JP2010151345A - 貫流式排熱回収ボイラ - Google Patents

貫流式排熱回収ボイラ Download PDF

Info

Publication number
JP2010151345A
JP2010151345A JP2008328285A JP2008328285A JP2010151345A JP 2010151345 A JP2010151345 A JP 2010151345A JP 2008328285 A JP2008328285 A JP 2008328285A JP 2008328285 A JP2008328285 A JP 2008328285A JP 2010151345 A JP2010151345 A JP 2010151345A
Authority
JP
Japan
Prior art keywords
spray water
pressure
flow rate
temperature
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008328285A
Other languages
English (en)
Other versions
JP5276973B2 (ja
Inventor
Kazuhiro Takenaga
和弘 武永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2008328285A priority Critical patent/JP5276973B2/ja
Publication of JP2010151345A publication Critical patent/JP2010151345A/ja
Application granted granted Critical
Publication of JP5276973B2 publication Critical patent/JP5276973B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

【課題】主蒸気温度制御及び給水流量制御での制御性を向上させるとともに、減温器スプレの制御範囲を狭めること。
【解決手段】高圧蒸発器17,18と高圧過熱器22,23を有した高圧系貫流システムを有し、高圧蒸発器の給水系統前流側に給水調節弁16を有し、給水調節弁の給水系統前流側から給水を取り込むスプレ水流路にスプレ水制御弁26を有し、スプレ水制御弁の後流側に設けられ過熱蒸気にスプレ水を注水する高圧過熱減温器25を有する貫流式排熱回収ボイラであって、スプレ水流路のスプレ水量を計測するスプレ水流量計32からの計測流量出力に基づいて、高圧過熱減温器25へのスプレ水量が一定値となるようにスプレ水制御弁26を制御し、高圧過熱器23の出口蒸気温度を計測する出口蒸気温度計24からの計測温度出力に基づいて給水調節弁16を制御して高圧系への給水量を制御し、出口蒸気温度24を制限値以下の所定値に保持すること。
【選択図】図1

