中に注入される地盤注入材が貯蔵された注入材貯蔵槽、3と4は注入材貯蔵槽2から各注入地点の注入管1に地盤注入材を送液するための送液管であり、送液管3はY軸方向に沿って各注入地点の間に設置され、送液管4はX軸方向に沿って各注入地点の間に設置されており、したがって送液管3と送液管4はX軸方向とY軸方向に格子状に配置されている。   Reference numeral 2 denotes an injection material storage tank in which a ground injection material to be injected into the ground at each injection point is stored, and reference numerals 3 and 4 denote liquid injection of the ground injection material from the injection material storage tank 2 to the injection pipe 1 at each injection point. The liquid supply pipe 3 is installed between the injection points along the Y-axis direction, and the liquid supply pipe 4 is installed between the injection points along the X-axis direction. Therefore, the liquid feeding pipe 3 and the liquid feeding pipe 4 are arranged in a lattice pattern in the X-axis direction and the Y-axis direction.

符号U1〜8は、注入材貯蔵2から各注入地点に地盤注入材を送液管3と送液管4を介して送液すると共に、各注入地点の地盤中に注入管1を介して地盤注入材を注入するユニットポンプ、5は各ユニットポンプU1〜8を駆動させる動力源である。   Reference numerals U1 to 8 indicate that the ground injection material is supplied from the injection material storage 2 to each injection point through the liquid supply pipe 3 and the liquid supply pipe 4, and the ground is provided through the injection pipe 1 in the ground of each injection point. A unit pump 5 for injecting an injection material is a power source for driving the unit pumps U1 to U8.

ユニットポンプU1〜8はそれぞれ個々に動力源5を備え、後述する集中管理装置6のコントローラ6aによって制御され、各注入地点に必要量の地盤注入材を送液し、かつ注入管1を介して各注入地点の地盤中に必要量の地盤注入材を注入可能なように送液管3に接続されている。   Each of the unit pumps U1 to U8 is provided with a power source 5 and is controlled by a controller 6a of a centralized management device 6 described later to feed a required amount of ground injection material to each injection point and through the injection pipe 1 It is connected to the liquid feeding pipe 3 so that a required amount of ground injection material can be injected into the ground at each injection point.

符号7は各送液管3にそれぞれ接続され、各注入地点における地盤注入材の注入時の注入量と注入圧を計測するための流量・圧力計測装置であり、当該流量・圧力計測装置7は後述する集中管理装置6のコントローラ6bによって制御され、各注入地点の地盤中に注入される地盤注入材の注入量、注入圧および注入速度をリアルタイム測定できるように送液管3に接続されている。   Reference numeral 7 denotes a flow rate / pressure measuring device connected to each liquid feeding pipe 3 for measuring the injection amount and injection pressure at the time of injection of the ground injection material at each injection point. It is controlled by a controller 6b of the centralized management device 6 described later, and is connected to the liquid feeding pipe 3 so that the injection amount, injection pressure and injection speed of the ground injection material injected into the ground at each injection point can be measured in real time. .

ユニットポンプU1〜8と当該ユニットポンプU1〜8を駆動する動力源5と流量・圧力計測装置7はそれぞれ一台ずつ組み合わさって一系統(1セット)の注入装置を構成し、複数系統が配置され、かつ系統が送液管3および4を介して注入材貯蔵槽2と各注入地点の注入管1に接続されている。   The unit pumps U1 to 8, the power source 5 that drives the unit pumps U1 to U8, and the flow rate / pressure measuring device 7 are combined to form one system (one set) of injection devices, and a plurality of systems are arranged. In addition, the system is connected to the injection material storage tank 2 and the injection pipes 1 at the respective injection points through the liquid feeding pipes 3 and 4.

したがって、注入材の注入中に一部のユニットポンプにトラブルが発生して稼動不可能になったとしても、他の注入系統から注入材を継続して送液できるようになっている。   Therefore, even if trouble occurs in some unit pumps during the injection of the injection material and the operation becomes impossible, the injection material can be continuously fed from other injection systems.

符号8は、送液管3または送液管4によって注入材貯蔵槽2から各注入地点に送液される地盤注入材の流路を、各注入地点において切り換える流路切換えバルブであり、当該流路切換えバルブ8は各注入地点の送液管3と送液管4との接続部に接続されている。   Reference numeral 8 denotes a flow path switching valve for switching the flow path of the ground injection material fed from the injection material storage tank 2 to each injection point by the liquid supply pipe 3 or the liquid supply pipe 4 at each injection point. The path switching valve 8 is connected to a connection portion between the liquid feeding pipe 3 and the liquid feeding pipe 4 at each injection point.

そして、注入材貯蔵槽2から各注入地点に送液された地盤注入材は、流路切換えバルブ8によって流路を切り換えられ、例えば流路切換えバルブ8の接続された注入管1を通って地盤中に注入されるか、あるいは送液管3または4を介して他の注入地点に送液される。   The ground injection material fed from the injection material storage tank 2 to each injection point is switched in flow path by the flow path switching valve 8, for example, through the injection pipe 1 connected to the flow path switching valve 8. The liquid is injected into the liquid or supplied to another injection point via the liquid supply pipe 3 or 4.

