JPH05248727A - Lower temperature heat source-driven adsorption refrigerating machine system and adsorption refrigerating machine - Google Patents
Lower temperature heat source-driven adsorption refrigerating machine system and adsorption refrigerating machineInfo
- Publication number
- JPH05248727A JPH05248727A JP6781791A JP6781791A JPH05248727A JP H05248727 A JPH05248727 A JP H05248727A JP 6781791 A JP6781791 A JP 6781791A JP 6781791 A JP6781791 A JP 6781791A JP H05248727 A JPH05248727 A JP H05248727A
- Authority
- JP
- Japan
- Prior art keywords
- adsorption
- adsorption tower
- evaporator
- refrigerant
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、複数の吸着塔を備えた
吸着式冷凍機システムに係り、特に、複数の吸着塔間の
吸脱着作用を利用して低温熱源でも駆動可能とした吸着
式冷凍機システムと、そのシステムに使用する吸着式冷
凍機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption refrigeration system having a plurality of adsorption towers, and more particularly to an adsorption type refrigeration system that can be driven by a low temperature heat source by utilizing the adsorption / desorption action between the adsorption towers. The present invention relates to a refrigerator system and an adsorption refrigerator used in the system.
【0002】[0002]
【従来の技術】従来の吸着式冷凍機システムは、例えば
シリカゲル、ゼオライト等の固体吸着剤を充填した2基
の吸着塔と、各吸着塔に連結した蒸発器及び凝縮器を有
し、各吸着塔で蒸発器及び凝縮器に対する吸脱着工程を
反復させ、連続して冷凍出力を得るようにした冷凍機シ
テスムが知られている。2. Description of the Related Art A conventional adsorption refrigerator system has two adsorption towers filled with a solid adsorbent such as silica gel and zeolite, and an evaporator and a condenser connected to each adsorption tower. There is known a refrigerator system in which adsorption and desorption processes for an evaporator and a condenser are repeated in a tower to continuously obtain a refrigerating output.
【0003】この場合、各吸着塔における吸脱着工程
は、各吸着塔に温水又は冷却水を流して吸着剤を加熱又
は冷却することにより行われており、吸着式冷凍機シス
テムにはこのような温水を供給するための手段と、冷却
水を供給するための手段とが付設されている。In this case, the adsorption / desorption process in each adsorption tower is carried out by flowing hot water or cooling water into each adsorption tower to heat or cool the adsorbent. Means for supplying hot water and means for supplying cooling water are additionally provided.
【0004】冷却水を供給する手段としては、クーリン
グタワーが一般的で、冷却水は外気温度により例えば夏
期では30℃前後に冷却されて吸着塔に供給されるよう
になっている。A cooling tower is generally used as a means for supplying the cooling water, and the cooling water is cooled to about 30 ° C. in the summer by the outside air temperature and supplied to the adsorption tower.
【0005】一方、温水は、前記冷却水の温度との兼ね
合いのもとで、所要冷凍出力が得られるような温度が必
要であり、例えば夏期において前記のように冷却水の温
度が30℃前後のときは70℃以上が必要とされ、かか
る温度を得るためにボイラー等の加熱手段が使用されて
いる。On the other hand, the hot water needs to have a temperature at which the required refrigerating output can be obtained in consideration of the temperature of the cooling water. For example, the temperature of the cooling water is about 30 ° C. in summer as described above. In this case, 70 ° C. or higher is required, and heating means such as a boiler is used to obtain such temperature.
【0006】なお、冷却水の温度と駆動熱源である前記
温水の温度、それに冷凍出力の三者の関係は、図4のデ
ューリング線図からも明らかである。The relationship between the temperature of the cooling water, the temperature of the hot water as the driving heat source, and the freezing output is also clear from the Duering diagram of FIG.
【0007】図は吸着剤としてシリカゲルを、冷媒とし
て水を使用した従来の吸着式冷凍機システムの特に30
℃の冷却水を使用した場合の冷凍サイクルを吸着剤含水
率(p)と共に示しており、図において点Aから点Bを
経て点Cまでが吸着工程、また点Cから点Dを経て点A
までが再生工程である。両工程の切換点であり、吸着完
了点である点Cにおいて、シリカゲルにおける水の吸着
量は0.15(kg−H2O/kg−ゲル)、冷媒である水
の飽和温度は10℃となっている。The figure shows a conventional adsorption refrigerator system using silica gel as an adsorbent and water as a refrigerant, particularly 30
The refrigeration cycle in the case of using cooling water at ℃ is shown together with the adsorbent water content (p). In the figure, the adsorption process is from point A to point B to point C, and from point C to point D is point A.
Is the regeneration process. At point C, which is the switching point between both steps and the adsorption completion point, the amount of water adsorbed on the silica gel is 0.15 (kg-H 2 O / kg-gel), and the saturation temperature of the refrigerant water is 10 ° C. There is.
【0008】再生工程は、当初0.15(kg−H2 O/k
g−ゲル)の等吸着量線に沿って進行し、その進行につ
れてシリカゲル、水共にその飽和温度が上昇し、シリカ
ゲルの飽和温度が50℃をやや超え、水の飽和温度が3
0℃となったところで点Dに至り、ここからはシリカゲ
ルからの水の脱着が始まる。The regeneration process was initially conducted at 0.15 (kg-H 2 O / k
(g-gel), the saturation temperature of both silica gel and water increases, the saturation temperature of silica gel slightly exceeds 50 ° C., and the saturation temperature of water is 3
When the temperature reached 0 ° C, point D was reached, from which water desorption from the silica gel started.
【0009】そして脱着が始まると、前記吸着量は0.15
(kg−H2 O/kg−ゲル)から0.03(kg−H2 O
/kg−ゲル)となるが、最終的に0.03(kg−H2 O
/kg−ゲル)となった点Aにおいて、シリカゲルの温
度は85℃となっている。When desorption starts, the adsorption amount becomes 0.15.
From (kg-H 2 O / kg- gel) 0.03 (kg-H 2 O
/ Kg-gel), but finally 0.03 (kg-H 2 O
/ Kg-gel), the temperature of the silica gel is 85 ° C.
【0010】このことから同図によれば30℃の冷却水
を使用し、0.15(kg−H2 O/kg−ゲル)と0.03
(kg−H2 O/kg−ゲル)の各吸着量間で吸脱着を
行い、10℃の冷凍出力を得るには、85℃の駆動熱源
が必要であることが判る。From this, according to the figure, cooling water at 30 ° C. was used, and 0.15 (kg-H 2 O / kg-gel) and 0.03
It can be seen that a driving heat source of 85 ° C. is required to perform adsorption / desorption between adsorption amounts of (kg-H 2 O / kg-gel) and obtain a refrigerating output of 10 ° C.
【0011】[0011]
【発明が解決しようとする課題】このように従来の吸着
式冷凍機システムにおいて、冷凍出力を得ようとすれ
ば、かなりの高温駆動熱源が必要であり、従来はこのよ
うな高温熱源を得るために、ボイラー等の加熱手段を用
いていたのであるが、近年の省エネルギーに対する考え
方、それも環境をも考慮に入れた、いわゆるエクセルギ
ー的な考え方からすれば、かかる高温熱源はボイラー等
で加熱生成するのではなく、例えば工場の生産工程や火
力発電所から排出される熱をそのまま利用することが望
ましい。As described above, in the conventional adsorption type refrigerator system, in order to obtain the refrigerating output, a considerably high temperature driven heat source is required. Conventionally, in order to obtain such a high temperature heat source. In addition, a heating means such as a boiler was used, but from the viewpoint of energy saving in recent years and the so-called exergetic way of thinking that also considers the environment, such a high temperature heat source is generated by heating with a boiler or the like. Instead, it is desirable to use the heat emitted from the production process of a factory or a thermal power plant as it is.
