JP2010153262A - 支持体付電極組成物層及び電気化学素子用電極の製造方法 - Google Patents

支持体付電極組成物層及び電気化学素子用電極の製造方法 Download PDF

Info

Publication number
JP2010153262A
JP2010153262A JP2008331495A JP2008331495A JP2010153262A JP 2010153262 A JP2010153262 A JP 2010153262A JP 2008331495 A JP2008331495 A JP 2008331495A JP 2008331495 A JP2008331495 A JP 2008331495A JP 2010153262 A JP2010153262 A JP 2010153262A
Authority
JP
Japan
Prior art keywords
electrode
composition layer
electrode composition
support
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008331495A
Other languages
English (en)
Other versions
JP5605533B2 (ja
Inventor
Yujiro Toyoda
裕次郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2008331495A priority Critical patent/JP5605533B2/ja
Publication of JP2010153262A publication Critical patent/JP2010153262A/ja
Application granted granted Critical
Publication of JP5605533B2 publication Critical patent/JP5605533B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】集電体、特にパンチングメタルやエキスパンドメタルなどの表裏貫通孔を有する孔開き集電体上に簡便に、しかも均一に電極組成物層を形成することができる支持体付電極組成物層とそれを用いた電気化学素子用電極の製造方法を提供する。
【解決手段】支持体表面上に、結着剤及び電極活物質を含有してなる電極組成物層が形成されてなり、前記支持体は粗面化された面を有し、かつ前記粗面化された面が電極組成物層に面している支持体付電極組成物層、表面が粗面化された支持体の粗面化された面上に、結着剤及び電極活物質を含有してなる電極組成物を供給して電極組成物層を形成する工程を含む支持体付電極組成物層の製造方法、並びに前記支持体付電極組成物層を、集電体に圧着する工程、及び集電体に圧着された支持体付電極組成物層から支持体を分離する工程を含む電気化学素子用電極の製造方法。
【選択図】なし