また、各注入地点の流路切換えバルブ8は、後述する集中管理装置6のコントローラ6cによって制御され、それぞれの注入地点ごとあるいは複数の注入地点ごとに注入材の流路を自由に切り換えられるようになっている。   Further, the flow path switching valve 8 at each injection point is controlled by a controller 6c of the centralized management device 6 described later so that the flow path of the injection material can be freely switched for each injection point or for each of a plurality of injection points. It has become.

符号6はユニットポンプU1〜8、動力源5、流量・圧力測定装置7および流路切換えバルブ8をそれぞれ集中的に制御するための集中管理装置であって、各ユニットポンプU1〜8とその動力源5を制御するためのコントローラ7a、各圧力・流量測定装置7を制御するためのコントローラ6bおよび各流路切換えバルブ8を制御するためのコントローラ6cをそれぞれ備えて構成されている。   Reference numeral 6 denotes a centralized management device for centrally controlling the unit pumps U1 to 8, the power source 5, the flow rate / pressure measuring device 7 and the flow path switching valve 8, and each unit pump U1 to 8 and its power A controller 7 a for controlling the source 5, a controller 6 b for controlling each pressure / flow rate measuring device 7, and a controller 6 c for controlling each flow path switching valve 8 are provided.

そして、たとえば、コントローラ6bがある注入地点の流量・圧力測定装置7から送信されたその注入地点における注入材の流量および/または圧力に関する情報を得ると、コントローラ6bはその注入地点に所定の圧力範囲、注入速度の範囲で注入材を送液するようにユニットポンプUと動力源5をコントロール(回転変則機構によって回転数を変える等)する。   For example, when the controller 6b obtains information on the flow rate and / or pressure of the injection material at the injection point transmitted from the flow rate / pressure measurement device 7 at the injection point, the controller 6b sets the predetermined pressure range at the injection point. Then, the unit pump U and the power source 5 are controlled so that the injection material is fed within the range of the injection speed (the rotational speed is changed by a rotation irregular mechanism, etc.).

そして、当該注入地点の注入材の注入量が所定量に達すると、コントローラ6cにその旨の情報が送信され、そうするとコントローラ6cはその注入地点の流路切換えバルブ8を作動させて次の注入地点の注入管に注入液を送液するようにコントローラ6bに情報を送信する。このような制御によって各注入地点、または複数の注入地点に必要量の注入材を注入材貯蔵槽2から連続的にかつ同時に送液することができる。   When the injection amount of the injection material at the injection point reaches a predetermined amount, information to that effect is transmitted to the controller 6c, and then the controller 6c operates the flow path switching valve 8 at the injection point to move to the next injection point. Information is transmitted to the controller 6b so that the injection solution is fed into the injection tube. By such control, a necessary amount of the injection material can be continuously and simultaneously sent from the injection material storage tank 2 to each injection point or a plurality of injection points.

符号9は注入材の注入地点、各注入地点における注入材の注入状況さらには各注入地点への注入材の送液状況などを監視するための監視盤であって、集中管理装置6に接続されている。当該監視盤9には実際の各注入地点と各注入地点間の送液管3と送液管4の配置形態などが液晶表示方式などによって表示されている。   Reference numeral 9 denotes a monitoring panel for monitoring the injection point of the injection material, the injection state of the injection material at each injection point, and the liquid supply state of the injection material to each injection point, and is connected to the central control device 6. ing. The monitoring panel 9 displays the actual injection points and the arrangement of the liquid supply pipes 3 and the liquid supply pipes 4 between the injection points by a liquid crystal display method or the like.

そして、この監視盤9を通して注入材の注入地点、各注入地点における注入材の注入状況、さらには各注入地点までの注入材の流路などが人目で確認できるようになっている。さらに、監視盤9を見ながら注入地点、注入地点までの注入材の流路などを自由に設定し、また変更できるようになっている。   Through the monitoring board 9, the injection material injection point, the injection state of the injection material at each injection point, and the flow path of the injection material to each injection point can be confirmed by human eyes. Furthermore, while looking at the monitoring board 9, the injection point, the flow path of the injection material to the injection point, etc. can be freely set and changed.

このような構成において、注入材貯蔵槽2から送液管3および4を介して各注入地点に送液された注入材は、注入地点ごとに注入管1を介し、コントローラ6aによって制御されたユニットポンプU1〜8によって各注入地点の地盤中に注入される。   In such a configuration, the injection material sent from the injection material storage tank 2 to each injection point via the liquid supply pipes 3 and 4 is a unit controlled by the controller 6a via the injection pipe 1 for each injection point. It inject | pours in the ground of each injection | pouring point with the pumps U1-8.

またその際、コントローラ6bによって制御された流量・圧力計測装置7によって最適な注入量および/または注入圧が注入地点ごとに設定され、各注入地点の地盤性状に応じて最適量の注入材が注入される。   At that time, an optimal injection amount and / or injection pressure is set for each injection point by the flow rate / pressure measuring device 7 controlled by the controller 6b, and an optimal amount of injection material is injected according to the ground properties at each injection point. Is done.

