JP2016017341A - Liquefaction countermeasure construction method for existing underground pipe - Google Patents

Liquefaction countermeasure construction method for existing underground pipe Download PDF

Info

Publication number
JP2016017341A
JP2016017341A JP2014141596A JP2014141596A JP2016017341A JP 2016017341 A JP2016017341 A JP 2016017341A JP 2014141596 A JP2014141596 A JP 2014141596A JP 2014141596 A JP2014141596 A JP 2014141596A JP 2016017341 A JP2016017341 A JP 2016017341A
Authority
JP
Japan
Prior art keywords
buried pipe
injection
pipe
liquefaction
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014141596A
Other languages
Japanese (ja)
Other versions
JP5728747B1 (en
Inventor
内村 太郎
Taro Uchimura
太郎 内村
郁生 東畑
Ikuo Tohata
郁生 東畑
島田 俊介
Shunsuke Shimada
俊介 島田
小山 忠雄
Tadao Koyama
忠雄 小山
隆光 佐々木
Takamitsu Sasaki
隆光 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
University of Tokyo NUC
Original Assignee
Kyokado Engineering Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd, University of Tokyo NUC filed Critical Kyokado Engineering Co Ltd
Priority to JP2014141596A priority Critical patent/JP5728747B1/en
Application granted granted Critical
Publication of JP5728747B1 publication Critical patent/JP5728747B1/en
Publication of JP2016017341A publication Critical patent/JP2016017341A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquefaction countermeasure construction method for an existing underground pipe which can simply and at a low cost suppress the uplift and others due to liquefaction of an existing underground pipe such as a gas pipe laid in a foundation having a non-liquefaction layer such as a gravel layer in a surface layer part or a foundation having the surface layer part coated with asphalt pavement.SOLUTION: In a foundation having risk of liquefaction which has an asphalt pavement 11 in a surface layer part, in the upper part of the foundation where an underground pipe 1 is laid, a plurality of consolidated bodies 12 are integrally formed with the underground pipe 1 and at a spacing in the tube axis direction of the underground pipe 1 so as to apply a weight to the underground pipe 1. A support body 13 is formed so as to support the underground pipe 1 downward from the top between the consolidated body 12 and the asphalt pavement 11. The weight and interval of each consolidated body 12 and the number and interval of the support body 13 are set so as to suppress the rotation of the consolidated body and the uplift and rotation of the underground pipe 1 due to liquefaction.SELECTED DRAWING: Figure 1

Description

本発明は、薬液注入による既設埋設管の液状化対策工法に関し、液状化の恐れのある地盤であって、特に表層部に砂礫層や密質砂層などの非液状化層を有する地盤、あるいは表層部がアスファルト舗装やコンクリート舗装などによって覆工された地盤内に敷設されたガス管、上水管、下水管などの既設埋設管の液状化に伴う浮上りおよび浮上りと共に起こりうる埋設管の回転等を簡便かつ経済的に抑制できるようにしたものである。   The present invention relates to a liquefaction countermeasure method for an existing buried pipe by chemical injection, and is a ground that may be liquefied, and in particular, a ground having a non-liquefiable layer such as a gravel layer or a dense sand layer in a surface layer portion, or a surface layer Rotation of buried pipes that may occur along with levitation due to liquefaction of existing buried pipes such as gas pipes, water pipes, sewage pipes, etc. laid in the ground covered with asphalt pavement or concrete pavement, etc. Can be controlled easily and economically.

近年、地盤中に敷設されたガス管、上水管、下水管などの既設埋設管の地震時の液状化に伴う浮上りが大きな問題になっており、本発明はこのような既設埋設管の浮上りを薬液注入工法によって簡便かつ経済的に抑制できるようにしたものである。   In recent years, the floating due to liquefaction of existing buried pipes such as gas pipes, water pipes, and sewage pipes laid in the ground during an earthquake has become a major problem, and the present invention is about the floating of such existing buried pipes. Can be controlled easily and economically by the chemical injection method.

一般に、薬液注入による液状化対策工法は、凝固する性質の薬液を地盤の一定範囲に注入管を通して注入することにより、地盤の透水性を低下させ粘着力を付与して一体化したサンドゲル(注入材を土に浸透させ硬化させた固結体)を形成することにより、地盤中の水の流れを止めたり地盤の強度を増大させる方法であり、注入材には主として劇物やフッ素化合物を含まない水ガラス系薬液(主剤がケイ酸ナトリウム)が用いられる。   In general, the liquefaction countermeasure method by injecting chemical solution is a sand gel (injection material) that lowers the water permeability of the ground and gives adhesive strength by injecting a solidifying chemical solution into a certain range of the ground through an injection tube. This is a method to stop the flow of water in the ground or increase the strength of the ground by forming a solidified body that has penetrated into the soil and hardened, and the injection material does not contain deleterious substances or fluorine compounds. A water glass chemical (the main ingredient is sodium silicate) is used.

しかし、薬液注入工法は、液状化対策としての信頼性は高いものの高価であるため、特に重要建築物を支える基礎の耐震性の向上などでは広く用いられているが、既設埋設管の浮上低減策にはこれまであまり利用されていなかった。   However, since the chemical injection method is highly reliable as a countermeasure against liquefaction but is expensive, it is widely used to improve the seismic resistance of foundations that support important buildings. Has not been used so far.

というのも、液状化対策の必要な既設埋設管は非常に多いにもかかわらず、既設埋設管そのものが低価格であるため高価な薬液を利用するメリットが無いと考えられていたためである。   This is because, although there are a large number of existing buried pipes that need countermeasures against liquefaction, the existing buried pipes themselves are considered to have no merit of using expensive chemical solutions because they are inexpensive.

しかし、薬液注入工法は、比較的狭い作業スペースでも施工が可能なことや騒音の問題も小さいといった観点から、特に都市部や市街地では他の液状化対策工法に比べてメリットは十分にあることは確明らかである。また、公害性のないコロイダル系シリカグラウトのように安全で、しかも恒久性を期待できる注入材も開発されている現在、環境面での問題もクリアできている。   However, the chemical injection method has sufficient merit compared to other liquefaction countermeasure methods, especially in urban areas and urban areas from the viewpoint that construction is possible in a relatively small work space and noise problems are small. It is clear. In addition, an environment-friendly injection material that can be expected to be permanent, such as non-polluting colloidal silica grout, has been developed.

このため、既設埋設管の液状化対策として薬液注入工法を利用するか否かの最大の懸念事項はコストと作業性であり、この2点が解決できればその有用性は計り知れないといえる。   For this reason, the biggest concerns regarding whether or not to use the chemical solution injection method as a countermeasure for liquefaction of existing buried pipes are cost and workability. If these two points can be solved, the usefulness can be said to be immeasurable.

ところで、これまで地盤注入による既設埋設管の液状化対策工として、例えば特許文献1や特許文献2などに開示されており、特許文献1には既設埋設管の周辺地盤の延長をすべて高圧噴射工法で固結する方法が開示されている。   By the way, as a countermeasure against liquefaction of the existing buried pipe by the ground injection so far, for example, Patent Document 1 and Patent Document 2 are disclosed. In Patent Document 1, all the extension of the surrounding ground of the existing buried pipe is performed by the high pressure injection method. A method of consolidating with is disclosed.

また、特許文献2には、特に液状化の際に破壊しやすい埋設管の継手部(連結部)に固結支持体を形成して液状化に備える方法が開示されている。   Further, Patent Document 2 discloses a method for preparing for liquefaction by forming a solidified support at a joint portion (connecting portion) of an embedded pipe that is easily broken particularly during liquefaction.

また、上記問題を解決するために本出願人はすでに特願2013-135182を出願し、かつ作業性を高めて埋設管の上部付近から固結材を浸透流下して固結する発明特願2014-089735を出願している。本発明は特に埋設管の上部付近に固結体を形成してその重量によって埋設管の浮上りを防ぐ方法を更に発展させたものである。   In order to solve the above problems, the present applicant has already filed Japanese Patent Application No. 2013-135182, and has improved workability and invented the Japanese patent application 2014 for solidifying by osmotically flowing the consolidated material from the upper part of the buried pipe. -089735 has been filed. In particular, the present invention is a further development of a method of forming a consolidated body near the upper portion of the buried pipe and preventing the buried pipe from being lifted by its weight.

特開平7-300851JP 7-300851 A 特許第5156989号Japanese patent No.5156989 特許第4672693号Patent No.4672693 特許第3724644号Patent No. 3724644

最先端技術の薬液注入工法 理工図書 島田俊介外.平成7年10月31日(P.139図3.5、P151写真3.7(a)、P152写真3.8、写真3.9)State-of-the-art chemical solution injection method Riko Books Shunsuke Shimada October 31, 1995 (P.139 Figure 3.5, P151 Photo 3.7 (a), P152 Photo 3.8, Photo 3.9)

しかし、特許文献1に開示された方法は、既設埋設管の周辺地盤にその全長にわたって注入材を高圧噴射するため、大容量の注入材を必要としコストが嵩み、また工事終了まで相当の日数を要する等の課題がある。さらに、注入材の高圧噴射によって既設埋設管を破損するおそれもあった。   However, since the method disclosed in Patent Document 1 injects the injection material over the entire length around the existing buried pipe at a high pressure, it requires a large-capacity injection material, increases the cost, and requires a considerable number of days until the construction is completed. There is a problem such as requiring. Furthermore, the existing buried pipe may be damaged by the high-pressure injection of the injection material.

一方、特許文献2に開示された方法では、液状化の際に特に破壊しやすいとされる埋設管の継手部(連結部)を固結支持体で支持したとしても、液状化時の浮力が大きければ埋設管は浮上り破損してしまうおそれがあり、また、地盤中に埋設された既設埋設管を目視できないため、地盤中に数キロないし数十キロにもわたって埋設された既設埋設管の継手部にピンポイントで薬液を注入することは容易でない。   On the other hand, in the method disclosed in Patent Document 2, even if the joint portion (connecting portion) of the buried pipe, which is considered to be particularly easy to break during liquefaction, is supported by a solidified support, the buoyancy during liquefaction is high. If it is large, the buried pipe may be lifted and damaged, and since the existing buried pipe buried in the ground cannot be seen, the existing buried pipe buried several kilometers to several tens of kilometers in the ground. It is not easy to inject a chemical solution into the joint part of the pinpoint.

また、既設埋設管の継手部に薬液をピンポイントで注入して固結支持体を形成するといっても、固結支持体の形状や位置によっては周辺地盤の液状化に伴って既設埋設管が浮き上がった際、既設埋設管に偏芯荷重によって回転力を付与し、そのために既設埋設管の継手部が外れたりあるいは既設埋設管が破損してしまうおそれもあった。   In addition, even if it is said that a liquid support is formed by injecting a chemical solution into a joint portion of an existing buried pipe to form a consolidated support body, depending on the shape and position of the consolidated support body, the existing embedded pipe may be attached as the surrounding ground liquefies. When it floats, a rotational force is applied to the existing buried pipe by an eccentric load, which may cause the joint portion of the existing buried pipe to come off or the existing buried pipe to be damaged.

また、一般にガス管や上下水道管などの埋設管は、数キロないし数十キロにもわたって地盤中に敷設されており、また戸建て住宅が密集する分譲地などの住宅地においては、狭い敷地内を縫うように敷設されていることが多い。   In general, buried pipes such as gas pipes and water and sewage pipes are laid in the ground for several to several tens of kilometers. In residential areas such as condominiums where detached houses are densely packed, Often laid to sew inside.

このため、従来の薬液注入工法をそのまま埋設管の液状化対策に適用したのでは注入材の大量注入につながりかねない。また注入プラント等の注入設備を設置するスペースの問題や注入プラントを長距離区間移動させながら注入する必要があるため作業性に問題があるだけでなく、コストが嵩み経済性にも問題があった。   For this reason, applying the conventional chemical solution injection method as it is to the liquefaction countermeasures of the buried pipe may lead to a large amount of injection of the injection material. In addition, there is a problem of space for installing an injection facility such as an injection plant, and it is necessary to inject while moving the injection plant over a long distance section. It was.

さらに、これまでの薬液注入による既設埋設管の液状化対策工法では、埋設管の敷設されている一定領域、あるいは液状化によって特に破壊されやすい領域を単に注入材で固結することにより、支持力を増大させるという考えのもとに行われていたため、注入材が過剰に注入されやすくなり、このため既設埋設管の液状化対策を最小の注入量で経済的に行うことがきわめて困難であった。   Furthermore, the conventional liquefaction countermeasure method for existing buried pipes by injection of chemical solution has supported the bearing capacity by simply consolidating a fixed area where the buried pipe is laid or an area that is particularly susceptible to destruction by liquefaction with an injection material. This was done based on the idea of increasing the flow rate, making it easier for the injection material to be injected excessively, making it extremely difficult to economically implement countermeasures for liquefaction of existing buried pipes with a minimum injection amount. .

また、ガス管や上下水道管などの埋設管の敷設された地盤が液状化するといっても、埋設管の敷設地盤の全体が液状化する場合と埋設管の埋戻し部のみが液状化し、その周辺地盤は特に液状化しない場合など、様々な形態の液状化地盤がある。   In addition, even if the ground where buried pipes such as gas pipes and water and sewage pipes are liquefied, the entire ground where the buried pipes are liquefied and only the backfill part of the buried pipes are liquefied. There are various forms of liquefied ground, especially when the surrounding ground is not liquefied.

このような地盤に対して最適な注入方法といっても様々な方向からのアプローチが可能であり、例えば、一カ所の注入量はどれくらいの量にすれば埋設管の浮上りを防ぎつつ、コストを最も低減することができるか、あるいは埋設管に対してどれだけの間隔をあけて固結体を形成するのがベストなのか、あるいは固結体をどのような形状に形成すれば地震時に安定であり、そのためにどのような手法によればよいのか等についてもあまり検討されていなかった。   The optimum injection method for such ground can be approached from various directions. For example, the amount of injection at one location should be set at a cost while preventing the underground pipe from rising. Can be reduced the most, or how far the best is to form a consolidated body with respect to the buried pipe, or what shape to form the consolidated body is stable during an earthquake Therefore, there has been little study on what kind of method should be used for that purpose.

また、埋設管の上面付近を中心として固結体を形成し、埋設管の重量を増大して地震時の浮力に抵抗する方法は作業性において簡便なように考えられるが地震時においては泥水中の固結体が地震力を受けて泥水中で変位して回転してしまい埋設管と一体化した形状を維持できなくなり、その結果埋設管が浮上り、或いは回転して液状化を防ぐことができなくなる(図5(a),(b))。   In addition, a method of forming a consolidated body around the upper surface of the buried pipe and increasing the weight of the buried pipe to resist buoyancy during an earthquake seems to be simple in terms of workability. As a result of the seismic force, the solid body is displaced and rotated in the muddy water, so that the shape integrated with the buried pipe cannot be maintained, and as a result, the buried pipe rises or rotates to prevent liquefaction. It becomes impossible (Fig. 5 (a), (b)).

本発明は、以上の課題を解決するためになされたもので、これまでの施工上のコスト面と施工性の問題を解消し、必要最小限の薬液注入量と労力によって液状化に伴う既設埋設管の浮上り等を最も効果的に抑制できるようにした既設埋設管の液状化対策工法を提供することを目的とするものである。   The present invention has been made to solve the above problems, solves the problems of construction cost and workability so far, and embeds existing burying due to liquefaction by the minimum amount of chemical injection and labor It is an object of the present invention to provide a liquefaction countermeasure method for an existing buried pipe that can most effectively suppress the floating of the pipe.

本発明は、液状化のおそれのある地盤のうち、特に地盤表層部に非液状化層、或いは地下水面より上の不飽和地盤等の非液状化層、あるいはアスファルト舗装などの覆工層を有する地盤内に敷設された既設埋設管の液状化対策工法の発明であり、埋設管の周囲に固結体を埋設管と一体にかつ埋設管の管軸方向に間隔を開けて複数形成することにより埋設管に重量を付与すると共に、前記固結体を埋設管の上部に位置する非液状化層または覆工層に定着して、液状化に伴う固結体の回転或いは変位を抑制し、これによって埋設管の浮上りを抑制することを特徴とするものである。   The present invention has a non-liquefiable layer on the ground surface layer portion, a non-liquefiable layer such as an unsaturated ground above the ground water surface, or a lining layer such as asphalt pavement, among the ground that may be liquefied. It is an invention of a liquefaction countermeasure method for existing buried pipes laid in the ground, and by forming a plurality of consolidated bodies around the buried pipe integrally with the buried pipe and at intervals in the tube axis direction of the buried pipe In addition to giving weight to the buried pipe, the solidified body is fixed to the non-liquefied layer or the lining layer located on the upper part of the buried pipe to suppress the rotation or displacement of the solidified body accompanying the liquefaction. Is to suppress the floating of the buried pipe.

本発明は、液状化のおそれのある地盤であって、特に地盤の表層部に砂礫層や密質砂層などの非液状化層、または地下水面より上の不飽和地盤等の非液状化層を有する地盤、あるいは表層部がアスファルト舗装やコンクリート舗装によって覆工された地盤の比較的浅い位置に敷設された埋設管の液状化対策に適している(図3(a),図10(a)〜(d)参照)。   The present invention is a ground that may be liquefied, and in particular, a non-liquefied layer such as a gravel layer or a dense sand layer or a non-liquefied layer such as an unsaturated ground above the groundwater surface is formed on the surface layer of the ground. It is suitable for liquefaction measures of buried pipes laid in a relatively shallow position of the ground that has the ground or the surface layer covered with asphalt pavement or concrete pavement (Fig. 3 (a), Fig. 10 (a) ~ (See (d)).

固結体は、埋設管の敷設された地盤中に複数の注入管を埋設管の管軸方向に間隔をあけて設置し、当該注入管を通して埋設管の周囲地盤中に注入材を注入し、当該注入材を埋設管の周囲に流下浸透させて、埋設管周囲の地盤を固結し、かつ地盤表層部の非液状化層または覆工層に定着させることにより容易に形成することができる(図3(a),図10(a)〜(d)参照)。   The consolidated body has a plurality of injection pipes installed in the ground where the buried pipes are laid, spaced apart in the tube axis direction of the buried pipes, and the injection material is injected into the surrounding ground of the buried pipes through the injection pipes. It can be easily formed by infiltrating the injection material around the buried pipe, solidifying the ground around the buried pipe, and fixing it to the non-liquefied layer or lining layer of the ground surface layer part ( (See FIG. 3 (a) and FIGS. 10 (a) to (d)).

注入材は、地盤中を流れに任せて流下浸透させて埋設管周囲の地盤中に注入することで(図13,図14参照)、これまでの高圧注入における埋設管の破損や変位などを防止することができる。   The injected material is allowed to flow through the ground and flow down into the ground around the buried pipe (see Figs. 13 and 14) to prevent damage and displacement of the buried pipe in conventional high-pressure injection. can do.

また、固結体は、注入管を設置する位置や深さにより埋設管周囲の上部、側部または底部の一または複数箇所に任意の形状、大きさに形成することができ、また、一つの注入地点に複数の注入管を設置することにより注入時間を短縮して固結体を短時間のうちに形成することができる(図10(d)参照)。   In addition, the solidified body can be formed in any shape and size at one or a plurality of locations around the buried tube, depending on the position and depth where the injection tube is installed. By installing a plurality of injection tubes at the injection point, the injection time can be shortened and a solidified body can be formed in a short time (see FIG. 10 (d)).

また、地盤表層部の非液状化層や覆工層よりかなり深い位置に埋設管が埋設されている場合は、前記固結体と非液状化層または覆工層との間に埋設管を下方に向けて支持するように支持体を形成すると共に、当該支持体を非液状化層または覆工層に定着することにより埋設管の浮上りを抑制することができる。   In addition, when the buried pipe is embedded at a position considerably deeper than the non-liquefied layer or the lining layer on the ground surface layer portion, the buried pipe is placed below the consolidated body and the non-liquefied layer or the lining layer. In addition to forming the support so as to support toward the surface, fixing the support to the non-liquefiable layer or the lining layer can suppress the floating of the buried pipe.