Description

本発明は、リチウムイオン二次電池や鉛蓄電池などの二次電池や、電気二重層キャパシタやリチウムイオンキャパシタなどの電気化学素子に用いられる電極(以下、総称して「電気化学素子用電極」と記載することがある。)の製造に用いられる電極組成物層及びそれを用いた電気化学素子用電極の製造方法に関する。
小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能な特性を活かして、リチウムイオン二次電池、電気二重層キャパシタおよびリチウムイオンキャパシタなどの電気化学素子は、その需要を急速に拡大している。リチウムイオン二次電池は、エネルギー密度が比較的大きいことから、携帯電話やノート型パーソナルコンピュータなどの分野で利用されている。また、電気二重層キャパシタは急速充放電が可能なので、パーソナルコンピュータ等のメモリーバックアップ小型電源として利用されている。さらに電気二重層キャパシタは電気自動車用の大型電源としての応用が期待されている。また、リチウムイオン二次電池と電気二重層キャパシタの長所を生かしたハイブリッドキャパシタは、エネルギー密度、出力密度ともに高いことから注目を集めている。これら電気化学素子には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性の向上など、よりいっそうの改善が求められている。
ハイブリッドキャパシタは、正極に分極性電極、負極に非分極性電極を備え、有機系電解液を用いることで作動電圧を高め、エネルギー密度を高めることができる。ハイブリッドキャパシタでは、リチウムイオンを吸蔵、脱離しうる材料に、予め化学的方法又は電気化学的方法でリチウムイオンを吸蔵させた材料を負極に用いることが提案されている(例えば、特許文献1、2)。
自動車用電源など大型セルを対象とした場合において、予めリチウムを負極に担持させる方法としては、正極集電体および負極集電体がそれぞれ表裏に貫通する孔を備え、負極活物質がリチウムを可逆的に担持可能であり、負極由来のリチウムが負極あるいは正極と対向して配置されたリチウムと電気化学的接触により担持される有機電解質電池が提案されている(例えば、特許文献3参照)。特許文献3においては、集電体に表裏面を貫通する孔を設け、孔開き集電体の表裏面に電極組成物層を形成している(以下、貫通孔を有する集電体を「孔開き集電体」と記載することがある)。このような構成により、静電容量が向上し、またリチウムイオンが集電体に遮断されることなく電極の表裏間を移動できるため、積層枚数の多いセル構成の蓄電装置においても、当該貫通孔を通じて、リチウム近傍に配置された負極だけでなくリチウムから離れて配置された負極にもリチウムを電気化学的に担持させることが可能となる。また、貫通孔を通じてリチウムイオンが自由に各極間を移動できるため、充放電がスムーズに進行する。
電極組成物層は、例えば、電極活物質、導電材及び結着剤を含む電極組成物のスラリーを集電体に塗布、乾燥して形成される。特に集電体の表裏面に同時に電極組成物層を形成することを目的として、垂直方向に走行する集電体の搬送路の両側に一対のダイを配し、この一対のダイの上方に一対のブレードを設けて、ダイから吐出されたスラリーをブレードで掻き落として塗工厚みを制御するツインブレード法が提案されている。しかし、集電体が貫通孔を有する孔開き集電体の場合には、電極組成物のスラリーを均一な厚みに塗工することが困難であり、得られる電極における電極組成物層の厚みおよび電極組成物層中の電極活物質量が一定せず、電極性能にばらつきが生じる。また、この方法では、集電体の両面から電極組成物のスラリーを塗布するため、必ず2台のダイを必要とし、さらに、塗料タンクや供給ポンプ、フィルター、配管などがそれぞれ2セット必要であり、設備が複雑化し、コストの増大を招く。また、塗工厚さや電極の表面状態を制御するためには、2台のダイのクリアランスやスラリーの吐出量、ダイリップ部のクリアランスなどを厳密に調整する必要があった。さらに、コンマコーターなどの一般的な横型の塗工機に、パンチングメタルやエキスパンドメタルなどの孔開き集電体を搬送すると、回転しているローラーにスラリーが転写してしまい、スラリーを均一に集電体上に塗工することが困難であった。
その他、孔開き集電体上に均一な厚みで電極組成物層を形成する方法として、たとえば、特許文献4には、定量フィーダーを用いて電極材料を一対のプレスロールに供給するとともに、プレスロール間に集電体を供給することで、電極材料のシート化と集電体への接合を同時に行う方法が開示されている。
また、特許文献5には、基材に塗布したスラリーを孔開き集電体に接触させ一体化し、その後スラリーを乾燥し、基材を剥離し、集電体上に電極組成物層を形成する方法が提案されている。この方法では、基材が積層された状態でスラリー層の乾燥を行うため、スラリーの溶媒が均一に蒸発し難い。このため、特許文献5では、基材として多孔質基材を用いて、溶媒を均一に蒸発させ、乾燥後の電極組成物層の厚みを均一化している。
特開平3−233860号公報 特開平5−325965号公報 国際公開第98/33227号公報 特開2007−5747号公報 特開2008−41971号公報
しかし、特許文献4に記載の方法では、電極材料をプレスロールから集電体に転写する際に、プレスロール上に電極材料が残着することがある。その結果、集電体に転写される電極材料の量が一定にならず、また電極組成物層の厚みが不均一になり、電極特性にもばらつきが生じることがあった。
特許文献5の方法においても、スラリーの乾燥後に多孔質基材を電極組成物層から剥離する際に、多孔質基材上に電極材料が残着し、同様の問題を招来する。また、スラリーの塗工および乾燥のため、スラリー粘度や多孔質基材の孔径に制限があるといった問題点があった。
したがって、本発明の目的は、集電体、特にパンチングメタルやエキスパンドメタルなどの表裏貫通孔を有する孔開き集電体上に簡便に、しかも均一に電極組成物層を形成することができる支持体付電極組成物層とそれを用いた電気化学素子用電極の製造方法を提供することにある。
本発明者は上記課題を解決するために鋭意検討した結果、表面が粗面化された支持体の表面上に電極組成物層を形成することにより、電極組成物層を長尺でロール生産することができ、かつ得られた電極組成物層を集電体上に容易に転写することができることを見出した。
すなわち、上記課題を解決する本発明は、以下の事項を要旨として含む。
(1)支持体表面上に、結着剤及び電極活物質を含有してなる電極組成物層が形成されてなり、前記支持体は粗面化された面を有し、かつ前記粗面化された面が電極組成物層に面している支持体付電極組成物層。
(2)支持体の粗面化された面の表面粗さRaが、0.1〜5μmである前記(1)記載の支持体付電極組成物層。
(3)支持体の粗面化された面が、離型処理されている前記(1)又は(2)に記載の支持体付電極組成物層。
(4)表面が粗面化された支持体の粗面化された面上に、結着剤及び電極活物質を含有してなる電極組成物層を供給して電極組成物層を形成する工程を含む支持体付電極組成物層の製造方法。
(5)前記(1)〜(3)のいずれかに記載の支持体付電極組成物層を、集電体に圧着する工程、及び集電体に圧着された支持体付電極組成物層から支持体を分離する工程を含む電気化学素子用電極の製造方法。
本発明によれば、集電体と積層させる前の電極組成物層を単独でかつ長尺でロール生産することができる。また、このロール状の電極組成物層を用いて、効率よく、貫通孔を有する集電体や粗面化された集電体上に厚み精度に優れた電極組成物層を形成したりすることができる。また、電極組成物層を集電体に直接成形させる場合よりも、電極組成物層の厚さを自由に設計することができる。
<支持体付電極組成物層>
以下、本発明に係る支持体付電極組成物層について、図面を参照しながら、さらに具体的に説明する。
図1は、本発明の支持体付電極組成物層の断面図である。図1では、支持体1表面上に電極組成物層2が形成されてなり、前記支持体は粗面化された面1aを有し、かつ前記粗面化された面が電極組成物層に面している。
(支持体)
本発明に使用される支持体は、電極組成物層を支持し、電極組成物層を集電体に貼り合わせるために使用するものである。本発明に使用される支持体を構成する材料としては、電極組成物層を支持体上に形成することができれば無機材料、有機材料、制限はなく使用することができる。例えば、アルミニウム箔、銅箔などの金属箔;プラスチックフィルム;紙などが挙げられる。また、上記フィルムを重ねた多層構造のフィルムを用いても良い。これらの中でも、汎用性や取扱いの観点から紙、熱可塑性樹脂フィルムが好ましく、特に紙、熱可塑性樹脂フィルムの中では、PET(ポリエチレンテレフタレート)フィルム、ポリオレフィン系フィルム、PVA(ポリビニルアルコール)フィルム、PVB(ポリビニルブチラールフィルム)、PVC(ポリ塩化ビニル)フィルムが好ましい。なお、本発明における支持体には、電極に使用される集電体は含まれない。