さらに、各注入地点の流路切換えバルブ8がコントローラ6bによって制御され、注入管1ごとにあるいは複数の注入管1ごとに作動することにより、注入材が注入地点ごとに、あるいは複数の注入地点ごとに注入管1を介して地盤中に注入される。   Further, the flow path switching valve 8 at each injection point is controlled by the controller 6b and is operated for each injection tube 1 or for each of the plurality of injection tubes 1 so that the injection material is for each injection point or for each of the plurality of injection points. Is injected into the ground through the injection tube 1.

また、流量・圧力測定装置7によって注入地点ごとの注入材の注入量、注入圧および注入速度が計測され、その情報はコントローラ6にリアルタイムで送信される。   Further, the injection amount, injection pressure, and injection speed of the injection material at each injection point are measured by the flow rate / pressure measurement device 7, and the information is transmitted to the controller 6 in real time.

なお、図1に図示する多点地盤注入装置においては、8台のユニットポンプU1〜8が配置され、それぞれが個々に動力源5を備え、かつそれぞれが送液管3と送液管4を介して注入材貯蔵槽2と各注入地点の注入管1に接続されている。また注入管1は、Y1〜8軸の各軸に沿ってそれぞれ配置された各送液管3に流路切換えバルブ8を介して8本接続されている。したがって、8台のユニットポンプU1〜8により計8×8=64本の注入管1によって注入材の同時・連続注入が集中管理装置6による一括管理の下に可能になるため、装置の軽量化と作業性の飛躍的向上が可能になる。   In the multipoint ground injection device shown in FIG. 1, eight unit pumps U1 to U8 are arranged, each having a power source 5 individually, and each having a liquid feeding pipe 3 and a liquid feeding pipe 4. Via the injection material storage tank 2 and the injection pipe 1 at each injection point. In addition, eight injection pipes 1 are connected to each liquid supply pipe 3 arranged along each of the Y1 to 8 axes via a flow path switching valve 8. Therefore, since 8 unit pumps U1 to 8 allow a total of 8 × 8 = 64 injection pipes 1 to allow simultaneous and continuous injection of the injection material under the collective management by the centralized control device 6, the weight of the device is reduced. And workability can be dramatically improved.

また、各注入地点の流路切換えバルブ8を連続的に作動することにより各Y軸上の任意の注入管1への選択的かつ連続的送液が可能になり、これにより地下水を所定の方向に押しやり排水しながら、注入材を注入して土粒子間の地下水を注入材と置き換えることができる。   Further, by continuously operating the flow path switching valve 8 at each injection point, selective and continuous liquid feeding to an arbitrary injection pipe 1 on each Y-axis becomes possible, whereby groundwater is supplied in a predetermined direction. While draining, the injection material can be injected to replace the groundwater between the soil particles with the injection material.

さらに、複数の各Y軸方向の送液管3と各X軸方向の送液管4を平面格子状に配置すると共に、送液管3と送液管4との各交点に注入管1を設置することにより、注入管1の選択が可能になり、地盤に対応した、あるいは地中構造物の存在にも考慮した地下水の周辺への排水も可能になり、緻密な地盤改良を行なうことができる。   Further, a plurality of liquid feeding pipes 3 in each Y-axis direction and liquid feeding pipes 4 in each X-axis direction are arranged in a planar lattice shape, and an injection pipe 1 is provided at each intersection of the liquid feeding pipe 3 and the liquid feeding pipe 4. By installing it, the injection pipe 1 can be selected, drainage to the groundwater corresponding to the ground or taking into account the existence of underground structures is also possible, and the precise ground improvement can be performed. it can.

また、上記による送液管の回路を注入装置を構成する一部分として各注入管1からユニットポンプU1〜8に至るまでの任意の位置に送液回路盤として設けて回路盤の交点から各注入管へ送液管を繋ぐことによってコンパクトな注入装置を構成することができる。   Further, the liquid supply pipe circuit as described above is provided as a liquid supply circuit board at any position from each injection pipe 1 to the unit pumps U1 to 8 as a part constituting the injection apparatus, and each injection pipe from the intersection of the circuit boards. A compact injection device can be constructed by connecting the liquid feeding pipes.

次に、図2に基づいて、本発明の多点地盤注入工法の施工手順の一例を地盤中の地下水をX8軸側からX1軸方向に(図面上、上側から下側方向に)排水しながら行う場合について説明する。   Next, based on FIG. 2, while draining the groundwater in the ground from the X8 axis side to the X1 axis direction (on the drawing, from the upper side to the lower side), an example of the construction procedure of the multipoint ground injection method of the present invention is performed. The case where it performs is demonstrated.