この場合、支持体の数量と間隔および固結体の重量と間隔を液状化に伴う固結体の回転或いは変位を抑制するように設定することにより、埋設管の浮上りを適切に抑制することができる。   In this case, by setting the number and interval of the supports and the weight and interval of the consolidated body so as to suppress the rotation or displacement of the consolidated body accompanying liquefaction, the floating of the buried pipe can be appropriately suppressed. Can do.

なお、支持体は、埋設管の周囲に固結体を形成するために挿入した注入管を固結体と表層部の非液状化層または覆工層との間に埋設するか(図1,2参照)、あるいは当該注入管を引き抜いた後の地盤中に形鋼などの鋼材または鉄筋を埋設する等の方法により形成することができる。   In addition, the support body is embedded between the solidified body and the non-liquefied layer or the lining layer of the surface layer portion of the injection pipe inserted to form a solidified body around the buried pipe (Fig. 1, 2), or by embedding a steel material such as a shape steel or a reinforcing bar in the ground after the injection pipe is pulled out.

また、支持体は、埋設管上部の一定領域の地盤を固結体から表層部の非液状化層または覆工層まで柱状に連続させて固結することにより形成することができ、さらに柱状に固結された中に注入管、あるいは鋼材や鉄筋などの棒状部材を挿入することにより支持体の強度を高めることができる(図12(a)〜(c)参照)。また、埋設管が表層部の非液状化層や覆工層に近い比較的浅い液状化地盤内に敷設されている場合、支持体は、既設埋設管の周囲に形成した固結体が非液状化層または覆工層に定着するように注入材を注入して形成してもよい(図10(a)〜(d)参照)。また、前記固結体が表層部の埋設管の上部に位置する非液状化層または覆工層に定着するように注入することにより、泥水中における液状化の際の地震動や浮力による固結体の回転や変状を抑制して埋設管の浮上りを防止することができる。   In addition, the support can be formed by continuously solidifying the ground in a certain area above the buried pipe in a column shape from the consolidated body to the non-liquefied layer or the covering layer of the surface layer portion. The strength of the support can be increased by inserting an injection tube or a rod-shaped member such as steel or reinforcing bar into the consolidated body (see FIGS. 12 (a) to 12 (c)). In addition, when the buried pipe is laid in a relatively shallow liquefied ground near the non-liquefied layer or the lining layer of the surface layer, the solidified body formed around the existing buried pipe is non-liquid. It may be formed by injecting an injection material so as to be fixed to the conversion layer or the lining layer (see FIGS. 10 (a) to 10 (d)). In addition, by injecting the solidified body so as to be fixed to the non-liquefied layer or the lining layer located above the buried pipe in the surface layer portion, the solidified body due to seismic motion or buoyancy during liquefaction in mud water It is possible to prevent the buried pipe from being lifted by suppressing the rotation and deformation.

定着に当っては所定の大きさの固結体を形成すると共に固結体の上部が埋設管の上部に位置する非液状化層中に達するように注入ポイントを位置せしめて注入するか、あるいは埋設管が液状化層中の深い位置にある場合、非液状化層まで引き上げながら固結体より小さい断面をもつ固結柱を非液状化層に位置せしめて一体化させる。   In fixing, a solidified body of a predetermined size is formed, and the injection point is placed so that the upper part of the solidified body reaches the non-liquefied layer located at the upper part of the buried pipe. When the buried pipe is at a deep position in the liquefied layer, the consolidated column having a smaller cross section than the consolidated body is positioned in the non-liquefied layer while being pulled up to the non-liquefied layer and integrated.

なお、液状化は地下水面下で起こるから地下水面より上部の地盤は非液状化層とみなすことができる。上記において非液状化層中の固結柱は、液状化層中の固結体と非液状化層又は覆工層を一体化して液状化においても固結体の形状を維持する支持体とみなすことができる。このようにすれば、経済的に安定した液状化対策が可能になる。   Since liquefaction occurs below the groundwater surface, the ground above the groundwater surface can be regarded as a non-liquefied layer. In the above, the solidified column in the non-liquefied layer is regarded as a support that maintains the shape of the solidified body even in liquefaction by integrating the solidified body in the liquefied layer and the non-liquefied layer or lining layer. be able to. In this way, an economically stable liquefaction countermeasure can be achieved.

この際、各固結体の重量と間隔および支持体の数量および間隔を液状化に伴う埋設管の浮上りや回転を抑制するように設定することができる(図3)。   At this time, the weight and interval of each consolidated body and the quantity and interval of the support can be set so as to suppress the floating and rotation of the buried pipe accompanying liquefaction (FIG. 3).

本発明者は、地表に非液状化層がある場合、非液状化層に固結部を定着することにより固結体の大部分が液状化層中にあっても地震時に固結体の形状が維持されて、浮上り量が大幅に低減されることを見出し本発明を完成した。   The present inventor, when there is a non-liquefied layer on the ground surface, by fixing the consolidated portion to the non-liquefied layer, the shape of the consolidated body at the time of an earthquake even if most of the consolidated body is in the liquefied layer Was found, and the present invention was completed.

埋設管にそって全面的に固結体を形成すれば液状化を防ぐことはすでに公知であるが、それではきわめて不経済となり、かつ施工性が悪い。それに対して、本発明は比較的小さな固結体を間隔をあけて埋設管と一体に形成することによって経済的に液状化を防ぐことができることを見出したものであるが、一方独立した小さな固結体は液状化の際、泥水中で地震動が作用するわけであるから埋設管の上部に固結体を形成して、その重量で液状化時の浮き上がりを防ぐ場合、充分な重量があっても容易に回転や変位を生じて埋設管を安定させることが困難になる。   Although it is already known that liquefaction can be prevented by forming a consolidated body entirely along the buried pipe, this is extremely uneconomical and poor in workability. On the other hand, the present invention has found that liquefaction can be prevented economically by forming a relatively small consolidated body integrally with the buried pipe at an interval. When the liquefaction is liquefied, seismic motion acts in the muddy water, so if you want to form a consolidated body on the upper part of the buried pipe and prevent the liquefaction from lifting due to its weight, there is enough weight. However, it becomes difficult to stabilize the buried pipe by causing rotation and displacement.

本発明は、このような問題を解決するものであって、埋設管の周囲に埋設管と一体の必要最小量の固結体を一または複数形成して埋設管に重量を付与し、さらに当該固結体と地盤表層部の砂礫層や密質砂層などの非液状化層、あるいはアスファルト舗装やコンクリート舗装などの覆工層との間に一または複数の支持体を形成して埋設管を下方に向かって支持することにより、地震時の液状化に伴う固結体の回転や変状を防ぎ、埋設管の浮上りや回転を抑制するものである。   The present invention solves such a problem, and forms one or a plurality of the necessary minimum amount of solidified body integral with the buried pipe around the buried pipe to give weight to the buried pipe. One or more supports are formed between the consolidated body and a non-liquefiable layer such as a gravel layer or a dense sand layer on the ground surface layer, or a lining layer such as asphalt pavement or concrete pavement, and the buried pipe is lowered below By supporting toward the surface, rotation and deformation of the solidified body due to liquefaction during an earthquake are prevented, and floating and rotation of the buried pipe are suppressed.

特に、固結体と地盤表層部の非液状化層または覆工層との間に埋設管を上から下方に支持するように支持体を形成することにより、単に液状化に伴う埋設管の浮上りを抑制できるだけでなく、液状化に伴う固結体の回転や変状が泥水中で生ずることを防ぎ、その結果埋設管の浮上りと共に起こりやすい埋設管の回転も防止することができる(図1(a),(b)〜図4参照)。   In particular, by forming a support so that the buried pipe is supported from the top to the bottom between the consolidated body and the non-liquefied layer or lining layer of the ground surface layer, the floating of the buried pipe simply due to liquefaction In addition to preventing the rotation of the solidified body due to liquefaction, it is possible to prevent the rotation and deformation of the solidified body from occurring in the muddy water. 1 (a), (b) to FIG. 4).

液状化に伴う埋設管の浮上りを抑制する目的で、埋設管の周囲に固結体を形成して埋設管に重量を付与することは、固結体の形成された位置や形状等により浮上りと同時に埋設管に回転を起こさせ(図5(a),(b)参照)、これがもとで埋設管が破損するおそれがあるが、固結体が地盤表層部の非液状化層や覆工層に定着するように注入したり、或いは埋設管の上面と一体化した固結体が埋設管の上部に位置する非液状化層や覆工層との間に埋設管を上から下方に向けて支持する支持体を形成することにより埋設管の回転を確実に防止することができる(図1,2,3参照)。   For the purpose of suppressing the floating of the buried pipe due to liquefaction, forming a consolidated body around the buried pipe and giving weight to the buried pipe will float depending on the position and shape of the consolidated body. At the same time, the buried pipe is rotated (see Figs. 5 (a) and 5 (b)), which may damage the buried pipe. Injected so as to be fixed on the lining layer, or the embedded body is integrated with the upper surface of the burying pipe. By forming the support body that supports toward the surface, the buried pipe can be reliably prevented from rotating (see FIGS. 1, 2, and 3).

固結体は、例えば液状化の可能性のある地盤中の埋設管の上部地盤中に注入管を挿入し、当該注入管を通して地盤中に注入材を注入することにより埋設管上部の地盤を一定範囲固化させて形成することができる。   For example, by inserting an injection pipe into the upper ground of the buried pipe in the ground where there is a possibility of liquefaction, and then injecting the injected material into the ground through the injection pipe, the solidified body is fixed to the ground. It can be formed by solidifying the range.

注入管を回収しないで地盤中に埋設し、かつ注入管の上端部を地盤表層部の非液状化層または覆工層にセメント等の固化材によって定着することにより支持体とすることができる(図1(a)(b)、図2,4参照)。   The injection tube is buried in the ground without being recovered, and the upper end portion of the injection tube is fixed to the non-liquefied layer or the lining layer of the ground surface layer portion with a solidifying material such as cement to form a support ( Fig. 1 (a) (b), Fig. 2 and 4).

また、埋設管の敷設された地盤が特に液状化の恐れの高い地盤にあっては、各注入地点に複数の注入管を埋設管の管軸直角方向に間隔をおいて挿入し、当該複数の注入管を通して地盤中に注入材をすることにより、埋設管上部の地盤を埋設管の管軸直角方向に一定領域固化して固結体を形成し、かつ複数の注入管を埋設管上部の地盤中に埋設して支持体とすることにより、固結体を非液状化層或いは地盤表面部に定着させ埋設管の浮上りと回転をより確実に抑制することができる(図1,2,3参照)。   In addition, when the ground where the buried pipe is laid is particularly high in the ground where liquefaction is likely to occur, a plurality of injection pipes are inserted at intervals in the direction perpendicular to the pipe axis of the buried pipe. By injecting material into the ground through the injection pipe, the ground at the top of the buried pipe is solidified in a certain area in the direction perpendicular to the pipe axis of the buried pipe to form a consolidated body, and a plurality of injection pipes are ground at the top of the buried pipe. By embedding in the inside as a support, the solidified body can be fixed to the non-liquefied layer or the surface of the ground, and the floating and rotation of the buried pipe can be more reliably suppressed (Figs. 1, 2, and 3). reference).

なお、固結体を形成する位置は、必ずしも埋設管上部の地盤中に限られるものではなく、注入材の注入地点と注入量により埋設管の側部または底部のいずれの場所に任意の大きさに形成することができる。   The position where the consolidated body is formed is not necessarily limited to the ground in the upper part of the buried pipe, but may be of any size on the side or bottom of the buried pipe depending on the injection point and the injection amount of the injected material. Can be formed.

支持体も、必ずしも注入管である必要はなく、注入管を引き抜いた後の地盤中に鉄筋や鋼材、あるいはプラスチックなどの棒状部材を挿入して支持体としてもよい。さらに、注入管を徐々に引き抜きながら固結体の上部地盤中に注入材を注入して、固結体と地盤表層部の非液状化層または覆工層との間を固結して支持体としてもよい(図3(a),(b),(c)参照)。   The support is not necessarily an injection tube, and a rod-shaped member such as a reinforcing bar, a steel material, or plastic may be inserted into the ground after the injection tube is pulled out. Further, the injection material is injected into the upper ground of the consolidated body while gradually pulling out the injection tube, and the support is formed by consolidating between the consolidated body and the non-liquefied layer or lining layer of the ground surface layer portion. (See FIGS. 3A, 3B, and 3C).

いずれの場合も、各固結体の重量と間隔および支持体の数量および間隔を液状化に伴う埋設管の浮上りと回転を抑制するように設定すればよい。これらの支持体は、固結体よりも断面が小さく、作業性もよく経済性を損なうものではない。   In any case, the weight and interval of each consolidated body and the number and interval of supports may be set so as to suppress the floating and rotation of the buried pipe accompanying liquefaction. These supports have a smaller cross section than the consolidated body, have good workability, and do not impair the economy.

注入材には、シリカグラウト溶液(コロイダルシリカ系グラウト、シリカゾル系グラウト、水ガラス系グラウト)、粘土、気泡、セメントまたはスラグ等の一または複数を有効成分とする注入材を単独または複数併用して利用することができる。   For the injection material, one or more injection materials containing one or more of silica grout solution (colloidal silica-based grout, silica sol-based grout, water glass-based grout), clay, bubbles, cement or slag as active ingredients are used. Can be used.

よって、本発明によれば、埋設管の周囲を埋設管の管軸方向に連続して固結しなくても、埋設管の周囲に一定量の固結体を埋設管の管軸方向に間隔を開けて複数形成すると共に、固結体と地盤表層部の非液状化層または覆工層との間に支持体を形成することにより、あるいは固結体の上部を非液状化層に定着させて(図3(a)、図9、図10(a)参照)液状化に伴う埋設管の浮上りと回転を容易に抑制することができる。   Therefore, according to the present invention, even if the periphery of the buried pipe is not continuously consolidated in the tube axis direction of the buried tube, a certain amount of the consolidated body is spaced around the buried tube in the tube axis direction of the buried tube. And forming multiple supports and forming a support between the consolidated body and the non-liquefied layer or lining layer of the ground surface layer, or fixing the upper part of the consolidated body to the non-liquefied layer. (See FIGS. 3 (a), 9, and 10 (a)), the floating and rotation of the buried pipe accompanying liquefaction can be easily suppressed.

また、予想される液状化の程度、埋設管の径や重量などに応じて、固結体の重量と間隔および支持体の数量と間隔を適切に設定することにより、埋設管の浮上りと回転をきわめて効果的に抑制することができる。   In addition, depending on the expected degree of liquefaction, the diameter and weight of the buried pipe, the weight and interval of the consolidated body and the quantity and interval of the support are set appropriately, thereby raising and rotating the buried pipe. Can be suppressed very effectively.

さらに、数キロないし数十キロにもわたって敷設された供用中の上水管や下水管、あるいはガス管などのライフラインに、固結体を埋設管に沿って間隔をあけながら少量ずつ形成することは、注入プラントの移動や施工性、さらには正確な施工管理を必要とすることを考えると、経済性が得られない等の問題があるが、埋設管の管軸方向に間隔を開けて複数の注入管を設置して一または複数の注入ラインを配置し、この注入ラインを通して複数の地点に注入材を同時注入して複数の固結体を埋設管の管軸方向に間隔を開けて形成することにより、数キロないし数十キロにもおよぶライフラインであっても、供用しながら液状化対策工をきわめて迅速にかつ効率的に、さらにきわめて経済的に行うことができる。また、埋設管の状態と注入設計と施工法、施工管理を一体として行うことによりきわめて経済的な液状化対策を行うことができる。   In addition, in a lifeline such as a water pipe, sewage pipe, or gas pipe that is laid for several to several tens of kilometers, a solid body is formed little by little along the buried pipe. However, considering the need to move the injection plant, workability, and accurate construction management, there are problems such as inefficiency, but there is a gap in the tube axis direction of the buried pipe. Install multiple injection pipes and place one or multiple injection lines, and simultaneously inject injection material to multiple points through the injection lines to separate the multiple consolidated bodies in the tube axis direction of the buried pipe. By forming it, even if it is a lifeline of several kilometers to several tens of kilometers, the liquefaction countermeasure work can be performed very quickly and efficiently and even more economically while being used. In addition, a very economical liquefaction measure can be taken by integrating the state of the buried pipe, injection design, construction method and construction management.

また、本発明者は、埋設管の周囲に比較的小径の固結体を埋設管と一体かつ埋設管の管軸方向に間隔を開けて形成して埋設管の重量を増大させて液状化を防止するに際してのいくつかの課題を本発明によって解決した。   In addition, the present inventor has formed a relatively small-diameter solidified body around the buried pipe so as to be integrated with the buried pipe and spaced in the tube axis direction of the buried pipe to increase the weight of the buried pipe and liquefy it. The present invention has solved several problems in preventing it.

即ち、埋設管の上部に注入材を単に注入して埋設管の周囲を埋設管と一体に固結して重量を大きくしても、固結体の形状や大きさ等によっては重心が高くなり、埋設管の底部や側面部の液状化に伴う浮上りの途中で埋設管が回転して埋設管の継手部が外れたり、あるいは埋設管自体が破損するおそれがある。   That is, even if the injection material is simply injected into the upper part of the buried pipe and the surrounding area of the buried pipe is solidified integrally with the buried pipe to increase the weight, the center of gravity increases depending on the shape and size of the consolidated body. There is a possibility that the buried pipe may be rotated in the middle of rising due to the liquefaction of the bottom and side parts of the buried pipe and the joint portion of the buried pipe may be detached, or the buried pipe itself may be damaged.

或は、固結体自身が回転して液状化した地盤の中で落ち込んだり個々の固結体が液状化の際に地震動によって異なった挙動を示し、埋設管が回転してしまうことがある。   Alternatively, the consolidated body itself may fall in the ground that has been liquefied by rotation, or individual consolidated bodies may behave differently due to seismic motion during liquefaction, and the buried pipe may rotate.

これを防ぐには、埋設管と一体化した固結体の重心が下方になるように埋設管周囲の地盤を浸透固結させることが好ましい。またこのために、埋設管の近傍を底部や側面迄掘削して注入管を設置して注入液を注入して固結体を側面や底部に形成する必要があるが、その場合誤って埋設管を破損してしまうおそれがある。   In order to prevent this, it is preferable to permeate and solidify the ground around the buried pipe so that the center of gravity of the solidified body integrated with the buried pipe is downward. For this reason, it is necessary to excavate the vicinity of the buried pipe to the bottom or side, install the injection pipe, and inject the injection solution to form a solidified body on the side or bottom. May be damaged.

埋設管が破損すると、供用中の埋設管は使用不能に陥り、場合によっては埋設管内に地下水が流入したり、あるいは埋設管内の液体(上下水道等)や気体(ガス等)が周囲の土中や地上に吹き出す等の危険なトラブルに見舞われることがある。   If the buried pipe is damaged, the buried pipe that is in service will become unusable, and in some cases, groundwater will flow into the buried pipe, or liquid (such as water and sewage) and gas (gas, etc.) in the buried pipe will be in the surrounding soil. You may be faced with dangerous troubles such as blowing on the ground.

本発明は、以上の課題を解決するためになされたもので、ガス管、下水管、上水管、電信電話線などの線状に延びるライフラインを供用しながら液状化対策工を安全かつ効果的に行うことを可能にしたものである。   The present invention has been made to solve the above-described problems. A liquefaction countermeasure work can be safely and effectively performed using a lifeline extending in a linear shape such as a gas pipe, a sewer pipe, a water pipe, and a telephone line. It is possible to do it.