Description

本発明は、コンバインドサイクル発電設備において、大容量・高効率化に好適な排熱回収ボイラに係わり、特に、高圧過熱器出口の主蒸気温度と給水流量の制御性の向上技術に関する。
図7は一般的なコンバインドサイクル発電設備のプラント構成を概念的に示したものである。図7において、発電機4、蒸気タービン3、ガスタービン1が連続して設けられており、ガスタービン1で天然ガス等を燃焼させて発電機4にて発電を行い、ガスタービン1から排出される高温の排ガスは排熱回収ボイラ2に送られる。排熱回収ボイラ2では排ガスからの熱回収により給水が加熱されて蒸気に変換され、発生した蒸気は蒸気タービン3に送られて発電機4にて発電を行う。なお、後述の説明で、本発明の前提となる背景技術欄の構成例について、蒸気タービンを高圧、中圧および低圧蒸気タービンから構成されたものを例示しているがこれに限定されるものではない。
従来の貫流式排熱回収ボイラの系統構成の例を図8に示す。図8において、それぞれ長方形で示した23,22,21,18,17,15,14,13,11,9,8,6は排ガスと内部を流通する媒体の間で熱交換を行う鋼管からなる伝熱器を示しており、これらは内部または外部を保温されたケーシング、鉄骨等からなる煙道状の排熱回収ボイラ1内に設けられている。
図7で説明したガスタービン1からの排ガスは図8の左側から排熱回収ボイラ1内に流入し、右側から排出される。なお、図8において、矢印付き実線は配管及び管内媒体の流れる方向を示す。本発明の前提となる本背景技術欄の説明には特に必要ではないため記載していない復水器からの給水配管の途中に接続された復水ポンプ5により、排熱回収ボイラ2へ送られた給水は、低圧節炭器6で加熱され、一部は図示した弁を有する配管から低圧ドラム7へと送られ、低圧蒸発器8で蒸気へと変換された飽和蒸気は、低圧ドラム7から低圧過熱器9へと送られて過熱され低圧過熱蒸気となって、低圧蒸気タービンへと送られる。
また、低圧節炭器6の出口給水の一部は高中圧給水ポンプ10で昇圧され、吐出側の高圧給水は高圧節炭器15を経て高圧一次蒸発器17、高圧二次蒸発器18へと送られる。
高圧二次蒸発器18で過熱蒸気に変換された流体は汽水分離器19を経て高圧一次過熱器21、高圧二次過熱器23で更に過熱され、高圧過熱蒸気となって高圧蒸気タービンへと送られる。高中圧給水ポンプ10の中間段から抜出された中圧給水は中圧節炭器11を経て中圧ドラム12へと送られ、中圧蒸発器13で蒸気へと変換された飽和蒸気は、中圧ドラム12から中圧過熱器14へと送られて過熱され中圧過熱蒸気となる。その中圧過熱蒸気は、高圧蒸気タービンで仕事をした後の排気蒸気と混合され、再熱器22へと送られ更に過熱された後、中圧蒸気タービンへと送られる。
このような貫流型排熱回収ボイラの水・蒸気系の制御では、高圧二次蒸発器18出口での過熱度が予め設定した設計値の範囲内に入るように、高圧系の給水量を制御することを行う。具体的には汽水分離器19出口に温度計20を設け管内温度である蒸気温度を測定することにより高圧二次蒸発器18出口での蒸気温度を求め、飽和蒸気温度との温度差、すなわち過熱度が予め設定した設計値の範囲内に入るように高圧給水調節弁16による給水量制御を行う。
また同時に、蒸気タービン3に流入する蒸気温度が蒸気タービン側で制限される定格蒸気温度以上に上昇しないように、高圧二次過熱器23の蒸気温度を制御することを行う。具体的には蒸気温度制御の迅速性が求められることから、高圧一次過熱器21と高圧二次過熱器23の中間に減温器スプレ25を設置し、高圧二次過熱器23の出口に高圧主蒸気温度計24を設け蒸気温度を測定することにより、高圧二次過熱器23出口の蒸気温度が予め蒸気タービン側で設定される設計値である蒸気温度範囲以上に上昇しないようにスプレ水制御弁26によるスプレ水量の制御を行う。
例えばガスタービンからの排ガス流量が増加し排ガス温度が上昇した場合、高圧二次過熱器23出口の管内流体の温度が上昇し温度計24で測定した過熱度が予め設定した設計値より高くなった場合には、スプレ水制御弁26を開方向に制御し、例えば図8に示す高中圧給水ポンプ10出口から分岐した低温給水の注水量を増加することにより管内流体温度を低下させる。
また同時に、高圧二次蒸発器18出口の管内流体の温度が上昇し温度計20で測定した過熱度が予め設定した設計値より高くなった場合には、高圧給水調節弁16を開方向に制御し高圧一次蒸発器17への給水量を増加することにより管内流体温度を低下させる。
従来技術の高圧二次蒸発器18、高圧一次過熱器21、高圧二次過熱器23での鋼管内を流通する媒体の温度(管内温度と称する)の特性図を図9に示す。実線、破線、点線はそれぞれガスタービン負荷が異なる場合の管内温度例を示す。縦軸は管内温度を示し、一点鎖線は飽和温度を示す。
横軸はガス流れ上流側から下流側の順に、各伝熱器(高圧二次過熱器23、高圧一次過熱器21、高圧二次蒸発器18)の出口から入口間の管内温度を図の左から右に対応して示している。すなわち、a軸とb軸間には高圧二次過熱器出口部から高圧二次過熱器入口部間の管内温度を示し、b軸とc軸間には高圧一次過熱器出口部から高圧一次過熱器入口部間の管内温度を示し、c軸とd軸間には高圧二次蒸発器出口部から高圧二次蒸発器入口部間の管内温度を示す。
図9の管内温度を図の右から左に見ていくと、まず、d軸とc軸間に示される高圧二次蒸発器18の入口から出口近傍までの範囲では管内流体は気相と液相の二相混合状態であり、吸収した熱量は主に蒸発に費やされるため、入口から出口近傍までの管内温度は飽和温度を維持する。出口近傍では液相の蒸発が終わり、気相のみとなるため吸収した熱量は気相の温度上昇に費やされるため飽和温度より高い温度に向かう温度勾配を持って立ち上がっている。これは貫流式排熱回収ボイラ水・蒸気系の制御として前述したように、高圧二次蒸発器18出口での過熱度を予め設定した設計値の範囲内に入るように、高圧系給水量の制御を行うためである。
次に、高圧二次蒸発器18の出口からc軸とb軸間に示される高圧一次過熱器21に至る間には汽水分離器19があるのみで熱交換器は存在しない。このため、c軸上に示される高圧二次蒸発器18出口の管内温度は温度を保持したまま高圧一次過熱器21に流入することになる。
また、c軸とb軸間に示される高圧一次過熱器21の入口から出口までの範囲では管内流体は気相のみの単相であり排ガス温度と管内温度との温度差に応じて熱吸収が行われ、吸収した熱量は管内温度の上昇に費やされる。図9では熱吸収による管内温度の上昇が平均して行われると仮定して一定の温度勾配で示している。
次に、図9ではb軸上に示される高圧一次過熱器21出口から高圧二次過熱器23入口に至る間には減温器スプレ25が設置され、高圧二次過熱器23出口の蒸気温度が蒸気タービン側で制限される予め設定された蒸気温度範囲以上に上昇しないようにスプレ水制御弁26によるスプレ水量の制御が行われる。このため、b軸上ではスプレ水による制御が行われた場合、管内温度は低下するため、高圧一次過熱器出口の管内温度と高圧二次過熱器入口の管内温度とは断続して示される。
