JP2010151386A - Adsorption type heat pump - Google Patents

Adsorption type heat pump Download PDF

Info

Publication number
JP2010151386A
JP2010151386A JP2008330887A JP2008330887A JP2010151386A JP 2010151386 A JP2010151386 A JP 2010151386A JP 2008330887 A JP2008330887 A JP 2008330887A JP 2008330887 A JP2008330887 A JP 2008330887A JP 2010151386 A JP2010151386 A JP 2010151386A
Authority
JP
Japan
Prior art keywords
heat
adsorption
desorption
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008330887A
Other languages
Japanese (ja)
Inventor
Ichiro Otomo
一朗 大友
Kenichi Nakayama
賢一 中山
Masaki Kondo
正樹 今藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2008330887A priority Critical patent/JP2010151386A/en
Publication of JP2010151386A publication Critical patent/JP2010151386A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorption type heat pump improving efficiency in extracting cold while considering external variation factors such as an outside air temperature, and internal variation factors such as an adsorbing material. <P>SOLUTION: A pair of adsorbers 2a, 2b, a condenser 3 and an evaporator 4 are defined and disposed in a housing 1 separately and independently from each other. With respect to the adsorber 2b performing a desorbing process, the desorbing process is terminated, when the heat quantity obtained by multiplying temperature difference between going and returning of a heat medium circulated and supplied from a high temperature heat medium section 5 for desorption, by a flow rate, reaches the set heat quantity or less, and with respect to the adsorber 2a performing an adsorbing process, the adsorbing process is terminated when a cold temperature of the heat medium circulated and supplied to the evaporator 3 to which an adsorbate for adsorption is supplied, from a cooling section 7 and returned thereto, reaches a set temperature or higher. Both of adsorption and desorption processes of the next cycle are simultaneously started with the later termination timing side as a reference. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、吸着式冷凍サイクルを利用した吸着式ヒートポンプに関し、特に冷熱取り出し効率の向上を図り得る技術に係る。   The present invention relates to an adsorption heat pump using an adsorption refrigeration cycle, and particularly relates to a technique capable of improving the efficiency of extracting cold heat.

従来、この種の吸着式冷凍サイクルを利用した吸着式ヒートポンプの運転制御として、吸着及び脱着の両工程を切換えるサイクル時間値を発熱体の集熱量に応じて変化させるものが提案されている(例えば特許文献1参照)。   Conventionally, as an operation control of an adsorption heat pump using this type of adsorption refrigeration cycle, one that changes a cycle time value for switching both adsorption and desorption processes according to the amount of heat collected by the heating element has been proposed (for example, Patent Document 1).

又、吸着式冷凍装置において、熱媒の出口温度に基づいてポンプの回転数を制御することにより、熱媒の温度変動幅を一定範囲に抑制しようとすることも提案されている(例えば特許文献2参照)。   In addition, in the adsorption refrigeration apparatus, it has been proposed to control the temperature fluctuation range of the heating medium within a certain range by controlling the rotation speed of the pump based on the outlet temperature of the heating medium (for example, Patent Documents). 2).

特開2005−121346号公報JP 2005-121346 A 特開2004−239593号公報JP 2004-239593 A

ところが、吸着式冷凍サイクルを利用した冷熱取り出しにおいては、特に外気温や室温等の変動や、吸着材の能力変化等の影響を受け易く、特にバッチ式の運転制御を行う上で吸着工程と脱着工程とを固定時間間隔で、しかも同期させて切換えるようにすると、エネルギー消費の無駄を招き冷熱取り出しの効率の向上を図り得ない事態を招くことになる。たとえ、上記の特許文献1で提案の如くサイクル時間値を固定時間とせずに変化させたとしても、単にサイクル時間が変化するだけで吸着及び脱着の両工程が共に同期させて切換えられることになるため、吸着工程又は脱着工程のいずれか一方が既に吸着能力不足又は脱着能力不足に陥ったとしても同期切換タイミングが到来するまでは工程が継続され、これに伴いポンプ等の工程継続のためのエネルギーが無駄に消費されることになる。   However, cold extraction using an adsorption-type refrigeration cycle is particularly susceptible to fluctuations in the outside air temperature, room temperature, etc., and changes in adsorbent capacity. If the process is switched at fixed time intervals and in synchronism with each other, energy consumption is wasted, and the efficiency of cold extraction cannot be improved. Even if the cycle time value is changed without making it a fixed time as proposed in Patent Document 1 above, both the adsorption and desorption processes can be switched in synchronization with each other simply by changing the cycle time. Therefore, even if either the adsorption process or the desorption process has already become insufficient in the adsorption capacity or the desorption capacity, the process is continued until the synchronous switching timing arrives. Will be wasted.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、外気温等の外部変動要因や吸着材等の内部変動要因を加味して冷熱取り出しの効率化を図り得る吸着式ヒートポンプを提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is to improve the efficiency of taking out cold heat in consideration of external fluctuation factors such as outside air temperature and internal fluctuation factors such as adsorbents. It is to provide an adsorption heat pump.

上記目的を達成するために、本発明では、一対の吸着器、凝縮器及び蒸発器がハウジング内で互いに独立して区画配置され、吸着工程と脱着工程とを一対の吸着器で交互に切換制御して吸着質の吸着と脱着とを繰り返す吸着式冷凍サイクルを実行する運転制御手段を備えた吸着式ヒートポンプを対象にして、次の特定事項を備えることとした。すなわち、上記運転制御手段として、脱着工程が行われる吸着器に対し脱着のために供給される熱媒から脱着により吸着質が受熱する熱量の変動を監視し、この熱量の変動に応じて脱着工程の終了タイミングを決定する一方、吸着工程が行われる吸着器に対し吸着させるための吸着質を供給する蒸発器において吸着質の蒸発により熱交換された後の熱媒が有する冷熱の熱量の変動を監視し、この熱量の変動に応じて吸着工程の終了タイミングを決定する構成とした(請求項1)。   In order to achieve the above object, according to the present invention, a pair of adsorbers, a condenser and an evaporator are partitioned and arranged independently of each other in the housing, and the adsorption process and the desorption process are alternately controlled by the pair of adsorbers. Then, the following specific matters are provided for an adsorption heat pump including an operation control means for executing an adsorption refrigeration cycle in which adsorption and desorption of adsorbate are repeated. That is, as the operation control means, the fluctuation of the amount of heat received by the adsorbate by desorption from the heat medium supplied for desorption to the adsorber in which the desorption process is performed is monitored, and the desorption process is performed according to the fluctuation of the heat quantity. In the evaporator that supplies the adsorbate to be adsorbed to the adsorber in which the adsorption process is performed, the change in the amount of cold heat in the heat medium after heat exchange is performed by the evaporation of the adsorbate. Monitoring is performed, and the end timing of the adsorption process is determined in accordance with the change in the heat amount (claim 1).