更に本発明は、液状化が予想される地盤内に設置された既設埋設管の周辺部に注入材を注入しておこなう既設埋設管の液状化対策工法であって、複数の注入管を前記埋設管の管軸方向に間隔をあけて設置し、当該注入管を通じて地盤中に注入材を注入し、埋設管の周辺部を流下浸透させることにより、埋設管の上部、側部および/または底部に埋設管の周辺土(埋戻し土含む)からなる固結体を埋設管の管軸方向に間隔をあけ、かつ埋設管と一体に形成して既設埋設管の重量を増大させ、かつ埋設管上部の固結体を表層部のの非液状化層、あるいは覆工層に定着さることにより、施工が簡便でかつ安全に、しかも経済的に液状化に伴う埋設管の浮き上りを抑制することを特徴とするものである(図8〜13参照)。   Furthermore, the present invention relates to a liquefaction countermeasure method for an existing buried pipe, which is performed by injecting an injection material into a peripheral portion of an existing buried pipe installed in the ground where liquefaction is expected, and a plurality of injection pipes are embedded in the buried pipe Installed at intervals in the pipe axis direction of the pipe, injecting the injected material into the ground through the injection pipe, and flowing down the perimeter of the buried pipe, the top, side and / or bottom of the buried pipe The solidified body consisting of the soil surrounding the buried pipe (including backfilled soil) is spaced apart in the tube axis direction of the buried pipe and formed integrally with the buried pipe to increase the weight of the existing buried pipe, and the upper part of the buried pipe By fixing the solidified body to the non-liquefied layer or the lining layer of the surface layer part, it is easy and safe to construct, and economically suppresses the floating of the buried pipe accompanying liquefaction. It is a characteristic (see FIGS. 8 to 13).

本発明者は、以下の薬液注入の地盤中における浸透の挙動を利用することにより上記目的を解決したものである。   The present inventor has solved the above-mentioned object by utilizing the permeation behavior in the ground of the following chemical solution injection.

注入圧力と注入速度に関するもっとも基本的な浸透式としては、Maagによって以下の式1が提示されているが、この式.1はダルシーの法則から導きだされたものである(上記非特許文献1「最先端技術の薬液注入工法」平成3年6月10日発行 島田俊介・佐藤武・多久実 共著 理工図書)。   As the most basic osmotic equation regarding the injection pressure and the injection rate, Maag proposes the following equation 1, which is derived from Darcy's law (Non-Patent Document 1 above). "State-of-the-art chemical injection method" published on June 10, 1991 by Shunsuke Shimada, Takeshi Sato, and Minoru Taku (Science and Engineering Books).

Figure 2016017341
Figure 2016017341

図7のグラフは、Maagの式における注入時間と浸透半径の関係を示したものであり(非特許文献1 P139.図3.5)、地下水圧が一様な地盤では、注入材は一般に球状に浸透していくと考える(上記非特許1文献P.137)。   The graph in Fig. 7 shows the relationship between the injection time and the penetration radius in the Maag equation (Non-patent Document 1, P139, Fig. 3.5). In the ground where the groundwater pressure is uniform, the injection material generally penetrates in a spherical shape. (Non-Patent Document 1 P.137).

一般に、浸透注入は図7に図示するように所定領域を固結するように行われる(上記非特許文献1 P.151写真3.6(a))。ところで、ゲル化時間が長いと注入時にはほぼ上記浸透理論に沿って球状に固結したものが注入完了後注入薬液は地下水よりも重いため下方に流下して浸透固結する(上記非特許文献1 P.152写真3.8、3.9 註:写真中の丸い物はストップウォッチである)。これは注入としては失敗と考えられている。   In general, osmotic injection is performed so as to consolidate a predetermined region as shown in FIG. 7 (Non-patent Document 1, P.151, Photo 3.6 (a)). By the way, when the gelation time is long, what is solidified in a spherical shape substantially in accordance with the permeation theory at the time of injection is injected and the injectable drug solution is heavier than the ground water, so it flows downward and permeates and solidifies (Non-Patent Document 1). P.152 Photo 3.8, 3.9 Note: The round object in the photo is a stopwatch. This is considered a failure as an injection.

これより注入材の注入時間より土中におけるゲル化時間を長く設定することにより、注入後の注入材は地盤中を流下浸透し、鉛直方向に長軸を有する固結体を形成することが判る(図12参照)。あるいは、上層が水平方向に異なる透水性で積層している場合は水平方向に固結体を形成する。   From this, it can be seen that by setting the gelation time in the soil longer than the injection time of the injection material, the injection material after injection flows down into the ground and forms a consolidated body having a long axis in the vertical direction. (See Figure 12). Alternatively, when the upper layer is laminated with different water permeability in the horizontal direction, a consolidated body is formed in the horizontal direction.

そこで、本発明者は、上記非特許文献1 P152 写真3.8、3.9の浸透流下固結の特性を利用することに着目して薬液注入における注入時間、ゲル化および固結体の形状等の研究を行った結果、注入時間よりも土中ゲル化時間が長い注入材を注入した場合或は土中における注入液の浸透先端部のゲル化時間が注入完了後も流動性を維持している場合、図9の(a)→(b)→(c)の過程をへて所定の注入量の注入後も下方に流下して固結体を形成することを埋設管の液状化防止に利用する事により上記課題を解決できることに想到した。   Therefore, the present inventor has studied the injection time, gelation, and the shape of the consolidated body in chemical solution injection, paying attention to the use of the characteristics of solidification under osmotic flow in Non-Patent Document 1 P152 Photo 3.8 and 3.9. As a result, when injecting an injection material whose gelation time in the soil is longer than the injection time or when the gelation time of the infiltration tip of the injection solution in the soil maintains fluidity even after completion of the injection, The process of (a) → (b) → (c) in FIG. 9 is used to prevent the buried pipe from liquefying by forming a consolidated body by flowing downward after the injection of a predetermined injection amount. Thus, the inventors have conceived that the above problem can be solved.

液状化を生じやすい地盤では非液状化層にくらべて密度がゆるく透水性が大きいため当然このような現象はおきやすい。またこのような手法によれば固結体の形状を重心が下方に位置するように浸透固結することができる。   Naturally, such a phenomenon is likely to occur in the ground where liquefaction is likely to occur because the density is lower and the water permeability is higher than that of the non-liquefied layer. Further, according to such a technique, the shape of the consolidated body can be infiltrated and consolidated so that the center of gravity is located below.

この地盤中における薬液の流下浸透固結範囲内に埋設管を含むように上記薬液を流下浸透注入すれば(図10,11,12参照)、注入管の削孔深度が底面や側面迄到らなくても埋設管の上部、側部または下部に固結体を形成できることに着目して本発明を完成させた。   If the above chemical solution is poured into the ground so that the embedded tube is included in the infiltration consolidation range of the chemical solution in this ground (see Figs. 10, 11, and 12), the drilling depth of the injection tube reaches the bottom and sides. The present invention has been completed by paying attention to the fact that a consolidated body can be formed on the upper part, side part or lower part of the buried pipe without this.

また、埋設管が地盤表層部の非液浄化層に近い比較的浅い位置に敷設されているような場合は、固結体をその上端部が非液状化層内に定着するように形成することにより、簡便にかつ安全に安定した固結体で埋設管の地震時等における浮上りを防止することができる (図3(a),図10(a)〜(d)参照)。   Also, if the buried pipe is laid at a relatively shallow position near the non-liquid purification layer on the ground surface layer, the consolidated body should be formed so that its upper end is fixed in the non-liquefied layer. Therefore, it is possible to prevent the buried pipe from rising during an earthquake or the like with a simple, safe and stable consolidated body (see FIGS. 3 (a) and 10 (a) to (d)).

また、埋設管が比較的深い位置に敷設されているような場合は、固結体の上部地盤の一定領域を上下方向に連続する柱状に固結すると共に、その下端部を固結体と連続させ、かつ上端部を非液状化層内に定着させて支持体としてもよい(図3(b),(c)、図12(a),(b),(c)参照)。   In addition, when the buried pipe is laid at a relatively deep position, a certain area of the upper ground of the consolidated body is consolidated into a column shape continuous in the vertical direction, and its lower end is continuous with the consolidated body. In addition, the upper end may be fixed in the non-liquefied layer to form a support (see FIGS. 3 (b), (c), FIGS. 12 (a), (b), (c)).

さらに、支持体13内に固結体12および支持体13を形成するために用いた注入管2を挿入するか、あるいは注入管とは別に鉄筋や鋼材などを挿入して支持体13を補強することもできる。この場合、これらの部材の先端は固結体12内に、上端は非液状化層およびアスフゥルト舗装11内に定着するのが望ましい(図12(a),(b),(c)参照)。   Furthermore, the injection tube 2 used for forming the consolidated body 12 and the support body 13 is inserted into the support body 13, or a reinforcing bar or steel material is inserted separately from the injection tube to reinforce the support body 13. You can also In this case, it is desirable that the tips of these members are fixed in the solidified body 12, and the upper ends are fixed in the non-liquefied layer and the asphalt pavement 11 (see FIGS. 12 (a), (b), and (c)).

このようにすれば、埋設管周辺部の削孔の安全を保って施工できるし、又埋設管と一体となった固結体を形成することが出来るし、低圧浸透注入により地盤の変状がさけられ従って埋設管が破損したり変状を生じたりしなくてすむ。勿論施工も容易になる。   In this way, construction can be performed while maintaining the safety of drilling around the buried pipe, and a solid body integrated with the buried pipe can be formed. Therefore, the buried pipe is not damaged or deformed. Of course, construction is also easy.

特に、該埋設管のように非液状化地盤を掘削して設置したあと埋め戻し地盤などの液状化しやすいゆるい地盤では、又埋設管下方に非液状化層があると薬液は下方に広がるように浸透固化する傾向にあるため、ゲル化時間を保ち流動性を持続しながら下方に徐々に広がって地震等にも安定した固結体を形成しうる(図9(c)参照)。   In particular, in the case of loose ground such as backfill ground after excavating and installing non-liquefied ground like the buried pipe, the chemical solution will spread downward if there is a non-liquefied layer below the buried pipe Since it tends to permeate and solidify, it can gradually spread downward while maintaining the gelation time and maintain fluidity, and can form a solidified body that is stable against earthquakes and the like (see FIG. 9 (c)).

また、薬液の注入は、各注入地点において原則一本の注入管により行うことが可能であり(一点注入 図10(a),(b)参照)、必要により一注入地点において複数の注入管を用いることも可能である(二点注入 図10(c)、図12(c)参照)。   In addition, it is possible to inject a chemical solution with a single injection tube in principle at each injection point (see Figure 10 (a) and (b)). If necessary, multiple injection tubes can be connected at one injection point. It is also possible to use (see two-point injection, FIG. 10 (c), FIG. 12 (c)).

また、注入材は、注入管を埋設管の上部に設置して埋設管の上部にのみ流下浸透させる場合、埋設管の上部および上部から埋設管の側方にかけて連続して流下浸透させる場合、また、注入管を埋設管の側方に設置して埋設管の側方にのみ流下浸透させる場合、埋設管の側方および埋設管の側方から埋設管の底部にかけて連続させて流下浸透させる場合がある。   In addition, when the injection pipe is installed at the upper part of the buried pipe and allowed to flow down and penetrate only into the upper part of the buried pipe, the injected material is allowed to flow down and penetrate continuously from the upper part and upper part of the buried pipe to the side of the buried pipe, or When the injection pipe is installed on the side of the buried pipe and allowed to flow down and penetrate only to the side of the buried pipe, it may be continuously penetrated from the side of the buried pipe and the side of the buried pipe to the bottom of the buried pipe. is there.

さらに、注入管を埋設管の上部に設置して埋設管の上部、埋設管の上部から埋設管の側方、さらに埋設管の側方から底部にかけて連続させて流下浸透させる場合がある。また、注入管を埋設管の底部まで挿入して埋設管の底部および埋設管の底部から下方の一定範囲かけて連続して流下浸透させることもできる。   Further, there is a case where the injection pipe is installed on the upper part of the buried pipe and is continuously permeated down from the upper part of the buried pipe, from the upper part of the buried pipe to the side of the buried pipe, and further from the side of the buried pipe to the bottom part. It is also possible to insert the injection tube up to the bottom of the buried tube and continuously infiltrate it down from the bottom of the buried tube and the bottom of the buried tube over a certain range below.

いずれの方法を採用するかは、埋設管の大きさ(外径)や周辺地盤の性状などにより最適な方法を選択すればよい。   Which method is to be adopted may be selected according to the size (outer diameter) of the buried pipe and the properties of the surrounding ground.

図12(b)は、二点注入により埋設管の上方注入管から注入液を浸透流下させて埋設管の上部に固結体を形成して埋設管と一体化した例を示す。埋設管の削孔は埋設管に到らないので埋設管の損壊の心配はない。   FIG. 12 (b) shows an example in which the infusion is permeated down from the upper injection pipe of the buried pipe by two-point injection to form a consolidated body on the upper part of the buried pipe and integrated with the buried pipe. Since the drilling of the buried pipe does not reach the buried pipe, there is no risk of the buried pipe being damaged.

また、ゲル化時間の長い注入液を小さい吐出速度で注入して注入後も注入液が流下浸透固結する事により埋設管上部に液状化に際しての浮力に充分耐えるだけの重さの固結体を形成できる。   In addition, an infusion solution with a long gelation time is injected at a low discharge speed. Can be formed.

また、埋設管は比較的地表面の浅い深度に位置しており、通常の注入では注入液は地表面に逸出するか、或いは注入速度が大きいと地盤が変位して埋設管が変状する(図27参照)。それに対し本発明は、後述する図28〜図37のように低吐出速度で同時注入、或いは連続注入して低圧で急速施工することで上記問題を解決することができる。   In addition, the buried pipe is located at a relatively shallow depth on the ground surface. In normal injection, the injected liquid escapes to the ground surface, or if the injection speed is high, the ground is displaced and the buried pipe is deformed. (See Figure 27). On the other hand, the present invention can solve the above problem by performing simultaneous injection at a low discharge speed or continuous injection at a low pressure as shown in FIGS.

ここに、土中ゲル化時間とは地上部における配合時のゲル化時間ではなく地盤中に浸透している土中のゲル化時間をいう。注入液は地盤中において注入液のpH、土のpHや組成による影響を受けるため地上部におけるゲル化時間とは異なってくる。このため、採取土を用いて注入液と混合して土中ゲルタイムを測定する。   Here, the gelation time in the soil refers to the gelation time in the soil penetrating into the ground, not the gelation time at the time of blending in the above-ground part. Since the injection solution is affected by the pH of the injection solution, the pH of the soil and the composition in the ground, it differs from the gelation time on the ground. For this reason, it mix | blends with an injection liquid using collection soil, and measures the gel time in soil.

あるいは、例えば1mの長さのビニールパイプに現場採取土砂を所定の密度で填充し注入液を注入し先端部から流出した注入液のゲルタイムを測定して土中における浸透先端部のゲルタイムを測定して注入液の配合を設定することができる。このようにすれば注入完了時にも注入液がゲル化を有しながらどれだけの流動性を維持しているかが判る。   Or, for example, a 1m long vinyl pipe is filled with soil collected from the site at a predetermined density, the injection solution is injected, the gel time of the injection solution flowing out from the tip is measured, and the gel time of the infiltration tip in the soil is measured. The composition of the injection solution can be set. In this way, it can be seen how much fluidity of the injected liquid maintains gelation even when the injection is completed.

このように本発明において、注入液を地盤中で流下浸透固化させて既設埋設管を包含させた状態で固結することにより注入材の注入に際し、埋設管の周辺に地上から挿入した注入管を通じて埋設管上部の地盤中に注入材を注入し、埋設管の上部、側方および/または底部に注入材を流下浸透させて埋設管と一体の固結体を形成して既設埋設管の重量を増大させることにより液状化に伴う埋設管の浮き上りを抑制することができる。   As described above, in the present invention, the injection liquid is solidified in the ground by osmosis and solidification in the ground so that the existing embedded pipe is included, and when the injection material is injected, through the injection pipe inserted from the ground around the embedded pipe. The injection material is injected into the ground at the top of the buried pipe, and the injected material flows down into the top, sides and / or bottom of the buried pipe to form a solid body integrated with the buried pipe to reduce the weight of the existing buried pipe. By increasing it, the floating of the buried pipe accompanying liquefaction can be suppressed.

また、埋設管と一体化した固結体の重心が注入前の埋設管の重心よりも下方向に位置するように形成することにより、液状化時の埋設管の浮上りや回転やねじれ等を防止することもできる(図12参照)。   Also, by forming the center of gravity of the consolidated body integrated with the buried pipe so that it is located below the center of gravity of the buried pipe before injection, the buried pipe is prevented from floating, rotating, twisting, etc. during liquefaction. (See FIG. 12).

また、薬液の注入時間よりも土中におけるゲル化時間を長くすることにより、または薬液の先端部の浸透先端部のゲル化時間が注入完了時においても流動性が持続されるように注入することにより埋設管の側方および下方に注入材を流下浸透固結させて、埋設管と一体化した液状化時にも安定した形状の固結体を形成することができる。   In addition, by making the gelation time in the soil longer than the injection time of the chemical solution, or injecting so that the fluidity is maintained even when the injection is completed, Thus, the injected material is allowed to flow down and solidify to the side and below the buried pipe, so that a solid body having a stable shape can be formed even during liquefaction integrated with the buried pipe.

さらに、埋設管の周辺部に形成する固結体の大きさ、重量、各固結体どうしの間隔、さらには固結体ひとつの固結領域に注入する薬液量と当該薬液の注入によって形成される固結体の形状や固結体体積、さらには薬液の注入時間、注入速度およびゲル化時間を設定することにより、埋設管の周辺地盤の性状等に応じて最適形状、最適大きさ、最適重量の固結体を埋設管と一体に形成することにより、液状化に伴う既設埋設管の浮き上りを抑制することができる。   Furthermore, it is formed by the size and weight of the consolidated body formed in the peripheral portion of the buried pipe, the interval between the consolidated bodies, and the amount of the chemical solution to be injected into one consolidated region and the injection of the chemical solution. By setting the shape of the solidified body and the volume of the solidified body, as well as the injection time, injection speed and gelation time of the chemical solution, the optimal shape, optimal size and optimal By forming the heavy solid body integrally with the buried pipe, it is possible to suppress the floating of the existing buried pipe accompanying liquefaction.

図13は、一点注入により埋設管の上部に固結体を形成して埋設管の重量を増大させることにより、埋設管の液状化に伴う浮上りを抑制する方法を図示したものであり、この場合、埋設管の両側に固結体が対称に広がるように注入材を注入することで、埋設管の浮上りに伴う回転等を防止することができる。   FIG. 13 illustrates a method for suppressing floating due to liquefaction of the buried pipe by forming a consolidated body at the top of the buried pipe by one point injection to increase the weight of the buried pipe. In this case, by injecting the injection material so that the consolidated body spreads symmetrically on both sides of the buried pipe, it is possible to prevent rotation or the like accompanying the floating of the buried pipe.

また、図14は、二点注入により埋設管の両側部に固結体を形成して埋設管の重量を増大させることにより、埋設管の液状化に伴う浮上りを抑制する方法を図示したものであり、この場合、両側の固結体が対称に拡径するように2点で注入材を注入することで、埋設管の重量を効率的に増大させることができて、埋設管の浮上りに伴う回転等をより確実に防止することができる。   FIG. 14 also illustrates a method of suppressing floating due to liquefaction of the buried pipe by forming a consolidated body on both sides of the buried pipe by two-point injection to increase the weight of the buried pipe. In this case, it is possible to efficiently increase the weight of the buried pipe by injecting the injection material at two points so that the consolidated bodies on both sides are symmetrically expanded in diameter. It is possible to more reliably prevent the rotation and the like associated with.

また、一般にガス管、上水管、下水管などの埋設管は、本来液状化しにくい地盤を溝状に掘削した中に敷設された後、掘削土によって埋め戻される。このため、埋設管上部の埋め戻し土はゆるく液状化しやすいが、埋設管上部の地盤中に薬液を注入することにより、薬液は埋設管の両側部および下方の埋め戻し土内およびその外側の非液状化地盤内を流下浸透して固結体を形成する。その際特に、埋め戻し土とその外側の非液状化地盤の一定範囲が一体化された固結体を形成するため(図11(a),(b)破線参照)、非液状化地盤のアンカー効果により埋設管の浮上り抑制効果はきわめて大きい。   In general, buried pipes such as gas pipes, water pipes, and sewage pipes are laid while excavating the ground that is not easily liquefied into grooves, and then backfilled with excavated soil. For this reason, the backfill soil at the upper part of the buried pipe is loose and easy to liquefy.However, by injecting the chemical solution into the ground above the buried pipe, It permeates through the liquefied ground to form a consolidated body. In particular, in order to form a consolidated body in which a certain range of backfill soil and non-liquefied ground outside it is integrated (see dashed lines in Fig. 11 (a) and (b)), anchors of non-liquefied ground Due to this effect, the effect of suppressing the floating of buried pipe is extremely large.