最初に、各ユニットポンプU1〜U8にそれぞれ接続されたY1〜Y8軸上の送液管3とX8軸上の送液管4との各交点(注入地点)に接続された流路切換えバルブ8をX8軸上の各注入地点の注入管1側と各ユニットポンプU1〜8側にのみ開く。そして、各ユニットポンプU1〜U8を作動させてX8軸上の各注入地点に注入管1を介して注入材を注入する。   First, the flow path switching valve 8 connected to each intersection (injection point) of the liquid feeding pipe 3 on the Y1 to Y8 axes and the liquid feeding pipe 4 on the X8 axes connected to the unit pumps U1 to U8, respectively. Is opened only on the injection pipe 1 side and each unit pump U1-8 side of each injection point on the X8 axis. And each unit pump U1-U8 is operated and an injection material is inject | poured through the injection pipe 1 to each injection | pouring point on X8 axis | shaft.

次に、Y1〜Y8軸上の各送液管3とX8軸上の送液管4との各交点(注入地点)に接続された各流路切換えバルブ8、およびY1〜Y8軸上の各送液管3とX7軸上の送液管4との各交点(注入地点)に接続された各流路切換えバルブ8をX7軸上の各注入管1側と各ユニットポンプU1〜8側にのみ開く。そして、各ユニットポンプU1〜8を作動させてX7軸上の各注入地点に注入材を注入する。   Next, each flow path switching valve 8 connected to each intersection (injection point) between each liquid feeding pipe 3 on the Y1 to Y8 axes and each liquid feeding pipe 4 on the X8 axes, and each on the Y1 to Y8 axes Each flow path switching valve 8 connected to each intersection (injection point) of the liquid supply pipe 3 and the liquid supply pipe 4 on the X7 axis is connected to each injection pipe 1 side on the X7 axis and each unit pump U1-8 side. Open only. And each unit pump U1-8 is operated and an injection material is inject | poured into each injection | pouring point on X7 axis | shaft.

以下、同様にして、Y1〜Y8軸上の各送液管3とX6〜X1軸上の各送液管4との各交点(注入地点)に接続された各流路切換えバルブ8をX1軸方向に順に切換えながら各注入地点に注入材を注入する。   Hereinafter, similarly, each flow path switching valve 8 connected to each intersection (injection point) between each liquid feeding pipe 3 on the Y1 to Y8 axes and each liquid feeding pipe 4 on the X6 to X1 axes is connected to the X1 axis. The injection material is injected into each injection point while sequentially switching in the direction.

このように地盤注入材を注入することにより、地盤中の地下水は各注入地点に注入された注入材によってX8軸側からX1軸側に押しやられながらX1軸方向に排水される(図中太い矢印方向)。   By injecting the ground injection material in this way, groundwater in the ground is drained in the X1 axis direction while being pushed from the X8 axis side to the X1 axis side by the injection material injected at each injection point (thick arrow in the figure) direction).

次に、図3と図4に基づいて、本発明の多点地盤注入工法の他の施工手順を、地盤中の地下水をY4軸からその両方向(図面上、Y4軸の左右方向)に排水しながら行う場合について説明する。   Next, based on FIG. 3 and FIG. 4, the other construction procedure of the multipoint ground injection method of the present invention is to drain the groundwater in the ground from the Y4 axis in both directions (in the drawing, the left and right direction of the Y4 axis). However, the case where it carries out is demonstrated.

最初に、Y4軸上の各注入地点に接続された各流路切換えバルブ8をY4軸上の各注入管1側にのみ開く。また、各ユニットポンプU1〜U8とY4軸上の各注入地点の注入管1をそれぞれ最短の送液管3と送液管4によって接続する。例えば、ユニットポンプU1と注入地点P5の注入管1、ユニットポンプU2と注入地点P6の注入管1、ユニットポンプU3と注入地点P7の注入管1というように、ユニットポンプU1〜8と注入地点P1〜P8の注入管1をそれぞれ接続する。この場合、各ユニットポンプUと注入地点Pの最短の流路となる各注入地点の流路切換えバルブ8をその二方向にのみ開放するだけで接続は完了する。   First, each flow path switching valve 8 connected to each injection point on the Y4 axis is opened only on the side of each injection pipe 1 on the Y4 axis. Moreover, each unit pump U1-U8 and the injection pipe 1 of each injection point on the Y4 axis are connected by the shortest liquid supply pipe 3 and liquid supply pipe 4, respectively. For example, unit pumps U1 to 8 and injection point P1 such as unit pump U1 and injection pipe 1 at injection point P5, unit pump U2 and injection pipe 1 at injection point P6, unit pump U3 and injection pipe 1 at injection point P7, and so on. The injection pipes 1 to P8 are connected to each other. In this case, the connection is completed only by opening the flow path switching valve 8 at each injection point, which is the shortest flow path between each unit pump U and the injection point P, only in the two directions.

そして、各ユニットポンプU1〜U8を作動させることにより、Y4軸上の8ヶ所の注入地点に注入材を同時に注入することができる。なお、図3において太い線で図示した線が各注入地点の注入管1とユニットポンプ間の注入材流路を示す。   And by operating each unit pump U1-U8, an injection material can be simultaneously injected into eight injection | pouring points on a Y4 axis | shaft. In addition, the line shown with the thick line in FIG. 3 shows the injection material flow path between the injection tube 1 and the unit pump at each injection point.