【0012】ところが工場や火力発電所から排出される
熱は、通常50℃前後であり、駆動熱源としては前記し
た70℃以上という条件に及ばず、特に冷却水が前記の
如く30℃であったときは、前記図4からも明らかなよ
うに、脱着開始点D´が図の再生工程線上に位置しない
こととなり、吸着剤の含水量は全く変化せず、吸脱着作
用が生じない結果となる。However, the heat discharged from the factory or the thermal power plant is usually around 50 ° C., and the driving heat source does not reach the above condition of 70 ° C. or higher. Especially, the cooling water is 30 ° C. as described above. At this time, as is clear from FIG. 4, the desorption start point D ′ is not located on the regeneration process line in the figure, and the water content of the adsorbent does not change at all, resulting in no adsorption / desorption action. ..
【0013】従って50℃前後の排熱を利用して吸着式
冷凍機を前記の如く駆動することはおよそ従来、不可能
なことであり、工場や火力発電所にしても、排熱を排液
としてそのまま放出するしか手段はなかった。Therefore, it has been impossible to drive the adsorption refrigerator as described above by utilizing the exhaust heat of about 50 ° C., and the exhaust heat is drained even in a factory or a thermal power plant. There was no choice but to release it as it was.
【0014】本発明はかかる実状に鑑み、前記50℃前
後の温水でも充分駆動可能な吸着式冷凍機システム及び
吸着式冷凍機を提供することを目的とするものである。In view of such circumstances, it is an object of the present invention to provide an adsorption refrigerating system and an adsorption refrigerating machine which can be sufficiently driven by hot water of about 50 ° C.
【0015】[0015]
【課題を解決するための手段】即ち上記目的に適合する
本発明の基本的特徴は、固体吸着剤及び固体吸着剤及び
固体吸着剤を加熱冷却可能な手段を内蔵した吸着塔を、
蒸発器と凝縮器との間に少なくとも2基直列に接続し、
各吸着塔内の固体吸着剤を前記加熱冷却可能な手段によ
り交互に加熱冷却して蒸発器及び凝縮器に対する冷媒の
吸脱着作用と、吸着塔同志による冷媒の吸脱着作用とを
交互に行わせることにある。また、請求項2に記載した
発明は、上記発明を基本として冷凍出力を連続的に得る
ことができるようにしたシステムであり、固体吸着剤及
び該固体吸着剤を加熱冷却可能な手段を内蔵した3基以
上の吸着塔を使用し、蒸発器と凝縮器との間に、前記吸
着塔を少なくとも2基直列に接続してなる第1の冷媒回
路と、同じく前記吸着塔を前記第1の冷媒回路と同数直
列に接続してなる第2の冷媒回路とを形成すると共に、
各冷媒回路の各吸着塔の前記固体吸着剤を前記加熱冷却
可能な手段により交互に加熱冷却して、両冷媒回路に前
記蒸発器及び凝縮器に対する冷媒の吸脱着作用と、吸着
塔同志による冷媒の吸脱着作用とを交互に行わせること
を特徴とする。Means for Solving the Problems That is, the basic feature of the present invention that meets the above-mentioned object is to provide a solid adsorbent, a solid adsorbent, and an adsorption tower containing means capable of heating and cooling the solid adsorbent,
Connect at least two in series between the evaporator and the condenser,
The solid adsorbent in each adsorption tower is alternately heated and cooled by the means capable of heating and cooling so that the adsorption and desorption action of the refrigerant on the evaporator and the condenser and the adsorption and desorption action of the refrigerant by the adsorption towers are alternately performed. Especially. The invention described in claim 2 is a system based on the above-mentioned invention, which is capable of continuously obtaining a refrigerating output, and has a built-in solid adsorbent and means capable of heating and cooling the solid adsorbent. A first refrigerant circuit using three or more adsorption towers, at least two adsorption towers connected in series between an evaporator and a condenser, and the same adsorption tower as the first refrigerant circuit. And a second refrigerant circuit formed by connecting the same number of circuits in series,
Alternately heating and cooling the solid adsorbent of each adsorption tower of each refrigerant circuit by the heating and cooling means, the refrigerant adsorption and desorption action to the evaporator and the condenser in both refrigerant circuits, the refrigerant by the adsorption tower It is characterized in that the adsorption and desorption actions of are alternately performed.
【0016】さらに、請求項3に記載した発明は、前記
吸着式冷凍機システムを具体化する上で使用する吸着式
冷凍機であり、その特徴は、前記した第1の冷媒回路及
び第2の冷媒回路中、蒸発器と吸着塔、吸着塔と吸着塔
及び凝縮器と吸着塔の間の各配管に開閉バルブを夫々設
けると共に、前記各吸着塔の固体吸着剤を加熱冷却可能
な手段により交互に加熱冷却し、さらに各冷媒回路の各
配管に設けた前記バルブのうち、蒸発器と吸着塔の間の
バルブを該吸着塔の固体吸着剤が前記加熱冷却可能な手
段により冷却されたときのみ開放、凝縮器と吸着塔の間
のバルブを該吸着塔の固体吸着剤が前記加熱冷却可能な
手段により加熱されたときのみ開放、各吸着塔間のバル
ブを、その冷媒回路の蒸発器と接続した吸着塔の固体吸
着剤が前記加熱冷却可能な手段により加熱され、かつ、
該冷媒回路の凝縮器と接続した吸着塔の固体吸着剤が前
記加熱冷却可能な手段により冷却されたときのみ開放す
るよう制御することである。そして最後に、請求項4に
記載した発明は、請求項3における固体吸着剤加熱冷却
可能な手段として、温水と冷却水を用いるもので、各吸
着塔内に伝熱管を配設し、該伝熱管に温水と冷却水とを
交互に流して固体吸着剤を加熱冷却し、前記開閉バルブ
を前記同様に開閉制御するようになしている。Further, the invention described in claim 3 is an adsorption type refrigerator used for embodying the adsorption type refrigerator system, which is characterized by the first refrigerant circuit and the second refrigerant circuit. In the refrigerant circuit, an opening / closing valve is provided in each pipe between the evaporator and the adsorption tower, the adsorption tower and the adsorption tower, and the condenser and the adsorption tower, and the solid adsorbents of the adsorption towers are alternately heated and cooled by means. Among the valves provided in each pipe of each refrigerant circuit, the valve between the evaporator and the adsorption tower is heated and cooled only when the solid adsorbent of the adsorption tower is cooled by the means capable of heating and cooling. Open, the valve between the condenser and the adsorption tower is opened only when the solid adsorbent of the adsorption tower is heated by the heating and cooling means, and the valve between the adsorption towers is connected to the evaporator of the refrigerant circuit. The solid adsorbent in the adsorption tower is heated and cooled as described above. It is heated by means possible, and,
It is controlled to open only when the solid adsorbent in the adsorption tower connected to the condenser of the refrigerant circuit is cooled by the heating and cooling means. And finally, the invention described in claim 4 uses hot water and cooling water as the means capable of heating and cooling the solid adsorbent in claim 3, wherein a heat transfer tube is provided in each adsorption tower, and Hot water and cooling water are alternately passed through the heat pipe to heat and cool the solid adsorbent, and the opening / closing valve is controlled to open / close in the same manner as described above.