この発明の場合、脱着工程の終了タイミングと、吸着工程の終了タイミングとがそれぞれの熱特性に基づいて別個に決定されることになり、サイクル時間という概念が取り払われることになる。すなわち、脱着工程における受熱の熱量と、吸着工程における冷熱の熱量とに基づいてそれぞれの熱特性に応じて各工程の終了タイミングが決定され、このため、ポンプ等を無駄に駆動継続させることなくエネルギー消費の無駄を廃して効率化を図ることが可能になる。 In the case of this invention, the end timing of the desorption step and the end timing of the adsorption step are determined separately based on the respective thermal characteristics, and the concept of cycle time is removed. In other words, the end timing of each process is determined according to the thermal characteristics based on the amount of heat received in the desorption process and the amount of cold heat in the adsorption process. It is possible to eliminate wasteful consumption and improve efficiency.

本発明の運転制御手段として、脱着により吸着質が熱媒から受熱する熱量が設定熱量を下回ることにより脱着工程を終了させる一方、吸着に基づき蒸発器で得られる冷熱の熱量が設定熱量を下回ることにより吸着工程を終了させる構成とすることができる(請求項2)。このようにすることで、より具体的に終了タイミングの決定を行うことが可能となる。すなわち、脱着や吸着の能力が外気温等の外部変動要因や吸着材の能力等の内部変動要因に基づいて変動したとしても、脱着や吸着の各能力が相当程度まで低下することで個別に工程を終了させることが可能となり、終了タイミングをより最適に決定し得ることになる。   As the operation control means of the present invention, the amount of heat received by the adsorbate from the heat medium by desorption is less than the set heat amount, while the desorption process is terminated, while the amount of cold heat obtained by the evaporator based on the adsorption is less than the set heat amount. Thus, the adsorption process can be completed (claim 2). In this way, it is possible to determine the end timing more specifically. In other words, even if the desorption and adsorption capacities vary based on external fluctuation factors such as the outside air temperature and internal fluctuation factors such as the adsorbent capacity, the individual desorption and adsorption capacities are reduced to a considerable extent. Can be terminated, and the termination timing can be determined more optimally.

又、上記運転制御手段として、脱着により吸着質が受熱する熱量を、脱着工程が行われる吸着器に循環供給される熱媒の往きと戻りとの間の差温に熱媒流量を乗じる演算により得る構成とすることができる(請求項3)。このようにすることにより、受熱の熱量を簡易にかつ確実に検出し得ることになり、脱着工程の終了タイミングをより的確に決定し得ることになる。   In addition, as the above operation control means, the amount of heat received by the adsorbate by desorption is calculated by multiplying the temperature difference between the return and return of the heat medium circulated to the adsorber where the desorption process is performed by the heat medium flow rate. It can be set as the structure to obtain (Claim 3). By doing so, the amount of heat received can be detected easily and reliably, and the end timing of the desorption process can be determined more accurately.

さらに、上記運転制御手段として、脱着工程の終了タイミングと、吸着工程の終了タイミングとを比較して遅い側の終了タイミングを基準にして、次のサイクルを開始する構成とすることができる(請求項4)。このように次のサイクルの脱着工程と吸着工程とを同時に開始させるようにすることにより、前のサイクルでの脱着工程と吸着工程とが別々のタイミングで終了したとしても、次のサイクルでの開始タイミングの到来を待って開始させることが可能となり、運転制御の容易化が図り得ることになる。   Further, the operation control means may be configured to start the next cycle with reference to the end timing on the later side as compared with the end timing of the desorption process and the end timing of the adsorption process. 4). By starting the desorption process and the adsorption process of the next cycle at the same time in this way, even if the desorption process and the adsorption process of the previous cycle are completed at different timings, the next cycle starts. It is possible to start the operation after the timing has arrived, and the operation control can be facilitated.

以上、説明したように、請求項1〜請求項4のいずれかの吸着式ヒートポンプによれば、脱着工程の終了タイミングと、吸着工程の終了タイミングとをそれぞれの熱特性に基づいて別個に決定することができ、サイクル時間という概念を取り払った運転制御を行うことができるようになる。これにより、脱着工程における受熱の熱量と、吸着工程における冷熱の熱量とに基づいてそれぞれの熱特性に応じて各工程の終了タイミングを決定することができるため、ポンプ等を無駄に駆動継続させることなくエネルギー消費の無駄を廃して効率化を図ることができるようになる。   As described above, according to the adsorption heat pump of any one of claims 1 to 4, the end timing of the desorption process and the end timing of the adsorption process are separately determined based on the respective thermal characteristics. This makes it possible to perform operation control that eliminates the concept of cycle time. As a result, the end timing of each process can be determined according to the thermal characteristics based on the amount of heat received in the desorption process and the amount of cold heat in the adsorption process. It is possible to improve efficiency by eliminating waste of energy consumption.

特に請求項2によれば、脱着や吸着の能力が外気温等の外部変動要因や吸着材の能力等の内部変動要因に基づいて変動したとしても、脱着や吸着の各能力が相当程度まで低下することで個別に工程を終了させることができ、終了タイミングをより具体的域かつ最適に決定することができるようになる。   In particular, according to claim 2, even if the desorption and adsorption capacities vary based on external fluctuation factors such as outside air temperature and internal fluctuation factors such as adsorbent capacity, the desorption and adsorption capacities are reduced to a considerable extent. By doing so, the process can be individually ended, and the end timing can be determined more specifically and optimally.