こうして、Y4軸上の各注入地点に対して注入材の注入が完了したら、Y4軸の図左側のY3軸〜Y1軸方向に注入地点を順次切り替えながら注入材を注入し、Y4軸より左側の各注入地点に対する注入が完了したら、次にY4軸より右側のY5軸〜Y8軸へと注入地点を順に切り換えながら各Y軸上の注入地点に対して地盤注入を行う。   Thus, when the injection of the injection material is completed at each injection point on the Y4 axis, the injection material is injected while sequentially switching the injection point in the Y3 axis to Y1 axis direction on the left side of the Y4 axis in the drawing, and the left side of the Y4 axis is injected. When the injection at each injection point is completed, the ground injection is then performed at the injection point on each Y axis while sequentially switching the injection point from the Y4 axis to the Y5 axis to the Y8 axis on the right side.

例えば、Y3軸上の各注入地点に注入材を注入するには、最初にY3軸上の各注入地点に接続された各流路切換えバルブ8をY3軸上の各注入管1側にのみ開く。また、各ユニットポンプU1〜8とY3軸上の各注入地点をそれぞれ最短の送液管3と送液管4によって接続する。すなわち、ユニットポンプU1と注入地点P6の注入管1、ユニットポンプU2と注入地点P7の注入管1、ユニットポンプU3と注入地点P8の注入管1というように、ユニットポンプU1〜8と注入地点P1〜P8の注入管1をそれぞれ接続する(図4参照)。この場合、各ユニットポンプUと各注入地点Pの最短の流路となる各注入地点の流路切換えバルブ8をその二方向にのみ開放するだけで接続は完了する。   For example, in order to inject an injection material to each injection point on the Y3 axis, first, each flow path switching valve 8 connected to each injection point on the Y3 axis is opened only to each injection tube 1 side on the Y3 axis. . Moreover, each unit pump U1-8 and each injection | pouring point on the Y3 axis are connected by the shortest liquid feeding pipe 3 and the liquid feeding pipe 4, respectively. That is, the unit pumps U1 to 8 and the injection point P1 such as the unit pump U1 and the injection pipe 1 at the injection point P6, the unit pump U2 and the injection pipe 1 at the injection point P7, and the unit pump U3 and the injection pipe 1 at the injection point P8. -P8 injection pipes 1 are respectively connected (see FIG. 4). In this case, the connection is completed only by opening the flow path switching valve 8 at each injection point, which is the shortest flow path between each unit pump U and each injection point P, only in the two directions.

そして、各ユニットポンプU1〜U8を作動させることにより、Y3軸上の8ヶ所の注入地点に注入材を同時に注入することができる。   And by operating each unit pump U1-U8, an injection material can be simultaneously injected into eight injection | pouring points on a Y3 axis | shaft.

このようにして地盤注入を行なうことにより、地下水は注入材によってY4軸の左方向、そして右方向にそれぞれ押しやられて排水される。図中、矢印は地下水の排水方向を示している。   By performing the ground injection in this way, the groundwater is pushed and drained by the injection material in the left direction and the right direction of the Y4 axis. In the figure, the arrows indicate the direction of groundwater drainage.

図5は、基礎杭などの地中構造物の周辺地盤に対して地盤注入材を注入する注入工法を示したものであり、地中構造物10の周囲地盤上に注入地点を設定し、各注入地点の地盤中に注入管1をそれぞれ埋設して注入材の注入を行なう。 この場合の注入地点は、地盤の性状や地下水の位置などを適宜参酌して決定する。したがって、注入管1の設置間隔は必ずしも等間隔である必要はない。   FIG. 5 shows an injection method for injecting a ground injection material into the surrounding ground of an underground structure such as a foundation pile, and an injection point is set on the surrounding ground of the underground structure 10. The injection pipe 1 is buried in the ground at the injection point to inject the injection material. The injection point in this case is determined by appropriately considering the properties of the ground and the position of groundwater. Therefore, the installation intervals of the injection tube 1 do not necessarily have to be equal.

注入管1の設置が完了したら、ユニットポンプU1〜8を作動させて注入材貯蔵槽2から注入材を各注入地点に送液する。そして、各注入管1を介して各注入地点の地盤中に注入材を注入する。この場合、注入材によって地下水が地中構造物10側から外方向に押しやられるように各注入地点に注入材を順に注入するのとする。すなわち、注入地点を地中構造物10側から外方向に移動しながら地盤注入を行なう。   When the installation of the injection pipe 1 is completed, the unit pumps U1 to U8 are operated to send the injection material from the injection material storage tank 2 to each injection point. Then, an injection material is injected into the ground at each injection point through each injection tube 1. In this case, the injection material is sequentially injected into each injection point so that the groundwater is pushed outward from the underground structure 10 side by the injection material. That is, ground injection is performed while moving the injection point outward from the underground structure 10 side.