【0017】[0017]
【作用】以上の吸着式冷凍機システムにおいて、例えば
それが蒸発器と凝縮器との間に2基の吸着塔を直列に接
続して構成されたものであるとすると、まず一方の吸着
塔では蒸発器に対する冷媒の吸着作用が、又他方の吸着
塔では凝縮器に対する冷媒の脱着作用が夫々同時に発生
し、次にこれが切換わると、2つの吸着塔同志で冷媒の
吸脱着作用が始まり、さきの段階で冷媒を吸着した吸着
塔から、同じくさきの段階で冷媒を脱着した吸着塔に向
かって冷媒が移動する。そこでこうした吸脱着作用のく
り返しを1基づつの吸着塔についてみれば、各吸着塔に
おいて吸着工程と再生工程とがくり返されていることと
なり、全体のデューリング線図は図3のように、2つの
冷凍サイクルが有機的に結びついた形状になる。In the adsorption refrigeration system described above, for example, if it is constructed by connecting two adsorption towers in series between an evaporator and a condenser, first, in one adsorption tower, Adsorption of the refrigerant to the evaporator and desorption of the refrigerant to the condenser simultaneously occur in the other adsorption tower, and when this is switched next, the adsorption and desorption of the refrigerant begins between the two adsorption towers. The refrigerant moves from the adsorption tower that has adsorbed the refrigerant in the above step toward the adsorption tower that has also desorbed the refrigerant in the previous step. Therefore, if the adsorption and desorption operations are repeated for each adsorption tower, it means that the adsorption step and the regeneration step are repeated in each adsorption tower, and the entire Duering diagram is as shown in FIG. The two refrigeration cycles are organically combined.
【0018】上記図3において、冷凍サイクルはシリカ
ゲルの飽和温度50℃の点においても形成されており、
従って50℃の駆動熱源で充分駆動可能となる。In FIG. 3, the refrigeration cycle is formed even at the saturation temperature of silica gel of 50.degree.
Therefore, it can be sufficiently driven by a driving heat source of 50 ° C.
【0019】なお、上記システムでは、蒸発器に対する
冷媒の吸着作用が、断続的にしか行われておらず、連続
して冷凍出力を得ることはできないが、請求項2に記載
したように吸着塔の数を3基以上とし、上記の如き冷媒
の移動する冷媒回路を2列設け、互いにこれを切換える
ことで、連続して冷凍出力を得ることも可能となる。ま
た、本発明システムの具体的な冷凍機装置としては、請
求項3あるいは請求項4に記載した装置が適用でき、そ
の駆動に際しては、請求項3の場合であれば、吸着塔に
設けられた固体吸着剤を加熱冷却可能な手段により、ま
た請求項4の場合であれば、各吸着塔に対し、温水と冷
却水とを交互に供給することにより、各吸着塔の固体吸
着剤を夫々加熱冷却すると共に、各吸着塔間等を連結す
る各配管に設けられた各バルブを、前記したように開閉
制御して、前記冷凍機システムについて説明したと同様
の作用を奏することができる。In the above system, the adsorption of the refrigerant to the evaporator is performed only intermittently, and the refrigerating output cannot be obtained continuously. However, the adsorption tower as described in claim 2 It is also possible to continuously obtain the refrigerating output by setting the number of the above to three or more and providing two rows of the refrigerant circuits in which the refrigerant moves as described above and switching them. Further, as a concrete refrigerator device of the system of the present invention, the device described in claim 3 or 4 can be applied, and when driving it, in the case of claim 3, it is provided in the adsorption tower. The solid adsorbent in each adsorption tower is heated by means capable of heating and cooling the solid adsorbent, and in the case of claim 4, by alternately supplying hot water and cooling water to each adsorption tower. While cooling, the valves provided in the pipes that connect the adsorption towers and the like can be controlled to open and close as described above, and the same operation as that described for the refrigerator system can be achieved.
【0020】[0020]
【実施例】以下、図面にもとづいて本発明の実施例を説
明する。Embodiments of the present invention will be described below with reference to the drawings.
【0021】図1は本発明吸着式冷凍シテスムを適用す
る吸着式冷凍機の一実施例を示す配管系統図である。図
において最上方に位置する(1)は凝縮器、最下方に位
置する(2)は蒸発器を示し、いずれも周知の構造のも
のが適用され、前者凝縮器(1)では、その内部に設け
られたフィン付伝熱管(3)等に冷却水が流れて後記す
る吸着塔(5A),(5B)内の吸着剤から吐き出され
た冷媒蒸気を凝縮液化し、一方、後者蒸発器(2)で
は、図示しない配管を通じて前記凝縮器(1)において
凝縮液化された冷媒が図示なき配管を通じて伝熱管
(4)下部に設けられた図示なき受皿に流れ込み、後記
する吸着塔(6A) ,(6B)内の吸着剤により吸着
される。FIG. 1 is a piping system diagram showing an embodiment of an adsorption type refrigerator to which the adsorption type refrigeration system of the present invention is applied. In the figure, (1) at the top is a condenser, and (2) at the bottom is an evaporator. All of the well-known structures are applied. In the former condenser (1), Refrigerant vapor discharged from the adsorbent in the adsorption towers (5A) and (5B), which will be described later, when the cooling water flows into the finned heat transfer tube (3) or the like is condensed and liquefied, while the latter evaporator (2 ), The refrigerant condensed and liquefied in the condenser (1) flows through a pipe (not shown) into a tray (not shown) provided below the heat transfer tube (4) through a pipe (not shown), and the adsorption towers (6A), (6B) described later are provided. Adsorbed by the adsorbent in
【0022】そしてこの吸着作用により前記蒸発器
(2)内部の伝熱管(4)に流れている冷水から蒸発潜
熱が奪われ、冷水は冷却されて利用側(図示しない)に
冷凍出力として供給されるようになっている。By this adsorption action, latent heat of vaporization is taken from the cold water flowing in the heat transfer tube (4) inside the evaporator (2), and the cold water is cooled and supplied to the user side (not shown) as refrigeration output. It has become so.
【0023】一方、以上の凝縮器(1)と蒸発器(2)
に対して、吸着塔(5A),(5B)、(6A),(6
B)は、この実施例の場合、凝縮器(1)と蒸発器
(2)との間に4基設けられている。各吸着塔(5
A),(5B)、(6A),(6B)の構造自体は、い
ずれも周知のもので、真空容器の内部に固体吸着剤を加
熱冷却可能な手段として、例えばフィンチューブ(7)
等の伝熱管が内蔵され、該フィンチューブ(7)のフィ
ン間隙にシリカゲル,ゼオライト等の固体吸着剤(図示
しない)が充填され、さらに所定量の冷媒が封入された
ものである。On the other hand, the above condenser (1) and evaporator (2)
In contrast, the adsorption towers (5A), (5B), (6A), (6
In the case of this embodiment, four Bs are provided between the condenser (1) and the evaporator (2). Each adsorption tower (5
The structures themselves of A), (5B), (6A), and (6B) are all well known, and as a means capable of heating and cooling the solid adsorbent inside the vacuum vessel, for example, a fin tube (7).
Etc., a heat transfer tube such as the above is built in, the fin gap of the fin tube (7) is filled with a solid adsorbent (not shown) such as silica gel and zeolite, and a predetermined amount of refrigerant is sealed.
【0024】本発明において上記吸着塔(5A),(5
B)、(6A),(6B)は、そのうち2基(5A),
(5B)が前記凝縮器(1)に対して、開閉バルブ(8
A),(8B)を備えた配管(9A),(9B)により
夫々接続され、残る2基(6A),(6B)が前記蒸発
器(2)に対して、開閉バルブ(10A),(10B)
を備えた別の配管(11A),(11B)により夫々接
続されている。In the present invention, the adsorption towers (5A), (5
B), (6A) and (6B) are two of them (5A),
(5B) is connected to the condenser (1) by an opening / closing valve (8
A) and (8B) are connected by pipes (9A) and (9B) respectively, and the remaining two units (6A) and (6B) are connected to the evaporator (2) by opening / closing valves (10A) and (9B). 10B)
Are connected by separate pipes (11A) and (11B).