又、請求項3によれば、脱着工程が行われる吸着器に循環供給される熱媒の往きと戻りとの間の差温の検出と、熱媒流量の検出とによって、受熱の熱量を簡易にかつ確実に検出することができるようになり、脱着工程の終了タイミングをより的確に決定することができるようになる。   Further, according to claim 3, the amount of heat received can be simplified by detecting the temperature difference between the return and return of the heat medium circulatingly supplied to the adsorber in which the desorption process is performed, and detecting the flow rate of the heat medium. Thus, the detection timing can be reliably detected, and the end timing of the desorption process can be determined more accurately.

さらに、請求項4によれば、脱着工程の終了タイミングと、吸着工程の終了タイミングとを比較して遅い側の終了タイミングを基準にして、次のサイクルの脱着工程と吸着工程とを同時に開始させることで、前のサイクルでの脱着工程と吸着工程とが別々のタイミングで終了したとしても、次のサイクルでの開始タイミングの到来を待って開始させることができ、運転制御の容易化を図ることができるようになる。   Furthermore, according to the fourth aspect, the desorption process and the adsorption process of the next cycle are started at the same time based on the end timing on the later side comparing the completion timing of the desorption process and the completion timing of the adsorption process. Therefore, even if the desorption process and the adsorption process in the previous cycle are completed at different timings, the start timing in the next cycle can be started and the operation control can be facilitated. Will be able to.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る吸着式ヒートポンプの例を示す原理図である。同図において、符号1はハウジング、2a,2bは一対の吸着器、3は凝縮器、4は蒸発器である。一対の吸着器2a,2b、凝縮器3及び蒸発器4は、ハウジング1の内部空間を区画壁で仕切ることにより互いに独立した密閉空間として区画形成したものであり、いわゆるセパレート式に構成されている。すなわち、一対の吸着器2a,2bはそれぞれ吸着又は脱着工程が行われる密閉空間に吸着/脱着用熱交換器が配設されて構成されたものであり、凝縮器3又は蒸発器4もそれぞれ凝縮工程又は蒸発工程が行われる密閉空間に凝縮用熱交換器又は蒸発用熱交換器が配設されて構成されたものである。上記各ハウジング1は内部が図示省略の真空ポンプ等により略真空状態に維持されて、内部には例えば水、アルコール、アンモニア等の吸着質が所要量封入されている。そして、蒸発器3と各吸着器2a,2bとの間には蒸発器3で蒸発された吸着質を吸着工程が行われる吸着器2a又は2bに供給するための開閉弁V1,V2が介装され、各吸着器2a,2bと凝縮器4との間には脱着工程が行われる吸着器2b又は2aから脱着された吸着質を凝縮器4に供給するための開閉弁V3,V4が介装されている。なお、上記各吸着器2a,2bを構成する吸着/脱着用熱交換器にはその外表面に例えばゼオライト、シリカゲル、活性炭等の吸着剤が固定されている。   FIG. 1 is a principle diagram showing an example of an adsorption heat pump according to an embodiment of the present invention. In the figure, reference numeral 1 is a housing, 2a and 2b are a pair of adsorbers, 3 is a condenser, and 4 is an evaporator. The pair of adsorbers 2a and 2b, the condenser 3 and the evaporator 4 are partitioned and formed as sealed spaces independent from each other by partitioning the internal space of the housing 1 with partition walls, and are configured in a so-called separate type. . That is, each of the pair of adsorbers 2a and 2b is configured by arranging an adsorption / desorption heat exchanger in a sealed space where an adsorption or desorption process is performed, and the condenser 3 or the evaporator 4 is also condensed. The heat exchanger for condensation or the heat exchanger for evaporation is arranged in a sealed space where the process or the evaporation process is performed. Each housing 1 is maintained in a substantially vacuum state by a vacuum pump (not shown) or the like, and a required amount of adsorbate such as water, alcohol, ammonia, or the like is sealed therein. Between the evaporator 3 and each of the adsorbers 2a and 2b, on-off valves V1 and V2 for supplying the adsorbate evaporated by the evaporator 3 to the adsorber 2a or 2b where the adsorption process is performed are provided. Between the adsorbers 2a and 2b and the condenser 4, on-off valves V3 and V4 for supplying the adsorbate desorbed from the adsorber 2b or 2a in which the desorption process is performed to the condenser 4 are interposed. Has been. The adsorption / desorption heat exchanger constituting each of the adsorbers 2a and 2b is fixed with an adsorbent such as zeolite, silica gel, activated carbon or the like on its outer surface.

又、図1において、符号5は例えば廃棄温水等の廃熱を利用して熱媒を所定の高温状態にして保持する高温熱媒部、6は熱媒を所定の低温状態に維持して保持する放熱部(例えば室外機)、7はこれに戻される最も低温の熱媒から熱交換により冷熱を回収して取り出すための冷熱取り出し用熱交換器を内蔵した冷却部、8は熱媒供給系の通路切換部である。上記の高温熱媒部5、放熱部6及び冷却部7と、それぞれに付設されたポンプ51,61,71と、上記通路切換部8と等を含んで熱媒供給系が構成されている。   In FIG. 1, reference numeral 5 denotes a high-temperature heat medium portion that holds waste heat such as waste hot water at a predetermined high temperature, and 6 holds the heat medium maintained at a predetermined low temperature. A heat dissipating unit (for example, an outdoor unit), 7 is a cooling unit having a built-in heat exchanger for extracting heat from the coldest heat medium returned to the heat recovery unit, and 8 is a heat medium supply system. It is a passage switching part. The heat medium supply system is configured to include the high-temperature heat medium section 5, the heat radiating section 6, the cooling section 7, pumps 51, 61, 71 attached to the respective sections, the passage switching section 8, and the like.