本発明で使用される支持体は、粗面化された面を有していることが必要である。粗面化された面を有していることにより、アンカリング効果により電極組成物層と密着しロール巻き取りが可能となる。また、支持体付電極組成物層を用いて電極を製造する際に、支持体付電極組成物層から支持体を容易に剥離することができる。支持体の粗面化された面の表面粗さRaは好ましくは0.1〜5μm、より好ましくは0.2〜3μm、さらに好ましくは0.2〜1μmの範囲にある。表面粗さRaがこの範囲にあることにより、電極組成物層と支持体との密着性と、支持体付電極組成物層を用いて電極を製造する際における支持体の剥離性との両立が可能となる。
表面粗さRaは、JIS B0601に準拠して、例えばナノスケールハイブリッド顕微鏡(VN−8010、キーエンス社製)を用いて、粗さ曲線を描き、下式に示す式より算出することができる。下式において、Lは測定長さ、xは平均線から測定曲線までの偏差である。
Figure 2010153262
支持体表面を粗面化する方法は特に制限されず、支持体表面をエンボス処理する方法、支持体表面をサンドブラスト処理する方法、マット材を支持体を構成する材料に練り込む方法、マット材を含む層を支持体表面にコーティングする方法などが挙げられる。中でも電極組成物層との密着性の観点から支持体表面をサンドブラスト処理する方法が好ましい。支持体の粗面化処理は、片面のみに施してもよく、両面に施してもよい。
支持体の粗面化された面は、離型処理されていてもよい。離型処理の方法は特に限定されないが、例えばアルキド樹脂などの熱硬化性樹脂を支持体上に塗工し、これを硬化する方法、シリコーン樹脂を支持体上に塗工し、これを硬化する方法、フッ素樹脂を支持体上に塗工する方法を用いることが好ましい。特に、均質な離型処理層を容易に形成できる熱硬化性樹脂を用いた離型処理が好ましく、また電極組成物層の成形性、および得られる支持体付電極組成物層からの支持体の剥離性のバランスの観点からアルキド樹脂の塗工、硬化による離型処理が好ましい。
支持体の厚さは特に限定されないが、10〜200μmが好ましく、20〜150μmがより好ましく、20〜100μmが特に好ましい。支持体の厚さが、前記範囲にあることにより、支持体付電極組成物層のロール巻取り性、ハンドリング性が向上する。また、幅も特に限定されないが100〜1000mm、さらには100〜500mmが好適である。
支持体の引っ張り強度は特に限定されないが、30〜500MPaが好適であり、30〜300MPaがより好適である。支持体の引っ張り強度が、前記範囲であることにより、支持体付電極組成物層の製造時の破断を防ぐことができる。
本発明に使用される支持体は繰り返し使用することも可能であり、繰り返し使用することで、さらに電極の生産コストを安くできる。
本発明に用いる電極組成物層の密度は、特に制限されないが、通常は0.30〜10g/cm、好ましくは0.35〜5.0g/cm、より好ましくは0.40〜3.0g/cmである。また、電極組成物層の厚さは、特に制限されないが、通常は5〜1000μm、好ましくは20〜500μm、より好ましくは30〜300μmである。
本発明に用いる電極組成物層は、結着剤及び電極活物質を必須成分として含有する。
(電極活物質)
本発明に用いる電極活物質は、電気化学素子用電極内で電子の受け渡しをする物質である。電極活物質には主としてリチウムイオン二次電池用活物質、電気二重層キャパシタ用活物質やリチウムイオンキャパシタ用活物質がある。
リチウムイオン二次電池用活物質には、正極用、負極用がある。リチウムイオン二次電池用電極の正極に用いる電極活物質としては、具体的には、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoSなどの遷移金属硫化物;Cu、非晶質VO・P、MoO、V、V13などの遷移金属酸化
物が例示される。さらに、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子が挙げられる。好ましくは、リチウム含有複合金属酸化物である。
リチウムイオン二次電池用電極の負極に用いる電極活物質としては、具体的には、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、及びピッチ系炭素繊維などの電極活物質;ポリアセン等の導電性高分子などが挙げられる。好ましくは、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)などの結晶性電極活物質である。
リチウムイオン二次電池用電極に用いる電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
リチウムイオン二次電池用電極に用いる電極活物質の体積平均粒子径は、正極、負極ともに通常0.1〜100μm、好ましくは1〜50μm、より好ましくは5〜20μmである。
リチウムイオン二次電池用電極に用いる電極活物質のタップ密度は、特に制限されないが、正極では2g/cm以上、負極では0.6g/cm以上のものが好適に用いられる。
電気二重層キャパシタ用電極に用いる電極活物質としては、通常、炭素の同素体が用いられる。炭素の同素体の具体例としては、活性炭、ポリアセン、カーボンウィスカ及びグラファイト等が挙げられ、これらの粉末または繊維を使用することができる。好ましい電極活物質は活性炭であり、具体的にはフェノール樹脂、レーヨン、アクリロニトリル樹脂、ピッチ、およびヤシ殻等を原料とする活性炭を挙げることができる。
電気二重層キャパシタ用電極に用いる電極活物質の体積平均粒子径は、通常0.1〜100μm、好ましくは1〜50μm、更に好ましくは5〜20μmである。
電気二重層キャパシタ用電極に用いる電極活物質の比表面積は、30m/g以上、好ましくは500〜5,000m/g、より好ましくは1,000〜3,000m/gであることが好ましい。電極活物質の比表面積が大きいほど得られる電極組成物層の密度は小さくなる傾向があるので、電極活物質を適宜選択することで、所望の密度を有する電極組成物層を得ることができる。
リチウムイオンキャパシタ用電極に用いる電極活物質には、正極用と負極用がある。リチウムイオンキャパシタ用電極の正極に用いる電極活物質としては、リチウムイオンと、例えばテトラフルオロボレートのようなアニオンとを可逆的に担持できるものであれば良い。具体的には、通常、炭素の同素体が用いられ、電気二重層キャパシタで用いられる電極活物質が広く使用できる。炭素の同素体を組み合わせて使用する場合は、平均粒径又は粒径分布の異なる二種類以上の炭素の同素体を組み合わせて使用してもよい。また、芳香族系縮合ポリマーの熱処理物であって、水素原子/炭素原子の原子比が0.50〜0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)も好適に使用できる。好ましくは、電気二重層キャパシタ用電極に用いる電極活物質である。
リチウムイオンキャパシタ用電極の負極に用いる電極活物質は、リチウムイオンを可逆的に担持できる物質である。具体的には、リチウムイオン二次電池の負極で用いられる電極活物質が広く使用できる。好ましくは、黒鉛、難黒鉛化炭素等の結晶性炭素材料、上記正極活物質としても記載したポリアセン系物質(PAS)等を挙げることができる。これらの炭素材料及びPASは、フェノール樹脂等を炭化させ、必要に応じて賦活され、次いで粉砕したものが用いられる。
リチウムイオンキャパシタ用電極に用いる電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
リチウムイオンキャパシタ用電極に用いる電極活物質の体積平均粒子径は、正極、負極ともに通常0.1〜100μm、好ましくは1〜50μm、より好ましくは5〜20μmである。これらの電極活物質は、それぞれ単独でまたは二種類以上を組み合わせて使用することができる。
(結着剤)
本発明に用いる結着剤は、電極活物質および導電剤を相互に結着させることができる化合物であれば特に制限はない。好適な結着剤は、溶媒に分散する性質のある分散型結着剤である。分散型結着剤として、例えば、フッ素系重合体、ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン系重合体等の高分子化合物が挙げられ、フッ素系重合体、ジエン系重合体又はアクリレート系重合体が好ましく、ジエン系重合体又はアクリレート系重合体が、耐電圧を高くでき、かつ電気化学素子のエネルギー密度を高くすることができる点でより好ましい。