次に、b軸とa軸間に示される高圧二次過熱器23の入口から出口までの範囲では高圧一次過熱器21の場合と同様に、管内流体は気相のみの単相であり排ガス温度と管内温度との温度差に応じて熱吸収が行われ、吸収した熱量は管内温度の上昇に費やされる。図9では熱吸収による管内温度の上昇が平均して行われると仮定して一定の温度勾配で示している。
ここで、排熱回収ボイラはその内部に補助バーナなど補助的な熱源を有しているものもあるが、主熱源は有しておらず外部の熱源であるガスタービンの排ガスに依存し給水を蒸気に変換し、更に過熱蒸気とすることになるが、その主熱源であるガスタービンの排ガス流量及び排ガス温度はガスタービンの負荷により大きく変化する。そのため、高圧過熱器での熱吸収割合が異なってくることから減温器スプレ水量が大きく変動する。その結果、図9の例に示すように高圧一次過熱器出口と高圧二次過熱器入口の温度差がガスタービン負荷によって大きく異なる。
図9において、排ガス温度が同等でガスタービンの負荷が小、中、大の場合を負荷A、負荷B、負荷Cとしてそれぞれ実線、破線、点線で示す。ガスタービン負荷は電力の需要供給の関係で時間により変動する場合が多いが、ガスタービン負荷と排ガス流量との関係はガスタービン負荷を大にすると排ガス流量は大となる。これに対して、ガスタービン負荷と排ガス温度との関係では、ガスタービン負荷を大にしても排ガス温度をある温度以上に上昇しないように抑えるガスタービンの特性を有するものなどあり、ガスタービン負荷の増減とガス温度の増減とは一致しない。
従って、ガスタービン負荷が大になると排ガスの保有熱量は増加し、逆に、ガスタービン負荷が小になると排ガスの保有熱量は減少する。そのため、ガスタービン負荷が大になると蒸気流量は増加し,ガスタービン負荷が小になると蒸気流量は減少するが、一方、過熱器の熱吸収量は排ガス温度に依存するため、排ガス温度が同等の場合には、ガスタービン負荷の大小による蒸気流量の増減に比べ、過熱器の熱吸収量の増減は小さい。
その結果、図9のb軸とc軸間に示される高圧一次過熱器21の管内温度は負荷A(負荷小)の場合には、管内温度の上昇が大となるので温度勾配は大となり、負荷B(負荷中)の場合には、管内温度の上昇が負荷Aの場合よりも小さくなるので、温度勾配は負荷Aの場合よりも小さくなる。負荷C(負荷大)の場合には、管内温度の上昇がさらに負荷Bの場合よりも小さくなるので、温度勾配が負荷Bの場合よりも小さくなる。
次に、b軸上には高圧一次過熱器出口の管内温度と高圧二次過熱器入口の管内温度が示されるが、負荷A(負荷小)の場合には、高圧二次過熱器23出口の管内温度の上昇が大となるので温度計24での測定値に応じてスプレ水制御弁26が開方向に制御されてスプレ量が大となるため、高圧二次過熱器23入口温度は大きく減温させられる。
負荷B(負荷中)の場合には、管内温度の上昇が負荷Aの場合よりも小さくなるので、スプレ量が少なくなり、減温の程度は負荷Aの場合よりも小さくなる。負荷C(負荷大)の場合には、管内温度の上昇が負荷Bの場合よりもさらに小さくなるので、スプレ量がさらに少なくなり、減温の程度は負荷Bの場合よりもさらに小さくなる。なお、図9において、負荷Cではスプレ水の供給が無い場合を示している。
次に、a軸とb軸間に示される高圧二次過熱器23の管内温度は負荷A(負荷小)の場合には、管内温度の上昇が大となるので、前述したようにスプレ水の減温効果によって二次過熱器温度は減温されているが温度勾配は大となる。負荷B(負荷中)の場合には、管内温度の上昇が負荷Aの場合よりも小さくなるので、温度勾配が負荷Aの場合よりも小さくなる。負荷C(負荷大)の場合には、管内温度の上昇が負荷Bの場合よりも小さくなるので、温度勾配が負荷Bの場合よりも小さくなる。
以上、従来技術について説明してきたが、実際に行われる制御においては、管内温度を設計値範囲に制御する際の前述した2つの制御がお互いに影響し合うことになる。すなわち、高圧汽水分離器19出口と高圧二次過熱器23出口(主蒸気とも称する)の2箇所の蒸気温度を確認しながら、給水流量及びスプレ水量がそれぞれ制御されることになるが、スプレ水が変動(増減)した際にはスプレ水を給水系統の上流側の例えば高中圧給水ポンプ10の出口から分岐して注水しているため、高圧節炭器15、一次蒸発器17、二次蒸発器18、汽水分離器19を経由して高圧一次過熱器21、高圧二次過熱器23への給水量が減増するため、高圧一次過熱器21および高圧二次過熱器23での熱吸収量が変動し高圧二次蒸発器出口での過熱度が変動する。
また、二次蒸発器18出口の過熱度調整のため高圧給水調節弁16による高圧一次蒸発器17、高圧二次蒸発器18への給水流量が変動した場合には高圧一次過熱器21、高圧二次過熱器23での高圧主蒸気温度も変動し、高圧二次過熱器23入口でのスプレ水量制御が変動する。
また、貫流式排熱回収ボイラにおいて、常に主蒸気温度を規定値に保持してボイラ効率を低下させない従来技術として、例えば特許文献1に示すように、過熱器出口の蒸気温度と過熱器減温器の加減弁の開度(又は減温器への注水流量)に基づき、節炭器への給水量を操作することが提案されている。これによると、過熱減温器による注水量を最小限に抑えて給水流量を制御することで最大蒸発量を得ることが開示されている。
特開2008−32367号公報
ところで、図8と図9に示す従来技術によると以下に示す解決すべき課題が生じる。従来技術における、ガスタービンの負荷や排ガス特性に変動が生じた際の制御のフローチャートを図10に示す。特に、起動時における負荷上昇時や夏場など電力消費量の時間変化に対応するためのガスタービン負荷変化時など排熱回収ボイラへの入熱である排ガス流量が変化し(排ガス温度が変化する場合もある)、高圧二次および一次過熱器での熱吸収量が変動した際には、高圧二次過熱器23出口蒸気温度に基づく高圧過熱器スプレ水調節弁26による蒸気温度制御にともなう高圧二次過熱器熱吸収量の変動と、高圧二次蒸発器18出口蒸気温度に基づく高圧給水調節弁16による過熱度制御にともなう高圧二次および一次過熱器熱吸収量の変動が影響しあうこととなり、高圧主蒸気温度の変動幅が大きく、安定するまでの時間が長く制御性が悪い。
例えば、ガスタービン負荷が大から中へ変動した場合、排熱回収ボイラ2へ流入する排ガス流量が減少、蒸気流量が減少するが、排ガス温度が変動しないため高圧二次過熱器の熱吸収量の変動は小さく、まず、高圧二次過熱器23での管内温度が上昇するので、高圧過熱器出口温度計24での測定の結果、蒸気タービン側で許容する温度により決まる規定値以下になるように高圧過熱器スプレ水調節弁26を開方向に制御して高圧二次過熱器23入口に注水するスプレ水を増加させ、高圧二次過熱器23入口温度を減温する。しかしながら引き続き、後流側の高圧一次過熱器21での管内温度が上昇し、高圧二次過熱器23に流通して出口温度が上昇することになるため、高圧過熱器スプレ水調節弁26の開方向制御を引き続き行うことになる。