注入材の同時連続注入によって、地下水は矢印のように外側、即ち地中構造物10の外方向に押しやられながら注入材と置き換わって固結領域を広げていく。この結果不均質な間隙水圧の上昇によって地中構造物に不均質な圧力作用による変形や破壊を生ずることもなく、また同時連続注入による地下水の外側方向への移動によって地中構造物に加わる圧力を均等に低減して地中構造物の破壊や変位を防ぐという効果を有する。   By the simultaneous continuous injection of the injection material, the groundwater is displaced outward as indicated by an arrow, that is, outward of the underground structure 10, and is replaced with the injection material to widen the consolidated region. As a result, the increase in the heterogeneous pore water pressure does not cause deformation or destruction of the underground structure due to the inhomogeneous pressure action, and the pressure applied to the underground structure due to the movement of groundwater to the outside by simultaneous continuous injection. Is reduced evenly and the destruction and displacement of underground structures are prevented.

また、注入材が可塑性ゲルの場合でも、地下水の間隙水圧の上昇が少なくてすむため、大きな固結体が形成され、かつ固結体の周辺の砂の密度増加が均等に行なわれるため、地中構造物に不均等な荷重が作用することがない利点がある。   Further, even when the injection material is a plastic gel, since the increase in the pore water pressure of the groundwater is small, a large consolidated body is formed, and the density of sand around the consolidated body is increased uniformly. There is an advantage that uneven loads do not act on the intermediate structure.

本発明は、複数の注入管からの注入を任意に制御し得るとともに、複数の注入管を通して複数の注入ポイントに同時にかつ連続的に注入することができ、これにより微細土層への浸透注入の信頼性が向上し、地中構造物に対する間隙水圧の上昇による変形や破壊などの危険を防止し、かつ小規模な注入装置で急速施工によって注入工期も短縮される。   The present invention can arbitrarily control injection from a plurality of injection pipes and can simultaneously and continuously inject into a plurality of injection points through a plurality of injection pipes. The reliability is improved, the danger of deformation and destruction due to the increase of pore water pressure to the underground structure is prevented, and the injection construction period is shortened by rapid construction with a small-scale injection device.

本発明の多点地盤注入装置を示す概念図である。It is a conceptual diagram which shows the multipoint ground injection apparatus of this invention. 地盤注入材の注入方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the injection method of a ground injection material. 地盤注入材の注入方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the injection method of a ground injection material. 地盤注入材の注入方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the injection method of a ground injection material. 地中構造物の周囲地盤中に地盤注入材を注入する方法を示す概念図である。It is a conceptual diagram which shows the method of inject | pouring a ground injection material in the surrounding ground of an underground structure.

符号の説明Explanation of symbols

1 注入管
2 注入材貯蔵槽
3 送液管
4 送液管
5 ユニットポンプの動力源
6 集中管理装置
7 流量・圧力計測装置
8 流路切換えバルブ
9 監視盤
10 地中構造物
U1〜U8 ユニットポンプ
P 注入地点(ポイント)
DESCRIPTION OF SYMBOLS 1 Injection pipe 2 Injection material storage tank 3 Liquid supply pipe 4 Liquid supply pipe 5 Power source of unit pump 6 Centralized control device 7 Flow rate / pressure measuring device 8 Flow path switching valve 9 Monitoring panel 10 Underground structure U1-U8 Unit pump P injection point (point)

Claims (7)