【0025】また、吸着塔(5A),(5B)、(6
A),(6B)同志は、凝縮器(1)に接続されたもの
(5A),(5B)と蒸発器(2)に接続されたもの
(6A),(6B)とが、一対一の関係を有して、夫々
開閉バルブ(12A),(12B)を備えた配管(13
A),(13B)により接続されている。Further, the adsorption towers (5A), (5B), (6
A) and (6B) have a one-to-one correspondence between (5A), (5B) connected to the condenser (1) and (6A), (6B) connected to the evaporator (2). A pipe (13) having an opening / closing valve (12A) and an opening / closing valve (12B) in relation to each other.
A) and (13B) are connected.
【0026】前記冷媒はかかる配管(9A),(9
B),(11A),(11B),(13A),(13
B)を通じて移動する。The refrigerant is connected to the pipes (9A), (9
B), (11A), (11B), (13A), (13
Move through B).
【0027】従って冷媒流通経路を全体としてみれば、
凝縮器(1)と蒸発器(2)との間に、2基づつの吸着
塔(5A),(6A)、(5B),(6B)が夫々直列
に配管接続されてなる冷媒流通可能な冷媒回路(A),
(B)が2本並行して形成された形状となっている。Therefore, looking at the refrigerant flow path as a whole,
Between the condenser (1) and the evaporator (2), two adsorption towers (5A), (6A), (5B), and (6B) are connected in series, respectively, so that a refrigerant can flow. Refrigerant circuit (A),
It has a shape in which two (B) are formed in parallel.
【0028】また、前記各吸着塔(5A),(5B)、
(6A),(6B)内の前記フィンチューブ(7)には
温水と冷却水とが交互に供給されるが、その供給態様
は、公知のシーケンス制御技術により定められており、
例えば前記2つの冷媒回路(A),(B)のうち、一方
の第1の冷媒回路(A)の凝縮器(1)接続側吸着塔
(5A)に温水が供給されたとき、他方の第2の冷媒回
路(B)の凝縮器(1)接続側吸着塔(5B)には冷却
水が供給されるようになっている。同様の関係は蒸発器
(2)接続側の各吸着塔(6A),(6B)についても
適用されている。Further, each of the adsorption towers (5A), (5B),
Hot water and cooling water are alternately supplied to the fin tubes (7) in (6A) and (6B). The supply mode is determined by a known sequence control technique,
For example, of the two refrigerant circuits (A) and (B), when hot water is supplied to the condenser (1) connection side adsorption tower (5A) of one first refrigerant circuit (A), the other refrigerant circuit (A) Cooling water is supplied to the condenser (1) connection side adsorption tower (5B) of the second refrigerant circuit (B). The same relationship is applied to each of the adsorption towers (6A) and (6B) on the side where the evaporator (2) is connected.
【0029】さらに各冷媒回路(A),(B)ごとにみ
れば、凝縮器(1)接続側の吸着塔(5A),(5B)
と蒸発器(2)接続側の吸着塔(6A),(6B)とで
は、互いに別のものが供給されるようになっている。Further, looking at each of the refrigerant circuits (A) and (B), the adsorption towers (5A) and (5B) connected to the condenser (1).
Different ones are supplied to the adsorption towers (6A) and (6B) connected to the evaporator (2).
【0030】従って図1においては、第1の冷媒回路
(A)の凝縮器(1)側吸着塔(5A)(以下単に吸着
塔(5A)という)と第2の冷媒回路(B)の蒸発器
(2)側吸着塔(6B)(以下単に吸着塔(6B)とい
う)との各フィンチューブ(7)間は配管(14)によ
り直結されると共に、第1の冷媒回路(A)の蒸発器
(2)側吸着塔(6A)(以下単に吸着塔(6A)とい
う)と第2の冷媒回路(B)の凝縮器(1)側吸着塔
(5B)(以下単に吸着塔(5B)という)との各フィ
ンチューブ(7)間は他の配管(15)により直結され
ていて、温水又は冷却水は入口側切換弁(16A),
(17A)を介して各フィンチューブ(7)間で直結さ
れた各2基の吸着塔(5A),(6B)、(5B),
(6A)に対して夫々共通して流れ、出口側切換弁(1
6B),(17B)を介して夫々流出するようになって
いる。Therefore, in FIG. 1, the condenser (1) side adsorption tower (5A) of the first refrigerant circuit (A) (hereinafter simply referred to as adsorption tower (5A)) and the second refrigerant circuit (B) are evaporated. The fin tubes (7) of the adsorption tower (6B) on the vessel (2) side (hereinafter simply referred to as the adsorption tower (6B)) are directly connected by a pipe (14), and the evaporation of the first refrigerant circuit (A) is performed. Adsorption tower (6A) on the vessel (2) side (hereinafter simply referred to as adsorption tower (6A)) and adsorption tower (5B) on the condenser (1) side of the second refrigerant circuit (B) (hereinafter simply referred to as adsorption tower (5B)) ) And each fin tube (7) are directly connected to each other by another pipe (15), and hot water or cooling water is connected to the inlet side switching valve (16A),
Two adsorption towers (5A), (6B), (5B), which are directly connected between the fin tubes (7) via (17A).
(6A) flows in common with each other, and the outlet side switching valve (1
6B) and (17B), respectively.
【0031】ところで上記温水は、本発明装置の場合、
特に50℃前後のものでよく、従ってその条件を満足す
るものとしてここでは工場や発電所等から通常に排出さ
れる50℃前後の排出液を利用する。In the case of the device of the present invention, the above-mentioned hot water is
In particular, a liquid having a temperature of about 50 ° C. may be used. Therefore, as a liquid satisfying the condition, a liquid discharged at a temperature of about 50 ° C. which is normally discharged from a factory or a power plant is used here.
【0032】即ち、前記温水用の入口側切換弁(16
A)の流入側は工場等の前記排出液の排出口(図示しな
い)に配管接続され、他方出口側切換弁(6B)の流出
側は外部に開放されていて吸着剤加熱後の温水を放出す
る構成となっている。That is, the inlet side switching valve for the hot water (16
The inflow side of A) is connected to a discharge port (not shown) of the discharged liquid in a factory or the like, while the outflow side of the outlet side switching valve (6B) is open to the outside to release hot water after heating the adsorbent. It is configured to do.
【0033】また、冷却水に関しては、前記冷却水用の
入口側切換弁(17A)及び出口側切換弁(17B)の
各流入側あるいは流出側が、図示していないクーリング
タワーの吐出口及び吸入口に夫々配管接続されていて、
冷却水がクーリングタワーにより、例えば夏期では30
℃前後に冷却されて、各吸着塔(5A),(5B),
(6A),(6B)の各フィンチューブ(7)に適宜供
給されるようになっている。Regarding the cooling water, the inflow side or the outflow side of each of the inlet side switching valve (17A) and the outlet side switching valve (17B) for the cooling water is connected to a discharge port and a suction port of a cooling tower (not shown). They are connected by pipes,
Cooling water is supplied by the cooling tower, for example 30 in summer.
Cooled to around ℃, each adsorption tower (5A), (5B),
The fin tubes (6A) and (6B) are appropriately supplied to the fin tubes (7).
【0034】本発明に係る吸着式冷凍機の構造は以上の
通りであるが、次に上記冷凍機の作動について説明す
る。The structure of the adsorption refrigerator according to the present invention is as described above. Next, the operation of the refrigerator will be described.