さらに、複数の注入管を埋設管の管軸方向に間隔を開けて設置し(図12(a),(b),(c)参照)、複数の注入地点に薬液を連続して、あるいは同時に注入して各注入地点における固結体を急速に形成することにより、ガス管、下水管、上水管、電信電話線などのように数キロないし数十キロにもわって線状に延びるライフラインの液状化対策を、埋設管を供用しながらきわめて効率的かつ効果的に行うことができる。特に、図12(c)に図示するように一注入地点において二本の注入管による二点注入を行うことによりその効果は倍増する。   Furthermore, a plurality of injection pipes are installed at intervals in the tube axis direction of the buried pipe (see FIGS. 12 (a), (b), (c)), and chemical solutions are continuously or simultaneously supplied to the plurality of injection points. By injecting and rapidly forming a consolidated body at each injection point, lifelines that extend in a line over several kilometers to several tens of kilometers, such as gas pipes, sewer pipes, water pipes, and telephone lines Measures for liquefaction can be performed very efficiently and effectively while using buried pipes. In particular, the effect is doubled by performing two-point injection with two injection tubes at one injection point as shown in FIG.

本発明における固結体の形成は、主に薬液の浸透範囲およびゲル化時間と大きく関係しており、薬液注入における薬液の浸透範囲とゲル化時間の関係に関しては、浸透範囲はゲル化時間のほかに注入圧力、注入速度、注入量、注入時間、注入孔の有口径、注入方式および地盤の透水係数、間隙率、空隙の発達状況、注入材の粘性などが相互に関連し、これらを地盤の性状に合わせて適宜値に設定することにより既設埋設管の周囲に粒子間浸透により最適大、最適形状の固結体を形成することができる。   The formation of the solidified body in the present invention is largely related to the penetration range and the gelation time of the chemical solution. Regarding the relationship between the penetration range of the chemical solution and the gelation time in the injection of the chemical solution, the penetration range is the gelation time. In addition, injection pressure, injection speed, injection volume, injection time, injection hole diameter, injection method and ground permeability, porosity, void development, injection viscosity, etc. are related to each other. By setting the value appropriately in accordance with the properties, an optimally large and optimally shaped consolidated body can be formed around the existing buried pipe by interparticle penetration.

実際には不均質な地盤状況、地下水の流動、注入材の経時的な粘土変化、ゲル化を伴う流動体の複雑な浸透機構などが関連しているため、これらを厳密に数値化することは困難であるが、埋設管の周りに試験注入を試みてから、サウンディングにより注入条件、地盤条件に対応した浸透固結体の形状を把握して本施工に反映させることができる。   Actually, it is related to inhomogeneous ground conditions, groundwater flow, clay change in the injection material, complex infiltration mechanism of fluid with gelation, etc. Although it is difficult, after trying the test injection around the buried pipe, it is possible to grasp the shape of the infiltration consolidated body corresponding to the injection condition and the ground condition by sounding and reflect it in this construction.

薬液注入工法は地盤を開削せずに施工が可能であり、既設埋設管に対しても適用できる点で優れているが、薬液が高価であることを考慮すると、固化改良範囲とそのパイプライン上の配置と施工法が一体化した技術の開発が必要である。   The chemical injection method can be applied without excavating the ground, and is excellent in that it can be applied to existing buried pipes.However, considering that the chemical is expensive, the range of solidification improvement and its pipeline Development of technology that integrates the layout and construction method is necessary.

そこで本発明者は、埋設管の浮上りを抑えるために必要な薬液の量を検討し、少量でも効果的な注入方法を検討して本発明を完成した。さらに、線状のパイプラインに沿って所定位置に間隔を開けて固結体を形成し、最少限の注入を効果的に経済的に、かつ急速に施工することを可能にする液状化対策工を発明した(図9〜図14参照)。   Therefore, the present inventor has studied the amount of the chemical solution necessary for suppressing the floating of the buried pipe, and has studied the effective injection method even with a small amount, thereby completing the present invention. In addition, liquefaction countermeasures that form a consolidated body at intervals along a linear pipeline to form a consolidated body, enabling minimal and effective injection economically and rapidly. Was invented (see FIGS. 9 to 14).

後述する大型土槽液状化実験(図23参照)によって得られた本発明の要点は以下の通りである。   The main points of the present invention obtained by a large soil tank liquefaction experiment (see FIG. 23) described later are as follows.

(A)液状化が予想される地盤内に設置された既設埋設管の液状化対策工法において、埋設管の延長方向に複数の注入管を間隔をあけて設置し、かつ当該注入管を通じて埋設管上部、あるいは側面の地盤中に薬液を注入し、埋設管の側方および/または底部に薬液を流下浸透させて埋設管の側方および/または底部に埋設管の周辺土(埋戻し土等)からなる固結体を埋設管と一体に形成して埋設管の重量を増大させることにより、地震時の液状化に伴う埋設管の浮き上りを抑制することを特徴とし、以下の方法を伴うことができる。 (A) In the liquefaction countermeasure method for existing buried pipes installed in the ground where liquefaction is expected, a plurality of injection pipes are installed at intervals in the extension direction of the buried pipes, and the buried pipes are passed through the injection pipes. The chemical solution is injected into the ground on the top or side, and the chemical solution flows down and penetrates the side and / or bottom of the buried pipe, and the surrounding soil (backfill soil, etc.) of the buried pipe is placed on the side and / or bottom of the buried pipe. It is characterized by suppressing the floating of the buried pipe due to liquefaction at the time of earthquake by forming a consolidated body made of and integrally with the buried pipe to increase the weight of the buried pipe, and accompanied by the following method Can do.

(1)埋設管を原地盤の非液状化層に定着させて地震時における既設埋設管の浮上りを抑制する方法。
(2)埋設管下の埋戻し土を固化して地震時に非液状化層の土が左右や上部に落ち込んで埋設管の浮上りを抑制する方法。
(1) A method in which the buried pipe is fixed to the non-liquefied layer of the original ground to prevent the existing buried pipe from rising during an earthquake.
(2) A method to solidify the backfill soil under the buried pipe and prevent the buried pipe from rising due to the soil in the non-liquefied layer falling to the left and right or the top during an earthquake.

(B)上記において、F=(管と固結土にかかる重力)/(管と固結土にかかる浮力)を設定して、埋設管延長方向の固結体の固結量と、固結体間の間隔を設定する。ここでFは、以下のように設定する液状化対策工法。 (B) In the above, set F = (gravity applied to the tube and consolidated soil) / (buoyancy applied to the tube and consolidated soil), the amount of consolidated body in the extension direction of the buried tube, and the consolidated Set the spacing between bodies. Here, F is a liquefaction countermeasure method set as follows.

(1)周辺地盤も液状化する場合、
安全率 F≧0.7(好ましくは、F≧0.8)。
(1) When the surrounding ground is liquefied,
Safety factor F ≧ 0.7 (preferably F ≧ 0.8).

図15より F≧0.7ならば浮上り量は10mm以下で大幅に軽減しており、実用上は殆ど問題ないものと考えるし、また図15より薬液による改良固結体の体積は埋設管体積のほぼ2倍程度で済み、経済的にも好ましい。   From Fig. 15, if F≥0.7, the floating amount is significantly reduced at 10mm or less, and it is considered that there is almost no problem in practical use.From Fig. 15, the volume of the improved consolidated body by chemical solution is the volume of the buried pipe It is about twice as much and is economically preferable.

図15、図16より F≧0.8 ならば浮上り量は0であって全く問題なく、また固結体の体積は埋設管の体積の約2.5倍のみで済み、極めて経済的であることが判る。   15 and 16, it can be seen that if F ≧ 0.8, the floating amount is 0 and there is no problem, and the volume of the consolidated body is only about 2.5 times the volume of the buried pipe, which is extremely economical. .

(2)埋戻し部のみ液状化する場合、
(i)埋設管の上部を固結する場合、
安全率 F≧0.7
(ii)埋設管と固結部を非液状化層の側面部、または/並びに底面部に定着させる場合、
安全率 F≧0.6(好ましくは、F≧0.7)。
(2) When only the backfill part is liquefied,
(I) When consolidating the upper part of the buried pipe,
Safety factor F ≧ 0.7
(Ii) In the case where the buried pipe and the consolidated part are fixed to the side part and / or the bottom part of the non-liquefied layer,
Safety factor F ≧ 0.6 (preferably F ≧ 0.7).

図14、図18より埋設管と一体化して非液状化層の側面部又は/並びに底面部に定着させれば(二点注入)安全率 F≧0.6 にすれば浮上り量は大幅に軽減し、実質的に殆ど生じない事が判る。この場合も F≧0.7ならば浮上り量は生じない。   14 and 18, if it is integrated with the buried pipe and fixed on the side or / and bottom of the non-liquefied layer (two-point injection), the floating rate will be greatly reduced if the safety factor F ≧ 0.6. It turns out that it hardly arises. In this case as well, if F ≧ 0.7, there will be no lift.

(C)上記において、Fを以下のように設定する。
F(安全率)=(AVpipe+BVsolidified)/(CVpipe+CVsolidified)
=(A+B (Vsolidified/Vpipe))/( C+C (Vsolidified/Vpipe))
(C) In the above, F is set as follows.
F (safety factor) = (AVpipe + BVsolidified) / (CVpipe + CVsolidified)
= (A + B (Vsolidified / Vpipe)) / (C + C (Vsolidified / Vpipe))

ただし、A:埋設管の密度、正確には管内部も含めた管体の平均密度(例:0.50g/cm3)、B:固結土の密度(例:1.85g/cm3)、C:液状化時の泥水の密度(例:1.81g/cm3)、管の体積:Vpipe、固化した土の体積:Vsolidified However, A: Density of buried pipe, to be precise, average density of pipe body including inside of pipe (example: 0.50 g / cm 3 ), B: density of consolidated soil (example: 1.85 g / cm 3 ), C : Density of muddy water during liquefaction (example: 1.81 g / cm 3 ), tube volume: Vpipe, solidified soil volume: Vsolidified

従来の考えのように安全率 ≧1 とすれば埋設管の体積の33倍の砂を改良する必要があったが、本発明者の研究によって上述した安全率を設定することによって少量の固結体で液状化による浮上りを防止できることが判った。   If the safety factor is ≧ 1 as in the conventional idea, it was necessary to improve the sand 33 times the volume of the buried pipe. It has been found that the body can prevent levitation due to liquefaction.

(D)上記において、固結体は所定の間隔をおいて形成してなり、該固結体の形成は以下のいずれかの方法によってなされる。 (D) In the above, the consolidated body is formed at a predetermined interval, and the consolidated body is formed by any of the following methods.

(1)埋設管の両側に設けた注入管から注入して、埋設管を原地盤の非液状化層に定着させる方法(埋設管の両側に設けた注入管から注入するのが好ましいが、片側の注入管から原地盤の側面又は底面の非液状化層に定着させても良い)。 (1) Method of injecting from the injection pipes provided on both sides of the buried pipe and fixing the buried pipe to the non-liquefied layer of the original ground (preferably injected from the injection pipe provided on both sides of the buried pipe, but one side May be fixed to the non-liquefied layer on the side surface or bottom surface of the original ground from the injection pipe.

(2)埋設管の片側から注入して、埋設管下部の埋戻し土を固結して埋設管と固結体を一体化する方法。
埋設管の下部の埋戻し土を固化すれば地震時に側面の非液状化層が崩れ落ちてきても埋設管下部には入り込めず、埋設管上部に落ち込み、埋設管の浮上りを防止する(図20参照)。
(2) A method of injecting from one side of the buried pipe and consolidating the backfill soil at the bottom of the buried pipe to integrate the buried pipe and the consolidated body.
If the backfill soil at the bottom of the buried pipe is solidified, even if the non-liquefied layer on the side collapses and falls during an earthquake, it will not enter the bottom of the buried pipe, but will fall into the top of the buried pipe and prevent the buried pipe from rising (Fig. 20).

(3)埋設管の上部に注入して、埋設管と固結体を一体化して埋設管と固結体にかかる重力を大きくする方法。 (3) A method of injecting into the upper part of the buried pipe and integrating the buried pipe and the consolidated body to increase the gravity applied to the buried pipe and the consolidated body.

(E)上記において、埋設管の延長方向の固結量と固結体同士の間隔を安全率F≧0.8以上或いは上記のような安全率になるように定める。いずれの条件でも安全率0.8以上にすれば問題ない。 (E) In the above, the amount of consolidation in the extending direction of the buried pipe and the interval between the consolidated bodies are determined so that the safety factor F ≧ 0.8 or the safety factor as described above. There is no problem if the safety factor is 0.8 or more in any condition.

勿論上記において、埋設管やマンホールや排水管との接続部等で浮上に対する反力が期待できるところでは、同じ安全率Fの値に対しても、より浮上しにくくなる。   Of course, in the above, where the reaction force against the levitation can be expected at the connection portion with the buried pipe, the manhole, the drain pipe, etc., it becomes more difficult to levitate even for the same safety factor F value.

(F)線状に敷設された敷設物または線状に敷設された注入ライン、あるいは構造物の周辺部に沿って所定の間隔をあけて、複数の注入管を配置し、当該注入管は流路変換バルブを介し送液管と接続し、当該送液管は圧力・流量計を備えた注入ポンプと注入材貯蔵槽を備え、流路変換バルブを作動することにより、連続的に或は選択的に注入管への流路を切り換えて注入する(図25(a),図26(a),図32(a),図35参照)。 (F) A plurality of injection pipes are arranged at predetermined intervals along the periphery of the laying object laid in a line, the injection line laid in a line, or the periphery of the structure. It is connected to a liquid supply pipe via a path conversion valve. The liquid supply pipe is equipped with an injection pump equipped with a pressure / flow meter and an injection material storage tank. Then, the flow is switched to the injection pipe and injected (see FIGS. 25 (a), 26 (a), 32 (a), and 35).

(G)該注入管はオリフィスを介して送液管と接続し、該送液管は圧力・流量計を備えた注入ポンプと注入材製造装置を備え、複数の注入管に同時、または選択的に注入する(図25(b),図28,図29,図32(b),図33(a),(b),図34参照)。 (G) The injection pipe is connected to a liquid feeding pipe via an orifice, and the liquid feeding pipe is equipped with an injection pump equipped with a pressure / flow meter and an injection material manufacturing apparatus, and simultaneously or selectively to a plurality of injection pipes. (See FIGS. 25 (b), 28, 29, 32 (b), 33 (a), (b), and 34)).

(H)線状に敷設された敷設物または線状に敷設された注入ライン、あるいは構造物の周辺部に沿って所定の間隔をあけて、複数の注入管を配置し、該注入は複数のユニットポンプから、それぞれ複数の注入管路に連通し、各ユニットポンプの作動は該複数のユニットポンプの圧力流量計測からの情報に基き、コントローラーで一括管理される(図26(b),図36,図37(b)参照)。 (H) A plurality of injection pipes are arranged at predetermined intervals along the periphery of the laying object laid linearly or the injection line laid linearly or the structure. Each unit pump communicates with a plurality of infusion lines, and the operation of each unit pump is collectively managed by the controller based on information from the pressure flow measurement of the plurality of unit pumps (FIGS. 26 (b) and 36). FIG. 37 (b)).

[実験1]
発明者は、実験を表-1に示すように、注入量を変えた比較実験(Case1〜3)と注入方法を変えた比較実験(Case4〜7)を行った。
[Experiment 1]
As shown in Table 1, the inventors conducted a comparative experiment (Case 1 to 3) in which the injection amount was changed and a comparative experiment (Case 4 to 7) in which the injection method was changed.

Figure 2016017341
Figure 2016017341

1.実験概要
最大間隙比1.104、最小間隙比0.673の7号硅砂を用いて深さ50cm、幅270cm、奥行き40cm の地盤を作成した(図23参照)。地盤作成には湿潤締め固め法を用い、5cm 毎に密度管理を行った。
1. Outline of Experiment A ground with a depth of 50 cm, width of 270 cm, and depth of 40 cm was created using No. 7 sand with a maximum gap ratio of 1.104 and a minimum gap ratio of 0.673 (see Fig. 23). The ground was prepared by wet compaction, and the density was controlled every 5 cm.

埋設管模型は外径6cm、長さ35cm、管内が空洞で密度が0.50g/cm3 の塩化ビニール管を用い、土槽中央の深さ33cm の地点に設置した。入力加速度は図6に示すものを用い、その周波数は10Hz である。   The buried pipe model was a vinyl chloride pipe with an outer diameter of 6 cm, a length of 35 cm, a hollow inside and a density of 0.50 g / cm3, and was installed at a depth of 33 cm in the center of the soil tank. The input acceleration shown in FIG. 6 is used, and its frequency is 10 Hz.

埋設管の浮上り量は巻取り式変位計で測り、土中には加速度計や水圧計を設置した。薬液にはコロイダルシリカを使用した。薬液の注入にはサイフォンの原理を用いており、水頭差を利用して浸透注入を行った。   The amount of floating of the buried pipe was measured with a winding displacement meter, and an accelerometer and a water pressure meter were installed in the soil. Colloidal silica was used for the chemical solution. The siphon principle was used for the injection of the chemical solution, and osmotic injection was performed using the water head difference.

注入方法は埋設管周りに広がる事を考え、図13,14の二種類を選定し、それぞれ埋設管の上部から一点で入れる「一点注入」、左右から二点で入れる「二点注入」である。注入管は地盤作成中に設置しておき、薬液注入後に撤去した(図23、図24参照)。   Considering that the injection method spreads around the buried pipe, select the two types shown in Figs. 13 and 14, one point injection from the top of the buried pipe, and two point injection from the left and right. . The injection tube was installed during ground preparation and removed after the chemical solution was injected (see FIGS. 23 and 24).

また、7号硅砂に対して薬液注入を行う場合はゲルタイムが1日以上と長く、水より比重の重い薬液は垂れ下がってきてしまうという問題があったため、硅砂に対し重量比1/300の水酸化マグネシウムを混合する事でゲルタイムを1時間程度まで短縮して実験を行った。   In addition, when the chemical solution was injected into No. 7 cinnabar, the gel time was longer than 1 day, and the chemical solution with a higher specific gravity than water would hang down. The experiment was conducted by mixing the magnesium to shorten the gel time to about 1 hour.

2.注入量の比較実験
2.1.実験内容
注入量の比較実験(Case1〜3)では、土槽内の地盤全体が液状化するように相対密度を30%として地盤を作成した。薬液の注入量は0ml、500ml、1000ml の三種類とし、薬液は全て一点注入方法で注入した。なお、これらの実験ケースは地盤中に3 本の埋設管を40cm 間隔で設置する事で同時に行った(表-1,図15,図24(a)参照)。
2.Comparison experiment of injection volume
2.1. Content of Experiment In the comparison experiment (Cases 1 to 3) of the injection amount, the ground was prepared with a relative density of 30% so that the entire ground in the soil tank was liquefied. There were three types of injections, 0ml, 500ml, and 1000ml, and all the chemicals were injected by a single point injection method. These experimental cases were performed simultaneously by installing three buried pipes in the ground at intervals of 40 cm (see Table-1, Figure 15, and Figure 24 (a)).