高温熱媒部5からはポンプ51の作動により温度TH(例えば80℃)の高温の熱媒が通路切換部8に供給され、この通路切換部8での通路切換により脱着工程が行われる吸着器2a又は2bに上記の温度THの熱媒が供給されるようになっている。そして、脱着工程が行われている吸着器2a,2bからは、脱着のために吸着質に受熱させることにより温度低下した熱媒が通路切換部8を介して上記高温熱媒部5に戻されて再び上記温度THまで熱媒が昇温されて循環されるようになっている。この熱媒の往き通路52には脱着工程の吸着器2a又は2bに供給される熱媒の入温度を検出する入温度検出センサ53と、その熱媒の流量を検出する熱媒流量検出センサ54とが介装され、熱媒の戻り通路55には脱着工程の吸着器2a,2bから出て高温熱媒部5に戻される熱媒の出温度を検出する出温度検出センサ56が介装されている。   An adsorber in which a high-temperature heat medium having a temperature TH (for example, 80 ° C.) is supplied from the high-temperature heat medium section 5 to the passage switching section 8 by the operation of the pump 51, and the desorption process is performed by the path switching in the passage switching section 8. The heating medium having the above temperature TH is supplied to 2a or 2b. Then, from the adsorbers 2a and 2b in which the desorption process is performed, the heat medium whose temperature has been lowered by receiving heat by the adsorbate for desorption is returned to the high temperature heat medium section 5 through the passage switching section 8. Then, the heating medium is again heated to the temperature TH and circulated. In the heating medium forward passage 52, an inlet temperature detection sensor 53 for detecting the inlet temperature of the heating medium supplied to the adsorber 2a or 2b in the desorption process, and a heating medium flow rate detection sensor 54 for detecting the flow rate of the heating medium. And an outlet temperature detection sensor 56 for detecting the outlet temperature of the heating medium that comes out of the adsorbers 2a and 2b in the desorption process and returns to the high temperature heating medium section 5 is interposed in the return passage 55 of the heating medium. ing.

放熱部6からはポンプ61の作動により温度TM(例えば40℃)の中温の熱媒が凝縮器4と、通路切換部8を介して吸着工程の行われる吸着器2b又は2aとのそれぞれに分岐供給されるようになっている。そして、吸着工程で吸着質との熱交換により昇温した熱媒が通路切換部8を介して上記放熱部6に戻されて再び上記温度TMまで冷却・降温されて循環されるようになっている。   From the heat dissipating unit 6, a medium-temperature heat medium having a temperature TM (for example, 40 ° C.) is branched into the condenser 4 and the adsorber 2 b or 2 a where the adsorption process is performed via the passage switching unit 8 by the operation of the pump 61. It comes to be supplied. Then, the heat medium heated by the heat exchange with the adsorbate in the adsorption process is returned to the heat radiating unit 6 through the passage switching unit 8 and is cooled to the temperature TM and cooled again to be circulated. Yes.

上記冷却部7からはポンプ71の作動により温度TL(例えば15℃)の低温の熱媒が蒸発器3に供給されるようになっている。そして、蒸発器3での吸着質との熱交換により温度低下した熱媒が冷却部7に戻され、この冷却部7で冷熱取り出し後に再び上記温度TLの熱媒が循環されるようになっている。冷却部7への戻り通路には蒸発器7からの熱媒の出温度を検出する冷熱温度検出センサ72が介装されている。   A low-temperature heat medium having a temperature TL (for example, 15 ° C.) is supplied from the cooling unit 7 to the evaporator 3 by the operation of the pump 71. Then, the heat medium whose temperature has decreased due to heat exchange with the adsorbate in the evaporator 3 is returned to the cooling unit 7, and after the cooling heat is taken out by the cooling unit 7, the heat medium having the temperature TL is circulated again. Yes. In the return passage to the cooling unit 7, a cold temperature detection sensor 72 for detecting the temperature of the heat medium from the evaporator 7 is interposed.

以上のポンプ51,61,71の作動制御や、開閉弁V1〜V4の開閉切換制御等は運転制御手段9による運転制御によって行われるようになっており、これにより、次に説明する吸着式冷凍サイクルに基づく冷熱取り出しのための運転が行われることになる。この運転は、基本的には、一対の吸着器2a,2bの一方で吸着工程を行うと共に他方で脱着工程を行い、その際に蒸発器3からは吸着工程を行う吸着器2a又は2bに対し蒸発させた吸着質を開閉弁V1又はV2を開変換して供給する一方、脱着工程を行う吸着器2b又は2aからは凝縮器4に対し脱着させた吸着質を開閉弁V4又はV3を開変換させて供給するようにし、一対の吸着器2a,2bで吸着工程と脱着工程とを交互に切換える、というバッチ処理方式にて行われるようになっている。以下、かかる冷熱取り出しのための運転制御について説明する。   The above-described operation control of the pumps 51, 61, 71 and the open / close switching control of the on-off valves V1 to V4 are performed by the operation control by the operation control means 9, whereby the adsorption refrigeration described below is performed. The operation for taking out the cold heat based on the cycle will be performed. In this operation, basically, one of the pair of adsorbers 2a and 2b performs an adsorption process and the other performs a desorption process. At that time, the evaporator 3 performs an adsorption process on the adsorber 2a or 2b. The evaporated adsorbate is supplied by opening the on-off valve V1 or V2, while the adsorbent 2b or 2a performing the desorption process is opened on the on-off valve V4 or V3. The batch processing system is configured such that the adsorption process and the desorption process are alternately switched between the pair of adsorbers 2a and 2b. Hereinafter, the operation control for taking out the cold energy will be described.

図2は、吸着器2aでは吸着工程が行われる一方、吸着器2bでは脱着工程が行われる場合を示している。同図において太い破線が放熱部6からの温度TMの熱媒の循環経路を示し、太い実線が高温熱媒部5からの温度THの熱媒の循環経路を示している。すなわち、ポンプ51の作動により高温熱媒部5から温度THの熱媒を往き通路52及び通路切換部8を通して吸着器2bに供給し、それまでに吸着器2bに吸着されていた吸着質を脱着させ、この脱着された吸着質を開変換させた開閉弁V4から凝縮器4に供給する。凝縮器4では上記の脱着された高温の吸着質を放熱部6から供給される温度TMの熱媒との熱交換により凝縮させる。そして、脱着により温度低下した熱媒が通路切換部8及び戻り通路55を通して高温熱媒部5に戻される。   FIG. 2 shows a case where the adsorption process is performed in the adsorber 2a while the desorption process is performed in the adsorber 2b. In the figure, a thick broken line indicates a circulation path of the heat medium having the temperature TM from the heat radiating unit 6, and a thick solid line indicates a circulation path of the heat medium having the temperature TH from the high temperature heating medium part 5. That is, by operating the pump 51, the heat medium having the temperature TH is supplied from the high-temperature heat medium section 5 to the adsorber 2b through the forward passage 52 and the passage switching section 8, and the adsorbate adsorbed on the adsorber 2b until then is desorbed. The desorbed adsorbate is supplied to the condenser 4 from the open / close valve V4 that has been converted to open. In the condenser 4, the desorbed high-temperature adsorbate is condensed by heat exchange with the heat medium having the temperature TM supplied from the heat radiating unit 6. Then, the heat medium whose temperature has decreased due to desorption is returned to the high-temperature heat medium section 5 through the path switching section 8 and the return path 55.