ジエン系重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体混合物における共役ジエンの割合は通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;スチレン・ブタジエン・メタクリル酸共重合体や、スチレン・ブタジエン・イタコン酸共重合体などの芳香族ビニル・共役ジエン・カルボン酸基含有単量体の共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。
アクリレート系重合体は、一般式(1):CH=CR−COOR(式中、Rは水素原子またはメチル基を、Rはアルキル基またはシクロアルキル基を表す。)で表される化合物由来の単量体単位を含む重合体である。一般式(1)で表される化合物の具体例としては、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n−アミル、アクリル酸イソアミル、アクリル酸n−ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリルなどのアクリレート;メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n−アミル、メタクリル酸イソアミル、メタクリル酸n−ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリルなどのメタアクリレート等が挙げられる。これらの中でも、アクリレートが好ましく、アクリル酸n−ブチルおよびアクリル酸2−エチルヘキシルが、得られる電極の強度を向上できる点で、特に好ましい。アクリレート系重合体中の前記一般式(1)で表される化合物由来の単量体単位の割合は、通常50重量%以上、好ましくは70重量%以上である。前記一般式(1)で表される化合物由来の単量体単位の割合が前記範囲であるアクリレート系重合体を用いると、耐熱性が高く、かつ得られる電気化学素子用電極の内部抵抗を小さくできる。
前記アクリレート系重合体は、一般式(1)で表される化合物の他に、共重合可能なカルボン酸基含有単量体を用いることができ、具体例としては、アクリル酸、メタクリル酸などの一塩基酸含有単量体;マレイン酸、フマル酸、イタコン酸などの二塩基酸含有単量体が挙げられる。なかでも、二塩基酸含有単量体が好ましく、集電体との結着性を高め、電極強度を向上できる点で、イタコン酸が特に好ましい。これらの一塩基酸含有単量体、二塩基酸含有単量体は、それぞれ単独でまたは2種以上を組み合わせて使用できる。共重合の際のカルボン酸基含有単量体の量は、一般式(1)で表される化合物100重量部に対して、通常は0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜10重量部の範囲である。カルボン酸基含有単量体の量がこの範囲であると、集電体との結着性に優れ、得られる電極の強度が向上する。
前記アクリレート系重合体は、一般式(1)で表される化合物の他に、共重合可能なニトリル基含有単量体を用いることができる。ニトリル基含有単量体の具体例としては、アクリロニトリルやメタクリロニトリルなどが挙げられ、中でもアクリロニトリルが、集電体との結着性が高まり、電極強度が向上できる点で好ましい。アクリロニトリルの量は、一般式(1)で表される化合物100重量部に対して、通常は0.1〜40重量部、好ましくは0.5〜30重量部、より好ましくは1〜20重量部の範囲である。アクリロニトリルの量がこの範囲であると、集電体との結着性に優れ、得られる電極の強度が向上する。
結着剤の形状は、特に制限はないが、集電体との結着性が良く、また、作成した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができるため、粒子状であることが好ましい。粒子状の結着剤としては、例えば、ラテックスのごとき結着剤の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。
結着剤のガラス転移温度(Tg)は、好ましくは50℃以下、さらに好ましくは−40〜0℃である。結着剤のガラス転移温度(Tg)がこの範囲にあると、少量の使用量で結着性に優れ、電極強度が強く、柔軟性に富み、電極形成時のプレス工程により電極密度を容易に高めることができる。
結着剤の数平均粒子径は、格別な限定はないが、通常は0.0001〜100μm、好ましくは0.001〜10μm、より好ましくは0.01〜1μmである。結着剤の数平均粒子径がこの範囲であるときは、少量の使用でも優れた結着力を電極活物質層に与えることができる。ここで、数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだ結着剤粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は球形、異形、どちらでもかまわない。これらの結着剤は単独でまたは二種類以上を組み合わせて用いることができる。結着剤の量は、電極活物質100重量部に対して、通常は0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜10重量部の範囲である。結着剤の量がこの範囲にあると、得られる電極活物質層と集電体との密着性が充分に確保でき、電気化学素子の容量を高く且つ内部抵抗を低くすることができる。
本発明に用いる電極組成物層は、電極活物質及び結着剤を必須成分として含むが、必要に応じて他の成分を含んでいてもよい。他の成分としては、導電剤、分散剤、界面活性剤などが挙げられる。
(導電剤)
本発明に好適に用いる導電剤は、導電性を有し、電気二重層を形成し得る細孔を有さない粒子状の炭素の同素体からなり、具体的には、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックが好ましい。
本発明に好適に用いる導電剤の体積平均粒子径は、電極活物質の体積平均粒子径よりも小さいものが好ましく、その範囲は通常0.001〜10μm、好ましくは0.05〜5μm、より好ましくは0.01〜1μmである。導電材の体積平均粒子径がこの範囲にあると、より少ない使用量で高い導電性が得られる。これらの導電材は、単独でまたは二種類以上を組み合わせて用いることができる。導電材の量は、電極活物質100重量部に対して通常0.1〜50重量部、好ましくは0.5〜15重量部、より好ましくは1〜10重量部の範囲である。導電材の量がこの範囲にあると、得られる電極を使用した電池の容量を高く且つ内部抵抗を低くすることができる。
(界面活性剤)
界面活性剤は、電極活物質、結着剤、及び必要に応じて加えられる導電剤を良好に分散し、また後述するスラリー状の電極組成物の表面張力を低下させ、塗工性を向上させる。界面活性剤としては、具体的には、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、脂肪酸塩、ナフタレンスルホン酸ホルマリン縮合物などの陰イオン性界面活性剤、ポリオキシエチレンアルキルエーテル、グリセリン脂肪酸エステルなどの非イオン性界面活性剤、アルキルアミン塩、第四級アンモニウム塩などの陽イオン性界面活性剤、アルキルアミンオキサイド、アルキルベタインなどの両性界面活性剤が挙げられ、陰イオン界面活性剤、非イオン性界面活性剤が好ましく、電気化学素子の耐久性に優れる点で陰イオン性界面活性剤が特に好ましい。
界面活性剤を使用する場合、その配合量は、電極活物質100重量部に対して、0.5〜20重量部の範囲であり、1.0〜10重量部が好ましく、2.0〜5重量部が特に好ましい。界面活性剤の配合量がこの範囲であると、電気化学素子の耐久性に優れる。
(分散剤)
分散剤の具体例としては、カルボキシメチルセルロースなどのセルロース誘導体;ポリ(メタ)アクリル酸ナトリウムなどのポリ(メタ)アクリル酸塩;ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。これらの中でもセルロース誘導体が特に好ましい。