次に、高圧二次蒸発器18での管内温度が下降するので、高圧汽水分離器出口蒸気温度計20での測定の結果、高圧給水調節弁16を開方向に制御して高圧一次蒸発器17に流入する給水流量を増加させて高圧二次蒸発器18出口蒸気温度を減温する。その結果、高圧二次過熱器出口蒸気温度も低下するが、既に高圧過熱器スプレ水調節弁26の開方向制御が行われており、高圧過熱器出口蒸気温度が規定値温度以下となる。そのため、今度は高圧過熱器スプレ水調節弁26が閉方向に制御されることになる。また、高圧汽水分離器出口蒸気温度が低下し、過熱度は規定値温度よりも低下するため、高圧給水調節弁16が今度は閉方向に制御されることになる。つまり、高圧過熱器スプレ水調節弁26及び高圧給水調節弁16の開方向と閉方向の制御が繰り返されることになる。
また、高圧汽水分離器出口蒸気温度計20での測定の結果による高圧給水調節弁16の開方向に制御した効果は、高圧過熱器出口温度計24での測定の結果による高圧過熱器スプレ水調節弁26の開方向制御に対して遅れ、高圧汽水分離器出口蒸気温度計20での測定の結果により適温に制御された管内温度の流体が高圧一次過熱器21に流入したにもかかわらず高圧一次過熱器21出口の流体に対して高圧過熱器出口温度計24での測定の結果による注水量のスプレ水が注水されることになり、過剰に減温された状態で高圧二次過熱器23出口の管内温度として流出することになり、ハンチング状態を繰り返すことになる。
このように、減温器スプレ25によるスプレ水流量の変動幅も大きく、高圧過熱器蒸気温度制御に対し考慮すべき温度偏差幅が広く、設計温度に対する安全率を過剰に高く設定する必要があった。更に、スプレ流量の制御範囲が広くなるため、調節弁やスプレノズルに対する仕様に要求される条件が厳しくなることによりコストアップになっていた。
本発明の目的は、上述した従来技術の解決課題を解消するように、簡易な構成で蒸気温度制御及び流量制御での制御性を向上させるとともに、減温器スプレの制御範囲を狭めることで設計温度を低下させてコスト低減を図ることのできる貫流式排熱回収ボイラを提供することにある。
前記課題を解決するために、本発明は次のような構成を採用する。
高圧蒸発器、高圧汽水分離器、及び高圧過熱器を有した高圧系に貫流システムを有し、前記高圧蒸発器の給水系統前流側に給水調節弁を有し、前記給水調節弁の給水系統前流側から給水を取り込むスプレ水流路にスプレ水制御弁を有し、前記スプレ水制御弁の後流側に設けられて前記高圧過熱器の過熱蒸気にスプレ水を注水する高圧過熱減温器を有する貫流式排熱回収ボイラであって、前記スプレ水流路のスプレ水量を計測するスプレ水流量計からの計測流量出力に基づいて、前記高圧過熱減温器へのスプレ水量が一定値となるように前記スプレ水制御弁を制御し、前記高圧過熱器の出口蒸気温度を計測する出口蒸気温度計からの計測温度出力に基づいて前記給水調節弁を制御して前記高圧系への給水量を制御し、前記出口蒸気温度を制限値以下の所定値に保持する構成とする。
また、高圧蒸発器、高圧汽水分離器、及び高圧過熱器を有した高圧系に貫流システムを有し、前記高圧蒸発器の給水系統前流側に給水調節弁を有し、前記給水調節弁の給水系統前流側から給水を取り込むスプレ水流路にスプレ水制御弁を有し、前記スプレ水制御弁の後流側に設けられて前記高圧過熱器の過熱蒸気にスプレ水を注水する高圧過熱減温器を有する貫流式排熱回収ボイラであって、前記ボイラへの給水流量を計測する給水流量計を設けるとともに、前記スプレ水流路のスプレ水量を計測するスプレ水流量計を設け、前記給水流量計と前記スプレ水流量計からの計測流量出力に基づいて、前記給水流量計で計測した給水流量に対する前記スプレ水流量計で計測したスプレ水流量の流量比率が一定値となるように前記スプレ水制御弁を制御し、前記高圧過熱器の出口蒸気温度を計測する出口蒸気温度計からの計測温度出力に基づいて前記給水調節弁を制御して前記高圧系への給水量を制御し、前記出口蒸気温度を制限値以下の所定値に保持する構成とする。
また、前記貫流式排熱回収ボイラにおいて、前記給水流量計と前記スプレ水流量計からの計測流量信号を取り込むとともに、前記スプレ水制御弁への制御信号を出力する制御切替部を設け、前記制御切替部は、前記スプレ水流量の流量比率一定値に代えて、スプレ水流量の一定値又は前記スプレ水流量の流量比率の一定値を選択的に出力し、排熱回収源であるガスタービンの負荷が中間負荷帯であるときに前記スプレ水流量の一定値を選択的に出力し、前記ガスタービンの負荷が高負荷帯であるときに前記スプレ水流量の流量比率の一定値を選択的に出力して前記スプレ水制御弁を制御する構成とする。
本発明によると、減温器のスプレ水流量又はスプレ水比率を一定とし、給水流量の制御を高圧主蒸気温度に対して行うことにより、制御に対する外乱が無くなり制御性を向上させることができる。また、高圧主蒸気温度の変動幅が小さくなるため、高圧過熱器管、高圧過熱器出口管寄せ、高圧主蒸気管で考慮が必要な蒸気温度偏差を小さくすることが可能となり、設計温度低下によるコスト低減を図ることができる。
さらに、減温器スプレでのスプレ水流量が減少しスプレ水制御弁に要求される制御条件が緩和されるため、スプレ水制御弁の仕様やスプレ水ノズルの構造をシンプルにすることが可能となりコスト低減をはかることができる。このような効果により、経済性に優れた信頼性の高い貫流式排熱回収ボイラを提供することが可能となる。
本発明の実施形態に係る貫流式排熱回収ボイラについて、図1〜図5を参照しながら以下詳細に説明する。まず、本実施形態に係る貫流式排熱回収ボイラにおける一般的な構成と概念を説明する。
ガスタービンの排ガスから熱交換によって蒸気を発生させ、その蒸気を用いて蒸気タービンを駆動して発電する、いわゆるコンバインドサイクル発電設備において、ガスタービンの排ガスから熱を回収する設備として排熱回収ボイラが設置されるが、コンバインド発電設備の特徴を活かして、急速起動停止運用による起動損失低減、蒸気条件の高温高圧化による発電効率向上策として蒸気ドラムを設置しない貫流式の排熱回収ボイラが採用される。また、大型のコンバインドサイクル発電設備ではこの排熱回収ボイラの蒸気系統を高圧系、中圧再熱系及び低圧系の三系統で構成して排熱回収の効率向上を図っている。
このような貫流システムでは、蒸気ドラムを中心とした循環系を形成する代わりに、節炭器で加熱された給水を蒸発器で全て蒸気へと変換し汽水分離器へと送る必要がある。そのため、蒸発器出口で常に一定範囲の過熱度を維持するように給水流量を制御している。
また、過熱器出口の蒸気温度は、蒸気タービンが許容可能な規定値以下とする必須の要件が求められる。そのため、過熱器の中間あるいは出口には蒸気温度制御用の減温器スプレが設置されている。貫流システムでの給水量制御に関しては、ドラムのような緩衝装置が存在しないため、より早い制御応答性が求められる。ここで、給水流量も過熱器出口蒸気温度もガスタービンからの入熱である排ガス流量及び排ガス温度特性の影響を受けることになるが、給水流量を制御する蒸発器出口温度はスプレ水流量の変動の影響を受け、スプレ水を制御する過熱器出口蒸気温度は給水流量の変動の影響を受けるため、互いの制御の影響を受け、それぞれの制御に遅れを生じる可能性がある。