吐出口を有する複数の注入管を介して複数の注入地点に地盤注入材を注入する多点地盤注入工法であって、各注入地点の地盤中に地盤注入材を注入するための複数の注入管と、当該各注入管どうしを相互に接続するための複数の送液管と、当該送液管を介して各注入地点に地盤注入材を液送すると共に、前記注入管を介して地盤中に注入材を注入するための複数のユニットポンプと、各注入地点において地盤注入材の流路を切り換えるための複数の流路切換えバルブと、送液される地盤注入材の流量および/または圧力を計測するための流量・圧力計測装置と、前記ユニットポンプ、流路切換えバルブおよび流量・圧力計測装置を制御するための集中管理装置を備えた多連注入装置を用い、前記ユニットポンプを作動させ、当該ユニットポンプおよび流量・圧力計測装置を前記集中管理装置によって制御しつつ、地盤注入材を当該地盤注入材の流路を切換えながら複数の注入地点に同時にかつ連続的に注入することを特徴とする多点地盤注入工法。   A multi-point ground injection method in which ground injection material is injected into a plurality of injection points via a plurality of injection tubes having discharge ports, and a plurality of injection tubes for injecting the ground injection material into the ground at each injection point And a plurality of liquid feeding pipes for connecting the injection pipes to each other, and the ground injection material is fed to the injection points via the liquid feeding pipes and into the ground via the injection pipes. Multiple unit pumps for injecting the injection material, multiple flow path switching valves for switching the flow path of the ground injection material at each injection point, and measuring the flow rate and / or pressure of the ground injection material to be fed Using a multiple injection device comprising a centralized control device for controlling the flow rate / pressure measurement device and the unit pump, the flow path switching valve and the flow rate / pressure measurement device, and operating the unit pump, Unit Pong Multi-point ground, wherein the ground injection material is simultaneously and continuously injected into a plurality of injection points while switching the flow path of the ground injection material while controlling the flow rate / pressure measuring device by the central control device Injection method. 地盤注入材の流路切換えは、地盤中に注入された地盤注入材によって地下水が押しやられて排水されるように複数の注入地点において行なうことを特徴とする請求項1記載の多点地盤注入工法。   2. The multipoint ground injection method according to claim 1, wherein the flow path switching of the ground injection material is performed at a plurality of injection points such that groundwater is pushed and drained by the ground injection material injected into the ground. . 複数の注入管の吐出口が平面方向の異なる注入地点および/または鉛直方向の異なる注入地点に設置されてなることを特徴とする請求項1または2に記載の多点地盤注入工法。   The multipoint ground injection method according to claim 1 or 2, wherein discharge ports of the plurality of injection pipes are installed at different injection points in the plane direction and / or different injection points in the vertical direction. 送液管に流量・圧力計測装置を接続し、当該流量・圧力計測装置で計測された地盤注入材の流量および/または圧力データの信号を集中管理装置に送信し、当該情報に基づいて複数の注入地点に地盤注入材を当該地盤注入材の流路を流路切換えバルブによって切換えながら注入することを特徴とする請求項1〜3のいずれかに記載の多点地盤注入工法。   A flow rate / pressure measuring device is connected to the liquid feeding pipe, and a flow rate and / or pressure data signal of the ground injection material measured by the flow rate / pressure measuring device is transmitted to the central control device, and a plurality of based on the information The multipoint ground injection method according to any one of claims 1 to 3, wherein the ground injection material is injected at an injection point while switching a flow path of the ground injection material with a flow path switching valve. 集中管理装置に注入監視盤を接続し、当該注入監視盤に流量・圧力計測装置で計測された地盤注入材の流量および/または圧力データの信号を画面表示して、地盤注入材の注入状況の一括監視を行うことにより、各注入地点におけるそれぞれの注入量および/または注入圧を所定の範囲に維持しながら注入するとともに、上記データの情報に基づき、注入の完了、中止、継続あるいは流路切換えバルブの操作を行うことを特徴とする請求項4記載の多点地盤注入工法。   An injection monitoring board is connected to the central control device, and the flow rate and / or pressure data signals of the ground injection material measured by the flow rate / pressure measuring device are displayed on the screen to indicate the injection status of the ground injection material. By performing collective monitoring, injection is performed while maintaining the injection volume and / or injection pressure at each injection point within a predetermined range, and injection is completed, stopped, continued, or the channel is switched based on the information of the above data. The multipoint ground injection method according to claim 4, wherein the valve is operated. 吐出口を有する複数の注入管を介して複数の注入地点に地盤注入材を注入するための多点地盤注入装置であって、各注入地点の地盤中に地盤注入材を注入するための複数の注入管と、当該各注入管どうしを相互に接続するための複数の送液管と、当該送液管を介して各注入地点に地盤注入材を液送すると共に、前記注入管を介して地盤中に地盤注入材を注入するための複数のユニットポンプと、各注入地点において地盤注入材の流路を切り換えるための複数の流路切換えバルブと、前記地盤注入材の流量および/または圧力を計測するための流量・圧力計測装置と、前記ユニットポンプおよび流量・圧力計測装置を制御するための集中管理装置と、各注入地点における地盤注入材の注入状況を監視するための注入監視装置を備えてなることを特徴とする多点地盤注入装置。   A multi-point ground injection device for injecting a ground injection material into a plurality of injection points via a plurality of injection pipes having discharge ports, a plurality of ground injection materials for injecting the ground injection material into the ground at each injection point An injection pipe, a plurality of liquid supply pipes for connecting the injection pipes to each other, and a ground injection material to be supplied to each injection point via the liquid supply pipe, and the ground via the injection pipe Multiple unit pumps for injecting ground injection material into the interior, multiple flow path switching valves for switching the flow path of ground injection material at each injection point, and measuring the flow rate and / or pressure of the ground injection material A flow rate / pressure measurement device, a centralized control device for controlling the unit pump and the flow rate / pressure measurement device, and an injection monitoring device for monitoring the injection state of the ground injection material at each injection point To be Multipoint ground injection apparatus according to symptoms. 各ユニットポンプには、集中管理装置から送信された地盤注入材の流量および/または圧力データの信号に基づいて制御され、各注入地点に送液される地盤注入材の流量および/または圧力を調整するための変速機構が備えていることを特徴とする請求項6記載の多点地盤注入装置。
Each unit pump is controlled based on the ground injection material flow rate and / or pressure data signal sent from the central control device and adjusts the ground injection material flow rate and / or pressure sent to each injection point. The multi-point ground injection device according to claim 6, further comprising a transmission mechanism for performing the operation.
JP2007069873A 2007-03-19 2007-03-19 Multi-point ground injection method and multi-point ground injection equipment Active JP4672693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069873A JP4672693B2 (en) 2007-03-19 2007-03-19 Multi-point ground injection method and multi-point ground injection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069873A JP4672693B2 (en) 2007-03-19 2007-03-19 Multi-point ground injection method and multi-point ground injection equipment