セルロース誘導体は、セルロースの水酸基の少なくとも一部をエーテル化またはエステル化した化合物であり、水溶性のものが好ましい。セルロース誘導体は、通常、ガラス転移点を有さない。具体的には、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシエチルセルロースおよびヒドロキシプロピルセルロースなどが挙げられる。また、これらのアンモニウム塩およびアルカリ金属塩が挙げられる。中でも、カルボキシメチルセルロースの塩が好ましく、カルボキシメチルセルロースのアンモニウム塩が特に好ましい。セルロース誘導体のエーテル化度は、好ましくは0.5〜2、より好ましくは0.5〜1.5である。なお、ここでエーテル化度とは、セルロースのグルコース単位あたりに3個含まれる水酸基が、平均で何個エーテル化されているかを表す値である。エーテル化度がこの範囲であると、電極組成物を含むスラリーの安定性が高く、固形分の沈降や凝集が生じにくい。さらに、セルロース誘導体を用いることにより、塗料の塗工性や流動性が向上する。
<電極組成物層の形成方法>
本発明の支持体電極組成物層の製造方法は、表面が粗面化された支持体の粗面化された面上に、結着剤及び電極活物質を含有してなる電極組成物を供給して電極組成物層を形成する工程を含む。
電極組成物層を形成する方法としては、(1)粒子状の電極組成物を支持体上に供給し、乾式法にてシート状に成形する方法;(2)スラリー状の電極組成物を支持体上に塗工し、乾燥させる方法などが挙げられるが、支持体上に電極組成物層を均一形成できる点で前記(2)の方法が好ましい。
スラリー状の電極組成物は、電極組成物層を構成する材料、具体的には、電極活物質、結着剤、その他必要に応じ加えられる添加剤と、分散媒とを含む。
電極活物質及び結着剤としては、前記電極組成物層で例示したものが挙げられる。
その他必要に応じ加えられる添加剤としては、導電剤、分散剤、界面活性剤、分散媒以外の有機溶剤が挙げられる。導電剤、分散剤、界面活性剤としては、前記電極組成物層で例示したものが挙げられる。
分散媒としては、水、N−メチル−2−ピロリドン、テトラヒドロフラン、トルエンなどが挙げられるが、スラリー状の電極形成材料の乾燥の容易さと環境への負荷に優れる点から水が好ましい。
本発明の支持体付電極組成物層の製造方法においては、分散媒以外の有機溶剤を使用することで、スラリーの塗工性が向上する。また、特に沸点(常圧)が50〜150℃の有機溶剤を使用すると、水系スラリーを塗布して形成した電極組成物層を乾燥する際に、水の揮発とともに同時に有機溶剤が揮発するため、乾燥工程を簡素化できる。また、乾燥後の電極組成物層に有機溶剤が残存することもなく、電極の耐久性が向上する。有機溶剤としては、具体的には、メタノール、エタノール、イソプロパノールなどのアルコール類、酢酸メチル、酢酸エチルなどのアルキルエステル類、アセトン、メチルエチルケトンなどのケトン類などが挙げられ、好ましくはアルコール類、アルキルエステル類が挙げられ、電気化学素子の耐久性に優れる点でアルコール類が特に好ましい。
有機溶剤を使用する場合、その配合量は、電極活物質100重量部に対して、0.5〜20重量部の範囲であり、1.0〜10重量部が好ましく、2.0〜5重量部が特に好ましい。有機溶剤の配合量がこの範囲であると、得られる電気化学素子の耐久性に優れる。
また、上記の界面活性剤と有機溶剤とを併用することが特に好ましい。界面活性剤と有機溶剤とを併用することにより、スラリー状の電極組成物の表面張力をより低下させ、生産性が向上する。この場合、界面活性剤と有機溶剤との合計量は、電極活物質100重量部に対して、0.5〜20重量部の範囲であり、1.0〜10重量部が好ましく、2.0〜5重量部が特に好ましい。
スラリー状の電極組成物は、電極活物質及び結着剤、並びに、必要に応じ添加される導電剤、分散剤、界面活性剤、分散媒以外の有機溶剤を、分散媒中で混練することにより製造することができる。
スラリー状の電極組成物の製造方法としては、分散媒および前記の各成分を、混合機を用いて混合して製造できる。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、およびホバートミキサーなどを用いることができる。また、電極活物質と必要に応じて加えられる導電剤とを擂潰機、プラネタリーミキサー、ヘンシェルミキサー、およびオムニミキサーなどの混合機を用いて先ず混合し、次いでバインダーを添加して均一に混合する方法も好ましい。この方法を採ることにより、容易に均一なスラリーを得ることができる。
本発明に使用されるスラリーの粘度は、塗工機の種類や塗工ラインの形状によっても異なるが、通常100〜100,000mPa・s、好ましくは、1,000〜50,000mPa・s、より好ましくは5,000〜20,000mPa・sである。
スラリー状の電極組成物の支持体表面上への塗布方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。スラリーの塗布厚は、目的とする電極層の厚みに応じて適宜に設定される。
電極組成物層を形成する方法として、前記(2)の方法、すなわち、スラリー状の電極組成物を支持体表面上に塗工し、乾燥させる方法を採用する場合における具体的な例を図2に示す。図2では、アンワインダー10に支持体1の巻収体を取り付け、アンワインダー10から支持体1を送り出し、支持体1の粗面化された面に塗工機3からスラリー状の電極組成物を吐出し、支持体1の粗面化された面上に塗工層を形成する。なお、図では形成された電極組成物層については図示していない。次いで、表面に塗工層が形成された支持体を乾燥機4に導入し、塗工層を乾燥し、電極組成物層を形成する。その後、電極組成物を形成した支持体(支持体付電極組成物層)をワインダー11により巻き取り、支持体付電極組成物層の巻収体を得る。
<電気化学素子用電極の製造方法>
本発明の電気化学素子用電極の製造方法は、支持体付電極組成物層を、集電体に圧着する工程、及び集電体に圧着された支持体付電極組成物層から支持体を分離する工程を含むものである。
本発明の電気化学素子用電極の製造方法では、支持体付電極組成物層を、集電体に圧着する。
(集電体)
集電体は、電極組成物層から電流を取り出すために使用するものであり、集電体を構成する材料の種類は、例えば、金属、炭素、導電性高分子等を用いることができ、好適には金属が用いられる。例えば電池やキャパシタなどの用途で提案されている種々の材質を用いることができ、正極用集電体にはアルミニウム、ステンレス等、負極用集電体にはステンレス、銅、ニッケル等をそれぞれ好適に用いることができる。また、集電体は貫通孔を有しない構造であってもよいが、本発明の方法は、特に貫通孔を有する集電体(孔開き集電体)上への電極組成物層の形成に適している。したがって、集電体は、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、エッチングにより貫通孔を付与したエッヂング箔、あるいはエンボスロールを用いて突起付与および貫通孔を付与された突起付き集電体等が好ましく用いられる。
本発明の電気化学素子用電極の製造方法において、集電体として、孔開き集電体を用いる場合の孔開き集電体の開孔部の形状は特に限定はされず、開口率は好ましくは10%〜90%であり、さらに好ましくは20%〜60%、特に好ましくは40%〜60%の範囲にある。開口率は、孔開き集電体の平面観察により求められる。具体的には、孔開き集電体を平面観察し、単位面積当たりの貫通孔の面積を算出することで、開口率を決定する。
孔開き集電体の開口率を上記範囲とすることで、電気化学素子を作製した際のロット間の容量バラツキを抑えることができる。通常の開孔部を有さない集電体を用いた電気化学素子では、積層型の電気化学素子を作製した際に電極同士が向かい合わない非対向面ができると、その非対抗面からは静電容量は取り出せない。さらに電極の単位面積当たりの活物質量にバラツキが生じると、活物質量の重量から計算された静電容量に比べ、実際に取り出せる静電容量は少なくなることがあり、そのことが電気化学素子の劣化の要因にも繋がる。そのため、電気化学素子のロット間での容量バラツキが生じ、さらに電気化学素子の寿命を縮めることがある。これは電解質イオンの拡散は正負極の対抗面のみでしか起らないためである。しかし、孔開き集電体を用いることで、電解質イオンが集電体を通過し、拡散するため、電極が向かい合わない非対向面からも静電容量を取り出すことができる。さらに、電極の単位面積あたりの活物質量が異なっている電極を用いても、電極活物質の総重量さえ合わせれば、容易にキャパシタセル内で容量バランスを取ることができるため、電気化学素子のロット間での容量バラツキを抑えられる。さらに、セル内での電荷の偏りが生じないため、電気化学素子の寿命を延ばすことができる。
また、負極活物質にリチウムを担持させるのに、集電体の開口率が高すぎる場合には、担持させるのに要する時間が短く、リチウムの担持むらも生じにくいが、集電体の強度は低下し、皺や切れが発生しやすい。また、貫通孔に活物質等を保持させることが困難となり、活物質等の脱落、電極の切れ等により、電極製造時に歩留まりが低下する等の問題が生じる。