【0035】まず図1において、吸着塔(5A)に温水
(太線で示す)が、吸着塔(5B)に冷却水(細線で示
す)が、吸着塔(6A)に冷却水が、そして吸着塔(6
B)に温水が供給されているとする。このとき、第1の
冷媒回路(A)では凝縮器(1)と吸着塔(5A)との
間のバルブ(8A)及び蒸発器(2)と吸着塔(6A)
との間のバルブ(10A)が共に開放され、吸着塔(5
A)と吸着塔(6A)との間のバルブ(12A)が閉鎖
されている。First, in FIG. 1, hot water (indicated by a thick line) is adsorbed in the adsorption tower (5A), cooling water (indicated by a thin line) is adsorbed in the adsorption tower (5B), cooling water is admitted in the adsorption tower (6A), and then adsorbed in the adsorption tower. (6
It is assumed that hot water is supplied to B). At this time, in the first refrigerant circuit (A), the valve (8A) between the condenser (1) and the adsorption tower (5A) and the evaporator (2) and the adsorption tower (6A).
The valve (10A) between and is opened together, and the adsorption tower (5
The valve (12A) between A) and the adsorption tower (6A) is closed.
【0036】他方、第2の冷媒回路(B)ではこれとは
逆に凝縮器(1)と吸着塔(5B)との間のバルブ(8
B)及び蒸発器(2)と吸着塔(6B)との間のバルブ
(10B)が共に閉鎖され、吸着塔(5B),(6B)
間のバルブ(12B)が開放されている。On the other hand, in the second refrigerant circuit (B), conversely, the valve (8) between the condenser (1) and the adsorption tower (5B) is connected.
B) and the valve (10B) between the evaporator (2) and the adsorption tower (6B) are both closed, and the adsorption towers (5B), (6B)
The valve (12B) in between is open.
【0037】従って、この場合、第1の冷媒回路(A)
においては、吸着塔(5A)の吸着剤は加熱されていて
吸着塔(5A)から凝縮器(1)に向かって冷媒が吐き
出されると共に、吸着塔(6A)の吸着剤は冷却されて
いて蒸発器(2)の冷媒が吸着塔(6A)に吸着され、
一方、第2の冷媒回路(B)においては、吸着塔(5
B)の吸着剤は冷却されると共に、吸着塔(6B)の吸
着剤は加熱されていて吸着塔(5B)と吸着塔(6B)
との間で吸脱着作用が生じ、冷媒が後者(6B)から前
者(5B)に向かって移動する。そして次に図2のよう
に切換弁(16A),(17A),(16B),(17
B)及びバルブ(8A),(8B),(10A),(1
0B)(12A),(12B)を全て図1の場合と逆に
切換えると、今度は吸着塔(5A)の吸着剤は冷却さ
れ、吸着塔(6A)の吸着剤は加熱され、その一方で吸
着塔(5B)の吸着剤は加熱され、吸着塔(6B)の吸
着剤は冷却されることになり、吸着塔(6A)から吸着
塔(5A)に向かって冷媒の吸脱着作用が生じる一方、
吸着塔(5B)から凝縮器(1)に向かって冷媒が吐き
出され、さらには蒸発器(2)の冷媒が吸着塔(6B)
に吸着されることとなる。吸着冷凍機の運転は、この図
1の場合と図2の場合とを交互に繰り返すことで行われ
るが、その際の冷凍サイクルをデューリング線図上に示
したものが図3である。Therefore, in this case, the first refrigerant circuit (A)
In the above, the adsorbent in the adsorption tower (5A) is heated, the refrigerant is discharged from the adsorption tower (5A) toward the condenser (1), and the adsorbent in the adsorption tower (6A) is cooled and evaporated. The refrigerant of the vessel (2) is adsorbed by the adsorption tower (6A),
On the other hand, in the second refrigerant circuit (B), the adsorption tower (5
The adsorbent of B) is cooled, and the adsorbent of the adsorption tower (6B) is heated, so that the adsorption tower (5B) and the adsorption tower (6B) are heated.
An adsorption / desorption action occurs between the and, and the refrigerant moves from the latter (6B) toward the former (5B). Then, as shown in FIG. 2, the switching valves (16A), (17A), (16B), (17
B) and valves (8A), (8B), (10A), (1
0B) (12A) and (12B) are all switched in the opposite manner to the case of FIG. 1, this time the adsorbent in the adsorption tower (5A) is cooled and the adsorbent in the adsorption tower (6A) is heated, while The adsorbent in the adsorption tower (5B) is heated and the adsorbent in the adsorption tower (6B) is cooled, so that the adsorption / desorption action of the refrigerant occurs from the adsorption tower (6A) toward the adsorption tower (5A). ,
The refrigerant is discharged from the adsorption tower (5B) toward the condenser (1), and further the refrigerant of the evaporator (2) is adsorbed in the adsorption tower (6B).
Will be adsorbed on. The operation of the adsorption refrigerator is performed by alternately repeating the case of FIG. 1 and the case of FIG. 2, and the refrigeration cycle at that time is shown in FIG. 3 on the Dühring diagram.
【0038】同図の場合、前記図4について説明した従
来の吸着式冷凍機システムの場合とは違っていて、2つ
の冷凍サイクル(I),(II)が形成されている。In the case of the same figure, unlike the case of the conventional adsorption type refrigerator system described with reference to FIG. 4, two refrigeration cycles (I) and (II) are formed.
【0039】一方の冷凍サイクル(I)は蒸発器(2)
に接続した2基の吸着塔(6A),(6B)により形成
されたものであり、他方の冷凍サイクル(II)は凝縮
器(1)に接続した2基の吸着塔(5A),(5B)に
より形成されたものである。共に図中、シリカゲルの飽
和温度30℃から50℃の間で充分形成されており、点
I−A(又はII−A)からI−B(又はII−B)を
経てI−C(又はII−C)までが吸着工程、点I−C
(又はII−C)から点I−D(又はII−D)を経て
点I−A(又はII−A)までが再生工程であり、両サ
イクル(I),(II)は、例えば、一方の冷凍サイク
ル(I)が点I−Aから出発したとすると、他方の冷凍
サイクル(II)は点II−Cから出発する如く、互い
に異なった工程で進行する。One refrigeration cycle (I) is an evaporator (2)
Is formed by two adsorption towers (6A) and (6B) connected to each other, and the other refrigeration cycle (II) is two adsorption towers (5A) and (5B) connected to the condenser (1). ) Is formed by. In both figures, the silica gel is sufficiently formed at a saturation temperature of 30 ° C. to 50 ° C., and it passes from points IA (or II-A) to IB (or II-B) to I-C (or II). -C) is adsorption process, point I-C
(Or II-C) through point I-D (or II-D) to point I-A (or II-A) is a regeneration step, and both cycles (I) and (II) are, for example, If the refrigerating cycle (I) of (1) starts from the point IA, the other refrigerating cycle (II) starts from the point II-C and proceeds in different steps.
【0040】そして冷凍サイクル(I)が点I−Cにお
いて再生工程に入ったとき、他方の冷凍サイクル(I
I)は点II−Aから吸着工程に入り、一方の冷凍サイ
クル(I)の再生工程と他方の冷凍サイクル(II)の
吸着工程とが同時に進行するが、このときの両サイクル
(I),(II)の両工程が、前記した吸着塔同志の吸
脱着作用によるものである。かくして以上説明した吸着
式冷凍機においては、30℃の冷却水と50℃の駆動熱
源により、10℃の冷熱が得られることになる。When the refrigeration cycle (I) enters the regeneration process at point I-C, the other refrigeration cycle (I
I) enters the adsorption step from point II-A, and the regeneration step of one refrigeration cycle (I) and the adsorption step of the other refrigeration cycle (II) simultaneously proceed, but both cycles (I) at this time, Both of the steps (II) are based on the adsorption / desorption action of the above-mentioned adsorption towers. Thus, in the adsorption refrigerator described above, cooling water of 30 ° C. and a driving heat source of 50 ° C. can obtain cold heat of 10 ° C.