2.2実験結果と考察
注入量比較実験の結果を図15に示す。図中の安全率は実験時に埋設管とその周りの固化改良砂全体にかかる重力を浮力で除した値であり、小さい方が浮上り易い。なお、固化改良砂の重量と体積は実験終了時に地盤を開削する際に測定した。この図から、安全率が0.80 で十分な埋設管の浮上はゼロとなり0.7でも浮上低減効果があると分かる。埋設管は密度A:0.50g/cm3、固化した砂はB:1.85g/cm3、液状化時の泥水はC:1.81g/cm3であり、管の体積をVpipe、固化した砂の体積をVsolidifiedとすると、
安全率F= (A Vpipe +B Vsolidified)/(C Vpipe + C Vsolidified)
= (A+ B (Vsolidified/ Vpipe))/( C + C (Vsolidified / Vpipe))
となる。
2.2 Experimental results and discussion Figure 15 shows the results of the injection volume comparison experiment. The safety factor in the figure is a value obtained by dividing the gravity applied to the buried pipe and the entire solidified sand around it by the buoyancy during the experiment, and the smaller one is more likely to rise. In addition, the weight and volume of the solidified improved sand were measured when excavating the ground at the end of the experiment. From this figure, it can be seen that if the safety factor is 0.80, the levitation of the buried pipe will be zero and even 0.7 will have the effect of reducing the levitation. Buried pipe Density A: 0.50g / cm 3, the solidified sand B: 1.85g / cm 3, mud during liquefaction C: was 1.81 g / cm 3, the volume of the tube Vpipe, solidified sand If the volume is Vsolidified,
Safety factor F = (A Vpipe + B Vsolidified) / (C Vpipe + C Vsolidified)
= (A + B (Vsolidified / Vpipe)) / (C + C (Vsolidified / Vpipe))
It becomes.

また、縦軸に安全率を、横軸にVsolidified/ Vpipe を取ったグラフを図16に示す。図より薬液の量を増やして安全率を1.0 以上にするためには埋設管の体積の約33倍の砂を改良する必要がある。   FIG. 16 is a graph in which the vertical axis represents the safety factor and the horizontal axis represents Vsolidified / Vpipe. From the figure, it is necessary to improve the sand that is about 33 times the volume of the buried pipe in order to increase the amount of the chemical solution and increase the safety factor to 1.0 or more.

一方、0.9では約5 倍、0.8では約2.5 倍、0.7では約2.0倍の体積の砂のみを改良すれば良いので、これらは十分に実際に利用しうる数値だと言える。   On the other hand, 0.9 is about 5 times, 0.8 is about 2.5 times, and 0.7 is about 2.0 times the volume of sand.

3.注入方法の比較実験
3.1.実験内容
図17に示すように、埋設管周りの埋め戻し部のみが液状化する条件を想定し、土槽中央部の深さ35cm、幅25cmの範囲のみ相対密度30%、それ以外では80%となるように地盤を作成した。
3.Comparison experiment of injection method
3.1.Experimental details As shown in Fig. 17, assuming the condition that only the backfill part around the buried pipe liquefies, the relative density is 30% only in the range of 35cm depth and 25cm width in the center of the earth tub, otherwise The ground was made to be 80%.

図13,14に示す二種類の注入方法で薬液を注入する場合と薬液を注入しない「無対策」の計3ケース実験を行った。なお、これらの実験では全てのケースで完全に浮上りが止まると注入方法毎の比較が出来ないため、差が明確になるように薬液の注入量を一律500mlとした。また、加振中の砂の動きがわかるように、7号硅砂を着色した色砂を土槽壁面に縦横に入れた(図21,図22参照)。   A total of three case experiments were conducted, in which the chemical solution was injected by the two types of injection methods shown in FIGS. In these experiments, when the lift stops completely in all cases, comparison by injection method cannot be made. Therefore, the injection amount of the chemical solution was uniformly set to 500 ml so that the difference becomes clear. In addition, colored sand colored with No. 7 dredged sand was placed vertically and horizontally on the wall surface of the soil tank so that the movement of the sand during vibration could be seen (see Figs. 21 and 22).

3.2.実験結果と考察
注入方法比較実験の結果を図18に示す。この図から、二点注入が効果的な注入方法だと分かる。理由として、図19のように埋設管の下まで薬液が広がるので、下の非液状化層に定着する事で埋設管の浮上りが抑えられたのだと考えられる。一点注入では薬液が埋設管上部に広がるため、非液状化層への定着が無かったので大きく浮き上がったと思われる。
3.2. Experimental results and discussion Figure 18 shows the results of the injection method comparison experiment. From this figure, it can be seen that two-point injection is an effective injection method. The reason is that the chemical solution spreads to the bottom of the buried pipe as shown in FIG. 19, and it is considered that the floating of the buried pipe was suppressed by fixing on the lower non-liquefied layer. The chemical solution spreads to the upper part of the buried pipe at one point injection, so it seems that it has risen greatly because there was no fixation on the non-liquefied layer.

また、液状化が起きた際、図20のように埋め戻し部と周辺地盤の境界壁面が剛性が失われた液状化層に崩れ落ちると考えられる。一点注入では埋設管下部が固化していないため、浮き上がるのと同時に崩れてきた砂が埋設管下に入る事で、浮上り量が増大した事が実験後の土槽壁面の色砂から確認された(図21参照)。一方、二点注入では砂が埋設管の下に回り込めず、左右或いは上方に崩れる事で埋設管の浮上りが抑制された事が確認された(図22参照)。   In addition, when liquefaction occurs, it is considered that the boundary wall surface between the backfill portion and the surrounding ground collapses into a liquefied layer having lost rigidity as shown in FIG. Since the bottom of the buried pipe is not solidified by one-point injection, it was confirmed from the colored sand on the wall surface of the soil tank after the experiment that the amount of floating increased by the sand that collapsed at the same time as entering the buried pipe. (See FIG. 21). On the other hand, in the two-point injection, it was confirmed that the sand could not go under the buried pipe and the floating of the buried pipe was suppressed by collapsing left and right or above (see FIG. 22).

さらに、一点注入では薬液が埋設管上部に固まることで重心が高くなり、浮上り途中で回転が起こり得るため、固化する砂の量が他の方法に比べて少なくなることが実験から観察された。以上より、周辺地盤が非液状化の場合には二点注入が最も効果的な注入方法であると分かった。   Furthermore, it has been experimentally observed that the amount of sand to solidify is less than that of other methods because the center of gravity becomes higher due to the solidification of the chemical solution at the upper part of the buried pipe in one point injection, and rotation can occur during the rising. . From the above, it was found that the two-point injection is the most effective injection method when the surrounding ground is non-liquefied.

また、本発明は、上述した注入をライフラインに沿って急速に、かつ効果的に行う技術である。埋設管等のライフラインは、道路や住宅地等を常時供用される条件下で行われる。   In addition, the present invention is a technique for performing the above-described implantation rapidly and effectively along the lifeline. Lifelines such as buried pipes are performed under conditions where roads, residential areas, etc. are always in service.

また、交通の多い都市内で作業が行われることから、安全性の確保が重要となる。このため、本発明は以下の点を考慮して完成したものである。   In addition, it is important to ensure safety because work is performed in cities with heavy traffic. For this reason, the present invention has been completed in consideration of the following points.

(1)人手に触れることなく全自動で行われることが好ましい。さらに、道路に沿って、車両に搭載して移動できるコンパクトな車上プラントとして使用できる装置が必要である(図25参照)。このような注入液製造システムの例を図37に示す。 (1) It is preferable to be performed fully automatically without touching. Furthermore, there is a need for a device that can be used as a compact on-board plant that can be mounted on a vehicle and moved along a road (see FIG. 25). An example of such an injection liquid production system is shown in FIG.

(2)道路や護岸や宅地等の長い距離を有するライフラインを対象とするのであるから、製造プラントから送液管を通して、長距離の注入箇所に同時に、または連続的に送れるシステムが要求される。 (2) Since it is intended for long-distance lifelines such as roads, revetments, residential land, etc., a system that can simultaneously or continuously send from a manufacturing plant to a long-distance injection point through a liquid feed pipe is required. .

そして一度注入システムを設置すれば、ライフラインが供用される状態でも自動的に施工が行われることが好ましい。通常の注入工事のように、注入ポイント毎に注入プラントを移動していたのでは、その都度交通を中断しなくてはならない。   And once an injection system is installed, it is preferable that construction is automatically performed even when the lifeline is in service. If the injection plant is moved at each injection point as in normal injection construction, traffic must be interrupted each time.

本発明によれば、長距離にわたる施工箇所を、広範囲に渡って移動させることなく複数のポイントに、同時に、または、連続的に、あらかじめ設置した管路で作業できるため、ライフラインを止めることなく、注入作業を行うことができる(図25,図26,図36,図37参照)。   According to the present invention, it is possible to work on a plurality of points at the same time or continuously without moving a construction site over a long distance, without having to move over a wide range, without stopping the lifeline. The injection operation can be performed (see FIGS. 25, 26, 36, and 37).

図37(a)の注入液製造システムは、送液ポンプが原料液を吸引し、かつ吐出する複数のシリンダーポンプよりなり、該複数のシリンダーポンプの吸引および吐出が同一時間内に同調するように制御する制御機構が設けられている。   The infusion liquid production system of FIG. 37 (a) is composed of a plurality of cylinder pumps for sucking and discharging the raw material liquid by the liquid feed pump, and the suction and discharge of the plurality of cylinder pumps are synchronized within the same time. A control mechanism for controlling is provided.

また、これらのシリンダーポンプからの直接複数の送液管に送液することもできる(図37(b)参照)。この装置はコンパクトな制御装置で注入液を製造できるため、車上プラントで安全に施工できる(図6)。   In addition, liquid can be directly fed to a plurality of liquid feeding pipes from these cylinder pumps (see FIG. 37 (b)). This device can be manufactured safely in an on-board plant because it can produce injection with a compact control device (Fig. 6).

本発明によれば、既設埋設管の上部に固結体を形成して埋設管に所定の重量を付与し、かつ固結体と地盤表層部の非液状化層または覆工層との間に埋設管を上から下方に支持するように支持体を形成することにより、単に液状化に伴う埋設管の浮上りを抑制できるだけでなく、液状化に伴う埋設管の浮上りと共に起こりやすい埋設管の回転も防止することができる。   According to the present invention, a solidified body is formed on the upper part of the existing buried pipe to give a predetermined weight to the buried pipe, and between the solidified body and the non-liquefied layer or the lining layer of the ground surface layer portion. By forming the support so as to support the buried pipe from the top to the bottom, not only can the floating of the buried pipe accompanying liquefaction be suppressed, but also the buried pipe that is likely to occur with the floating of the buried pipe accompanying liquefaction. Rotation can also be prevented.

また、道路や戸建て住宅が密集して建つ分譲地などの住宅地等における、ガス管、上水管、下水管などのライフライン等の液状化対策工を簡便、かつ経済的に行うことができ、特に液状化時の既設埋設の浮上りを抑制することができる。また、本発明の液状化対策はライフラインを供用しながらでも行うことができる。   In addition, liquefaction countermeasures such as gas lines, water pipes, and sewage pipes in residential areas such as subdivisions where roads and detached houses are densely built can be easily and economically performed. In particular, it is possible to suppress the floating of existing burial during liquefaction. In addition, the liquefaction countermeasure of the present invention can be performed while using a lifeline.

さらに、薬液の注入に際し、埋設管の周辺部に形成する固結体の大きさ、重量、さらには固結体どうしの間隔や固結体一個の固結領域に注入する薬液量と当該薬液による固結体の形状や固結体積、注入液の注入時間、薬液の注入速度およびゲル化時間等を設定することにより、地盤の性状等に応じて最適形状、最適大の固結体を埋設管と一体に形成することにより、液状化に伴う既設埋設管の浮き上りを抑制することができる。   Furthermore, when the chemical solution is injected, the size and weight of the consolidated body formed in the peripheral portion of the buried pipe, the interval between the consolidated bodies, the amount of the chemical solution injected into one consolidated region, and the chemical solution By setting the shape and volume of the consolidated body, the injection time of the injection solution, the injection speed of the chemical solution, the gelation time, etc., the optimal shape and the optimal size of the consolidated body are buried according to the properties of the ground. , The floating of the existing buried pipe accompanying liquefaction can be suppressed.

本発明の既設埋設管の液状化対策工法によって補強された既設埋設管を示し、図1(a)は既設埋設管の横断面図、図1(b)は一部側面図である。1 shows an existing buried pipe reinforced by a liquefaction countermeasure method for an existing buried pipe of the present invention, FIG. 1 (a) is a cross-sectional view of the existing buried pipe, and FIG. 1 (b) is a partial side view. 本発明の既設埋設管の液状化対策工法によって補強された他の既設埋設管の横断面図である。It is a cross-sectional view of the other existing buried pipe reinforced by the liquefaction countermeasure method for the existing buried pipe of the present invention. 本発明の既設埋設管の液状化対策工法によって補強された既設埋設管を示し、図3(a),(b)は既設埋設管の横断面図、図3(c)は一部側面図である。Fig. 3 shows an existing buried pipe reinforced by a liquefaction countermeasure method for an existing buried pipe according to the present invention, Figs. 3 (a) and (b) are cross-sectional views of the existing buried pipe, and Fig. 3 (c) is a partial side view. is there. 図4(a)〜(f)は、本発明の既設埋設管の液状化対策工法の施工手順を示す既設埋設管の横断面図である。4 (a) to 4 (f) are cross-sectional views of the existing buried pipe showing the construction procedure of the liquefaction countermeasure method for the existing buried pipe of the present invention. 図5(a),(b)は、埋設管と埋設管の上部地盤中に埋設管と一体に形成された固結体が地震力を受けて泥水中で変位して回転する状態を示す断面図である。Figures 5 (a) and 5 (b) are cross-sections showing the buried pipe and the solid body formed integrally with the buried pipe in the upper ground of the buried pipe being displaced and rotated in the muddy water under the seismic force. FIG. 入力加速度を示すグラフである。It is a graph which shows input acceleration. Maagの式における注入時間と浸透半径の関係を示すグラフである。It is a graph which shows the relationship between the injection | pouring time and penetration radius in Maag's formula. 地下水圧が一様な地盤における注入材の浸透状態を示す説明図である。It is explanatory drawing which shows the osmosis | permeation state of the injection material in the ground where a groundwater pressure is uniform. 図9(a)〜(c)は、注入時間より土中ゲル化時間が長い場合における注入材の流下浸透固化する状態を示す説明図である。FIGS. 9 (a) to 9 (c) are explanatory diagrams showing a state where the injecting material solidifies by flowing down when the gel time in the soil is longer than the pouring time. 図10(a)〜(d)は、非液状化層に近い比較的浅い液状化地盤内に敷設された埋設管の周囲を、注入材が流下浸透して固化する状態を示す説明図である。FIGS. 10 (a) to 10 (d) are explanatory views showing a state in which the injection material flows down and solidifies around the buried pipe laid in the relatively shallow liquefied ground close to the non-liquefied layer. . 図11(a)〜(c)は、非液状化層から離れた比較的深い液状化地盤内に敷設された埋設管の周囲を、注入材が流下浸透して固化する状態を示す説明図である。FIGS. 11 (a) to 11 (c) are explanatory diagrams showing a state in which the injected material permeates down and solidifies around the buried pipe laid in the relatively deep liquefied ground separated from the non-liquefied layer. is there. 既設埋設管の上部地盤中に複数の注入管を管軸方向に間隔をおいて設置して行う、薬液注入による既設埋設管の液状化対策工法を示し、図12(a)は既設埋設管の側面図、図12(b)は一点注入による薬液注入を、図12(c)は二点注入よる薬液注入を示す図12(a)における管軸直角方向の断面図である。Fig. 12 (a) shows the liquefaction countermeasure method for existing underground pipes by injecting multiple chemicals into the upper ground of existing underground pipes at intervals in the axial direction. FIG. 12 (b) is a side view, and FIG. 12 (c) is a cross-sectional view in the direction perpendicular to the tube axis in FIG. 12 (a) showing chemical injection by one-point injection and FIG. 12 (c) showing chemical injection by two-point injection. 一点注入による注入方法を示す説明図である。It is explanatory drawing which shows the injection method by one point injection | pouring. 二点注入による注入方法を示す説明図である。It is explanatory drawing which shows the injection method by 2 point | piece injection. 注入量比較実験の結果を示すグラフである。It is a graph which shows the result of an injection | pouring amount comparison experiment. 改良範囲と安全率との関係を示すグラフである。It is a graph which shows the relationship between the improvement range and a safety factor. 注入方法の比較実験の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the comparative experiment of an injection | pouring method. 注入方法の比較実験の結果を示すグラフである。It is a graph which shows the result of the comparison experiment of an injection | pouring method. 埋設管の非液状化地盤への定着状況を示す説明図である。It is explanatory drawing which shows the fixation state to the non-liquefaction ground of a buried pipe. 図20(a),(b)は液状化時の砂の動きを示し、図20(a)は液状化前、図20(b)は液状化後の状態を示す説明である。20 (a) and 20 (b) show the movement of sand during liquefaction, FIG. 20 (a) is an explanation before liquefaction, and FIG. 20 (b) shows the state after liquefaction. 一点注入された土槽の加振後の土槽壁面を示す図である。It is a figure which shows the soil tank wall surface after the vibration of the soil tank injected by one point. 二点注入された土槽の加振後の土槽壁面を示す図である。It is a figure which shows the soil tank wall surface after the vibration of the soil tank in which 2 points | pieces were inject | poured. 大型土槽実験装置の概要を示し、図23(a)は正面図、図23(b)は平面図である。FIG. 23 (a) is a front view and FIG. 23 (b) is a plan view showing an outline of a large soil tank experimental apparatus. 予備実験の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of a preliminary experiment. 図25(a)は、施工例を示す説明図、図25(b)は他の施工例を示す説明図である。FIG. 25 (a) is an explanatory view showing a construction example, and FIG. 25 (b) is an explanatory view showing another construction example. 図26(a),(b)は、送液システムと変位センサーによる施工管理システムを示す説明図である。FIGS. 26 (a) and 26 (b) are explanatory diagrams showing a construction management system using a liquid feeding system and a displacement sensor. 注入速度と注入圧による限界注入速度の関係を示す説明図である。It is explanatory drawing which shows the relationship between the injection | pouring speed | rate and the limiting injection | pouring speed | rate by injection | pouring pressure. オリフィスによる注入液の供給原理を示す説明図である。It is explanatory drawing which shows the supply principle of the injection liquid by an orifice. 図29(a)は、送液圧力(P0)とノズル径(a)と噴出量と地盤の浸透抵抗圧の関係を示す説明図、図29(b)は、浸透抵抗圧P1=0の場合の送液圧とノズル径と噴出量の関係を示すグラフである。FIG. 29 (a) is an explanatory diagram showing the relationship among the liquid feed pressure (P 0 ), the nozzle diameter (a), the ejection amount, and the permeation resistance pressure of the ground, and FIG. 29 (b) is the permeation resistance pressure P 1 = 0. It is a graph which shows the relationship between the liquid feeding pressure in this case, a nozzle diameter, and the amount of ejection. 図30(a)噴出量とノズル口径と差圧の関係を示すグラフ、図30(b)は、浸透抵抗圧とノズル径と噴出量の関係を示すグラフである。FIG. 30 (a) is a graph showing the relationship between the ejection amount, the nozzle diameter and the differential pressure, and FIG. 30 (b) is a graph showing the relationship between the permeation resistance pressure, the nozzle diameter and the ejection amount. 図31(a)は、送液圧と浸透抵抗圧と噴出量の関係を示すグラフ、図31(b)は、送液圧とノズル口径、ノズル数と噴出量の関係を示すグラフである。FIG. 31 (a) is a graph showing the relationship between the liquid feeding pressure, the permeation resistance pressure, and the ejection amount, and FIG. 31 (b) is a graph showing the relationship between the liquid feeding pressure, the nozzle diameter, the number of nozzles, and the ejection amount. 図32(a)は、基本的な送液システムの例を示す説明図、図32(b)はは、基本的な送液システムの他の例を示す説明図である。FIG. 32 (a) is an explanatory diagram showing an example of a basic liquid delivery system, and FIG. 32 (b) is an explanatory diagram showing another example of the basic liquid delivery system. 図33(a)はは、基本的な送液システムのさらに他の例を示す説明図、図33(b)基本的な送液システムのさらに他の例を示す説明図である。FIG. 33 (a) is an explanatory diagram showing still another example of the basic liquid delivery system, and FIG. 33 (b) is an explanatory diagram showing still another example of the basic liquid delivery system. 基本的な送液システムのさらに他の例を示す説明図である。It is explanatory drawing which shows the further another example of a basic liquid feeding system. 図35(a)は、複数の注入箇所に連続的または選択的に送液するシステムの例を示す説明図、図35(b)は複数の注入箇所に連続的または選択的に送液するシステムの他の例を示す説明図である。FIG. 35 (a) is an explanatory view showing an example of a system for continuously or selectively delivering liquids to a plurality of injection locations, and FIG. 35 (b) is a system for continuously or selectively delivering liquids to a plurality of injection locations. It is explanatory drawing which shows the other example. 複数の注入ポイントに注入液を同時にまたは選択的に送液するシステムを示す説明図である。It is explanatory drawing which shows the system which delivers an injection liquid to a some injection | pouring point simultaneously or selectively. 図37(a),(b)は注入液の全自動製造装置を示す説明図である。FIGS. 37 (a) and 37 (b) are explanatory views showing a fully automatic production apparatus for an injection solution.