一方、開口率が低すぎる場合には、負極活物質にリチウムを担持させるのに要する時間が長くなり生産効率の低下およびセル特性のバラツキ増大などの問題が発生するが、集電体の強度は高くなり、活物質の脱落も起こりにくいため電極の歩留まりは高くなる。集電体の開口率や孔径は、電池の構造(積層タイプや捲回タイプなど) や生産性を考慮し、上述の範囲で適宜選定することが望ましい。
集電体は帯状であり、厚さは特に限定されないが厚さ5〜50μmが好適であり、さらには厚さ10〜40μmが好適である。また、幅も特に限定されないが約100〜1000mm、さらには約200〜500mmが好適である。
支持体付電極組成物層を集電体に圧着する際の線圧は、支持体の粗面化された面の形状を損なわない程度であれば、特に制限されないが、通常50〜2,000kN/m、好ましくは100〜1,000kN/m、特に好ましくは200〜500kN/mである。圧着の際の線圧がこの範囲であると、集電体に電極組成物層を均一に貼り合わせることができ、電極強度に優れる。
本発明の電気化学素子用電極の製造方法において、圧着と同時に熱を加え(熱プレス)てもよい。熱プレス法としては、具体的には、バッチ式熱プレス、連続式熱ロールプレスなどが挙げられ、生産性が高められる連続式熱ロールプレスが好ましい。熱プレスの温度は、特に制限されないが、通常50〜200℃、好ましくは70〜150℃である。熱プレスの温度がこの範囲であると、集電体に電極組成物層を均一に貼り合わせることができ、電極強度に優れる。
本発明の電気化学素子用電極の製造方法において、支持体付電極組成物の集電体への圧着は、スラリー状の電極組成物の塗工後直ちに行っても良いが、塗工した電極組成物を乾燥させた後に集電体への圧着を行うことが特に好ましい。電極組成物層を乾燥することで、電極組成物の層厚が一定となり、また強度が向上するため、集電体への圧着が容易になる。また、乾燥後に集電体に圧着するため、集電体上の必要な箇所にのみ電極組成物層を形成することができる。さらに集電体への圧着後、支持体を分離する際に、電極組成物層の一部が支持体に残着することも防止できる。
乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。中でも、遠赤外線の照射による乾燥法が好ましい。本発明における乾燥温度と乾燥時間は、集電体に塗布したスラリー中の溶媒を完全に除去できる温度と時間が好ましく、乾燥温度としては100〜300℃、好ましくは120〜250℃である。乾燥時間としては、通常1分〜60分間、好ましくは5分〜30分間である。
本発明の電気化学素子用電極の製造方法では、集電体に圧着された支持体付電極組成物層から支持体を分離する。
集電体に圧着された支持体付電極組成物層から支持体を分離する方法は、特に制限されず、例えば、電極組成物層付集電体と、支持体とを別々のロールに捲回することにより、容易に分離することができる。
本発明の電気化学素子用電極の製造方法について、具体的な態様を図3に示す。なお、図では電極組成物層は図示していない。電極組成物層は支持体の粗面化面に形成されている。図3では、支持体付電極組成物層の巻収体をアンワインダー12に取り付け、支持体付電極組成物層を送り出す。別に、集電体2の巻収体をアンワインダー14に取り付け、集電体を送り出す。次いで、支持体付電極組成物層と集電体2とを加熱機構を備えたラミネーター16に導入し、熱プレスを行い、集電体2に支持体付電極組成物層を圧着する。次いで、集電体に圧着された支持体付電極組成物層から支持体を分離し、分離された支持体をワインダー13で巻き取り、また電極組成物層が転写された集電体2をワインダー15により巻き取り、電極組成物層付集電体の巻収体が得られる。
また、電極層を形成した集電体のもう一方の面に、同様に、支持体付電極組成物層を用いて電極組成物層を転写して、集電体の両面に電極組成物層を形成した電気化学素子用電極を製造することもできる。さらに、図3に示したように、集電体の両面に上記方法により同時に電極組成物層を形成してもよい。
以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例における部および%は、特に断りのない限り重量基準である。実施例および比較例における各特性は、下記の方法に従い測定する。
(支持体の粗面化された面の算術平均粗さ(Ra)の測定)
JIS B 0601をもとに測定する。支持表面の算術平均粗さ(Ra)は、キーエンス(株)社製ナノスケールハイブリッド顕微鏡(VN−8010)を用いて、粗さ曲線を描き、下式の算出法により求める。Lは測定長さ、xは平均線から測定曲線までの偏差である。
Figure 2010153262
(電極組成物層の転写率)
支持体の重量と支持体付電極組成物層の重量から転写前の電極組成物層の重量を算出する。次いで、支持体付電極組成物層を集電体に熱プレス後、支持体を剥離し、電極組成物層を集電体に転写する。そして、転写後に支持体上に残着した電極組成物層の重量を測定し、転写率を以下の式より算出する。
転写率=(転写前の電極組成物層の重量−転写後に支持体上に残着した電極組成物層の重量)/(転写前の電極組成物層の重量)×100
(集電体の開口率の測定)
集電体を平面観察し、単位面積当たりの貫通孔の面積を算出することで、開口率を算出する。
(電極組成物層の厚さの測定)
電極組成物層の厚さは集電体の両面に電極組成物層を形成した後に、渦電流式変位センサ(センサヘッド部EX−110V、アンプユニット部EX−V02:キーエンス社製)を用いて測定する。2cm間隔で各電極組成物層の厚さを測定し、それらの平均値を電極組成物層の厚さとする。電極組成物層の厚さ精度は、標準偏差/平均値×100から算出する。
<実施例1>
(スラリーの製造方法)
体積平均粒子径2.7μmの黒鉛(KS‐4、ティムカル社製)100部、ジエン系重合体の固形分濃度40%の水分散液を固形分相当で2部およびエーテル化度が0.6で1%水溶液の粘度が900mPa・sであるカルボキシメチルセルロースアンモニウム塩を固形分相当で2部に適当量の水を加え、プラネタリーミキサーを用いて混合分散し、粘度が5,000〜20,000mPa・sの間に入る負極用スラリーを得る。なお、ジエン系重合体としては、スチレン46.5部、ブタジエン50部、メタクリル酸3部およびアクリル酸0.5部を乳化重合して得られる、Tgが−20℃、数平均粒子径が0.25μmの共重合体を用いる。
(電極の製造方法)
支持体として、表面粗さRaが0.14μmとなるようにマット材を練り込んだPETフィルム(厚み75μm、引っ張り強度200MPa)を用いて、前記記載の負極用スラリーをダイコーターを用いて12m/minの速度で塗工し、次いで乾燥炉で乾燥し、厚さ50μmの電極組成物層を有する支持体付電極組成物層を作製し、これを巻き取る。巻き取った支持体付電極組成物層を厚さ20μmの銅製パンチングメタル(開口率50%、福田金属箔粉工業社製)の両面に12m/minの速度でラミネーター(温度:100℃、線圧300kN/m)を用いて貼り合わせ、最後に、支持体を剥離し、片面厚さ25μmの電極組成物層を有する両面電極を作製する。なお、集電体への電極組成物層の転写率は98%である。得られる電極の電極組成物層の厚み精度は3%以内である。
<実施例2>
実施例1において、支持体として、粗面化処理として表面粗さRaが0.4μmとなるようにのサンドブラスト処理を施したPETフィルム(厚み75μm、引っ張り強度200MPa)を使用した他は、実施例1と同様にして電極を作製し、転写率は100%であった。なお、得られる電極の電極組成物層の厚み精度は3%以内である。
<実施例3>
実施例1において、支持体として、粗面化処理として表面粗さRaが1.2μmとなるようにサンドブラスト処理を施したPETフィルム(厚み75μm、引っ張り強度200MPa)を使用した他は、実施例1と同様にして電極を作製し、転写率は94%であった。なお、得られる電極の電極組成物層の厚み精度は4%以内である。
<比較例1>
実施例1において、支持体として、粗面化処理していない表面粗さRaが0.04μmのPETフィルム(厚み75μm)を使用した他は、実施例1と同様にして電極を作製し、転写率は70%であった。なお、得られる電極の電極組成物層の厚み精度は10%以内である。
本発明の支持体付電極組成物層の断面を表す模式図である。 本発明の支持体付電極組成物層の製造工程の具体的な態様を表す図である。 本発明の支持体付電極組成物層を使用した電気化学素子用電極の製造工程の具体的な態様を表す図である。
符号の説明
1…支持体
1a…支持体の粗面化された面
2…電極組成物層
3…塗工機
4…乾燥機
10,12,14…アンワインダー
11,13,15…ワインダー
16…ラミネーター