【0041】ところで本発明は以上説明した吸着式冷凍
機に限定されるものではなく、例えば固体吸着剤を加熱
冷却する手段としては、前記した温水や冷却水の利用以
外にも電気ヒータを設けて固体吸着剤を加熱し、冷却フ
ァンを設けて固体吸着剤を冷却するなど、適宜公知の加
熱冷却手段が適用可能である。また、これまでの説明で
は、吸着塔を第1の冷媒回路(A)、第2の冷媒回路
(B)に夫々2基づつ、合計4基設けたが、吸着塔を全
部で3基用い、凝縮器(1)又は蒸発器(2)に対して
そのうちの1基だけを接続し、該1基を第1の冷媒回路
(A)と第2の冷媒回路(B)とで交互に使用する回路
構成とすることも可能である。また、さらに吸着塔の数
を減らして2基の吸着塔を凝縮器(1)と蒸発器(2)
との間に直列に接続し、冷媒回路を1つだけとしてもよ
く、その場合、冷凍出力は断続したものとなるが、装置
全体の構成を簡略化し、小型化できる利点が生ずる。一
方、逆に吸着塔の数を増やし、第1の冷媒回路(A)と
第2の冷媒回路(B)の吸着塔接続数を多くしてもよ
い。そしてこの場合は、冷凍サイクルがそれだけ多く形
成されることとなり、より低温の駆動熱源によっても所
期の冷熱を得ることができるようになる。By the way, the present invention is not limited to the adsorption refrigerator described above. For example, as means for heating and cooling the solid adsorbent, an electric heater is provided in addition to the above-mentioned use of hot water or cooling water. Any known heating and cooling means such as heating the solid adsorbent and cooling the solid adsorbent by providing a cooling fan can be applied. Further, in the above description, four adsorption towers are provided, two in each of the first refrigerant circuit (A) and the second refrigerant circuit (B), but a total of four adsorption towers are used. Only one of them is connected to the condenser (1) or the evaporator (2), and the one is alternately used in the first refrigerant circuit (A) and the second refrigerant circuit (B). A circuit configuration is also possible. In addition, the number of adsorption towers is further reduced, and two adsorption towers are connected to a condenser (1) and an evaporator (2).
It may be connected in series between and, and only one refrigerant circuit may be provided. In that case, the refrigerating output is intermittent, but there is an advantage that the configuration of the entire apparatus can be simplified and downsized. On the other hand, conversely, the number of adsorption towers may be increased and the number of connected adsorption towers of the first refrigerant circuit (A) and the second refrigerant circuit (B) may be increased. In this case, a larger number of refrigeration cycles are formed, and the desired cold heat can be obtained even with a lower driving heat source.
【0042】[0042]
【発明の効果】本発明は以上説明したように、蒸発器と
凝縮器との間に、2基以上の吸着塔を直列に接続して、
蒸発器及び凝縮器に対する冷媒の吸脱着作用と吸着塔同
志による冷媒の吸脱着作用とを交互に行うことを基本と
するものであるから、その冷凍サイクルは2つの冷凍サ
イクルが有機的に結びついたものとなり、吸着剤を冷却
するために30℃の冷却水を使用したとしても、50℃
前後の比較的低温の駆動熱源によって充分10℃以下の
冷熱を得ることができる。As described above, according to the present invention, two or more adsorption towers are connected in series between the evaporator and the condenser,
It is based on the fact that the refrigerant adsorption / desorption action on the evaporator and the condenser and the refrigerant adsorption / desorption action by the adsorption towers are alternately performed. Therefore, the two refrigeration cycles are organically linked to each other. Even if cooling water of 30 ° C is used to cool the adsorbent, 50 ° C
It is possible to obtain sufficient cold heat of 10 ° C. or less by the driving heat source of relatively low temperature before and after.
【0043】また請求項2に記載したように、3基以上
の吸着塔により、蒸発器及び凝縮器との間に、2基以上
の吸着塔を直列に接続して冷媒回路を2列設けた場合
は、一方の冷媒回路により蒸発器と凝縮器に対する冷媒
の吸脱着作用を行っている間、他方の冷媒回路において
吸着塔同志による冷媒の吸脱着作用を行うことができる
ため、前記冷熱をより効率よく取得することができる。
さらに請求項3及び請求項4に記載した発明は、請求項
2に記載した発明を具体化する上で使用する吸着式冷凍
機であり、低温熱源で上述した効果を奏することがで
き、極めて実用的であり、特に請求項4に記載のもので
は、低温の温水を駆動熱源とするものであるため、低エ
クセルギーなエネルギーとして従来、廃棄されていた工
場や発電所等から排出される50℃前後の排熱も、駆動
熱源として充分利用可能となる。As described in claim 2, two or more adsorption towers are connected in series between the evaporator and the condenser by three or more adsorption towers to provide two rows of refrigerant circuits. In this case, while one refrigerant circuit is performing the adsorption / desorption action of the refrigerant on the evaporator and the condenser, the other refrigerant circuit can perform the adsorption / desorption action of the refrigerant by the adsorption towers, so that the cold heat is more It can be acquired efficiently.
Furthermore, the invention described in claim 3 and claim 4 is an adsorption type refrigerator used in embodying the invention described in claim 2, and can exert the above-mentioned effects with a low temperature heat source, and is extremely practical. In particular, according to claim 4, since low-temperature hot water is used as a driving heat source, 50 ° C. discharged from factories, power plants, etc. that were conventionally discarded as low exergy energy. The exhaust heat before and after can also be sufficiently used as a driving heat source.
【0044】このように本発明に係る吸着式冷凍機シス
テム及び吸着式冷凍機においては、これまで到底不可能
であった、低温熱源を駆動熱源として利用するというこ
とが可能となるため、これからの新しい省エネルギー時
代に対する有用性が大いに期待される。As described above, in the adsorption refrigerator system and the adsorption refrigerator according to the present invention, it is possible to use a low temperature heat source as a driving heat source, which has never been possible so far. There is great expectation that it will be useful in the new energy-saving era.
【図1】本発明吸着式冷凍機の配管系統図である。FIG. 1 is a piping system diagram of an adsorption refrigerator of the present invention.
【図2】図1における吸着式冷凍機の作動を説明する配
管系統図である。FIG. 2 is a piping system diagram explaining the operation of the adsorption refrigerator in FIG.
【図3】本発明吸着式冷凍機のデューリング線図であ
る。FIG. 3 is a Duhring diagram of the adsorption refrigerator of the present invention.
【図4】従来の吸着式冷凍機のデューリング線図であ
る。FIG. 4 is a Dühring diagram of a conventional adsorption refrigerator.