図1と図2は、本発明の液状化対策工法によって補強された既設埋設管を図示したものであり、埋設管1は地盤の表層部がアスファルト舗装11によって覆工された液状化のおそれある地盤内に敷設されている。   1 and 2 illustrate an existing buried pipe reinforced by the liquefaction countermeasure method of the present invention, and the buried pipe 1 may be liquefied because the surface layer portion of the ground is covered with asphalt pavement 11. It is laid in the ground.

また、当該埋設管1の上部地盤中に固結体12が形成され、固結体12の上部地盤中に支持体13が形成され、さらに、支持体13の上端部に支圧版14が支持体13およびアスファルト舗装11と一体に形成されている。   Further, a consolidated body 12 is formed in the upper ground of the buried pipe 1, a support body 13 is formed in the upper ground of the consolidated body 12, and a support plate 14 is supported on the upper end portion of the support body 13. It is formed integrally with the body 13 and the asphalt pavement 11.

固結体12は、埋設管1に所定の重量を付与して、液状化に伴う埋設管1の浮上りを抑制するために形成されており、埋設管1の上部地盤中に注入材を注入して埋設管上部の一定領域の地盤を浸透固結することにより、埋設管1の管軸方向に間隔をおいて複数形成されている。   The consolidated body 12 is formed to give a predetermined weight to the buried pipe 1 and to suppress the floating of the buried pipe 1 due to liquefaction, and injects an injection material into the upper ground of the buried pipe 1. Then, a plurality of areas are formed at intervals in the pipe axis direction of the buried pipe 1 by permeating and consolidating the ground in a certain region above the buried pipe.

固結体12の大きさと形状および間隔等は、地震時に予想される埋設管周囲の地盤の液状化と埋設管1の重量等を参酌して適切に決定されている。また、固結体12は、必ずしも埋設管上部の地盤中に形成される必要はなく、埋設管1の側部または底部の一または複数個所に形成されてもよい。   The size, shape, interval, and the like of the consolidated body 12 are appropriately determined in consideration of the liquefaction of the ground around the buried pipe and the weight of the buried pipe 1 that are expected in the event of an earthquake. Further, the consolidated body 12 is not necessarily formed in the ground above the buried pipe, and may be formed at one or a plurality of positions on the side or bottom of the buried pipe 1.

支持体13は、埋設管1を上から下方に向けて支持することにより液状化に伴う埋設管1の浮上りと、浮上りと同時に起こりやすい埋設管1の回転等を抑制するために形成されており、埋設管1の管軸方向に間隔を開けて複数形成されている。   The support 13 is formed to suppress the floating of the buried pipe 1 due to liquefaction and the rotation of the buried pipe 1 that is likely to occur simultaneously with the floating by supporting the buried pipe 1 from above to below. A plurality of buried pipes 1 are formed at intervals in the pipe axis direction.

また、支持体13は、固結体12を形成するために埋設管1の上部地盤中に挿入された注入管2を回収せず、地盤中に放置埋設することにより形成され、当該支持体13の上端部にはアスファルトからなる支圧版14が支持体13およびアスファルト舗装11と一体に形成され、これにより支持体13に埋設管1の液状化に伴う浮上りおよび回転に対する支持力が付与されている。   Further, the support 13 is formed by leaving the injection tube 2 inserted into the upper ground of the buried pipe 1 to form the consolidated body 12 without being collected, and burying it in the ground. A support plate 14 made of asphalt is formed integrally with the support 13 and the asphalt pavement 11 at the upper end of the slab, and thereby, the support 13 is provided with a supporting force against lifting and rotation accompanying the liquefaction of the buried pipe 1. ing.

また、図2に図示するように、固結体12を埋設管1の管軸直角方向に埋設管1の外径より幅広く形成し、かつ支持体13を埋設管1の管軸直角方向に間隔を開けて複数形成することにより、液状化に伴う埋設管の浮上りと回転を抑制する効果をより大きくすることができる。   Further, as shown in FIG. 2, the consolidated body 12 is formed wider than the outer diameter of the buried tube 1 in the direction perpendicular to the tube axis of the buried tube 1, and the support 13 is spaced in the direction perpendicular to the tube axis of the buried tube 1. By opening and forming a plurality, the effect of suppressing the floating and rotation of the buried pipe accompanying liquefaction can be further increased.

なお、支持体13の数量、径および間隔等は、固結体12と同様に地震時に予想される埋設管周囲の地盤の液状化と埋設管1の重量等を参酌して適切に決定されている。また、支持体13は、注入管2を引き抜いた後の地盤中に鉄筋や鋼材などの棒状部材を挿入することによっても形成することができる。   The number, diameter, interval, etc. of the support 13 are appropriately determined in consideration of the liquefaction of the ground around the buried pipe and the weight of the buried pipe 1 as expected in the event of an earthquake. Yes. The support 13 can also be formed by inserting a rod-shaped member such as a reinforcing bar or steel into the ground after the injection tube 2 is pulled out.

さらに、図3(a)〜(c)に図示するように、特に埋設管1が非液浄化層に近い比較的浅い位置に敷設されているような場合は、固結体12をその上端部が非液状化層内に定着するように形成するか(図3(a)参照)、あるいは固結体12の上部地盤の一定領域を柱状に固結すると共に、その下端部を固結体12と連続させ、さらに上端部を非液状化層内に定着させて支持体13としてもよい図3(b),(c)参照)。   Further, as shown in FIGS. 3 (a) to 3 (c), when the buried pipe 1 is laid at a relatively shallow position close to the non-liquid purification layer, the solidified body 12 is connected to the upper end portion thereof. Is fixed to the non-liquefied layer (see FIG. 3 (a)), or a certain region of the upper ground of the consolidated body 12 is consolidated into a columnar shape, and its lower end is consolidated into the consolidated body 12 And the upper end portion may be fixed in the non-liquefied layer to form the support 13 (see FIGS. 3B and 3C).

また、支持体13内に固結体12および支持体13を形成するために用いた注入管2を挿入して埋設するか、あるいは注入管とは別に鉄筋や鋼材などを挿入して支持体13を補強することもできる。この場合、これらの部材の先端は固結体12内に、上端は非液状化層およびアスフゥルト舗装11内に定着するのが望ましい。   Further, the injection tube 2 used for forming the consolidated body 12 and the support body 13 is inserted and embedded in the support body 13, or a reinforcing bar, a steel material, or the like is inserted separately from the injection tube and the support body 13 is inserted. Can be reinforced. In this case, it is desirable that the tips of these members are fixed in the solidified body 12, and the upper ends are fixed in the non-liquefied layer and the asphalt pavement 11.

なお、図1〜3の実施例では、地盤の表層部がアスファルト舗装の場合について説明したが、地盤の表層部がコンクリート舗装の場合であっても、ほぼ同様の構成により施工することができ、コンクリート舗装の場合、図1における支圧盤14はコンクリートによって施工すればよい。   In addition, in the Example of FIGS. 1-3, although the case where the surface layer part of the ground was asphalt pavement was explained, even if the surface layer part of the ground is concrete pavement, it can be constructed with substantially the same configuration, In the case of concrete pavement, the bearing plate 14 in FIG. 1 may be constructed with concrete.

施工方法について説明すると (図4(a)〜(f)参照)、
(1)最初に、アスファルト舗装11に孔11a,11aを形成し、当該孔11a,11aから埋設管上部の地盤中に注入管2,2を挿入する。
Explaining the construction method (see Fig. 4 (a) to (f)),
(1) First, holes 11a and 11a are formed in the asphalt pavement 11, and the injection pipes 2 and 2 are inserted into the ground above the buried pipe from the holes 11a and 11a.

(2)次に、注入管2,2を通して埋設管1上部の地盤中に注入材を注入し、当該注入材を埋設管1上部の地盤中に浸透させることにより、埋設管1上部の地盤を固結して固結体12,12を形成する。 (2) Next, the injection material is injected into the ground above the buried pipe 1 through the injection pipes 2 and 2, and the ground at the top of the buried pipe 1 is permeated into the ground above the buried pipe 1. Consolidate to form consolidated bodies 12,12.

(3)次に、注入管2,2の上端部をそれぞれ孔11a,11a内のアスファルト舗装11の下端付近より切断して除去する。そして、孔11a,11a内にアスファルトを充填して注入管2,2の上端部に、それぞれ支圧版14,14を注入管2,2およびアスファルト舗装11と一体に形成して、注入管2,2に埋設管1の浮上りと回転に対する支持力を付与する。以上の工程で施工は完了する。 (3) Next, the upper ends of the injection pipes 2 and 2 are cut and removed from the vicinity of the lower end of the asphalt pavement 11 in the holes 11a and 11a, respectively. The holes 11a and 11a are filled with asphalt, and the support plates 14 and 14 are formed integrally with the injection pipes 2 and 2 and the asphalt pavement 11 at the upper ends of the injection pipes 2 and 2, respectively. , 2 is given a supporting force against the floating and rotation of the buried pipe 1. Construction is completed by the above process.

図32(b)、図33(a),(b)および図34に示す例は、注入液の製造装置から注入ポイントに至るまでの送液管路に、設けられた複数の分岐管に任意の径の孔が設けられたオリフィスを設けた。これにより、複数の注入箇所に所定量の注入液を供給して注入することが可能となる。   The examples shown in FIGS. 32 (b), 33 (a), (b) and FIG. 34 are optional for a plurality of branch pipes provided in a liquid supply pipe line from an injection liquid production apparatus to an injection point. An orifice provided with a hole having a diameter of 5 mm was provided. As a result, it is possible to supply and inject a predetermined amount of injection solution into a plurality of injection locations.

図において、符号1は地中に敷設されている上水管、下水管、ガス管などの既設埋設管、2は既設埋設管1の周囲に注入液(薬液)を注入するための注入管、3は注入液製造装置である。   In the figure, reference numeral 1 denotes an existing buried pipe such as a water pipe, a sewage pipe, a gas pipe laid in the ground, 2 denotes an injection pipe for injecting an injection liquid (chemical solution) around the existing buried pipe 1, 3 Is an injection liquid production apparatus.

また、符号4は注入液を各注入地点の注入管2に送り込むための加圧送液ポンプ、5は各注入地点における注入液の流路を制御する分岐バルブ、6は各注入地点における注入液の流量を測定するオリフィス、そして、符号7はこれらを制御するコントローラーである。   Reference numeral 4 denotes a pressure feed pump for feeding the injection solution into the injection tube 2 at each injection point, 5 denotes a branch valve for controlling the flow path of the injection solution at each injection point, and 6 denotes the injection solution at each injection point. An orifice for measuring the flow rate, and a reference numeral 7 is a controller for controlling them.

図25は、上記装置を車両8に搭載した例で、移動しながら複数の注入箇所に同時に或は選択的に所定量の注入液を送液して注入することができる。   FIG. 25 shows an example in which the above apparatus is mounted on the vehicle 8, and a predetermined amount of injection solution can be simultaneously or selectively sent to a plurality of injection locations while moving.

さらにまた、本発明のさらなる施工方法(図26(b),図36参照)は、注入液製造装置3で製造された注入液を、複数のユニットポンプ9を経て、複数の注入箇所に送液し、該複数のユニットポンプ9の駆動をコントローラー7で一括管理することにより、該複数の注入箇所に、同時にまたは選択的に、注入液を送液して注入することができる。   Furthermore, in the further construction method of the present invention (see FIGS. 26 (b) and 36), the injection liquid manufactured by the injection liquid manufacturing apparatus 3 is sent to a plurality of injection locations via a plurality of unit pumps 9. In addition, by collectively controlling the driving of the plurality of unit pumps 9 by the controller 7, the injection solution can be supplied and injected into the plurality of injection locations simultaneously or selectively.

なお、図において、符号10は注入液の注入に伴う地盤の異状な隆起等を監視するための地盤変位センサーであり、コントローラー7によって管理されている。   In the figure, reference numeral 10 denotes a ground displacement sensor for monitoring an abnormal bulge of the ground accompanying injection of the injection liquid, and is managed by the controller 7.

さらにまた、本発明のさらに他の施工方法は、注入液の製造装置3で製造された注入液を、1つの送液ポンプ4を経て、送液管路から複数の分岐バルブ5を介して、複数の注入箇所に送液し、該複数の分岐バルブ5を作動させることにより、該複数の注入箇所に、連続的にまたは選択的に、注入液を送液して注入することができる(図25(a),(b),図26(a),図32(a),(b),図33(a),(b),図34,図35(a),(b)参照)においてオリフィスのない場合も同様である)。   Furthermore, still another construction method of the present invention is such that the injection liquid manufactured by the injection liquid manufacturing apparatus 3 passes through one branch pump 4 and a plurality of branch valves 5 from the liquid supply pipe line. By supplying the liquid to a plurality of injection locations and operating the plurality of branch valves 5, the injection solution can be supplied and injected continuously or selectively into the plurality of injection locations (FIG. 25 (a), (b), Fig. 26 (a), Fig. 32 (a), (b), Fig. 33 (a), (b), Fig. 34, Fig. 35 (a), (b)) The same applies when there is no orifice).

上記施工方法においては、注入液製造装置3から注入管路を延ばすことにより、一箇所にプラントを設置したまま、前記複数の注入箇所毎に該注入液製造装置3を移動させることなく、ライフラインの供用を可能にしながら注入施工を行うことができるので、道路や宅地等に適用する場合にも、急速施工が可能であって、かつ、適用箇所近傍の道路や鉄道を常時交通に供用させることが可能となる(図26,図35参照)。   In the construction method, by extending the injection pipe line from the injection liquid production apparatus 3, the lifeline can be provided without moving the injection liquid production apparatus 3 for each of the plurality of injection points while the plant is installed at one place. Injecting construction can be performed while making it possible to use the equipment, so that rapid construction is possible even when applied to roads and residential land, etc., and the roads and railways in the vicinity of the application location are always in service. (See FIGS. 26 and 35).

本発明のさらに他の施工方法は、注入液製造装置3を車両8に搭載して、ライフラインに沿って車両8を走行移動させながら、注入液製造装置3で製造された注入液を用いて急速施工することができる(図25参照)。   Still another construction method of the present invention uses the infusion solution produced by the infusion solution production apparatus 3 while mounting the infusion solution production apparatus 3 on the vehicle 8 and moving the vehicle 8 along the lifeline. Rapid construction is possible (see Fig. 25).

また、本発明によれば経済施工のみならず、作業性や環境性の点からも安全性にも優れた液状化対策工を提供することができる。   Further, according to the present invention, it is possible to provide a liquefaction countermeasure work that is excellent not only in economic construction but also in terms of workability and environmental performance.

図29は、オリフィスを設けた管路における送液圧力(PO)とノズル径(a)と噴出量(リットル/min)と浸透抵抗圧(P1)の関係を示す。 FIG. 29 shows the relationship among liquid feed pressure (P O ), nozzle diameter (a), ejection volume (liter / min), and permeation resistance pressure (P 1 ) in a pipe line provided with an orifice.

図29(a)は、その試験装置であり、ノズル径(a)を設けた管路を外管内に挿入してノズルの両側にパッカを設けて、外管からの管路に圧力調整弁を設け、圧力調整弁の開度を調整する構造である。   FIG. 29 (a) shows the test apparatus, in which a pipe line having a nozzle diameter (a) is inserted into the outer pipe, packers are provided on both sides of the nozzle, and a pressure regulating valve is installed in the pipe line from the outer pipe. This is a structure for adjusting the opening of the pressure regulating valve.

ポンプで管路内に送液して、圧力(P0)と流量を計測する。圧力調整弁の開度を調整して、ノズル径(a)から噴出した噴出液の圧力と流量を計測する。その際の圧力P1が浸透抵抗圧であり、その時の流量が噴出量である。 Pump the liquid into the pipeline and measure the pressure (P 0 ) and flow rate. The pressure and flow rate of the liquid ejected from the nozzle diameter (a) are measured by adjusting the opening of the pressure regulating valve. The pressure P1 at that time is the permeation resistance pressure, and the flow rate at that time is the ejection amount.

図29(b)は、圧力調整弁が全開した場合、すなわち、気中で送液した場合の送液圧(P0)とノズル径(a)と噴出量の関係を示す。ポンプ圧力P0は一定の時ノズル径が小さい程圧力が高く、ノズル径が大きい程噴出量は大きくなる。 FIG. 29 (b) shows the relationship between the liquid supply pressure (P 0 ), the nozzle diameter (a), and the ejection amount when the pressure regulating valve is fully opened, that is, when liquid is supplied in the air. When the pump pressure P 0 is constant, the pressure is higher as the nozzle diameter is smaller, and the ejection amount is larger as the nozzle diameter is larger.

図30(a)は、オリフィスのノズル口径(a)と差圧△Pと毎分噴出量の関係を示す。差圧△Pは、ポンプの送液圧量P0とオリフィス下流の抵抗力圧力P1の差をいう。差圧が大きい程、ノズル口径が大きい程、噴出量は大きい。抵抗圧P1が大きく、送液圧力P0に近づくにつれて、噴出量は0に近づく(図30(b)参照)。 FIG. 30 (a) shows the relationship between the nozzle diameter (a) of the orifice, the differential pressure ΔP, and the ejection amount per minute. The differential pressure ΔP refers to the difference between the pumping fluid pressure P 0 and the resistance pressure P 1 downstream of the orifice. The larger the differential pressure and the larger the nozzle diameter, the larger the ejection amount. As the resistance pressure P 1 increases and approaches the liquid feeding pressure P 0 , the ejection amount approaches 0 (see FIG. 30 (b)).

また、抵抗圧力P1≒0ならば△P=P0であるが、地盤中に加圧浸透させる場合は、浸透抵抗が大きい場合は△Pが小さくなり、噴出量は小さくなる。しかし、図30(b)浸透抵抗圧P1が充分小さければ、抵抗圧に多少の変化があっても、噴出量はノズル口径によって値が一定値を得ることができる。道路や宅地では注入が地盤変位が生じてはならない。このため、土粒子間浸透するよう、少量の速度で注入されなくてはならない(図27参照)。 Further, if the resistance pressure P 1 ≈0, ΔP = P 0 , but in the case of pressure infiltration into the ground, if the permeation resistance is large, ΔP becomes small and the ejection amount becomes small. However, if a sufficiently small FIG 30 (b) osmotic resistance pressure P 1, even if there is some change in the resistance pressure, ejection amount can be values by a nozzle bore diameter to obtain a constant value. In roads and residential land, injection should not cause ground displacement. For this reason, it must be injected at a small rate so as to penetrate between the soil particles (see FIG. 27).

しかし、この場合、施工能率が低下するが複数の注入箇所からの同時注入で、全体で大きな吐出量で注入できるので、経済性が得られる。また、連続注入できれば施工プラントを移動することなく施工できるので、効率に優れ、短期間で施工が完了し、やはり大きな経済性を得ることが出来る。吐出速度が小さい時、或は地盤の透水性が大きい時、抵抗圧力はほとんど0に近く、したがって加圧送液圧とオリフィスの径に対応した一定の噴出量を得ることがわかる(図29(b)参照)。したがって、図31(b)に示すように、注入箇所における地盤の透水性に応じて、ノズル口径やノズル数や注入ポイントの数を複数にして、注入箇所毎に所定の噴出量の注入液を同時に供給することができる。   However, in this case, the construction efficiency is lowered, but since it is possible to inject with a large discharge amount as a whole by simultaneous injection from a plurality of injection locations, economic efficiency is obtained. Moreover, since it can construct without moving a construction plant if continuous injection is possible, it is excellent in efficiency, construction is completed in a short period of time, and great economic efficiency can be obtained. When the discharge speed is low or the water permeability of the ground is large, the resistance pressure is almost zero, and thus it is understood that a constant ejection amount corresponding to the pressurized liquid feeding pressure and the orifice diameter is obtained (FIG. 29 (b )reference). Therefore, as shown in FIG.31 (b), according to the water permeability of the ground at the injection point, the nozzle diameter, the number of nozzles and the number of injection points are plural, and a predetermined amount of injection liquid is injected at each injection point. Can be supplied at the same time.