Claims (5)

  1. 支持体表面上に、結着剤及び電極活物質を含有してなる電極組成物層が形成されてなり、
    前記支持体は粗面化された面を有し、かつ前記粗面化された面が電極組成物層に面している支持体付電極組成物層。
  2. 支持体の粗面化された面の表面粗さRaが、0.1〜5μmである請求項1記載の支持体付電極組成物層。
  3. 支持体の粗面化された面が、離型処理されている請求項1又は2に記載の支持体付電極組成物層。
  4. 表面が粗面化された支持体の粗面化された面上に、結着剤及び電極活物質を含有してなる電極組成物を供給して電極組成物層を形成する工程を含む支持体付電極組成物層の製造方法。
  5. 請求項1〜3のいずれかに記載の支持体付電極組成物層を、集電体に圧着する工程、及び集電体に圧着された支持体付電極組成物層から支持体を分離する工程を含む電気化学素子用電極の製造方法。
JP2008331495A 2008-12-25 2008-12-25 支持体付電極組成物層及び電気化学素子用電極の製造方法 Active JP5605533B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008331495A JP5605533B2 (ja) 2008-12-25 2008-12-25 支持体付電極組成物層及び電気化学素子用電極の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331495A JP5605533B2 (ja) 2008-12-25 2008-12-25 支持体付電極組成物層及び電気化学素子用電極の製造方法