(1) 凝縮器 (2) 蒸発器 (5A)(5B) 吸着塔 (6A)(6B) 吸着塔 (8A)(8B) 開閉バルブ (10A)(10B) 開閉バルブ (12A)(12B) 開閉バルブ (A) 第1の冷媒回路 (B) 第2の冷媒回路 (1) Condenser (2) Evaporator (5A) (5B) Adsorption tower (6A) (6B) Adsorption tower (8A) (8B) Open / close valve (10A) (10B) Open / close valve (12A) (12B) Open / close valve (A) First refrigerant circuit (B) Second refrigerant circuit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 博樹 寝屋川市松屋町1−19−1037 (72)発明者 松下 昌生 寝屋川市松屋町13−8−1108 (72)発明者 森川 淳 八幡市男山八望2−C−15−402 (72)発明者 吉原 基司 八幡市八幡武蔵芝6−9 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroki Nakano 1-19-1037 Matsuyacho, Neyagawa-shi 1-72-1072 Inventor Masao Matsushita 13-8-1108 Matsuya-cho, Neyagawa-shi (72) Inventor Jun Morikawa Hachiman Ochiyama Nozomi 2-C-15-402 (72) Inventor Motoyoshi Yoshihara 6-9 Yawata Musashishiba, Yawata
Claims (4)
可能な手段を内蔵した吸着塔を、蒸発器と凝縮器との間
に少なくとも2基直列に接続し、各吸着塔内の固体吸着
剤を前記加熱冷却可能な手段により交互に加熱冷却して
蒸発器及び凝縮器に対する冷媒の吸脱着作用と、吸着塔
同志による冷媒の吸脱着作用とを交互に行わせることを
特徴とする低温熱駆動の吸着式冷凍機システム。1. An adsorption tower having a solid adsorbent and a means capable of heating and cooling the solid adsorbent is connected in series between an evaporator and a condenser, and at least two adsorbents are connected to each other in series to adsorb the solid adsorbent. Low temperature heat characterized by alternately heating and cooling the agent by means capable of heating and cooling to cause refrigerant adsorption and desorption for the evaporator and condenser, and refrigerant adsorption and desorption by the adsorption towers alternately. Driven adsorption refrigerator system.
可能な手段を内蔵した3基以上の吸着塔を使用し、蒸発
器と凝縮器との間に、前記吸着塔を少なくとも2基直列
に接続してなる第1の冷媒回路と、同じく前記吸着塔を
前記第1の冷媒回路と同数直列に接続してなる第2の冷
媒回路とを形成すると共に、各冷媒回路の各吸着塔の前
記固体吸着剤を前記加熱冷却可能な手段により交互に加
熱冷却して、両冷媒回路に前記蒸発器及び凝縮器に対す
る冷媒の吸脱着作用と、吸着塔同志による冷媒の吸脱着
作用とを交互に行わせることを特徴とする低温熱駆動の
吸着式冷凍機システム。2. A solid adsorbent and three or more adsorption towers containing a means capable of heating and cooling the solid adsorbent are used, and at least two adsorption towers are connected in series between an evaporator and a condenser. A first refrigerant circuit connected to the first refrigerant circuit and a second refrigerant circuit formed by connecting the same number of the adsorption towers in series with the first refrigerant circuit and forming a second refrigerant circuit in each of the refrigerant circuits. The solid adsorbent is alternately heated and cooled by the heating and cooling means, and the refrigerant adsorbing and desorbing action with respect to the evaporator and the condenser in both refrigerant circuits, and the adsorbing and desorbing action of the refrigerant by the adsorbing towers alternately. A low-temperature heat-driven adsorption refrigerator system characterized by being performed.
可能な手段を内蔵した3基以上の吸着塔を使用し、蒸発
器と凝縮器との間に、配管を介して前記吸着塔を2基以
上直列に接続してなる第1の冷媒回路と、同じく配管を
介して前記吸着塔を第1の冷媒回路と同数直列に接続し
てなる第2の冷媒回路とを形成し、これらの冷媒回路
中、蒸発器と吸着塔、吸着塔と吸着塔及び凝縮器と吸着
塔の各間の各配管に開閉バルブを夫々設けると共に、各
吸着塔の前記固体吸着剤を前記加熱冷却可能な手段によ
り交互に加熱冷却し、さらに各冷媒回路の各配管に設け
た前記バルブのうち、蒸発器と吸着塔の間のバルブを、
該吸着塔の固体吸着剤が前記加熱冷却可能な手段により
冷却されたときのみ開放、凝縮器と吸着塔の間のバルブ
を、該吸着塔の固体吸着剤が前記加熱冷却可能な手段に
より加熱されたときのみ開放、各吸着塔間のバルブを、
その冷媒回路の蒸発器と接続した吸着塔の固体吸着剤が
前記加熱冷却可能な手段により加熱され、かつ、該冷媒
回路の凝縮器と接続した吸着塔の固体吸着剤が前記加熱
冷却可能な手段により冷却されたときのみ開放するよう
制御せしめてなることを特徴とする吸着式冷凍機。3. A solid adsorbent and three or more adsorption towers containing a means capable of heating and cooling the solid adsorbent are used, and the adsorption tower is connected between an evaporator and a condenser through a pipe. A first refrigerant circuit formed by connecting two or more units in series and a second refrigerant circuit formed by connecting the same number of the adsorption towers in series as the first refrigerant circuit via pipes are formed. An opening / closing valve is provided in each pipe between the evaporator and the adsorption tower, the adsorption tower and the adsorption tower, and the condenser and the adsorption tower in the refrigerant circuit, and the solid adsorbent of each adsorption tower can be heated and cooled. Alternately heated and cooled by, among the valves provided in each pipe of each refrigerant circuit, the valve between the evaporator and the adsorption tower,
Opened only when the solid adsorbent of the adsorption tower is cooled by the heating and cooling means, the valve between the condenser and the adsorption tower is heated by the heating and cooling means of the solid adsorbent of the adsorption tower. Open only when
The solid adsorbent of the adsorption tower connected to the evaporator of the refrigerant circuit is heated by the heating / cooling means, and the solid adsorbent of the adsorption tower connected to the condenser of the refrigerant circuit can be heated / cooled. An adsorption refrigerator that is controlled to open only when cooled by.