そこで、結論的に云えば、本発明の実施形態に係る貫流式排熱回収ボイラの特徴である、スプレ水の流量を一定とし、又は給水流量に対するスプレ水の流量比率を一定とし、過熱器出口蒸気温度を一定とするように給水流量制御を行うこととすれば、制御が単純化され制御性が向上する。さらに、排ガス条件に対するスプレ流量の大きな変動がなくなるため、スプレ水調節弁やスプレ水ノズルを簡易な構造とすることができる。
ここで、本実施形態に係る貫流式排熱回収ボイラの構成、動作乃至機能について図面を用いて説明する。図1は本発明の実施形態に係る貫流式排熱回収ボイラのシステム構成を示す系統図である。図2は本実施形態に係る貫流式排熱回収ボイラにおける高圧二次蒸発器から高圧二次過熱器出口までの管内温度が、ガスタービン負荷の変動に対応して変化する状態を表す温度線図である。図3は本実施形態に関する、ガスタービンの排ガス特性に変動が生じた場合の制御の流れを表す説明図である。
また、図4は本実施形態に関する、ガスタービン負荷の変動があったときの主蒸気温度の変動状況を従来技術との対応で示す図である。図5は本実施形態に関する高圧過熱器減温器スプレ水の流量を一定制御する特性を従来技術との対応で示す図である。図6は本実施形態に関する高圧過熱器減温器スプレ水の流量比率を一定制御する特性を従来技術との対応で示す図である。
図1において、高圧給水調節弁16とスプレ水制御弁26における、貫流式排熱回収ボイラの全体構成での配置は、従来技術の図8と同様であり、高圧給水調節弁16は高圧一次蒸発器の給水系統前流側に設けられ、スプレ水制御弁26は高中圧給水ポンプ10の後流側(高圧給水調節弁16の前流側)からスプレ水を取り入れている。スプレ水は減温器25において、給水ポンプ10による或る程度の圧力を保った状態で、且つ或る程度の冷温状態で、過熱蒸気中に噴出されるのである。
復水ポンプ5の後流側に全給水流量計31が設置され、排熱回収ボイラ全体の全給水流量が測定され、その測定値F1が制御切替部30の一方に入力される。ここで、全給水流量計31で測定される給水流量は、ガスタービン負荷に対応してそれぞれ一定量に制御されている。スプレ水制御弁26のスプレ水流路に流れる給水量はスプレ水流量計32で測定され、その測定値F2が制御切替部30の他方に入力される。制御切替部30では、減温器スプレ水流量を一定値にして制御するか、減温器スプレ水流量の比率(F2/F1)を一定値にして制御(比率一定になるように測定値F1,F2を演算処理)するかのいずれかを選択して、スプレ水制御弁26に出力する。
ここにおいて、スプレ水流量一定制御かスプレ水流量比率一定制御かは、ガスタービン負荷の大小によって使い分けて使用してもよい。例えば、ガスタービン負荷が中間負荷帯(部分負荷帯)のときにスプレ水流量一定制御とし、高負荷帯のときにスプレ水流量比率(F2/F1)一定制御として、高圧二次過熱器の出口蒸気温度を制限値以下に維持するようにしてもよい。スプレ水流量一定と流量比率一定に分ける理由は、スプレ水の負荷特性がガスタービンの排ガス特性、ガスタービン形式、プラント性能計画により異なるため、その特性により制御特性として水量一定の方が良い場合、比率一定の方が良い場合、使い分けた方が良い場合、に分かれるためである。
ガスタービン負荷(GT負荷)に応じて蒸気流量は増加し、給水流量も増加する。スプレ水量比率一定制御の際には負荷によりスプレ水量は増加し,スプレ水流量一定制御の際にはスプレ水量の増減はない。上述した流量F1とF2の具体的な数値は、プラント特性にも因るが、本発明で想定している大型コンバインドサイクルでは、例示すると、F1は180〜270t/hであり、F2は3〜7t/hである。
このように、高圧過熱器減温器25はガスタービン負荷の時々刻々の変動に関わらず、スプレ水量が一定、又は全給水流量に対するスプレ水割合が一定となるように制御する。ここで、高圧過熱器減温器25におけるスプレ水の流量はスプレ水制御弁26で制御され、スプレ水制御弁26は制御切替部30によって制御された択一的な制御信号によって制御される。すなわち、制御切替部30においては、スプレ水流量計32による測定流量(F2)が一定流量になるような1つの制御信号と、復水ポンプ出口の全給水流量計31で測定された流量(F1)に対するスプレ水流量計32によるスプレ水量(F2)の割合が一定(F2/F1=所定の一定値)となるような他の制御信号と、が生成され、この生成された2つの制御信号のいずれかが出力信号として制御切替部30からスプレ水制御弁26に与えられる。
また、高圧過熱器出口蒸気温度計24で測定した蒸気温度が一定となるように給水調節弁16により高圧給水量を制御する。ここで、給水流路系統におけるスプレ水の取り入れ部位の後流側に給水調節弁16が配置されている。
図2に本実施形態による制御を適用した、高圧二次蒸発器18から高圧二次過熱器23出口までの温度線図を示す。図2によると、ガスタービン負荷(図示例では、負荷の小さい順に負荷A、負荷B、負荷C:A<B<C)や大気温度の違いにより排ガス流量が変動しても(図2でタービン負荷はA<B<Cとなり、排ガス流量は負荷により増加するが排ガス温度はそれほど変わらない特性をもつガスタービンを想定している)、高圧一次過熱器21出口と高圧二次過熱器23入口の温度差、すなわち高圧過熱器減温器スプレ水量はそれほど変化しない。スプレ水の流量をほぼ一定であるので、図2のb軸における、負荷Cの管内温度落ち込みと、負荷Bの管内温度落ち込みと、負荷Aの管内温度落ち込みとは同程度である。ここで、a軸とb軸との間の負荷Aが急傾斜となっているのはガスタービンからの排ガス流量が小、すなわち、ガスタービン負荷が小さく蒸気流量が少なくて高圧過熱器での熱吸収量はそれほど減少しないため、蒸気温度の上昇幅が大きいことを示している。
図2において、負荷Aでは負荷B,Cに比べて高圧過熱器での熱吸収割合が大きい条件となり、そのため過熱器での温度上昇が大きくなることから過熱度(c軸での温度位置)が低くなるように給水流量を制御する。c軸とd軸の間における負荷A,B,Cの立ち上がり点はc軸での過熱度の高さに対応しているものである。
高圧二次過熱器23の出口の蒸気温度、すなわち図2に示すa軸上の管内温度は蒸気タービンへの蒸気温度に対応するのでその温度は制限値以下の所定温度に維持されることが通常求められている。高圧二次蒸発器23出口の過熱度は排ガス条件により変動することになるが、管内温度は比較的低いので伝熱管の素材選定における設計温度の上昇によるコスト高は小さいこと、過熱度が低下し高圧二次蒸発器出口で飽和水が混在する状態になった場合にも汽水分離器19により分離除去されること、から問題とはならない。
図3にガスタービンの排ガス特性に変動が生じた際の制御の流れを示す。ガスタービン負荷に伴って排ガス流量、排ガス温度に変動が生じた場合、高圧過熱器熱吸収量が変動し、高圧給水調節弁16による給水流量制御による蒸気温度制御が行われる。その際、本実施形態におけるスプレ水流量又はスプレ水割合が一定の場合には、過熱器系外からの入熱が固定されているため、高圧過熱器熱吸収量に応じた給水流量へと速やかに移行することが可能となる。