この過程において、運転制御手段では脱着工程が行われる吸着器2bで吸着質が受熱する受熱量の熱量変動を監視し、この熱量変動が所定の設定熱量まで低下すればポンプ51の作動を停止させて脱着工程を終了させるようになっている。受熱量の熱量変動の監視は、高温熱媒部5から送り出される熱量と、吸着質への受熱により熱量が奪われた後に戻される熱量との差を検出することにより行う。すなわち、次式で示すように、入温度検出センサ52による検出温度Taから出温度検出センサ56により検出温度Trを差し引いた差温に熱媒流量検出センサ54により検出される熱媒流量Qを乗じることで脱着により吸着質に受熱された熱量(脱着熱量)Adを得る。   In this process, the operation control means monitors the amount of heat received by the adsorber 2b where the desorption process is performed, and stops the operation of the pump 51 if this amount of heat decreases to a predetermined set amount of heat. Thus, the desorption process is completed. The variation in the amount of heat received is monitored by detecting the difference between the amount of heat sent from the high-temperature heat medium section 5 and the amount of heat returned after the amount of heat is deprived by the heat received by the adsorbate. That is, as shown by the following equation, the temperature difference obtained by subtracting the detection temperature Tr by the output temperature detection sensor 56 from the detection temperature Ta by the input temperature detection sensor 52 is multiplied by the heat medium flow rate Q detected by the heat medium flow rate detection sensor 54. Thus, the amount of heat (desorption heat amount) Ad received by the adsorbate by desorption is obtained.

Ad = Q×( Ta − Tr )
そして、この検出された脱着熱量が設定脱着熱量Atを下回ることになれば(Ad<At)、ポンプ51を停止させて脱着工程を終了させる。
Ad = Q x (Ta-Tr)
If the detected desorption heat amount falls below the set desorption heat amount At (Ad <At), the pump 51 is stopped and the desorption process is terminated.

この脱着熱量の熱量変化は、脱着後の吸着質が凝縮器4で凝縮される凝縮器出力の変化となって表れる。例えば図3に示すように、脱着工程が開始されて盛んに脱着が行われると凝縮器出力も上昇するものの、脱着が限界に近づくと受熱量も低下する一方、凝縮器出力も低下することになる。このため、脱着熱量が設定脱着熱量を下回る段階(図3のP1参照)になれば、ポンプ51を停止させて脱着工程を終了するようにしている。これにより、工程切換を予め設定した固定の時間間隔で行う運転制御の場合に脱着自体が不能又は低調になっているにも拘わらずポンプ51を作動させ続けることによる無駄なエネルギー消費を削減して、得られる凝縮器出力を消費電力で除した電気COPの値を向上せさることができるようになる。   The change in the heat amount of the desorption heat amount appears as a change in the condenser output in which the adsorbate after desorption is condensed in the condenser 4. For example, as shown in FIG. 3, when the desorption process is started and the desorption is actively performed, the condenser output also increases. However, when the desorption approaches the limit, the amount of heat received also decreases, while the condenser output also decreases. Become. For this reason, when the desorption heat amount falls below the set desorption heat amount (see P1 in FIG. 3), the pump 51 is stopped and the desorption process is ended. As a result, in the case of operation control in which process switching is performed at a preset fixed time interval, wasteful energy consumption due to continued operation of the pump 51 is reduced despite the fact that the detachment itself is impossible or low. Thus, the value of the electric COP obtained by dividing the obtained condenser output by the power consumption can be improved.

又、吸着工程は、ポンプ61の作動により放熱部6から温度TMの熱媒を通路切換部8を通して吸着器2aに供給し、開変換した開閉弁V1を通して蒸発器3から供給された吸着質を吸着器2aに吸着させる。この吸着時の吸着質との熱交換により昇温した熱媒が再び通路切換部8を介して放熱部6に戻されることになる。   In the adsorption step, the heat medium having the temperature TM is supplied from the heat radiating unit 6 to the adsorber 2a through the passage switching unit 8 by the operation of the pump 61, and the adsorbate supplied from the evaporator 3 through the open / close valve V1 is opened. Adsorb to the adsorber 2a. The heat medium raised in temperature by heat exchange with the adsorbate at the time of adsorption is returned to the heat radiating unit 6 through the passage switching unit 8 again.