上の吸着塔を使用し、蒸発器と凝縮器との間に、配管を
介して前記吸着塔を2基以上直列に接続してなる第1の
冷媒回路と、同じく配管を介して前記吸着塔を第1の冷
媒回路と同数直列に接続してなる第2の冷媒回路とを形
成し、これらの冷媒回路中、蒸発器と吸着塔、吸着塔と
吸着塔及び凝縮器と吸着塔の各間の各配管に開閉バルブ
を夫々設けると共に、前記各吸着塔の伝熱管に温水と冷
却水とを交互に流し、さらに各冷媒回路の各配管に設け
た前記バルブのうち、蒸発器と吸着塔の間のバルブを該
吸着塔の伝熱管に冷却水が供給されたときのみ開放、凝
縮器と吸着塔の間のバルブを該吸着塔の伝熱管に温水が
供給されたときのみ開放、各吸着塔間のバルブを、その
冷媒回路の蒸発器と接続した吸着塔の伝熱管に温水が供
給され、かつ、該回路の凝縮器と接続した吸着塔の伝熱
管に冷却水が流れたときのみ開放するよう制御せしめて
なることを特徴とする吸着式冷凍機。4. Use of three or more adsorption towers containing a solid adsorbent and heat transfer tubes, and connect two or more adsorption towers in series via a pipe between an evaporator and a condenser. Forming a first refrigerant circuit and a second refrigerant circuit in which the same number of the adsorption towers as the first refrigerant circuit are connected in series through the same pipes, and an evaporator and an adsorption are formed in these refrigerant circuits. An opening / closing valve is provided in each pipe between the tower, the adsorption tower and the adsorption tower, and each of the condenser and the adsorption tower, and hot water and cooling water are alternately passed through the heat transfer tubes of each of the adsorption towers. Among the valves provided in each pipe, the valve between the evaporator and the adsorption tower is opened only when cooling water is supplied to the heat transfer tube of the adsorption tower, and the valve between the condenser and the adsorption tower is opened. Open only when hot water is supplied to the heat transfer tube of the, the valve between each adsorption tower and the evaporator of the refrigerant circuit Hot water is supplied to the heat transfer tube of the connected adsorption tower, and the adsorption type is controlled so that it is opened only when cooling water flows to the heat transfer tube of the adsorption tower connected to the condenser of the circuit. refrigerator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3067817A JPH07113495B2 (en) | 1991-02-19 | 1991-02-19 | Low temperature heat driven adsorption refrigerator system and adsorption refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3067817A JPH07113495B2 (en) | 1991-02-19 | 1991-02-19 | Low temperature heat driven adsorption refrigerator system and adsorption refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05248727A true JPH05248727A (en) | 1993-09-24 |
JPH07113495B2 JPH07113495B2 (en) | 1995-12-06 |
Family
ID=13355879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3067817A Expired - Fee Related JPH07113495B2 (en) | 1991-02-19 | 1991-02-19 | Low temperature heat driven adsorption refrigerator system and adsorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07113495B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0702199A1 (en) | 1994-09-19 | 1996-03-20 | Nippondenso Co., Ltd. | Adsorptive type refrigeration apparatus |
JP2010526983A (en) * | 2007-05-11 | 2010-08-05 | インベンソール ゲーエムベーハー | Refrigerator with different sorption materials |
JP2011530057A (en) * | 2007-08-09 | 2011-12-15 | インターナショナル フォー エナジー テクノロジー インダストリーズ エル.エル.シー. | Two-stage low-temperature air-cooled adsorption cooling system |
JP2012220165A (en) * | 2011-04-13 | 2012-11-12 | Ricoh Co Ltd | System and method of heat recovery utilization |
WO2014003013A1 (en) * | 2012-06-26 | 2014-01-03 | 国立大学法人東京農工大学 | Adsorption refrigerator |
JP2015206520A (en) * | 2014-04-18 | 2015-11-19 | 株式会社豊田中央研究所 | Adsorption heat pump system and cold heat generation method |
JP2016011822A (en) * | 2014-06-30 | 2016-01-21 | 株式会社豊田中央研究所 | Adsorption heat pump system and cold generation method |
WO2016031484A1 (en) * | 2014-08-29 | 2016-03-03 | 国立大学法人東京農工大学 | Adsorption refrigerator and adsorption refrigeration method |
JP2016161242A (en) * | 2015-03-03 | 2016-09-05 | 株式会社豊田中央研究所 | Heat pump and cold heat generation method |
US10082321B2 (en) | 2014-03-24 | 2018-09-25 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Adsorption heat pump system and cooling generation method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02230068A (en) * | 1989-02-28 | 1990-09-12 | Nishiyodo Kuuchiyouki Kk | Absorption freezer and its operating method |
-
1991
- 1991-02-19 JP JP3067817A patent/JPH07113495B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02230068A (en) * | 1989-02-28 | 1990-09-12 | Nishiyodo Kuuchiyouki Kk | Absorption freezer and its operating method |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0702199A1 (en) | 1994-09-19 | 1996-03-20 | Nippondenso Co., Ltd. | Adsorptive type refrigeration apparatus |
US5619866A (en) * | 1994-09-19 | 1997-04-15 | Nippondenso Co., Ltd. | Adsorptive type refrigeration apparatus |
JP2010526983A (en) * | 2007-05-11 | 2010-08-05 | インベンソール ゲーエムベーハー | Refrigerator with different sorption materials |
JP2011530057A (en) * | 2007-08-09 | 2011-12-15 | インターナショナル フォー エナジー テクノロジー インダストリーズ エル.エル.シー. | Two-stage low-temperature air-cooled adsorption cooling system |
JP2012220165A (en) * | 2011-04-13 | 2012-11-12 | Ricoh Co Ltd | System and method of heat recovery utilization |
JPWO2014003013A1 (en) * | 2012-06-26 | 2016-06-02 | 国立大学法人東京農工大学 | Adsorption refrigerator |
WO2014003013A1 (en) * | 2012-06-26 | 2014-01-03 | 国立大学法人東京農工大学 | Adsorption refrigerator |
US9618238B2 (en) | 2012-06-26 | 2017-04-11 | National University Corporation Tokyo University Of Agriculture And Technology | Adsorption refrigerator |
US10082321B2 (en) | 2014-03-24 | 2018-09-25 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Adsorption heat pump system and cooling generation method |
JP2015206520A (en) * | 2014-04-18 | 2015-11-19 | 株式会社豊田中央研究所 | Adsorption heat pump system and cold heat generation method |
JP2016011822A (en) * | 2014-06-30 | 2016-01-21 | 株式会社豊田中央研究所 | Adsorption heat pump system and cold generation method |
US10168081B2 (en) | 2014-06-30 | 2019-01-01 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Adsorption heat pump system and cooling generation method |
WO2016031484A1 (en) * | 2014-08-29 | 2016-03-03 | 国立大学法人東京農工大学 | Adsorption refrigerator and adsorption refrigeration method |
EP3187797A4 (en) * | 2014-08-29 | 2017-09-13 | National University Corporation Tokyo University Of Agriculture and Technology | Adsorption refrigerator and adsorption refrigeration method |
JP2016161242A (en) * | 2015-03-03 | 2016-09-05 | 株式会社豊田中央研究所 | Heat pump and cold heat generation method |
Also Published As
Publication number | Publication date |
---|---|
JPH07113495B2 (en) | 1995-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5024064A (en) | Method of operating adsorption refrigerator | |
Saha et al. | Experimental investigation of an advanced adsorption refrigeration cycle | |
US4594856A (en) | Method and device for pumping heat | |
US6314744B1 (en) | Air-conditioning system and operation control method thereof | |
JP2003511641A (en) | Regenerative adsorption method and multi-reactor regenerative adsorption refrigerator | |
US8479529B2 (en) | Two-stage low temperature air cooled adsorption cooling unit | |
CN102353102B (en) | Vacuum solution regenerating air dehumidification system and temperature and humidity independent control air conditioning system | |
JP2010151386A (en) | Adsorption type heat pump | |
Yang et al. | Research on a compact adsorption room air conditioner | |
JPH05248727A (en) | Lower temperature heat source-driven adsorption refrigerating machine system and adsorption refrigerating machine | |
JP3592374B2 (en) | Adsorption type cooling device and method for controlling cooling output thereof | |
JP3831964B2 (en) | Adsorption type refrigerator | |
US5402653A (en) | Refrigerating apparatus provided with chemical type refrigerating unit and compression type heat pump | |
JPH07301469A (en) | Adsorption type refrigerator | |
KR100197917B1 (en) | Direct flame type absorptive airconditioner using xeolite and water as absorbent | |
JP2000179978A (en) | Method for operating adsorption type refrigerating system | |
KR101988550B1 (en) | Adsorption cooling device having multi adsorption tower and methdo for cooling using the same | |
JP3316892B2 (en) | Operating method of adsorption refrigeration system | |
KR100197918B1 (en) | Direct flame type absorptive airconditioner using respective burners | |
JPH09178289A (en) | Desiccant air-conditioner | |
JPH04316966A (en) | Adsorption type refrigerating machine and operating method thereof | |
Wu et al. | Influence of adsorption and desorption capacity on operating process for adsorption heat pump | |
JP2787182B2 (en) | Single / double absorption chiller / heater | |
JP2000111196A (en) | Cooling/heating and hot water supply system | |
JPH02230069A (en) | Absorption freezer and its operating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S202 | Request for registration of non-exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R315201 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S202 | Request for registration of non-exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R315201 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S202 | Request for registration of non-exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R315201 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S202 | Request for registration of non-exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R315201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20071206 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071206 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20081206 |
|
LAPS | Cancellation because of no payment of annual fees |