Publications (2)

Publication Number Publication Date
JP2010153262A true JP2010153262A (ja) 2010-07-08
JP5605533B2 JP5605533B2 (ja) 2014-10-15

Family

ID=42572128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331495A Active JP5605533B2 (ja) 2008-12-25 2008-12-25 支持体付電極組成物層及び電気化学素子用電極の製造方法

Country Status (1)

Country Link
JP (1) JP5605533B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180742A1 (ja) * 2017-03-30 2018-10-04 昭和電工株式会社 リチウムイオン二次電池用正極およびリチウムイオン二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117900A (ja) * 1998-10-20 2000-04-25 Toyobo Co Ltd 離型フィルム
JP2006216288A (ja) * 2005-02-02 2006-08-17 Sanyo Electric Co Ltd 電極の製造方法
JP2007165078A (ja) * 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
JP2007234806A (ja) * 2006-02-28 2007-09-13 Tomoegawa Paper Co Ltd 電極製造装置、電極製造方法、電極および電気化学素子
JP2008282799A (ja) * 2007-04-11 2008-11-20 Panasonic Corp 非水二次電池用電極およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117900A (ja) * 1998-10-20 2000-04-25 Toyobo Co Ltd 離型フィルム
JP2006216288A (ja) * 2005-02-02 2006-08-17 Sanyo Electric Co Ltd 電極の製造方法
JP2007165078A (ja) * 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
JP2007234806A (ja) * 2006-02-28 2007-09-13 Tomoegawa Paper Co Ltd 電極製造装置、電極製造方法、電極および電気化学素子
JP2008282799A (ja) * 2007-04-11 2008-11-20 Panasonic Corp 非水二次電池用電極およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180742A1 (ja) * 2017-03-30 2018-10-04 昭和電工株式会社 リチウムイオン二次電池用正極およびリチウムイオン二次電池

Also Published As

Publication number Publication date
JP5605533B2 (ja) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5413368B2 (ja) 電気化学素子用電極の製造方法
JP5098954B2 (ja) 電気化学素子用電極の製造方法および電気化学素子
JP2010097830A (ja) 電気化学素子用電極の製造方法
JP4605467B2 (ja) 電気化学素子の製造方法
JP5493656B2 (ja) 電気化学素子用電極の製造方法及び製造装置
JP2010109354A (ja) 電気化学素子用電極の製造方法
JP5293383B2 (ja) 支持体付電極組成物層及び電気化学素子用電極の製造方法
KR20120040223A (ko) 전기 화학 소자용 전극 및 전기 화학 소자
JP5311706B2 (ja) 電気化学素子電極用複合粒子の製造方法
JP2013145761A (ja) 電気化学素子用電極の製造方法
CN105958112A (zh) 一种无隔膜的锂离子电池卷芯及其制备方法
JP5767431B2 (ja) 電気化学素子電極形成用材料、その製造方法および電気化学素子電極
JP2009212113A (ja) 電気化学素子電極用シートの製造方法
JP5293539B2 (ja) 支持体付電極活物質シート及び電気化学素子用電極の製造方法
JP5169720B2 (ja) 電気化学素子用電極の製造方法および電気化学素子
WO2014030735A1 (ja) 鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池、鉛蓄電池用キャパシタ電極の製造方法および鉛キャパシタ蓄電池の製造方法
JP5605533B2 (ja) 支持体付電極組成物層及び電気化学素子用電極の製造方法
JP2006269827A (ja) 電気化学素子電極用組成物
JP2010086788A (ja) 電気化学素子用電極の製造方法
JP2009253168A (ja) 電気化学素子電極の製造方法
JP5163293B2 (ja) 電気化学素子用電極、その製造方法および該電気化学素子用電極を用いた電気二重層キャパシタ
WO2009119553A1 (ja) ハイブリッドキャパシタ用電極の製造方法
JPWO2009107716A1 (ja) 電気化学素子電極の製造方法
JP5163216B2 (ja) ハイブリッドキャパシタ用電極およびハイブリッドキャパシタ
JP2010086794A (ja) 電気化学素子用電極の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130605

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140812

R150 Certificate of patent or registration of utility model

Ref document number: 5605533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250