本発明では、オリフィスのほかにレギュレータ((有)光匠技研製)を用いることができる。レギュレータは、上流側の圧力に対応して下流側の圧力と流量をコントロールすることができ、かつ、複数の管路に設けて、同時に圧力・流量をコントロールできるが、本発明ではレギュレータは流量・圧力可変式・オリフィスとみなして、オリフィスの一種として取り扱う。   In the present invention, a regulator (manufactured by Kosaku Giken Co., Ltd.) can be used in addition to the orifice. The regulator can control the pressure and flow rate on the downstream side corresponding to the pressure on the upstream side, and it can be installed in multiple pipes to control the pressure and flow rate at the same time. Regarded as a variable pressure type orifice, it is handled as a kind of orifice.

もちろん、本発明ではオリフィスを用いなくても、コントローラー7により分岐バルブ5を作動することにより分岐バルブ5のみを操作して、順次所定の注入箇所に材料を供給して注入することができる(図32(a)参照)。   Of course, in the present invention, even if the orifice is not used, by operating the branch valve 5 by the controller 7, only the branch valve 5 can be operated to sequentially supply and inject the material to a predetermined injection location (FIG. (See 32 (a)).

図26(a)では、オリフィスを用いないで分岐バルブを作動して、分岐バルブV1を開いて他を閉じれば分岐バルブV1のみから処理液が注入され、分岐バルブViを開いて他を閉じれば分岐バルブViから処理液が注入されるため、連続的にかつ選択的に処理液を注入できる。また、オリフィスを用いれば全ての注入部に同時注入が可能になる。分岐バルブは電磁バルブを用いてコントローラー7から電気信号により作動させる事ができる。 In FIG. 26 (a), if the branch valve is operated without using an orifice, the branch valve V 1 is opened and the others are closed, the processing liquid is injected only from the branch valve V 1 , and the branch valve Vi is opened to When closed, the processing liquid is injected from the branch valve Vi, so that the processing liquid can be continuously and selectively injected. In addition, if an orifice is used, simultaneous injection into all injection parts becomes possible. The branch valve can be actuated by an electrical signal from the controller 7 using an electromagnetic valve.

また、図26(b),図36に示す複数のユニットポンプ9や分岐バルブをコントローラー7により一括管理して、複数の注入箇所への同時供給や選択的に供給をすることが容易になる。   Also, the plurality of unit pumps 9 and branch valves shown in FIGS. 26 (b) and 36 can be collectively managed by the controller 7 to facilitate simultaneous supply or selective supply to a plurality of injection locations.

(I)上記注入システムに用いる注入材は、長い送液管路、注入管路でゲル化することなく、送液・注入され、かつ小さな吐出速度で土粒子間注入されるにはゲル化時間が数十分〜十数時間といった長いゲル化時間が要求される。さらに長期にわたって耐久性のある注入液であることが必要である。 (I) The injection material used for the above injection system is a long liquid supply line, without being gelled in the injection line, without being gelled, and in order to be injected between soil particles at a low discharge speed, the gelation time However, a long gelation time of several tens of minutes to several tens of hours is required. Furthermore, it is necessary that the injection solution is durable over a long period of time.

そのためには、シリカ溶液(コロイダルシリカ系グラウト、シリカゾル系グラウト、水ガラス系グラウト)、粘土、気泡、セメント、スラグから選ばれた1種または複数種を有効成分とする注入材を単独或は併用して注入する等、長い時間でゲル化する耐久性に優れた注入材の使用が好ましい。   For that purpose, an injection material containing one or more kinds selected from silica solution (colloidal silica type grout, silica sol type grout, water glass type grout), clay, bubbles, cement and slag as an active ingredient alone or in combination. It is preferable to use an injection material excellent in durability that gels in a long time.

一方において、長いゲル化時間の注入材は注入後、水よりも重い注入液であるところから、ゲル化するまでに下方に沈積してしまうという問題がある。本発明の目的のためには、所定の位置で通常の注入工事の場合と違って小さな固結体を形成できることが必要である。   On the other hand, there is a problem that an injection material having a long gelation time is deposited downward from the injection solution heavier than water to gelation after injection. For the purpose of the present invention, it is necessary to be able to form a small solid body at a predetermined position, unlike the case of ordinary injection work.

このため、ゲル化促進剤を一次注入しておくとか、注入管を二重にして、或は二本並列して、一方からゲル化促進剤を注入し、他方からゲル化時間の長い注入液を注入して、合流注入するか、主材に混入してゲル化時間を短縮して注入してもよい。   For this reason, the gelation accelerator is injected first, or the injection tube is doubled or two in parallel, the gelation accelerator is injected from one side, and the injection solution having a long gelation time from the other side. May be injected together or injected into the main material by shortening the gel time.

この場合、主材が酸性シリカグラウトの場合は、促進剤としては実験例にあるように炭酸カルシウムや水酸化マグネシウム等の難溶性アルカリ剤を用いてもよいし、また、水ガラスを用いてもよい。また、主材が水ガラスの場合は、ゲル化時間調整剤やセメント等をゲル化促進剤として用いることも出来る。   In this case, when the main material is acidic silica grout, as the accelerator, a slightly soluble alkali agent such as calcium carbonate or magnesium hydroxide may be used as in the experimental example, or water glass may be used. Good. Further, when the main material is water glass, a gelling time adjusting agent, cement or the like can be used as a gelling accelerator.

シリカゾルグラウトは水ガラスのアルカリを酸で中和して酸性側のpHとし、長いゲル化時間と耐久性を付与した注入液であり、コロイダルシリカは水ガラスのアルカリをイオン交換樹脂やイオン交換膜で処理して中性〜弱アルカリ性で増粒安定化した粒径が5〜20nmのシリカコロイドを主材とし、水ガラスや反応剤を加えて所定の時間にゲル化せしめたグラウトである。コロイダルシリカとして金属シリカを用いても良い。コロイダルシリカは酸の使用量がゼロか或いは少量でほぼ中性値を示し、埋設管のコンクリートや金属管に腐食を生じさせないので恒久グラウトとしてのみならず、環境の点からも無公害注入材として本発明のように生活環境における使用に適している。   Silica sol grout is an injection solution that neutralizes the alkali of water glass with acid to make the pH on the acidic side and gives long gelation time and durability. Colloidal silica is the alkali of water glass that is converted into an ion exchange resin or ion exchange membrane. This is a grout that is made from a silica colloid having a particle size of 5 to 20 nm, which is neutral to weakly alkaline and increased in size and stabilized by adding water glass or a reactive agent, and gelled for a predetermined time. Metal silica may be used as colloidal silica. Colloidal silica shows almost neutral value when the amount of acid used is zero or small, and does not cause corrosion in concrete and metal pipes in buried pipes, so it is not only a permanent grout, but also a non-polluting injection material from the environmental point of view. It is suitable for use in a living environment as in the present invention.

(J)本発明は、道路や宅地等の生活圏内で使用される。このため注入後、注入管の除去が要求されることがある。特に塩化ビニール等の注入管は除去作業が大変であるし、また、埋設されたままだと、その後の掘削工事に支障をきたすことがある。このため、生分解樹脂による注入管の使用が好ましい。 (J) The present invention is used in living areas such as roads and residential land. For this reason, removal of the injection tube may be required after the injection. In particular, injection pipes such as vinyl chloride are difficult to remove, and if they are left buried, they may hinder subsequent excavation work. For this reason, it is preferable to use an injection tube made of biodegradable resin.

本発明が使用される工事は、地表面から浅い場所であることから、施工が簡単な注入管としては、前記注入管は直径1mm〜10mmのプラスチック細管や、細管を軸方向に異なる位置に複数本結束した注入管を用いて地盤中に注入することが、作業上、施工性から好ましい。更にこれらの注入細管を生分解性樹脂で作った注入管を用いれば、施工後、半年から1年以内に炭酸ガスと水に分解されてしまい、本発明が実施される生活環境内において施工後そのままにしても環境保全性に優れた液状化対策工となる。   Since the construction in which the present invention is used is a place shallow from the ground surface, as the injection pipe that is easy to construct, the injection pipe may be a plastic thin tube having a diameter of 1 mm to 10 mm, or a plurality of thin tubes at different positions in the axial direction. In terms of workability, it is preferable from the viewpoint of workability to inject it into the ground using the injection tube that has been bundled. Furthermore, if an injection tube made of a biodegradable resin is used for these injection capillaries, it will be decomposed into carbon dioxide gas and water within half to one year after construction, and after construction in the living environment where the present invention is implemented. Even if it is left as it is, it becomes a liquefaction countermeasure work excellent in environmental conservation.

なお、生分解樹脂としては、その化学構造は(1)主鎖が脂肪族で、これにエーテル結合またはエステル結合を有するもの、(2)主鎖(または側鎖)に水酸基、カルボキシル基を有するもの、あるいは、(3)プラスチックスの光分解および微生物分解を誘因、促進する添加剤を含有することにより生物分解性が良好なプラスチックスであり、具体的には澱粉系、酢酸セルロース系、ポリ乳酸系、脂肪族ポリエステル系、ポリビニルアルコール系等の生物分解性プラスチックスが挙げられる。これらの主原料には、性能の向上あるいは可撓性の付与等の目的で他の高分子化合物、例えばポリエチレン、ポリプロピレン等のプラスチックス、可塑剤、安定剤、着色剤等を必要に応じて添加することもできる。   The chemical structure of the biodegradable resin is (1) the main chain is aliphatic and has an ether bond or ester bond, and (2) the main chain (or side chain) has a hydroxyl group or a carboxyl group. Or (3) Plastics with good biodegradability by containing additives that induce and promote photodegradation and microbial degradation of plastics, specifically starch, cellulose acetate, Examples thereof include biodegradable plastics such as lactic acid series, aliphatic polyester series, and polyvinyl alcohol series. To these main raw materials, other polymer compounds such as plastics such as polyethylene and polypropylene, plasticizers, stabilizers, colorants and the like are added as necessary for the purpose of improving performance or imparting flexibility. You can also

また、上記(2)の水酸基あるいはカルボキシル基を有する化合物としては、脂肪族化合物が好ましい。これらの生物分解性プラスチックスとしては具体的には、上記(1)の例として、「ビオノーレ」(ポリオールとジカルボン酸の脂肪族ポリエステル)(昭和高分子株式会社と昭和電工株式会社)、「セルグリーン」(酢酸セルロース系、ポリカプロラクトン系)(ダイセル化学工業株式会社)、「ラクティ(乳酸系)」(株式会社島津製作所)、(2)の例として、「ポバール」(ポリビニルアルコール)(株式会社クラレ)、(3)の例として、「ワンダースターケン」(トウモロコシ澱粉とポリエチレン)(ワンダー株式会社)等々が挙げられる。   The compound (2) having a hydroxyl group or a carboxyl group is preferably an aliphatic compound. Specific examples of these biodegradable plastics include “Bionore” (aliphatic polyester of polyol and dicarboxylic acid) (Showa Polymer Co., Ltd. and Showa Denko Co., Ltd.), “Cell” Examples of “Green” (cellulose acetate, polycaprolactone) (Daicel Chemical Industries, Ltd.), “Lacty (lactic acid)” (Shimadzu Corporation), (2), “Poval” (polyvinyl alcohol) (Inc. Examples of (Kuraray) and (3) include “Wonder Starken” (corn starch and polyethylene) (Wonder Corporation) and the like.

上記生物分解性プラスチックスには、ポリヒドロキシブチレート、ポリ乳酸、ポリグリコシド等の高融点生物分解性プラスチックスをブレンドすることにより、加工性を向上させ、織物、不織布とすることにより袋体としても使用できる。これらの主原料は、土中ではバクテリアにより、例えば90〜300日程度の日数で分解される。また本発明の注入管の設置方法は金属性注入細管を地盤中に打ち込んで設置しても良いし、コーンつき中空管を地盤中に打ち込みシールグラウトと共に注入管を挿入して中空管を引き抜いても良いし、勿論ボーリングした削孔内に注入管をシールグラウトと共に設置する等、任意の方法を用いる事ができる。   By blending the biodegradable plastics with high melting point biodegradable plastics such as polyhydroxybutyrate, polylactic acid, polyglycoside, etc., the processability is improved, and a woven fabric or non-woven fabric is used as a bag. Can also be used. These main raw materials are decomposed in the soil by bacteria for, for example, about 90 to 300 days. Further, the injection tube installation method of the present invention may be installed by driving a metal injection thin tube into the ground, or by driving a hollow tube with a cone into the ground and inserting the injection tube together with a seal grout, Any method may be used such as drawing out or, of course, installing an injection tube together with a seal grout in a bored hole.

1)特に、表層部に砂礫層や密質砂層などの非液状化層を有する地盤、あるいは表層部がアスファルト舗装やコンクリート舗装などによって覆工された地盤内に敷設されたガス管、上水管、下水管などの既設埋設管の液状化に伴う浮上りおよび浮上りと共に起こりうる固結体や埋設管の回転等を簡便かつ経済的に抑制することができる。 1) In particular, gas pipes, water pipes laid in the ground that has non-liquefaction layers such as gravel layers and dense sand layers on the surface layer, or in the ground surface covered with asphalt pavement or concrete pavement, etc. It is possible to easily and economically suppress the floating accompanying the liquefaction of the existing buried pipe such as the sewer pipe and the rotation of the solidified body or the buried pipe which may occur along with the rising.

2)ライン状の埋設管の周辺に延長方向に間隔を開けて固結体を形成することにより、比較的少量の注入液で経済的かつ安全に、そして急速に液状化を防止することができる。 2) By forming a solid body around the line-shaped buried pipe in the extending direction, liquefaction can be prevented economically, safely and rapidly with a relatively small amount of injection solution. .

3)効果的な注入量や注入方法を選ぶことで、埋設管の浮上りを十分に低減することが可能である。 3) By selecting an effective injection amount and injection method, it is possible to sufficiently reduce the floating of the buried pipe.

4)土中における注入液の先端部のゲル化時間が注入完了時においても流動性が持続されるように注入することにより、注入液を下方に流下浸透固化させ、固結体中に埋設管が包含された形状で固化させることにより、液状化時においても安定した固結体を形成せしめかつ埋設管の上方または側面付近までの注入管削孔ですむので注入管の掘削に当ってトラブルが生じない施工を行うことができる。 4) By injecting so that the fluidity is maintained even when the injection is completed, the gelation time at the tip of the injection solution in the soil is allowed to flow down and solidify downward, and the buried tube in the consolidated body By solidifying in a shape that contains the material, a stable solidified body can be formed even during liquefaction, and the injection pipe drilling up to or near the side of the buried pipe is sufficient. Construction that does not occur can be performed.

5)周辺地盤も液状化する場合、安全率を0.7 以上にする事で一定の浮上低減効果が得られる。 5) When the surrounding ground is also liquefied, a certain floating reduction effect can be obtained by setting the safety factor to 0.7 or more.

6)埋め戻し部のみ液状化する場合には、固化された土塊を非液状化地盤に定着させることが重要である。 6) When only the backfill portion is liquefied, it is important to fix the solidified soil mass on the non-liquefied ground.

7)適切な注入方法で埋設管に沿って間隔をあけて埋設管と一体化した固結体を少量の注入薬液で形成して、材料的には経済性を得ることが施工はかえって効率的でなくなる。各固結体を同時注入、或は連続注入によって埋設管に間隔をあけて上述した方式で固結体を形成して初めてライン状の埋設管の経済的にも効率的な施工が可能になる。 7) By using a suitable injection method, a solid body that is integrated with the buried pipe at an interval along the buried pipe is formed with a small amount of injected chemical solution, so that it is efficient in terms of material construction instead of being economical. Not. It is possible to economically and efficiently construct a line-shaped buried pipe only after forming each solid body by the above-mentioned method with simultaneous injection or continuous injection of each solid body at intervals. .

1 既設埋設管
2 注入管
3 注入液製造装置
4 加圧送液ポンプ
5 分岐バルブ
6 オリフィス
7 コントローラー
8 車輛
9 ユニットポンプ
10 地盤変位センサー
11 アスファルト舗装(非液状化層または覆工層)
12 固結体
13 支持体
14 支圧版
DESCRIPTION OF SYMBOLS 1 Existing underground pipe 2 Injection pipe 3 Injection liquid production apparatus 4 Pressurized liquid feeding pump 5 Branch valve 6 Orifice 7 Controller 8 Vehicle 9 Unit pump
10 Ground displacement sensor
11 Asphalt pavement (non-liquefied layer or lining layer)
12 Consolidation
13 Support
14 Bearing plate

Claims (21)