この過程において、運転制御手段では蒸発器3に供給されて蒸発により温度低下した熱媒の冷熱量の熱量変動を監視し、この冷熱量が所定の設定冷熱量よりも下回り冷熱取り出しが低調になった段階で吸着工程を終了させるようになっている。具体的には、蒸発器3での蒸発により温度低下した熱媒の戻り温度、つまり冷熱温度検出センサ72により検出される検出温度を監視し、この検出温度が設定上限温度まで上昇した段階でポンプ61を停止させて吸着工程を終了させるようにしている。つまり、蒸発器3での蒸発による蒸発熱は吸着工程の当初は盛んに吸着されるため増大して冷熱取り出しも高まるものの、吸着工程が進んで吸着能が低下すると共に蒸発熱も低減して冷熱取り出しも低調となる。このため、冷熱量が設定冷熱量を下回る段階になれば、つまり蒸発器出力(冷熱取り出しの度合である冷熱出力)が設定値(図3のP2参照)より低下すれば、ポンプ61を停止させて吸着工程を終了するようにしている。これにより、上記の脱着工程の場合と同様に、工程切換を予め設定した固定の時間間隔で行う運転制御の場合に吸着自体が不能又は低調になっているにも拘わらずポンプ61を作動させ続けることによる無駄なエネルギー消費を削減して、得られる蒸発器出力を消費電力で除した電気COPの値を向上せさることができるようになる。その上に、無駄にポンプ61を作動し続けることによる無駄な放熱も抑制することができるようなる。   In this process, the operation control means monitors fluctuations in the amount of cold of the heat medium supplied to the evaporator 3 and lowered in temperature due to evaporation, and the amount of cold falls below a predetermined set amount of cold, resulting in low cooling out. At this stage, the adsorption process is terminated. Specifically, the return temperature of the heat medium that has fallen due to evaporation in the evaporator 3, that is, the detected temperature detected by the cold temperature detection sensor 72, is monitored, and the pump is turned on when the detected temperature rises to the set upper limit temperature. 61 is stopped to end the adsorption process. In other words, although the heat of evaporation due to evaporation in the evaporator 3 is actively adsorbed at the beginning of the adsorption process, the heat is increased and the extraction of cold heat is also increased. Removal is also slow. For this reason, if the amount of cold energy falls below the set amount of cold energy, that is, if the evaporator output (cold heat output, which is the degree of cold extraction) falls below the set value (see P2 in FIG. 3), the pump 61 is stopped. Thus, the adsorption process is completed. As a result, as in the case of the above-described desorption process, the pump 61 continues to be operated even when the adsorption itself is disabled or low in the case of operation control in which process switching is performed at a fixed time interval set in advance. Therefore, it is possible to improve the value of the electric COP obtained by dividing the obtained evaporator output by the power consumption. In addition, it is possible to suppress wasteful heat radiation caused by continuously operating the pump 61 wastefully.

そして、脱着工程の終了タイミング及び吸着工程の終了タイミングのいずれか遅い方を基準として、次のバッチ処理、つまり吸着工程と脱着工程とを一対の吸着器2a,2bで役割を交代させて行う次のサイクルを開始させる。図3には、吸着工程の終了タイミングの方が脱着工程の終了タイミングよりも遅く、この遅い側の終了タイミングに基づいて次のサイクルを開始させる例を図示している。以上の如き脱着熱量や冷熱量の熱量変動は外気温や室温等の外部変動要因や、吸着材自体の能力変化等の内部変動要因によって生じるため、これらをも考慮して最適な終了タイミングを決定することで、従来の固定時間間隔でしかも同期して切換を行う運転制御に比して冷熱取り出しにおける効率の向上を図ることができるようになる。なお、遅い側(吸着固定)の終了タイミングから開始タイミングまでに存在する若干の遅れは、それまでに脱着工程が行われていた吸着器2bで残留している顕熱を吸着器2bから次に脱着工程が行われることになる吸着器2aに対し付与し、逆に、それまでに吸着工程が行われていた吸着器2aで残留している顕熱を吸着器2aから次に吸着工程が行われることになる吸着器2bに対し付与するという顕熱交換を実行しているためである。この顕熱交換は通路切換部8の通路切換により行われる。   Then, based on the later of the desorption process end timing and the adsorption process end timing, whichever is later, the next batch processing, that is, the adsorption process and the desorption process are performed by changing the roles of the pair of adsorbers 2a and 2b. Start the cycle. FIG. 3 shows an example in which the end timing of the adsorption process is later than the end timing of the desorption process, and the next cycle is started based on this late end timing. The above-mentioned fluctuations in the amount of heat of desorption and cooling are caused by external fluctuation factors such as the outside air temperature and room temperature, and internal fluctuation factors such as changes in the capacity of the adsorbent itself. As a result, it is possible to improve the efficiency in taking out the cold compared with the conventional operation control in which the switching is performed at fixed time intervals and synchronously. Note that the slight delay existing from the end timing of the late side (adsorption fixation) to the start timing causes the sensible heat remaining in the adsorber 2b that has been subjected to the desorption process so far to be transferred from the adsorber 2b. The desorption process is applied to the adsorber 2a to be performed, and conversely, the sensible heat remaining in the adsorber 2a that has been subjected to the adsorption process is performed from the adsorber 2a to the next adsorbing process. This is because the sensible heat exchange is applied to the adsorber 2b. This sensible heat exchange is performed by passage switching of the passage switching unit 8.

次に開始されるサイクルの例を図4に示している。図2の場合と同様に、太い破線が放熱部6からの温度TMの熱媒の循環経路を示し、太い実線が高温熱媒部5からの温度THの熱媒の循環経路を示している。すなわち、ポンプ51の作動により高温熱媒部5から温度THの熱媒を往き通路52及び通路切換部8を通して吸着器2aに供給し、前工程の吸着工程で吸着器2aに吸着されていた吸着質を脱着させ、この脱着された吸着質を開変換させた開閉弁V3から凝縮器4に供給する。凝縮器4では上記の脱着された高温の吸着質を放熱部6から供給される温度TMの熱媒との熱交換により凝縮させる。そして、脱着により温度低下した熱媒が通路切換部8及び戻り通路55を通して高温熱媒部5に戻される。一方、ポンプ61の作動により放熱部6から温度TMの熱媒を通路切換部8を通して吸着器2bに供給し、開変換した開閉弁V2を通して蒸発器3から供給された吸着質を吸着器2bに吸着させる。この吸着時の吸着質との熱交換により昇温した熱媒が再び通路切換部8を介して放熱部6に戻されることになる。これらの過程において、上記の場合と同様に、脱着工程の側では脱着熱量の熱量変動を監視して脱着工程の終了タイミングを決定し、吸着工程の側では冷熱の熱量変動を監視して吸着工程の終了タイミングを決定する。   An example of the next cycle to be started is shown in FIG. As in the case of FIG. 2, the thick broken line indicates the circulation path of the heat medium having the temperature TM from the heat radiating section 6, and the thick solid line indicates the circulation path of the heat medium having the temperature TH from the high temperature heating medium section 5. That is, the heat medium having the temperature TH is supplied from the high-temperature heat medium part 5 to the adsorber 2a through the forward passage 52 and the passage switching part 8 by the operation of the pump 51, and is adsorbed by the adsorber 2a in the adsorption process of the previous process. The desorbed adsorbate is supplied to the condenser 4 from the on-off valve V3 which has been opened and converted. In the condenser 4, the desorbed high-temperature adsorbate is condensed by heat exchange with the heat medium having the temperature TM supplied from the heat radiating unit 6. Then, the heat medium whose temperature has decreased due to desorption is returned to the high-temperature heat medium section 5 through the path switching section 8 and the return path 55. On the other hand, by the operation of the pump 61, the heat medium having the temperature TM is supplied from the heat radiating unit 6 to the adsorber 2b through the passage switching unit 8, and the adsorbate supplied from the evaporator 3 through the open / closed on-off valve V2 is supplied to the adsorber 2b. Adsorb. The heat medium raised in temperature by heat exchange with the adsorbate at the time of adsorption is returned to the heat radiating unit 6 through the passage switching unit 8 again. In these processes, as in the case described above, the desorption process side monitors the desorption heat amount fluctuation to determine the end timing of the desorption process, and the adsorption process side monitors the cold heat amount fluctuation and the adsorption process. The end timing of is determined.