Publications (2)

Publication Number Publication Date
JP2008231709A true JP2008231709A (en) 2008-10-02
JP4672693B2 JP4672693B2 (en) 2011-04-20

Family

ID=39904845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069873A Active JP4672693B2 (en) 2007-03-19 2007-03-19 Multi-point ground injection method and multi-point ground injection equipment

Country Status (1)

Country Link
JP (1) JP4672693B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270446A (en) * 2009-05-19 2010-12-02 Kyokado Eng Co Ltd Filling construction method and filling system
JP2011241572A (en) * 2010-05-17 2011-12-01 Kyokado Engineering Co Ltd Ground injection method
JP2011241674A (en) * 2011-03-07 2011-12-01 Kyokado Engineering Co Ltd Ground injection method
CN112942308A (en) * 2021-01-28 2021-06-11 中铁三局集团广东建设工程有限公司 Soft foundation pavement construction device and soft foundation pavement construction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ721038A (en) 2013-12-16 2018-10-26 Heisei Techno’S Co Ltd Ground improvement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587019A (en) * 1981-07-06 1983-01-14 Onoda Cement Co Ltd Amending method for peat ground
JPH09291526A (en) * 1996-03-01 1997-11-11 Kyokado Eng Co Ltd Injection execution and injection device
JP2001323451A (en) * 2000-05-17 2001-11-22 Kyokado Eng Co Ltd Ground injection apparatus and construction method
JP2002069997A (en) * 2000-09-04 2002-03-08 Kyokado Eng Co Ltd Injection device and method into ground
JP2006089925A (en) * 2004-09-21 2006-04-06 Kyokado Eng Co Ltd Soil grouting method and soil grouting apparatus
JP2006312811A (en) * 2005-05-06 2006-11-16 Kyokado Eng Co Ltd Grouting construction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587019A (en) * 1981-07-06 1983-01-14 Onoda Cement Co Ltd Amending method for peat ground
JPH09291526A (en) * 1996-03-01 1997-11-11 Kyokado Eng Co Ltd Injection execution and injection device
JP2001323451A (en) * 2000-05-17 2001-11-22 Kyokado Eng Co Ltd Ground injection apparatus and construction method
JP2002069997A (en) * 2000-09-04 2002-03-08 Kyokado Eng Co Ltd Injection device and method into ground
JP2006089925A (en) * 2004-09-21 2006-04-06 Kyokado Eng Co Ltd Soil grouting method and soil grouting apparatus
JP2006312811A (en) * 2005-05-06 2006-11-16 Kyokado Eng Co Ltd Grouting construction method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270446A (en) * 2009-05-19 2010-12-02 Kyokado Eng Co Ltd Filling construction method and filling system
JP2011241572A (en) * 2010-05-17 2011-12-01 Kyokado Engineering Co Ltd Ground injection method
JP2011241674A (en) * 2011-03-07 2011-12-01 Kyokado Engineering Co Ltd Ground injection method
CN112942308A (en) * 2021-01-28 2021-06-11 中铁三局集团广东建设工程有限公司 Soft foundation pavement construction device and soft foundation pavement construction method
CN112942308B (en) * 2021-01-28 2022-06-24 中铁三局集团广东建设工程有限公司 Soft foundation pavement construction device and soft foundation pavement construction method

Also Published As

Publication number Publication date
JP4672693B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4948563B2 (en) Injection method and injection equipment
JP4672693B2 (en) Multi-point ground injection method and multi-point ground injection equipment
JP4848553B2 (en) Injection pipe device and injection method
JP4827109B1 (en) Injection pipe device and ground injection method
TW591161B (en) Multi-point pouring construction method of ground modification and the devices thereof
WO2015092854A1 (en) Ground improvement method
JP2011074720A (en) Soil improvement construction method and soil improvement device
JP2016017341A (en) Liquefaction countermeasure construction method for existing underground pipe
CN204298127U (en) Underground water in situ chemical oxidation repairs device for casting
JP3418069B2 (en) Injection method and injection equipment
JP2013241810A (en) Grout injection method and device
KR101698970B1 (en) Chemical liquid injection grouting process automation systems
JP4294691B2 (en) Injection tube and grout injection method
JP3663113B2 (en) Ground injection device and ground injection method
KR20170097434A (en) Grout injection method according to the permeable membrane and back flow prevention infusion tube
JP2006312811A (en) Grouting construction method
JP5613556B2 (en) Microbubble liquid injection apparatus and microbubble liquid injection method to ground
JP5320248B2 (en) Ground improvement management device and ground improvement construction method
JP4762200B2 (en) Ground strengthening method by simultaneous multi-point injection
JP2015004184A (en) Desaturation ground improvement method
JP2010248698A (en) Method and system for injecting air into ground
JP5515190B1 (en) Liquefaction countermeasures for existing buried pipes
JP2015209638A (en) Liquefaction countermeasure method of existing buried pipe
CN112031811B (en) Cliff water injection plugging system and method
JP4051368B2 (en) Ground injection method and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4672693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250