液状化のおそれのある地盤であって、表層部に非液状化層、あるいはアスファルト舗装またはコンクリート舗装などの覆工層を有する地盤内に敷設された既設埋設管の液状化対策工法において、埋設管の周囲に固結体を埋設管と一体にかつ埋設管の管軸方向に間隔を開けて複数形成することにより埋設管に重量を付与すると共に、前記固結体を埋設管の上部に位置する非液状化層または覆工層に定着し、液状化に伴う固結体の回転或いは変位を抑制し、これによって埋設管の浮上りを抑制することを特徴とする既設埋設管の液状化対策工法。   In the liquefaction countermeasure method for existing buried pipes laid in the ground that is liable to liquefy and has a non-liquefiable layer on the surface layer or a lining layer such as asphalt pavement or concrete pavement, A plurality of consolidated bodies are formed around the buried pipe and spaced apart in the tube axis direction of the buried pipe to give weight to the buried pipe, and the consolidated body is positioned above the buried pipe. A liquefaction countermeasure method for existing buried pipes, which is fixed to a non-liquefied layer or lining layer, and suppresses the rotation or displacement of the consolidated body accompanying liquefaction, thereby suppressing the floating of the buried pipe. . 請求項1記載の既設埋設管の液状化対策工法において、固結体は、埋設管の管軸方向に間隔をあけて設置した複数の注入管より地盤中に注入材を注入し、当該注入材を埋設管の周囲に流下浸透させることにより埋設管の管軸方向に間隔をあけて埋設管と一体に形成することを特徴とする既設埋設管の液状化対策工法。   The liquefaction countermeasure method for an existing buried pipe according to claim 1, wherein the consolidated body injects an injection material into the ground from a plurality of injection pipes installed at intervals in the tube axis direction of the buried pipe, An existing buried pipe liquefaction countermeasure method characterized in that it is formed integrally with the buried pipe at an interval in the tube axis direction of the buried pipe by infiltrating the pipe around the buried pipe. 液状化のおそれのある地盤であって、表層部に非液状化層、あるいはアスファルト舗装またはコンクリート舗装などの覆工層を有する地盤内に敷設された既設埋設管の液状化対策工法において、埋設管の周囲に固結体を埋設管と一体にかつ埋設管の管軸方向に間隔を開けて複数形成することにより埋設管に重量を付与すると共に、前記固結体と非液状化層または覆工層との間に埋設管を下方に向けて支持するように支持体を形成すると共に、当該支持体を非液状化層または覆工層に定着し、かつ前記支持体の数量と間隔および前記固結体の重量と間隔を液状化に伴う固結体の回転或いは変位を抑制するように設定し、これにより埋設管の浮上りを抑制することを特徴とする既設埋設管の液状化対策工法。   In the liquefaction countermeasure method for existing buried pipes laid in the ground that is liable to liquefy and has a non-liquefiable layer on the surface layer or a lining layer such as asphalt pavement or concrete pavement, In addition to providing a weight to the buried pipe by forming a plurality of consolidated bodies integrally with the buried pipe and at intervals in the tube axis direction of the buried pipe, the consolidated body and the non-liquefied layer or lining are provided. A support is formed so as to support the buried pipe downward with respect to the layer, the support is fixed to the non-liquefaction layer or the lining layer, and the number and interval of the support and the solidity are fixed. A liquefaction countermeasure method for an existing buried pipe, wherein the weight and interval of the tied body are set so as to suppress the rotation or displacement of the solidified body accompanying liquefaction, thereby suppressing the floating of the buried pipe. 請求項3記載の既設埋設管の液状化対策工法において、支持体は、既設埋設管の周囲に固結体を形成するために設置した注入管、または当該注入管を引き抜いた後の地盤中に棒状部材を挿入して形成することを特徴とする既設埋設管の液状化対策工法。   The liquefaction countermeasure method for an existing buried pipe according to claim 3, wherein the support is placed in an injection pipe installed to form a consolidated body around the existing buried pipe or in the ground after the injection pipe is pulled out. A liquefaction countermeasure method for existing buried pipes, characterized by inserting rod-shaped members. 請求項3または4記載の既設埋設管の液状化対策工法において、支持体は、既設埋設管の周囲に形成した固結体が非液状化層または覆工層に定着するように注入材を注入して形成することを特徴とする既設埋設管の液状化対策工法。   5. The liquefaction countermeasure method for an existing buried pipe according to claim 3 or 4, wherein the support is injected with an injection material so that a solidified body formed around the existing buried pipe is fixed to the non-liquefied layer or the lining layer. A liquefaction countermeasure method for existing buried pipes, characterized by 請求項3〜5のいずれかひとつに記載の既設埋設管の液状化対策工法において、支持体は埋設管の管軸直角方向に間隔をおいて複数形成することを特徴とする既設埋設管の液状化対策工法。   The liquefaction countermeasure method for an existing buried pipe according to any one of claims 3 to 5, wherein a plurality of supports are formed at intervals in a direction perpendicular to the pipe axis of the buried pipe. Chemical countermeasure construction method. 請求項3〜6のいずれかひとつに記載の既設埋設管の液状化対策工法において、埋設管の管軸方向に間隔をあけて設置した複数の注入管より地盤中に注入材を注入し、当該注入材を埋設管の上部、側部または底部の一または複数箇所に流下浸透させて埋設管および支持体と一体の固結体を形成することを特徴とする既設埋設管の液状化対策工法。   In the liquefaction countermeasure method for an existing buried pipe according to any one of claims 3 to 6, an injection material is injected into the ground from a plurality of injection pipes arranged at intervals in the pipe axis direction of the buried pipe, A liquefaction countermeasure method for an existing buried pipe characterized in that a pouring material is allowed to flow down and permeate into one or a plurality of locations at the top, side or bottom of the buried pipe to form a consolidated body integral with the buried pipe and the support. 請求項2〜7記載の既設埋設管の液状化対策工法において、注入材の注入時間よりも土中におけるゲル化時間を長くすることにより、または注入材の先端部の浸透先端部のゲル化時間が注入完了時においても流動性が持続されるように注入することにより埋設管の上部、側部または底部の一または複数箇所に注入材を流下浸透固結させて埋設管と一体化した液状化時にも安定した形状の固結体を形成することを特徴とする既設埋設管の液状化対策工法。   The liquefaction countermeasure method for an existing buried pipe according to claims 2 to 7, wherein the gelation time in the soil is made longer than the injection time of the injection material, or the gelation time of the penetration tip portion of the tip portion of the injection material The liquefaction is integrated with the buried pipe by instilling the injected material into one or more places at the top, side or bottom of the buried pipe by injecting so that the fluidity is maintained even when the injection is completed. A liquefaction countermeasure method for existing buried pipes, characterized in that it forms a consolidated body with a stable shape sometimes. 請求項1〜8のいずれかひとつに記載の既設埋設管の液状化対策工法において、埋設管の延長方向に所定間隔をあけて複数の注入管を設置して、以下(1),(2),(3)のいずれかの方法で該注入管から前記埋設管の周辺部に注入材を注入して該埋設管と埋戻し土中の固結体を一体化して、地震による浮上りを抑制するように注入材の注入を行い、かつ安全率F=(管と固結土にかかる重力)/(管と固結土にかかる浮力)を設定して、埋設管延長方向の固結体の固結量と、固結体間の間隔を設定し、前記安全率Fは以下(イ),(ロ)のように設定することによって浮上りを抑制することを特徴とする既設埋設管の液状化対策工法。
(1)埋設管を原地盤の非液状化層に定着させて地震時における既設埋設管の浮上りを抑制する方法。
(2)埋設管下の埋戻し土を固化して地震時に非液状化層の土が左右や上部に落ち込んで埋設管の浮上りを抑制する方法。
(3)埋設管の上面または側面を固化して埋設管と固結体を一体化して、埋設管と固結体に加わる重力を増やすことにより浮上りを抑制する方法。
(イ)周辺地盤も液状化する場合、
安全率 F≧ 0.7
(ロ)埋戻し部のみ液状化する場合、
(i)埋設管の上部を固結する場合、
安全率 F ≧0.7
(ii)埋設管と固結部を非液状化層の側面部、または/並びに底面部に定着させる場合、
安全率 F ≧ 0.6
In the liquefaction countermeasure method for an existing buried pipe according to any one of claims 1 to 8, a plurality of injection pipes are installed at predetermined intervals in the extending direction of the buried pipe, and the following (1), (2) , (3) to inject the injection material from the injection pipe to the periphery of the buried pipe and integrate the buried pipe and the consolidated body in the backfilled soil to suppress the rising due to the earthquake The injection material is injected and the safety factor F = (gravity on the tube and consolidated soil) / (buoyancy on the tube and consolidated soil) is set, The amount of consolidation and the interval between the consolidated bodies are set, and the safety factor F is set as follows (b) and (b) to suppress the floating, and the liquid of the existing buried pipe is characterized by Chemical countermeasure construction method.
(1) A method in which the buried pipe is fixed to the non-liquefied layer of the original ground to prevent the existing buried pipe from rising during an earthquake.
(2) A method to solidify the backfill soil under the buried pipe and prevent the buried pipe from rising due to the soil in the non-liquefied layer falling to the left and right or the top during an earthquake.
(3) A method of suppressing the floating by solidifying the upper surface or the side surface of the buried pipe, integrating the buried pipe and the consolidated body, and increasing the gravity applied to the buried pipe and the consolidated body.
(I) When the surrounding ground is liquefied,
Safety factor F ≧ 0.7
(B) When only the backfill part is liquefied,
(I) When consolidating the upper part of the buried pipe,
Safety factor F ≧ 0.7
(Ii) In the case where the buried pipe and the consolidated portion are fixed to the side surface portion and / or the bottom surface portion of the non-liquefied layer,
Safety factor F ≧ 0.6
請求項1〜9のいずれかひとつに記載の既設埋設管の液状化対策工法において、Fを以下のように設定することを特徴とする既設埋設管の液状化対策工法。
F(安全率)=(AVpipe+BVsolidified)/(CVpipe+CVsolidified)
=(A+B (Vsolidified/Vpipe))/( C+C (Vsolidified/Vpipe))
ただし、A:埋設管の密度、B:固結土の密度、C:液状化時の泥水の密度、管の体積:Vpipe、固化した土の体積:Vsolidified
10. The liquefaction countermeasure method for an existing buried pipe according to any one of claims 1 to 9, wherein F is set as follows.
F (safety factor) = (AVpipe + BVsolidified) / (CVpipe + CVsolidified)
= (A + B (Vsolidified / Vpipe)) / (C + C (Vsolidified / Vpipe))
However, A: density of buried pipe, B: density of consolidated soil, C: density of mud during liquefaction, volume of pipe: Vpipe, volume of solidified soil: Vsolidified
請求項1〜10のいずれかひとつに記載の既設埋設管の液状化対策工法において、
固結体は、所定の間隔をおいて形成してなり、該固結体の形成は以下(1) (2),(3)のいずれかの方法によってなされることを特徴とする既設埋設管の液状化対策工法。
(1)埋設管の両側に設けた注入管から注入して、埋設管を原地盤の非液状化層に定着させる方法。
(2)埋設管の片側から注入して、埋設管下部の埋戻し土を固結して埋設管と固結体を一体化する方法。
(3)埋設管の上部に注入して、埋設管と固結体を一体化して埋設管と固結体にかかる重力を大きくする方法。
In the liquefaction countermeasure method for an existing buried pipe according to any one of claims 1 to 10,
The consolidated body is formed at a predetermined interval, and the formed body is formed by any one of the following methods (1), (2), and (3): Liquefaction countermeasure construction method.
(1) A method of injecting from the injection pipes provided on both sides of the buried pipe and fixing the buried pipe to the non-liquefied layer of the original ground.
(2) A method of injecting from one side of the buried pipe and consolidating the backfill soil at the bottom of the buried pipe to integrate the buried pipe and the consolidated body.
(3) A method of injecting into the upper part of the buried pipe and integrating the buried pipe and the consolidated body to increase the gravity applied to the buried pipe and the consolidated body.
請求項1〜11のいずれかひとつに記載の既設埋設管の液状化対策工法において、埋設管の延長方向の固結量と固結体同士の間隔を安全率F≧0.7以上になるように定めることを特徴とする既設埋設管の液状化対策工法。   In the liquefaction countermeasure method for an existing buried pipe according to any one of claims 1 to 11, the amount of consolidation in the extension direction of the buried pipe and the interval between the consolidated bodies are determined so that the safety factor F ≧ 0.7 or more. A liquefaction countermeasure method for existing buried pipes. 請求項1〜12のいずれかひとつに記載の既設埋設管の液状化対策工法において、線状に敷設された敷設物または線状に敷設された注入ライン、あるいは構造物の周辺部に沿って所定の間隔をあけて、複数の注入管を配置し、当該注入管は流路変換バルブを介し送液管と接続し、当該送液管は圧力・流量計を備えた注入ポンプと注入材貯蔵槽を備え、流路変換バルブを作動することにより、連続的に或は選択的に注入管への流路を切り換えて注入することを特徴とする既設埋設管の液状化対策工法。   In the liquefaction countermeasure method for an existing buried pipe according to any one of claims 1 to 12, a predetermined construction is provided along a laying structure laid in a line, an injection line laid in a line, or a peripheral part of a structure. A plurality of injection pipes are arranged at intervals, and the injection pipes are connected to a liquid feed pipe via a flow path conversion valve. The liquid feed pipe is an injection pump equipped with a pressure / flow meter and an injection material storage tank. And liquefying the existing buried pipe by injecting the flow path to the injection pipe continuously or selectively by operating the flow path conversion valve. 請求項13記載の既設埋設管の液状化対策工法において、流路変換バルブおよび注入ポンプは前記圧力流量計からの情報に基いて、コントローラーによって一括制御することにより、複数の注入地点における注入の切り替えと選択を行うことを特徴とする既設埋設管の液状化対策工法。   14. The liquefaction countermeasure method for an existing buried pipe according to claim 13, wherein the flow path conversion valve and the injection pump are collectively controlled by a controller based on information from the pressure flow meter, thereby switching injection at a plurality of injection points. The liquefaction countermeasure method for existing buried pipes, characterized by 請求項1〜14のいずれかひとつに記載の既設埋設管の液状化対策工法において、該注入管はオリフィスを介して送液管と接続し、該送液管は圧力・流量計を備えた注入ポンプと注入材製造装置を備え、複数の注入管に同時、または選択的に注入することを特徴とする既設埋設管の液状化対策工法。   The liquefaction countermeasure method for an existing buried pipe according to any one of claims 1 to 14, wherein the injection pipe is connected to a liquid feeding pipe through an orifice, and the liquid feeding pipe is provided with a pressure / flow meter. A liquefaction countermeasure method for existing buried pipes, which is equipped with a pump and an injection material manufacturing apparatus and is injected simultaneously or selectively into a plurality of injection pipes. 請求項1〜13のいずれかひとつに記載の既設埋設管の液状化対策工法において、線状に敷設された敷設物または線状に敷設された注入ライン、あるいは構造物の周辺部に沿って所定の間隔をあけて、複数の注入管を配置し、該注入は複数のユニットポンプから、それぞれ複数の注入管路に連通し、各ユニットポンプの作動は該複数のユニットポンプの圧力流量計測からの情報に基き、コントローラーで一括管理されることを特徴とする既設埋設管の液状化対策工法。   In the liquefaction countermeasure method for an existing buried pipe according to any one of claims 1 to 13, a predetermined construction is provided along a laying structure laid in a line, an injection line laid in a line, or a peripheral part of a structure. A plurality of infusion pipes are arranged at intervals of each other, and the infusion is communicated from a plurality of unit pumps to a plurality of infusion lines, respectively, and the operation of each unit pump is determined from the pressure flow measurement of the plurality of unit pumps. A liquefaction countermeasure method for existing underground pipes, which is managed by a controller based on information. 請求項1〜16のいずれかひとつに記載の既設埋設管の液状化対策工法において、前記注入管は直径1mm〜10mmのプラスチック細管であることを特徴とする既設埋設管の液状化対策工法。   The liquefaction countermeasure method for an existing buried pipe according to any one of claims 1 to 16, wherein the injection pipe is a plastic thin tube having a diameter of 1 mm to 10 mm. 請求項1〜17のいずれかひとつに記載の既設埋設管の液状化対策工法において、前記注入管は該注入管を軸方向に異なる位置に複数本結束した注入管を用いて地盤中に注入することを特徴とする既設埋設管の液状化対策工法。   The liquefaction countermeasure method for an existing buried pipe according to any one of claims 1 to 17, wherein the injection pipe is injected into the ground using an injection pipe formed by binding a plurality of the injection pipes at different positions in the axial direction. A liquefaction countermeasure method for existing buried pipes. 請求項1〜18のいずれかひとつに記載の液状化対策工法において、任意の地点に地盤変位計測装置が配置し、当該地盤変位計測装置による計測値に基いて注入を制御することを特徴とする既設埋設管の液状化対策工法。   The liquefaction countermeasure method according to any one of claims 1 to 18, wherein a ground displacement measuring device is arranged at an arbitrary point, and injection is controlled based on a measurement value by the ground displacement measuring device. Liquefaction countermeasure method for existing buried pipes. 請求項1〜19のいずれかひとつに記載の液状化対策工法において、シリカ溶液、粘土、気泡、気体、セメント、スラグから選ばれた1種または複数種を有効成分とする注入材を単独或は併用して注入することを特徴とする既設埋設管の液状化対策工法。   In the liquefaction countermeasure construction method according to any one of claims 1 to 19, an injection material containing one or more kinds selected from silica solution, clay, bubbles, gas, cement, and slag as an active ingredient alone or A liquefaction countermeasure method for existing buried pipes, which is injected in combination. 請求項1〜20のいずれかひとつに記載の既設埋設管の液状化対策工法において、注入管は生分解樹脂から形成されていることを特徴とする既設埋設管の液状化対策工法。   21. The liquefaction countermeasure method for an existing buried pipe according to any one of claims 1 to 20, wherein the injection pipe is formed of a biodegradable resin.
JP2014141596A 2014-07-09 2014-07-09 Liquefaction countermeasures for existing buried pipes Active JP5728747B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141596A JP5728747B1 (en) 2014-07-09 2014-07-09 Liquefaction countermeasures for existing buried pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141596A JP5728747B1 (en) 2014-07-09 2014-07-09 Liquefaction countermeasures for existing buried pipes

Publications (2)

Publication Number Publication Date
JP5728747B1 JP5728747B1 (en) 2015-06-03
JP2016017341A true JP2016017341A (en) 2016-02-01

Family

ID=53437931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141596A Active JP5728747B1 (en) 2014-07-09 2014-07-09 Liquefaction countermeasures for existing buried pipes

Country Status (1)

Country Link
JP (1) JP5728747B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148037A (en) * 2019-03-14 2020-09-17 鹿島建設株式会社 Ground modification method
JP2021031915A (en) * 2019-08-22 2021-03-01 株式会社日水コン Underground buried object floating prevention method and underground buried object floating prevention structure
JP2021181706A (en) * 2020-05-19 2021-11-25 国立研究開発法人農業・食品産業技術総合研究機構 Liquefaction countermeasure construction method and liquefaction countermeasure structure
JP2023069117A (en) * 2021-11-05 2023-05-18 強化土エンジニヤリング株式会社 ground improvement method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461211B2 (en) * 2020-05-15 2024-04-03 鹿島建設株式会社 Ground improvement method
CN113700060B (en) * 2021-10-09 2023-06-23 北京恒祥宏业基础加固技术有限公司 Grouting leveling lifting method for protecting underground pipeline

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649140B2 (en) * 2001-03-22 2005-05-18 Jfeスチール株式会社 Liquefaction countermeasure structure and its construction method
JP2007255108A (en) * 2006-03-24 2007-10-04 Shimizu Corp Construction method for steel pipe pile
JP2013164103A (en) * 2012-02-09 2013-08-22 Sekisui Chem Co Ltd Embedded pipe structure and method for constructing embedded pipe structure
JP5515190B1 (en) * 2013-06-27 2014-06-11 国立大学法人 東京大学 Liquefaction countermeasures for existing buried pipes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148037A (en) * 2019-03-14 2020-09-17 鹿島建設株式会社 Ground modification method
JP2021031915A (en) * 2019-08-22 2021-03-01 株式会社日水コン Underground buried object floating prevention method and underground buried object floating prevention structure
JP7265451B2 (en) 2019-08-22 2023-04-26 株式会社日水コン Floating prevention method for underground buried objects
JP2021181706A (en) * 2020-05-19 2021-11-25 国立研究開発法人農業・食品産業技術総合研究機構 Liquefaction countermeasure construction method and liquefaction countermeasure structure
JP7394344B2 (en) 2020-05-19 2023-12-08 国立研究開発法人農業・食品産業技術総合研究機構 Liquefaction countermeasure construction method and liquefaction countermeasure structure
JP2023069117A (en) * 2021-11-05 2023-05-18 強化土エンジニヤリング株式会社 ground improvement method

Also Published As

Publication number Publication date
JP5728747B1 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5728747B1 (en) Liquefaction countermeasures for existing buried pipes
CN110359921A (en) Wear the construction method of building in a kind of shield short distance side
CN104947686A (en) Basement supporting structure in soft soil area
CN107604929A (en) The anti-liquefaction friction pile of integrate draining and construction method
CN110469332B (en) Advanced support consolidation method for tunnel penetrating through debris flow accumulation body
CN107513995A (en) A kind of bridge struction pile post grouting construction method
CN106120803B (en) Base pit stand construction in the case of artesian water
CN113174958A (en) Construction method for foundation pit of adjacent road under poor ground condition
JP5728694B1 (en) Liquefaction countermeasures for existing buried pipes
TWI588325B (en) Unsaturated soil improvement device and unsaturated ground improvement method
KR101209008B1 (en) A Reinforcement method of weak stratum use of suction drainage
JP3418069B2 (en) Injection method and injection equipment
CN110055973B (en) Foundation pit enclosure structure under high-speed railway bridge with limited construction space and water stopping method
JP5515190B1 (en) Liquefaction countermeasures for existing buried pipes
CN111608210A (en) Construction method of pressure bearing type anti-floating anchor rod in water-saturated silt stratum
JP5542531B2 (en) Ground improvement method and underpass method
JP5499271B1 (en) Unsaturated ground improvement device
JP5250660B2 (en) Manhole and other floating prevention methods
CN106869153A (en) A kind of method of the quick soft soil foundation treatment of well-points dewatering
CN108867279B (en) Soft soil roadbed municipal road construction method
CN209816830U (en) A slip casting structure for interlock formula campshed construction cold joint
JP2001123438A (en) Construction method for preventing liquefaction in earthquake of soil within city or the like by injecting air-dissolved water or compressed air into ground, device used therefor, and construction method therefor
CN112252348A (en) Design and construction method of U-shaped grouting body waterproof layer structure based on foundation pit
KR101117293B1 (en) Cement milk injection method for pile construction
KR102041298B1 (en) A reinforcing method for emabnked bed

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150312

R150 Certificate of patent or registration of utility model

Ref document number: 5728747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250