<他の実施形態>
なお、本発明は上記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記実施形態では、ハウジング1の下側位置に蒸発器3、上側位置に凝縮器4、中間位置の両側にそれぞれ吸着器2a,2bがそれぞれ配置されてセパレート式に構成された吸着式ヒートポンプを示したが、これに限らず、セパレート式であれば上記以外の配置のものに対しても本発明を適用することができる。
<Other embodiments>
In addition, this invention is not limited to the said embodiment, Various other embodiments are included. That is, in the above-described embodiment, the adsorption heat pump is configured as a separate type by arranging the evaporator 3 at the lower position of the housing 1, the condenser 4 at the upper position, and the adsorbers 2a and 2b on both sides of the intermediate position. However, the present invention is not limited to this, and the present invention can be applied to an arrangement other than the above as long as it is a separate type.

本発明の実施形態の吸着式ヒートポンプの基本的な構成を示す構成図である。It is a block diagram which shows the basic composition of the adsorption heat pump of embodiment of this invention. 吸着器2aで吸着工程を、吸着器2bで脱着工程をそれぞれ実行している状態を示す図1対応図である。FIG. 2 is a diagram corresponding to FIG. 1 showing a state in which an adsorption process is performed by the adsorber 2a and a desorption process is performed by the adsorber 2b. 時間経過と、凝縮器出力及び蒸発器出力との関係を示す関係図である。It is a relationship figure which shows the relationship between time passage, a condenser output, and an evaporator output. 吸着器2aで脱着工程を、吸着器2bで吸着工程をそれぞれ実行している状態を示す図1対応図である。FIG. 2 is a view corresponding to FIG. 1 showing a state in which a desorption process is performed by the adsorber 2a and an adsorption process is performed by the adsorber 2b.

符号の説明Explanation of symbols

1 ハウジング
2a,2b 吸着器
3 凝縮器
4 蒸発器
9 運転制御手段
53 入温度検出センサ
54 冷媒流量検出センサ
56 出温度検出センサ
72 冷熱温度検出センサ
DESCRIPTION OF SYMBOLS 1 Housing 2a, 2b Adsorber 3 Condenser 4 Evaporator 9 Operation control means 53 Incoming temperature detection sensor 54 Refrigerant flow rate detection sensor 56 Outlet temperature detection sensor 72 Cold temperature detection sensor

Claims (4)

一対の吸着器、凝縮器及び蒸発器がハウジング内で互いに独立して区画配置され、吸着工程と脱着工程とを一対の吸着器で交互に切換制御して吸着質の吸着と脱着とを繰り返す吸着式冷凍サイクルを実行する運転制御手段を備えた吸着式ヒートポンプであって、
上記運転制御手段は、脱着工程が行われる吸着器に対し脱着のために供給される熱媒から脱着により吸着質が受熱する熱量の変動を監視し、この熱量の変動に応じて脱着工程の終了タイミングを決定する一方、吸着工程が行われる吸着器に対し吸着させるための吸着質を供給する蒸発器において吸着質の蒸発により熱交換された後の熱媒が有する冷熱の熱量の変動を監視し、この熱量の変動に応じて吸着工程の終了タイミングを決定するように構成されている、
ことを特徴とする吸着式ヒートポンプ。
A pair of adsorbers, condensers and evaporators are partitioned and arranged independently from each other in the housing, and the adsorption process and desorption process are alternately switched by the pair of adsorbers and the adsorption and desorption of the adsorbate are repeated. An adsorption heat pump having an operation control means for executing a refrigerating cycle,
The operation control means monitors fluctuations in the amount of heat received by the adsorbate by desorption from the heat medium supplied for desorption to the adsorber in which the desorption process is performed, and ends the desorption process according to the change in the heat quantity. While determining the timing, in the evaporator that supplies the adsorbate to be adsorbed to the adsorber in which the adsorption process is performed, the fluctuation of the heat quantity of the cooling medium after the heat exchange is performed by the evaporation of the adsorbate is monitored. , Is configured to determine the end timing of the adsorption step according to the variation in the amount of heat,
Adsorption heat pump.
請求項1記載の吸着式ヒートポンプであって、
上記運転制御手段は、脱着により吸着質が熱媒から受熱する熱量が設定熱量を下回ることにより脱着工程を終了させる一方、吸着に基づき蒸発器で得られる冷熱の熱量が設定熱量を下回ることにより吸着工程を終了させるように構成されている、吸着式ヒートポンプ。
An adsorption heat pump according to claim 1,
The operation control means terminates the desorption process when the amount of heat received by the adsorbate from the heat medium by the desorption falls below the set heat amount, and adsorbs when the amount of cold heat obtained by the evaporator based on the adsorption falls below the set heat amount. An adsorption heat pump configured to terminate the process.
請求項1又は請求項2に記載の吸着式ヒートポンプであって、
上記運転制御手段は、脱着により吸着質が受熱する熱量を、脱着工程が行われる吸着器に循環供給される熱媒の往きと戻りとの間の差温に熱媒流量を乗じる演算により得るように構成されている、吸着式ヒートポンプ。
The adsorption heat pump according to claim 1 or 2,
The operation control means obtains the amount of heat received by the adsorbate by desorption by calculation of multiplying the temperature difference between the return and return of the heat medium circulatingly supplied to the adsorber in which the desorption process is performed by the heat medium flow rate. An adsorption heat pump.
請求項1〜請求項3のいずれかに記載の吸着式ヒートポンプであって、
上記運転制御手段は、脱着工程の終了タイミングと、吸着工程の終了タイミングとを比較して遅い側の終了タイミングを基準にして、次のサイクルを開始するように構成されている、吸着式ヒートポンプ。
The adsorption heat pump according to any one of claims 1 to 3,
The operation control means is an adsorption heat pump configured to start the next cycle on the basis of a later end timing by comparing the end timing of the desorption process and the end timing of the adsorption process.
JP2008330887A 2008-12-25 2008-12-25 Adsorption type heat pump Withdrawn JP2010151386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330887A JP2010151386A (en) 2008-12-25 2008-12-25 Adsorption type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330887A JP2010151386A (en) 2008-12-25 2008-12-25 Adsorption type heat pump