換言すると、仮にスプレ水量が一定でないとすると、図1に示すようにスプレ水取り入れ部位の給水後流側に配置される給水調節弁16への流量はスプレ水量の多寡に影響されることとなって、前述したように主蒸気温度計24による制御で温度ハンチングを引き起こし得るが、本実施形態のようにスプレ水が一定の場合には、主蒸気温度計24と給水調節弁16への一定給水量のみの関係で制御されることとなるので、主蒸気温度のハンチングが生じ得ない。
図4に本実施形態による制御を適用した際のガスタービン負荷変化時の主蒸気温度特性を、従来の制御と比較して示す。高圧過熱器減温器25でのスプレ水量又はスプレ水割合を固定することにより、高圧過熱器出口温度(温度計24で測定する温度)を一定にするように給水流量調整する制御に対する外乱が小さくなり、高圧出口蒸気温度の変動幅が小さくなり、蒸気温度が安定するまでの時間も小さくなる。
図5にスプレ水量を一定とした制御を適用した際の本実施形態に関する高圧過熱器減温器スプレ水特性を、従来の制御と比較して示す。また、図6に給水流量(F1)に対する減温器スプレ水流量(F2)の比率を一定とした制御を適用した際の、本実施形態の高圧過熱器減温器スプレ水特性を、従来の制御と比較して示す。図5はスプレ水の負荷特性の例をスプレ水流量の観点から示し、図6はスプレ水の負荷特性の例をスプレ水流量比率の観点から示している。図5によると、本実施形態における制御との対比で、従来技術では中間負荷帯でスプレ水量が大幅に変化し、且つスプレ水流量が多いことがわかる。
排ガス温度が部分負荷(全負荷に対応する概念であり短期間の電力調整用として用いられ、一般的に排ガス温度が高くなる。例えば、夏場の日中で冷房使用時の時間帯を全負荷とすると、夜間の時間帯を部分負荷でガスタービンを運転する負荷状態)で高くなる特性を持つガスタービンに対して、図8に示す従来の制御を適用した場合には、スプレ水流量が部分負荷で大きくなるため(排ガス温度が高いので高圧二次過熱器の熱吸収量が大となり温度計24の温度が高くなり、これによってスプレ水流量が大となり、その分だけ給水調節弁16への給水が小となり主蒸気温度が直ぐには低下しない)、蒸気温度や給水流量の制御性を悪くする(ハンチングの可能性があり得る)だけでなく、スプレ水調節弁やスプレ水ノズルの制御範囲を広げ(図9に示す負荷Aにおけるb軸の管内温度の落ち込みを参照)、コストアップ(素材選定の設計温度の拡がりによるコストアップ)を余儀なくされていたが、本実施形態の制御を適用することによりスプレ水流量又は割合が一定となるため、スプレ水調節弁やスプレ水ノズルの制御範囲を狭めることが可能となる。
ここで、スプレ水流量を一定とするか、あるいは給水流量に対する減温器スプレ水流量比率を一定とするかは、ガスタービンの部分負荷特性により最適な方を選択する。また、部分負荷特性によっては、スプレ水流量の絶対量と比率の両方をガスタービン負荷により使い分ける方法を適用してもよい。具体的には、ガスタービン負荷の中間負荷帯(部分負荷)ではスプレ水量を一定とし、高負荷帯ではスプレ水流量比率一定とするように選択的に切り替えてもよい。なお、これまでの説明では、スプレ水流量の比率一定について、復水ポンプ後流側に設けた全給水流量計31(流量計31での給水温度が低いので流量計の設計温度を低くでき、コスト低減に繋がる)の流量F1を分母としたが、これに限らず、高圧給水調節弁16近傍の高圧給水流量、又は高圧過熱器近傍の高圧蒸気流量を求めて分母としてもよい。
ガスタービンの負荷帯について具体例を示すと、プラントにより多少異なるが,中間負荷帯は40〜80%、高負荷帯は90%以上のことを指しています。また、部分負荷は全負荷(100%負荷)に対する概念であり、全負荷をプラントの負荷容量と考えるケースと、ガスタービン負荷と考えるケースがある。部分負荷は基本的に全負荷以外となり,中間負荷帯は部分負荷の一部である。ここで、中間負荷帯でスプレ水流量を一定とし、高負荷帯でスプレ水流量比率を一定としている理由は、そのようなスプレ水特性をもつプラント条件(ガスタービン特性、性能計画)のプラントが比較的多いためである。
以上説明したように、従来、貫流式排熱回収ボイラの給水流量は高圧汽水分離器出口での過熱度が一定となるよう制御される一方で、高圧過熱器出口蒸気温度については、高圧過熱器中間又は出口に設置した減温器スプレにより設定温度以上とならないように制御されている。ここで、排熱回収ボイラの入熱源であるガスタービンの排ガス温度及び排ガス流量はガスタービン負荷により大きく変化するため、減温器スプレによる蒸気温度制御の範囲は広く、高い制御性が求められる。前述したように、従来技術においては、高圧蒸発器出口過熱度により給水流量が制御されるが、同様にガスタービンの排ガス温度、排ガス流量の変動に応じたスプレ制御が求められるため、双方の制御が干渉し合い高圧過熱器出口蒸気温度及び給水流量の制御性が悪くなる可能性があった。本発明の実施形態では、その概略的な対応策として、高圧系に貫流システムを採用した貫流式排熱回収ボイラにおいて、高圧過熱器の減温器スプレ流量を一定とし、又は給水流量に対する減温器スプレ水流量比率を一定とし、高圧過熱器出口蒸気温度を制限値以下の所定値となるように高圧給水流量を制御する新たな制御手法を開示するものである。
本発明の実施形態に係る貫流式排熱回収ボイラのシステム構成を示す系統図である。 本実施形態に係る貫流式排熱回収ボイラにおける高圧二次蒸発器から高圧二次過熱器出口までの管内温度が、ガスタービン負荷の変動に対応して変化する状態を表す温度線図である。 本実施形態に関する、ガスタービンの排ガス特性に変動が生じた場合の制御の流れを表す説明図である。 本実施形態に関する、ガスタービン負荷の変動があったときの主蒸気温度の変動状況を従来技術との対応で示す図である。 本実施形態に関する高圧過熱器減温器スプレ水の流量を一定制御する特性について、従来技術との対応で示す図である。 本実施形態に関する高圧過熱器減温器スプレ水の流量比率を一定制御する特性について、従来技術との対応で示す図である。 一般的なコンバインドサイクル発電設備のプラント構成を概念的に示した図である。 従来の貫流式排熱回収ボイラの系統構成の例を示す図である。 従来技術における。高圧二次蒸発器、高圧一次過熱器、高圧二次過熱器での鋼管内を流通する媒体温度(管内温度)の特性を表す図である。 従来技術における、ガスタービンの負荷や排ガス特性に変動が生じた際の制御のフローチャートである。
符号の説明
1 ガスタービン
2 排熱回収ボイラ
3 蒸気タービン
4 発電機
5 復水ポンプ
6 低圧節炭器
7 低圧ドラム
8 低圧蒸発器
9 低圧過熱器
10 高中圧給水ポンプ
11 中圧節炭器
12 中圧ドラム
13 中圧蒸発器
14 中圧過熱器
15 高圧節炭器
16 高圧給水調節弁
17 高圧一次蒸発器
18 高圧二次蒸発器
19 高圧汽水分離器
20 高圧汽水分離器出口蒸気温度計
21 高圧一次過熱器
22 再熱器
23 高圧二次過熱器
24 高圧過熱器出口温度計
25 高圧過熱器減温器
26 高圧過熱器スプレ水調節弁
30 制御切替部
31 復水ポンプ出口給水流量計
32 高圧過熱器減温器スプレ水流量計