Publications (1)

Publication Number Publication Date
JP2010151386A true JP2010151386A (en) 2010-07-08

Family

ID=42570682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330887A Withdrawn JP2010151386A (en) 2008-12-25 2008-12-25 Adsorption type heat pump

Country Status (1)

Country Link
JP (1) JP2010151386A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001608A1 (en) * 2011-06-28 2013-01-03 富士通株式会社 Adsorption heat pump using sheet valve, and information processing system
DE102013013835A1 (en) 2012-08-22 2014-02-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and method for generating cooling power
JP2014040959A (en) * 2012-08-22 2014-03-06 Toyota Central R&D Labs Inc Adsorption type heat pump system and cold generating method
JP2015034668A (en) * 2013-08-08 2015-02-19 株式会社豊田中央研究所 Adsorption heat pump and adsorption heat pump control method
JP2015521271A (en) * 2012-05-03 2015-07-27 コールドウェイ Apparatus and method for continuously generating cold air by a thermochemical method
JP2015206521A (en) * 2014-04-18 2015-11-19 株式会社豊田中央研究所 Adsorption heat pump system and cold heat generation method
JP2016176632A (en) * 2015-03-19 2016-10-06 カルソニックカンセイ株式会社 Adsorption type refrigerator
US10082321B2 (en) 2014-03-24 2018-09-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and cooling generation method
US10168081B2 (en) 2014-06-30 2019-01-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and cooling generation method
JP2021004678A (en) * 2019-06-25 2021-01-14 株式会社豊田中央研究所 Heat transport system, adsorption type heat pump and heat transport method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728281A4 (en) * 2011-06-28 2015-03-25 Fujitsu Ltd Adsorption heat pump using sheet valve, and information processing system
US9212837B2 (en) 2011-06-28 2015-12-15 Fujitsu Limited Adsorption-type heat pump using seat valve and information processing system
CN103620319A (en) * 2011-06-28 2014-03-05 富士通株式会社 Adsorption heat pump using sheet valve, and information processing system
WO2013001608A1 (en) * 2011-06-28 2013-01-03 富士通株式会社 Adsorption heat pump using sheet valve, and information processing system
EP2728281A1 (en) * 2011-06-28 2014-05-07 Fujitsu Limited Adsorption heat pump using sheet valve, and information processing system
JP5668853B2 (en) * 2011-06-28 2015-02-12 富士通株式会社 Adsorption heat pump using seat valve and information processing system
JP2015521271A (en) * 2012-05-03 2015-07-27 コールドウェイ Apparatus and method for continuously generating cold air by a thermochemical method
JP2014040959A (en) * 2012-08-22 2014-03-06 Toyota Central R&D Labs Inc Adsorption type heat pump system and cold generating method
DE102013013835A1 (en) 2012-08-22 2014-02-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and method for generating cooling power
DE102013013835B4 (en) * 2012-08-22 2017-05-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and method for generating cooling power
US9863673B2 (en) 2012-08-22 2018-01-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and method of generating cooling power
JP2015034668A (en) * 2013-08-08 2015-02-19 株式会社豊田中央研究所 Adsorption heat pump and adsorption heat pump control method
US10082321B2 (en) 2014-03-24 2018-09-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and cooling generation method
JP2015206521A (en) * 2014-04-18 2015-11-19 株式会社豊田中央研究所 Adsorption heat pump system and cold heat generation method
US10168081B2 (en) 2014-06-30 2019-01-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and cooling generation method
JP2016176632A (en) * 2015-03-19 2016-10-06 カルソニックカンセイ株式会社 Adsorption type refrigerator
JP2021004678A (en) * 2019-06-25 2021-01-14 株式会社豊田中央研究所 Heat transport system, adsorption type heat pump and heat transport method

Similar Documents

Publication Publication Date Title
JP2010151386A (en) Adsorption type heat pump
Mitra et al. Solar driven adsorption desalination system
Tso et al. Performance analysis of a waste heat driven activated carbon based composite adsorbent–Water adsorption chiller using simulation model
JP4192385B2 (en) Adsorption type refrigerator
JP2004353887A (en) Moisture conditioning device
Alam et al. A four-bed mass recovery adsorption refrigeration cycle driven by low temperature waste/renewable heat source
US8479529B2 (en) Two-stage low temperature air cooled adsorption cooling unit
JPH0765816B2 (en) Adsorption refrigerator and its operating method
CN102353102B (en) Vacuum solution regenerating air dehumidification system and temperature and humidity independent control air conditioning system
JP5803704B2 (en) Refrigeration system
Akahira et al. Mass recovery four-bed adsorption refrigeration cycle with energy cascading
JP3592374B2 (en) Adsorption type cooling device and method for controlling cooling output thereof
JP5412775B2 (en) Adsorption refrigerator, control method thereof, and cooling system
JP2017009173A (en) Adsorption type refrigerator and its operational method
JPH05248727A (en) Lower temperature heat source-driven adsorption refrigerating machine system and adsorption refrigerating machine
JP3831964B2 (en) Adsorption type refrigerator
JP2009121740A (en) Adsorption type heat pump and its operation control method
JP2002162130A (en) Air conditioner
US10837682B2 (en) Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
JP2002250573A (en) Air conditioner
JPH07301469A (en) Adsorption type refrigerator
JP6364913B2 (en) Adsorption heat pump system and cold heat generation method
JPH05126432A (en) Adsorption type air-conditioner
JP4179051B2 (en) Humidity control device
JPH11190566A (en) Refrigerating unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306