Claims (3)

  1. 高圧蒸発器、高圧汽水分離器、及び高圧過熱器を有した高圧系に貫流システムを形成し、前記高圧蒸発器の給水系統前流側に給水調節弁を有し、前記給水調節弁の給水系統前流側から給水を取り込むスプレ水流路にスプレ水制御弁を有し、前記スプレ水制御弁の後流側に設けられて前記高圧過熱器の過熱蒸気にスプレ水を注水する高圧過熱減温器を有する貫流式排熱回収ボイラであって、
    前記スプレ水流路のスプレ水量を計測するスプレ水流量計からの計測流量出力に基づいて、前記高圧過熱減温器へのスプレ水量が一定値となるように前記スプレ水制御弁を制御し、
    前記高圧過熱器の出口蒸気温度を計測する出口蒸気温度計からの計測温度出力に基づいて前記給水調節弁を制御して前記高圧系への給水量を制御し、前記出口蒸気温度を制限値以下の所定値に保持する
    ことを特徴とする貫流式排熱回収ボイラ。
  2. 高圧蒸発器、高圧汽水分離器、及び高圧過熱器を有した高圧系に貫流システムを有し、前記高圧蒸発器の給水系統前流側に給水調節弁を有し、前記給水調節弁の給水系統前流側から給水を取り込むスプレ水流路にスプレ水制御弁を有し、前記スプレ水制御弁の後流側に設けられて前記高圧過熱器の過熱蒸気にスプレ水を注水する高圧過熱減温器を有する貫流式排熱回収ボイラであって、
    前記ボイラへの給水流量を計測する給水流量計を設けるとともに、前記スプレ水流路のスプレ水量を計測するスプレ水流量計を設け、
    前記給水流量計と前記スプレ水流量計からの計測流量出力に基づいて、前記給水流量計で計測した給水流量に対する前記スプレ水流量計で計測したスプレ水流量の流量比率が一定値となるように前記スプレ水制御弁を制御し、
    前記高圧過熱器の出口蒸気温度を計測する出口蒸気温度計からの計測温度出力に基づいて前記給水調節弁を制御して前記高圧系への給水量を制御し、前記出口蒸気温度を制限値以下の所定値に保持する
    ことを特徴とする貫流式排熱回収ボイラ。
  3. 請求項2において、
    前記給水流量計と前記スプレ水流量計からの計測流量信号を取り込むとともに、前記スプレ水制御弁への制御信号を出力する制御切替部を設け、
    前記制御切替部は、前記スプレ水流量の流量比率一定値に代えて、スプレ水流量の一定値又は前記スプレ水流量の流量比率の一定値を選択的に出力し、
    排熱回収源であるガスタービンの負荷が中間負荷帯であるときに前記スプレ水流量の一定値を選択的に出力し、前記ガスタービンの負荷が高負荷帯であるときに前記スプレ水流量の流量比率の一定値を選択的に出力して前記スプレ水制御弁を制御する
    ことを特徴とする貫流式排熱回収ボイラ。
JP2008328285A 2008-12-24 2008-12-24 貫流式排熱回収ボイラ Expired - Fee Related JP5276973B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328285A JP5276973B2 (ja) 2008-12-24 2008-12-24 貫流式排熱回収ボイラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328285A JP5276973B2 (ja) 2008-12-24 2008-12-24 貫流式排熱回収ボイラ

Publications (2)

Publication Number Publication Date
JP2010151345A true JP2010151345A (ja) 2010-07-08
JP5276973B2 JP5276973B2 (ja) 2013-08-28

Family

ID=42570647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328285A Expired - Fee Related JP5276973B2 (ja) 2008-12-24 2008-12-24 貫流式排熱回収ボイラ

Country Status (1)

Country Link
JP (1) JP5276973B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102889575A (zh) * 2012-10-17 2013-01-23 亿恒节能科技江苏有限公司 一种低湿度蒸汽三效换热系统
JP2014055693A (ja) * 2012-09-11 2014-03-27 Tokyo Gas Co Ltd 蒸気供給システム
JP2016511818A (ja) * 2013-02-12 2016-04-21 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft ガス・蒸気タービン設備用蒸気温度調整装置
JP2017115678A (ja) * 2015-12-24 2017-06-29 株式会社東芝 プラント制御装置、プラント制御方法、および発電プラント

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596808A (en) * 1979-01-17 1980-07-23 Hitachi Ltd Boiler steam temperature controller
JPS5921902A (ja) * 1982-07-28 1984-02-04 株式会社東芝 ボイラの蒸気温度制御装置
JPH04306401A (ja) * 1991-04-02 1992-10-29 Ishikawajima Harima Heavy Ind Co Ltd 加圧流動層ボイラの蒸気温度制御装置
JPH07110108A (ja) * 1993-10-13 1995-04-25 Ishikawajima Harima Heavy Ind Co Ltd 主蒸気温度制御方法
JPH10148305A (ja) * 1996-11-19 1998-06-02 Babcock Hitachi Kk ボイラ制御装置
JP2008032367A (ja) * 2006-07-31 2008-02-14 Babcock Hitachi Kk 貫流型排熱回収ボイラの制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596808A (en) * 1979-01-17 1980-07-23 Hitachi Ltd Boiler steam temperature controller
JPS5921902A (ja) * 1982-07-28 1984-02-04 株式会社東芝 ボイラの蒸気温度制御装置
JPH04306401A (ja) * 1991-04-02 1992-10-29 Ishikawajima Harima Heavy Ind Co Ltd 加圧流動層ボイラの蒸気温度制御装置
JPH07110108A (ja) * 1993-10-13 1995-04-25 Ishikawajima Harima Heavy Ind Co Ltd 主蒸気温度制御方法
JPH10148305A (ja) * 1996-11-19 1998-06-02 Babcock Hitachi Kk ボイラ制御装置
JP2008032367A (ja) * 2006-07-31 2008-02-14 Babcock Hitachi Kk 貫流型排熱回収ボイラの制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055693A (ja) * 2012-09-11 2014-03-27 Tokyo Gas Co Ltd 蒸気供給システム
CN102889575A (zh) * 2012-10-17 2013-01-23 亿恒节能科技江苏有限公司 一种低湿度蒸汽三效换热系统
CN102889575B (zh) * 2012-10-17 2014-07-09 亿恒节能科技江苏有限公司 一种低湿度蒸汽三效换热系统
JP2016511818A (ja) * 2013-02-12 2016-04-21 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft ガス・蒸気タービン設備用蒸気温度調整装置
US10156355B2 (en) 2013-02-12 2018-12-18 Siemens Aktiengesellschaft Steam temperature control device for a gas and steam turbine plant
JP2017115678A (ja) * 2015-12-24 2017-06-29 株式会社東芝 プラント制御装置、プラント制御方法、および発電プラント
US10450900B2 (en) 2015-12-24 2019-10-22 Kabushiki Kaisha Toshiba Plant control apparatus, plant control method and power generating plant

Also Published As

Publication number Publication date
JP5276973B2 (ja) 2013-08-28

Similar Documents

Publication Publication Date Title
US9593844B2 (en) Method for operating a waste heat steam generator
EP2395284B1 (en) Single Loop Attemperation Control
JP5727951B2 (ja) 蒸気供給システム及び蒸気供給システムの制御方法
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
JP4854422B2 (ja) 貫流型排熱回収ボイラの制御方法
US10132492B2 (en) System and method for drum level control in a drum of a heat recovery steam generator
KR20130115281A (ko) 가스 및 증기 터빈 복합 발전 설비의 작동 방법과, 이 방법을 실행하기 위해 제공된 가스 및 증기 터빈 복합 발전 설비와, 상응하는 조절 장치
KR20190068441A (ko) 관류형 증발기 시스템
JP5276973B2 (ja) 貫流式排熱回収ボイラ
JP7111525B2 (ja) 貫流式排熱回収ボイラおよび貫流式排熱回収ボイラの制御システム
US20130167504A1 (en) Method for regulating a short-term power increase of a steam turbine
JP4718333B2 (ja) 貫流式排熱回収ボイラ
US20160032784A1 (en) Method for low load operation of a power plant with a once-through boiler
JPH10292902A (ja) 主蒸気温度制御装置
KR20190068442A (ko) 관류형 증발기 시스템
KR102627373B1 (ko) 관류형 증발기 시스템
JP2005214047A (ja) コンバインドサイクル発電プラントおよびその運転方法
JP4842071B2 (ja) 貫流式排熱回収ボイラの運転方法、ならびに発電設備の運転方法
KR20190068438A (ko) 관류형 증발기 시스템
JP3709263B2 (ja) ボイラの制御方法およびボイラ
JP2001108202A (ja) 排熱回収ボイラ
JPH03282102A (ja) 排熱回収ボイラおよびそれに使用する減温器制御装置
JPH05296401A (ja) 排熱回収ボイラ系統およびその主蒸気温度制御装置
JPH09195718A (ja) 主蒸気温度制御装置
JP5183714B2 (ja) 蒸気供給設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5276973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees