JP2010150938A - 燃料噴射装置 - Google Patents

燃料噴射装置 Download PDF

Info

Publication number
JP2010150938A
JP2010150938A JP2008327141A JP2008327141A JP2010150938A JP 2010150938 A JP2010150938 A JP 2010150938A JP 2008327141 A JP2008327141 A JP 2008327141A JP 2008327141 A JP2008327141 A JP 2008327141A JP 2010150938 A JP2010150938 A JP 2010150938A
Authority
JP
Japan
Prior art keywords
fuel
injection
ignition
amount
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008327141A
Other languages
English (en)
Inventor
Hiroyuki Yuasa
弘之 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008327141A priority Critical patent/JP2010150938A/ja
Publication of JP2010150938A publication Critical patent/JP2010150938A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】気筒毎の正確な実燃料噴射率を取得し、その正確な実燃料噴射率に基づいて各気筒間の発生トルクに差が生じないように制御可能な燃料噴射装置を提供する。
【解決手段】燃料を蓄圧状態に貯留する燃料蓄圧部4から各気筒に向けて分岐した燃料供給管21を通じて供給される燃料の全量を各気筒の燃焼室へ噴射する燃料噴射弁5と、燃料噴射弁5から燃料を噴射させるための噴射指令信号を出力する制御部80Aと、燃料供給管21に配置されたオリフィス75と、燃料供給管21内のオリフィス75の上流側及び下流側の差圧を検出する差圧センサSdPとを有し、制御部80Aは、差圧に基づいてオリフィス75を通過する実燃料供給率を算出し、噴射の開始から現時刻までの実燃料供給率を時間積分して燃焼室に噴射された燃料の積算噴射量を算出し、着火検出装置8によって燃料の着火が検出されたときの積算噴射量を、着火必要噴射量として記憶する。
【選択図】図1

Description

本発明は、燃料蓄圧部に蓄圧状態で貯留された燃料を燃料噴射弁から内燃機関の各気筒へ噴射する燃料噴射装置に関する。
従来の燃料噴射装置では、車両の運転状態、例えば、エンジン回転速度と、運転者のアクセルペダルの操作に応じたアクセル開度により、実燃料噴射率を算出し、それに対応した噴射指令信号を各気筒の燃料噴射弁に出力することによって、各気筒への燃料噴射を行っている。しかし、燃料噴射弁の製造公差により、実燃料噴射率にばらつきがあり、各気筒の燃料噴射弁に同じ波形の燃料噴射信号を出力しても各気筒間の発生トルクに差が生じる場合があった。
これに対し、特許文献1には、燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部、燃料蓄圧部から分岐した燃料供給管を通じて供給される燃料を内燃機関の各気筒内に噴射する燃料噴射弁、及び燃料噴射弁から燃料を噴射するための噴射指令信号を出力する制御部を備えた燃料噴射装置において、燃料供給管に配置されたベンチュリ形狭隘部に、差圧を検出する差圧センサと、を備え、制御部は、各気筒毎に差圧センサからの信号にもとづいてベンチュリ形狭隘部を通過する燃料量(実燃料噴射率に相当)を算出する燃料噴射装置の技術が記載されている。
また、特許文献2には、燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部、燃料蓄圧部から分岐した燃料供給管を通じて供給される燃料を内燃機関の各気筒内に噴射する燃料噴射弁、及び燃料噴射弁から燃料を噴射するための噴射指令信号を出力する制御部を備えた燃料噴射装置において、燃料供給管の燃料蓄圧部側端部近傍にオリフィスを設け、燃料蓄圧部の容積、各気筒に燃料を配分する燃料供給管の容積に応じてオリフィスの開口径を変え、燃料蓄圧部の圧力の脈動を抑制する技術が記載されている。
特開2003−184632号公報(図4、図12、及び段落0051〜0058参照) 特許第354221号公報(図3参照)
しかしながら、特許文献1に記載の技術では、ベンチュリ形狭隘部の絞り成形可能な最小径に限界があり、発生する差圧が小さいので、その差圧から算出される燃料量は正確でない場合があると考えられた。
また、特許文献2に記載の技術によりオリフィスを燃料供給管に設けて、燃料蓄圧部の圧力の脈動を抑制しても、前記した燃料噴射弁の製造公差に伴う実燃料噴射率のばらつきによる影響は解決されない。
前記より、各気筒間の実燃料噴射率のばらつきに対して、気筒毎の正確な実燃料噴射率を取得し、正確な実燃料噴射率に基づいて各気筒間の発生トルクに差が生じないように制御されることが望ましい。
そこで、本発明は、気筒毎の正確な実燃料噴射率を取得し、その正確な実燃料噴射率に基づいて各気筒間の発生トルクに差が生じないように制御可能な燃料噴射装置を提供することを目的とする。
前記課題を解決するために、第1の本発明は、燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の全量を前記各気筒の燃焼室へ噴射する燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
前記燃料供給管に配置されたオリフィスと、
前記燃料供給管内の前記オリフィスの上流側及び下流側の差圧を検出する差圧センサと、
前記燃料の着火を検出する着火検出装置とを有し、
前記制御部は、
前記差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記燃焼室に噴射された前記燃料の積算噴射量を算出し、
前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴としている。
第1の本発明によれば、燃料供給管内に単にオリフィスを配置すればよいので、オリフィスの開口径を小さくすることは容易であり、開口径の小さいオリフィスの上流側と下流側とでは大きな差圧を検出することができ、正確な実燃料噴射率を取得することができる。そして、燃料の噴射の開始から現時刻までの実燃料供給率を時間積分することで、気筒毎の燃焼室に噴射された燃料の積算噴射量を正確に算出することができる。ここで、発明者らは、燃焼室で燃料に着火する際の積算噴射量(着火必要噴射量)は、再現性よく一定であることを見出している。そこで、着火必要噴射量を記憶(学習)しておき、実燃料供給率を増減させて積算噴射量が着火必要噴射量に達する時間を調整することで、着火の時期を制御できるので、燃料噴射弁に製造公差があったとしても、各気筒間の発生トルクに差が生じないように制御することができる。
また、第2の本発明は、
前記燃料蓄圧部の圧力を検出する蓄圧部圧力センサと、
前記燃料供給管に配置されたオリフィスと、
前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
前記燃料の着火を検出する着火検出装置とを有し、
前記制御部は、
前記燃料蓄圧部の圧力と前記下流側の圧力の差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記燃焼室に噴射された前記燃料の積算噴射量を算出し、
前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とし、前記第1の本発明と同様の効果を奏することができる。これは、蓄圧部圧力センサで検出される燃料蓄圧部の圧力は、オリフィスの上流側の圧力に等しいとみなすことができるからである。
また、第3の本発明は、
前記燃料供給管に配置されたオリフィスと、
前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
前記燃料の着火を検出する着火検出装置とを有し、
前記制御部は、
前記燃料の噴射に伴う前記下流側の圧力の低下量を検出し、
前記低下量に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記燃焼室に噴射された前記燃料の積算噴射量を算出し、
前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とし、前記第1の本発明と同様の効果を奏することができる。これは、オリフィスの上流側の圧力は、燃料の噴射前のオリフィスの下流側の圧力に等しく、燃料の噴射に伴う下流側の圧力の低下量は、オリフィスの上流側及び下流側の差圧に等しいとみなすことができるからである。
また、第4の本発明は、燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の一部を前記各気筒の燃焼室へ噴射し、前記燃料の他の一部を前記燃料ポンプの前段に戻す燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
前記燃料供給管に配置されたオリフィスと、
前記燃料供給管内の前記オリフィスの上流側及び下流側の差圧を検出する差圧センサと、
前記燃料の着火を検出する着火検出装置とを有し、
前記制御部は、
前記差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記オリフィスを通過した前記燃料の積算供給量を算出し、
前記燃焼室へ噴射される前記燃料の積算噴射量と前記積算供給量との所定の分配比率と、前記積算供給量とに基づいて、前記積算噴射量を算出し、
前記着火検出装置によって着火が検出されたときの前記積算供給量に基づいて算出した前記積算噴射量を、着火必要噴射量として記憶することを特徴とし、前記第1の本発明と同様の効果を奏することができる。これは、オリフィスを通過する実燃料供給率は、燃料噴射弁において所定の分配比率で分配されるが、所定の分配比率と実燃料供給率を時間積分した積算供給量とに基づいて正味の積算噴射量が算出できるからである。
また、第5の本発明は、
前記燃料蓄圧部の圧力を検出する蓄圧部圧力センサと、
前記燃料供給管に配置されたオリフィスと、
前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
前記燃料の着火を検出する着火検出装置とを有し、
前記制御部は、
前記燃料蓄圧部の圧力と前記下流側の圧力の差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記オリフィスを通過した前記燃料の積算供給量を算出し、
前記燃焼室へ噴射される前記燃料の積算噴射量と前記積算供給量との所定の分配比率と、前記積算供給量とに基づいて、前記積算噴射量を算出し、
前記着火検出装置によって着火が検出されたときの前記積算供給量に基づいて算出した前記積算噴射量を、着火必要噴射量として記憶することを特徴とし、前記第1の本発明と同様の効果を奏することができる。これも、オリフィスを通過する実燃料供給率は、燃料噴射弁において所定の分配比率で分配されるが、所定の分配比率と実燃料供給率を時間積分した積算供給量とに基づいて正味の積算噴射量が算出できるからである。
また、第6の本発明は、
前記燃料供給管に配置されたオリフィスと、
前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
前記燃料の着火を検出する着火検出装置とを有し、
前記制御部は、
前記燃料の噴射に伴う前記下流側の圧力の低下量を検出し、
前記低下量に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記オリフィスを通過した前記燃料の積算供給量を算出し、
前記燃焼室へ噴射される前記燃料の積算噴射量と前記積算供給量との所定の分配比率と、前記積算供給量とに基づいて、前記積算噴射量を算出し、
前記着火検出装置によって着火が検出されたときの前記積算供給量に基づいて算出した前記積算噴射量を、着火必要噴射量として記憶することを特徴とし、前記第1の本発明と同様の効果を奏することができる。これも、オリフィスを通過する実燃料供給率は、燃料噴射弁において所定の分配比率で分配されるが、所定の分配比率と実燃料供給率を時間積分した積算供給量とに基づいて正味の積算噴射量が算出できるからである。
また、第7の本発明は、
前記燃料供給管に配置されたオリフィスと、
前記燃料供給管内の前記オリフィスの上流側及び下流側の差圧を検出する差圧センサと、
前記燃料の着火を検出する着火検出装置とを有し、
前記制御部は、
前記差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
前記燃焼室へ噴射される前記燃料の実燃料噴射率と前記実燃料供給率との所定の分配比率と、前記実燃料供給率とに基づいて、前記実燃料噴射率を算出し、
前記噴射の開始から現時刻までの前記実燃料噴射率を時間積分して、前記燃料の積算噴射量を算出し、
前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とし、前記第1の本発明と同様の効果を奏することができる。これも、オリフィスを通過する実燃料供給率は、燃料噴射弁において所定の分配比率で分配されるが、所定の分配比率と実燃料供給率とに基づいて正味の実燃料噴射率が算出でき、実燃料噴射率を時間積分して積算噴射量を算出できるからである。
また、第8の本発明は、
前記燃料蓄圧部の圧力を検出する蓄圧部圧力センサと、
前記燃料供給管に配置されたオリフィスと、
前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
前記燃料の着火を検出する着火検出装置とを有し、
前記制御部は、
前記燃料蓄圧部の圧力と前記下流側の圧力の差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
前記燃焼室へ噴射される前記燃料の実燃料噴射率と前記実燃料供給率との所定の分配比率と、前記実燃料供給率とに基づいて、前記実燃料噴射率を算出し、
前記噴射の開始から現時刻までの前記実燃料噴射率を時間積分して、前記燃料の積算噴射量を算出し、
前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とし、前記第1の本発明と同様の効果を奏することができる。これも、オリフィスを通過する実燃料供給率は、燃料噴射弁において所定の分配比率で分配されるが、所定の分配比率と実燃料供給率とに基づいて正味の実燃料噴射率が算出でき、実燃料噴射率を時間積分して積算噴射量を算出できるからである。
また、第9の本発明は、
前記燃料供給管に配置されたオリフィスと、
前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
前記燃料の着火を検出する着火検出装置とを有し、
前記制御部は、
前記燃料の噴射に伴う前記下流側の圧力の低下量を検出し、
前記低下量に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
前記燃焼室へ噴射される前記燃料の実燃料噴射率と前記実燃料供給率との所定の分配比率と、前記実燃料供給率とに基づいて、前記実燃料噴射率を算出し、
前記噴射の開始から現時刻までの前記実燃料噴射率を時間積分して、前記燃料の積算噴射量を算出し、
前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とし、前記第1の本発明と同様の効果を奏することができる。これも、オリフィスを通過する実燃料供給率は、燃料噴射弁において所定の分配比率で分配されるが、所定の分配比率と実燃料供給率とに基づいて正味の実燃料噴射率が算出でき、実燃料噴射率を時間積分して積算噴射量を算出できるからである。
そして、第1乃至第9の本発明では、前記制御部が、外部の状況に応じて目標着火時期を設定し、前記目標着火時期に前記燃料が着火するように、前記目標着火時期に、前記着火必要噴射量の前記燃料を前記燃料噴射弁から噴射し終わるように前記噴射指令信号を出力することが好ましい。これによれば、設定した目標着火時期に燃料を着火させることができるので、目標着火時期の設定により着火の時期を制御でき、燃料噴射弁に製造公差があったとしても、各気筒間の発生トルクに差が生じないようにすることができる。
本発明によれば、気筒毎の正確な実燃料噴射率を取得し、その正確な実燃料噴射率に基づいて各気筒間の発生トルクに差が生じないように制御可能な燃料噴射装置を提供することができる。
《第1の実施形態》
図1に、本発明の第1の実施形態に係る燃料噴射装置1Aの構成図を示す。燃料噴射装置1Aは、ECU(制御部)80Aにより電子制御されるモータ63によって駆動される低圧ポンプ3A(フィードポンプに相当)及びエンジンクランク軸から取り出された駆動力で機械的に駆動される高圧ポンプ3B(サプライポンプに相当)と、この高圧ポンプ3Bから高圧燃料が供給されるコモンレール(燃料蓄圧部)4と、内燃機関、例えば、4気筒のディーゼルエンジン(以下エンジンと呼ぶ)の燃焼室内に高圧燃料を噴射供給する燃料噴射弁5とを含んで構成されている。燃料噴射弁5は、弁体と弁座を有し燃料噴射孔10から燃料を噴射するインジェクタ5Aと、ECU80Aにより電子制御されインジェクタ5Aを開弁、閉弁させるアクチュエータ6Aを有している。インジェクタ5Aは、エンジンの各気筒に取り付けられている。そして、インジェクタ5Aの先端部には、1個または2個以上の燃料噴射孔10が形成されている。
ECU80Aは、図示省略するがマイクロコンピュータ、インターフェース回路、アクチュエータ6Aを駆動するアクチュエータ駆動回路等を含んでいる。前記マイクロコンピュータは、図示省略したエンジン回転速度センサ、気筒判別センサ、クランク角センサ、水温センサ、吸気温度センサ、吸気圧センサ、アクセル(スロットル)開度センサ、温度センサST、蓄圧部圧力センサSPc、差圧センサSdP等の各センサからの信号を用いて、最適な実燃料噴射率及び噴射時期を算出して算出結果に対応する噴射指令信号をアクチュエータ6Aに出力し電子制御している。なお、後記では、ECU80Aに含まれるマイクロコンピュータで制御される内容を、単にECU80Aの制御として表現する。また、後記する第2から第6の実施形態におけるECU80B〜80Fのハード的な構成もECU80Aと同じである。また、モータ63を駆動するモータ駆動回路を、ECU80Aが含んでも良いし、ECU80Aの外部に別個設けても良い。
低圧ポンプ3A及びモータ63は、燃料タンク2内にフィルタ62とともに組み込まれ、低圧燃料供給配管61により燃料タンク2から高圧ポンプ3Bの吸い込み側に燃料を供給する。低圧ポンプ3Aの吐出側と高圧ポンプ3Bの吸い込み側との間の低圧燃料供給配管61にはストレーナ64、逆止弁68を内蔵した流量調整弁69が直列に配置され、ストレーナ64には、図示省略の差圧センサが設けられ、その信号がECU80Aに入力されて、ECU80Aが低圧ポンプ3Aやフィルタ62やストレーナ64の異常(たとえば、低圧燃料供給量の低下等)を検出できるようになっている。低圧燃料供給配管61のストレーナ64と流量調整弁69との中間から分岐した戻り配管65は、過剰な燃料を調圧弁67経由で燃料タンク2に戻している。高圧ポンプ3Bには、吐出される燃料温度を検出する温度センサSが設けられ、その信号をECU80Aに出力している。
高圧ポンプ3Bから吐出配管70に吐出された高圧燃料はサージタンクの一種であるコモンレール4内に蓄圧される。コモンレール4にはコモンレール圧力Pcを検出する圧力センサSPcが設けられ、その検出圧信号はECU80Aに出力されている。ECU80Aは、コモンレール4と燃料タンク2とを接続する戻り配管71の途中に配置された圧力調整弁72を制御して、コモンレール圧力Pcを、車両の運転状態、例えば、エンジン回転速度に応じて、例えば、30MPa〜200MPaの所定の目標圧力に制御する。
また、コモンレール4には複数の高圧燃料供給管(燃料供給管)21が接続されているが、コモンレール4内は連通しており、複数の高圧燃料供給管(燃料供給管)21には互いに等しい圧力の高圧燃料を供給することができる。4本の高圧燃料供給管21のコモンレール4寄りには、オリフィス75がそれぞれ設けられている。オリフィス75は、高圧燃料供給管21内に単に配置すればよいので、オリフィス75の開口径を小さくすることは容易である。そして、開口径の小さいオリフィス75の上流側と下流側とでは大きな差圧を発生させることができる。
そのオリフィス75の上流側(コモンレール4側)と下流側(コモンレール4から遠ざかる側)とには、差圧センサSdPの圧力検出管がそれぞれ取り付けられている。こうした差圧センサSdPによれば、4本の高圧燃料供給管21のオリフィス75前後の差圧をそれぞれ個別に検出することができる。そして、この差圧は、ECU80Aに送信されて検知され、ECU80Aにおいて、この差圧に基づいて、オリフィス75を通過する燃料の流量(実燃料供給率)[m/sec]を検出できるようになっている。ちなみに、差圧ΔPORから燃料の流量(実燃料供給率)QORは次式(1)により容易に算出できる。式(1)に誤差の小さい大きな差圧を用いることができれば、誤差の小さい正確な燃料の流量(実燃料供給率)QORを算出することができる。
Figure 2010150938
実際のECU80Aにおける燃料の流量(実燃料供給率)QORの計算では、前記式(1)による燃料の流量(実燃料供給率)QORは差圧ΔPORが時間推移とともに刻々変化するのにあわせて変化するので、例えば、数十μsecオーダーの極めて高速な差圧ΔPORのサンプリングを行って、サンプリング時間幅における燃料の流量(実燃料供給率)QORを算出している。なお、実燃料供給率QORの計算を簡単化するために、数十μsecオーダーの極めて高速な差圧ΔPORのサンプリングを行って、差圧ΔPORの平均値と差圧ΔPORの「差圧の差」が生じている時間幅を求め、求められた平均の差圧ΔPORを(1)式に代入して、その結果に「差圧の差」が生じている時間幅を乗じて実燃料供給率QORを算出しても良い。
そして、ECU80Aは、燃料の噴射の開始から現時刻までの実燃料供給率QORを時間積分して、燃焼室に噴射された燃料の積算噴射量を算出する。実燃料供給率QORの時間積分は、燃料の流量(実燃料供給率)QORにサンプリング時間幅を掛け合わせたものを足し合わせることで、容易に算出することができる。
そして、燃料噴射装置1Aは、各気筒の燃焼室毎に、着火検出装置8を備えている。燃料噴射弁5も各気筒の燃焼室毎に設けられているので、着火検出装置8と燃料噴射弁5とは対をなして配置されている。着火検出装置8は、各気筒の燃焼室における燃料の着火を検出している。ECU80Aは、着火検出装置8によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶する。ECU80Aは、着火必要噴射量を記憶しておき、実燃料供給率を増減させて積算噴射量が着火必要噴射量に達する時間を調整することで、着火の時期を制御できるので、燃料噴射弁5に製造公差があったとしても、各気筒間の発生トルクに差が生じないように制御することができる。ここで、ECU80Aは、車両の走行状態等の外部の状況に応じて変化する着火必要噴射量を常時取得して記憶し、取得した着火必要噴射量に基づいて燃料噴射弁5の制御をしているので、ECU80Aは、着火必要噴射量を、いわゆる学習しているといえる。
ECU80Aは、外部の状況に応じて目標着火時期を設定し、目標着火時期に燃料が着火するように、目標着火時期に、着火必要噴射量の燃料を燃料噴射弁5から噴射し終わるように噴射指令信号を出力する。目標着火時期の設定により着火の時期を制御でき、燃料噴射弁5に製造公差があったとしても、各気筒間の発生トルクに差が生じないようにすることができる。
燃料噴射弁5からの燃料の噴射は、PM(粒子状物質)の低減、NOxと燃焼騒音の低減、排ガス昇温や還元剤供給による触媒の活性化等の目的で実際は、「パイロット(Pilot)噴射」、「プレ(Pre)噴射」、「アフタ(After)噴射」、「ポスト(Post)噴射」の多段噴射にすることが普通である。そして、このような多段噴射による積算噴射量がエンジンの運転状態における目標着火時期に合わせた着火必要噴射量の目標値通りになされないと、エンジンの排気ガスの規制値をクリアすることができなかったりする。特に、実燃料供給率に経年変化がある場合でも、差圧ΔPORから実燃料供給率を正確に算出することができるので、ECU80Aにおいて、噴射指令信号の噴射時間幅を調整することにより、実燃料供給率を目標値に一致するように制御することができる。その結果、エンジンシステムの個々の部品への寸法公差等のハード仕様に対する要求を緩和しても排ガス規制をクリアし易くなり、特に、インジェクタ5Aに対するハード仕様を緩和することができる。ひいては、エンジンシステムの製造コストを低減することもできる。
図2に、本発明の第1の実施形態に係る燃料噴射装置1Aを用いた燃料噴射方法のフローチャートを示す。
まず、ステップS1で、差圧センサSdPが、オリフィス75の上流側及び下流側の差圧を検出する。
ステップS2で、ECU80Aが、差圧に基づいた実燃料供給率を算出する。
ステップS3で、ECU80Aが、実燃料供給率の時間積分を行い、積算噴射量の算出を行う。
ステップS4で、着火検出装置8が、各気筒の燃焼室における燃料の着火の検出を行う。
ステップS5で、ECU80Aが、着火検出時の積算噴射量、すなわち、燃料の噴射の開始から現時刻(着火検出時)までの実燃料供給率の時間積分値を、着火必要噴射量として記憶する。また、ECU80Aが、噴射開始から着火までの必要時間を記憶する。
ステップS6で、ECU80Aが、外部の状況に応じて目標着火時期を設定する。
ステップS7で、ECU80Aが、目標着火時期に燃料が着火するように、目標着火時期に、着火必要噴射量の燃料を燃料噴射弁5から噴射し終わるように、噴射指令信号を出力する。また、ECU80Aが、目標着火時期から前記必要時間さかのぼった時期に噴射を開始するように、噴射指令信号を出力する。
ステップS8で、燃料噴射弁5が、噴射指令信号に基づいた実燃料供給率の可変制御を行う。この可変制御によれば、着火時期を目標着火時期に合わせこむことが可能になるので、環境変動/運転状況の変化に左右されず、安定的な着火時期のコントロールが可能である。
《第2の実施形態》
図3に、本発明の第2の実施形態に係る燃料噴射装置1Bの構成図を示す。第2の実施形態の燃料噴射装置1Bが第1の実施形態の燃料噴射装置1Aと異なっている点は、(1)エンジンの各気筒に配されたインジェクタ5Aに燃料を供給する高圧燃料供給管21に設けられたオリフィス75の上下流差圧を検出する差圧センサSdPの代わりに、オリフィス75の下流側の圧力を検出する圧力センサ(燃料供給管圧力センサ)SPsを設けた点と、(2)ECU80Aの代わりにECU(制御部)80Bが設けられ、そのECU80Bにおいて前記差圧ΔPORの定義を変えた点である。なお、第1の実施形態と同じ構成については、同じ符号を付し、重複する説明を省略している。
4つの圧力センサSPsが検出した圧力信号は、ECU80Bに入力される。ECU80Bは、基本的に第1の実施形態におけるECU80Aと同じに機能するが、実燃料供給率QORをECU80Bで算出するときに用いる信号が第1の実施形態の場合と異なっている。第2の実施形態では、差圧ΔPORの定義を、圧力センサSPcが検出するコモンレール圧力Pcと、圧力センサSPsが検出するオリフィス75の下流側圧力Psとの差圧(Pc−Ps)であると置き換えている。各高圧燃料供給管21のオリフィス75の上流側の圧力は、コモンレール圧力Pcと略一致することは明らかだからであり、差圧ΔPORを正確に検出することができる。そして、第1の実施形態と同様の効果を奏することができる。
図4に、本発明の第2の実施形態に係る燃料噴射装置1Bを用いた燃料噴射方法のフローチャートを示す。第2の実施形態の燃料噴射方法のフローチャートが第1の実施形態と異なっている点は、図2に示すステップS1が、図4に示すように、ステップS11に置き換えられている点である。
ステップS11では、圧力センサSPcがコモンレール圧力Pcを検出し、圧力センサSPsがオリフィス75の下流側圧力Psを検出する。そして、ECU80Bが、差圧ΔPORを式(Pc−Ps)を用いて算出している。
《第3の実施形態》
図5に、本発明の第3の実施形態に係る燃料噴射装置1Cの構成図を示す。第3の実施形態の燃料噴射装置1Cが第1の実施形態の燃料噴射装置1Aと異なっている点は、(1)エンジンの各気筒に配されたインジェクタ5Aに燃料を供給する高圧燃料供給管21に設けられたオリフィス75の上下流差圧を検出する差圧センサSdPの代わりに、オリフィス75の下流側の圧力を検出する圧力センサ(燃料供給管圧力センサ)SPsを設けた点と、(2)ECU80Aの代わりにECU(制御部)80Cが設けられ、そのECU80Cにおいて前記差圧ΔPORの換わりに、オリフィス75の下流側の圧力の低下量を用いた点である。なお、第1の実施形態と同じ構成については、同じ符号を付し、重複する説明を省略している。
4つの圧力センサSPsが検出した圧力信号は、ECU80Bに入力される。ECU80Bは、基本的に第1の実施形態におけるECU80Aと同じに機能するが、実燃料供給率QORをECU80Bで算出するときに用いる信号が第1の実施形態の場合と異なっている。第2の実施形態では、差圧ΔPORと等しい値を示すオリフィス75の下流側の圧力の低下量を、差圧ΔPORの換わりに用いている。低下量としては、燃料の噴射前の圧力に対する噴射に伴う圧力の低下量を対象とする。オリフィス75の上流側の圧力は、燃料の噴射前のオリフィス75の下流側の圧力に等しく、燃料の噴射に伴う下流側の圧力の低下量は、オリフィス75の上流側及び下流側の差圧に等しいとみなすことができるからである。このため、第3の実施形態でも第1の実施形態と同様の効果を奏することができる。
図6に、本発明の第3の実施形態に係る燃料噴射装置1Cを用いた燃料噴射方法のフローチャートを示す。第3の実施形態の燃料噴射方法のフローチャートが第1の実施形態と異なっている点は、図2に示すステップS1とS2が、図6に示すように、ステップS21、S22、S23に置き換えられている点である。
ステップS21で、圧力センサSPsがオリフィス75の下流側圧力Psを検出する。
ステップS22で、ECU80Bが、燃料の噴射前の下流側圧力Psに対する噴射に伴う下流側圧力Psの低下量を検出する。
ステップS23で、ECU80Bが、低下量に基づいて実燃料供給率を算出する。具体的には、前記式(1)の差圧ΔPORの換わりに、検出した低下量を代入して実燃料供給率QORを算出する。
《第4の実施形態》
図7に、本発明の第4の実施形態に係る燃料噴射装置1Dの構成図を示す。第4の実施形態の燃料噴射装置1Dは、第1の実施形態と以下の点で異なっている。(1)第1の実施形態では、直動式の燃料噴射弁5が用いられ、高圧燃料供給管21を通じて供給される燃料の全量が各気筒の燃焼室へ噴射されていたが、第4の実施形態では、背圧式の燃料噴射弁5が用いられ、高圧燃料供給管21を通じて供給される燃料の一部を各気筒の燃焼室へ噴射し、燃料の他の一部を高圧ポンプ(燃料ポンプ)3Bの前段に戻している。(2)それに伴い、各気筒に設けられたインジェクタ5Aには、ドレーン通路9が接続され、それらは戻り燃料配管73に更に接続して、逆止弁74とオリフィス76を並列に接続した流量調整器を介して低圧ポンプ3Aの吐出側の低圧燃料供給配管61に接続している。(3)ECU80Aの代わりにECU(制御部)80Dが設けられ、燃料噴射装置1Dは、ECU80Dにより電子制御されている。なお、第1の実施形態と同じ構成については、同じ符号を付し、重複する説明を省略している。特に、前記差圧ΔPORを差圧センサSdPを用いて検出する点は、第1の実施形態と同じである。
図8に、本発明の第4の実施形態に係る燃料噴射装置1Dを用いた燃料噴射方法のフローチャート(その1)を示す。第4の実施形態の燃料噴射方法のフローチャート(その1)が第1の実施形態と異なっている点は、図2に示すステップS3が、図8に示すように、ステップS31とS32に置き換えられている点である。
ステップS31で、ECU80Dは、噴射の開始から現時刻までの実燃料供給率を時間積分して、オリフィス75を通過した燃料の積算供給量を算出する。
ステップS32で、ECU80Dは、予め設定しておいた燃焼室へ噴射される燃料の積算噴射量と積算供給量との所定の分配比率を用い、算出した積算供給量に基づいて、積算噴射量を算出する。これによっても、正味の積算噴射量を算出できるので、第1の実施形態と同様の効果を奏することができる。
ECU80Dには、予め、燃料の噴射指令信号の波形パターンに応じて、算出された積算供給量のうち、積算噴射量の割合を示す分配比率である実噴射量換算係数γを、例えば、信号パラメータの相関式の形でメモリーの中に格納している。燃料の噴射指令信号の波形パターンに応じた実噴射量換算係数(分配比率)γは、例えば、次式(2)に示す相関式のように積算供給量(信号波形面積)Aを前記した信号パラメータとし、所定間隔以上時間的に離れた独立の噴射指令信号の場合は、噴射時間幅を反映した独立噴射指令信号の1つの信号波形面積で、又、所定間隔内の時間的に近接した複数の噴射指令信号の場合は、その複数の噴射指令信号の合計信号波形面積に応じて次式のように設定している。
Figure 2010150938
ここで、Mは独立信号波形か、近接した複数の信号波形かを示すパラメータである。
そして、ECU80Dにおいて噴射指令信号を発生させたとき、その波形パターンに応じて、独立信号波形か、近接した複数の信号波形かを判定し、更に積算供給量(信号波形面積)Aを演算して、式(2)により実噴射量換算係数(分配比率)γを設定する。なお、インジェクタ5Aの開閉の応答速度の速い場合は、前記した独立信号波形か、近接した複数の信号波形かの区別は不要である。そして、算出された積算供給量に実噴射量換算係数(分配比率)γを乗じることにより、積算噴射量が算出される。また、実噴射量換算係数(分配比率)γを可変としたが、近似的に固定値としても良い。
図9に、本発明の第4の実施形態に係る燃料噴射装置1Dを用いた燃料噴射方法のフローチャート(その2)を示す。第4の実施形態の燃料噴射方法のフローチャート(その2)が、(その1)と異なっている点は、図8に示すステップS31とS32が、図9に示すように、ステップS41とS42に置き換えられている点である。
ステップS41で、ECU80Dは、予め設定しておいた燃焼室へ噴射される燃料の実燃料噴射率と実燃料供給率との所定の実噴射量換算係数(分配比率)γを用い、算出した実燃料供給率に基づいて、実燃料噴射率を算出する。
ステップS42で、ECU80Dは、噴射の開始から現時刻までの実燃料噴射率を時間積分して、インジェクタ5Aから噴射された燃料の積算噴射量を算出する。これによっても、正味の積算噴射量を算出できるので、第1の実施形態と同様の効果を奏することができる。
《第5の実施形態》
図10に、本発明の第5の実施形態に係る燃料噴射装置1Eの構成図を示す。第5の実施形態の燃料噴射装置1Eでは、第2の実施形態と同様に、オリフィス75の下流側の圧力を検出する圧力センサ(燃料供給管圧力センサ)SPsを設け、第4の実施形態と同様に、背圧式の燃料噴射弁5が用いられ、高圧燃料供給管21を通じて供給される燃料の一部を各気筒の燃焼室へ噴射し、燃料の他の一部を高圧ポンプ(燃料ポンプ)3Bの前段に戻している。なお、第1の実施形態等と同じ構成については、同じ符号を付し、重複する説明を省略している。
図11に、本発明の第5の実施形態に係る燃料噴射装置1Eを用いた燃料噴射方法のフローチャート(その1)を示す。第5の実施形態の燃料噴射方法のフローチャート(その1)は、第2の実施形態と同様にステップS11を実施し、第4の実施形態の燃料噴射方法のフローチャート(その1)と同様に、ステップS31とS32を実施している。これによっても、正味の積算噴射量を算出できるので、第1の実施形態と同様の効果を奏することができる。
図12に、本発明の第5の実施形態に係る燃料噴射装置1Eを用いた燃料噴射方法のフローチャート(その2)を示す。第5の実施形態の燃料噴射方法のフローチャート(その2)が、(その1)と異なっている点は、図11に示すステップS31とS32が、図12に示すように、ステップS41とS42に置き換えられている点である。これによっても、正味の積算噴射量を算出できるので、第1の実施形態と同様の効果を奏することができる。
《第6の実施形態》
図13に、本発明の第6の実施形態に係る燃料噴射装置1Fの構成図を示す。第6の実施形態の燃料噴射装置1Fでは、第3の実施形態と同様に、オリフィス75の下流側の圧力を検出する圧力センサ(燃料供給管圧力センサ)SPsを設け、第4の実施形態と同様に、背圧式の燃料噴射弁5が用いられ、高圧燃料供給管21を通じて供給される燃料の一部を各気筒の燃焼室へ噴射し、燃料の他の一部を高圧ポンプ(燃料ポンプ)3Bの前段に戻している。なお、第1の実施形態等と同じ構成については、同じ符号を付し、重複する説明を省略している。
図14に、本発明の第6の実施形態に係る燃料噴射装置1Fを用いた燃料噴射方法のフローチャート(その1)を示す。第6の実施形態の燃料噴射方法のフローチャート(その1)は、第3の実施形態と同様にステップS21、S22、S23を実施し、第4の実施形態の燃料噴射方法のフローチャート(その1)と同様に、ステップS31とS32を実施している。これによっても、正味の積算噴射量を算出できるので、第1の実施形態と同様の効果を奏することができる。
図15に、本発明の第6の実施形態に係る燃料噴射装置1Fを用いた燃料噴射方法のフローチャート(その2)を示す。第6の実施形態の燃料噴射方法のフローチャート(その2)が、(その1)と異なっている点は、図14に示すステップS31とS32が、図15に示すように、ステップS41とS42に置き換えられている点である。これによっても、正味の積算噴射量を算出できるので、第1の実施形態と同様の効果を奏することができる。
なお、高圧燃料供給管21のコモンレール4寄りにオリフィス75を設けている理由は次の通りである。(1)オリフィス75を設けるとインジェクタ直近における高圧燃料供給管21の圧力変動は、オリフィス75を設けない場合よりも小さくできる。(2)オリフィス75を設けるとコモンレール4直近(オリフィス75下流側)における高圧燃料供給管21の圧力変動は、オリフィス75を設けない場合のコモンレール4直近における高圧燃料供給管21よりも大きくできる。(3)燃料噴射後の高圧燃料供給管21の圧力変動を短時間に制定できる。したがって、オリフィス75を設けることにより燃料噴射時のコモンレール4直近の圧力変動を大きくして流量検出の精度を上げることができる。逆にインジェクタ直近における燃料噴射時の圧力変動を小さくして、かつ、短時間で圧力変動を制定できるので、インジェクタから連続して複数回の噴射をする際の各噴射量を精度良く制御し易くなる。
また、オリフィス75が配置されている場合、オリフィス75が流動抵抗となりインジェクタ直近の高圧燃料供給管21において噴射終了時の燃料供給による衝撃圧力は小さくなる。そして、その衝撃圧力の反射波も小さいことと、圧力伝播の実効的な容積が高圧燃料供給管21の容積に限定され、コモンレール4の容積を含まないので、圧力振動は速やかに制定し、その圧力振動の圧力振幅は大きくなる。
第1の実施形態から第6の実施形態においてECU80A〜80Fにおいて気筒内への燃料噴射量を制御するために生成する噴射指令信号は、燃料噴射量を噴射指令信号の時間幅で制御するものとして説明したが、噴射指令信号の時間幅に加えて、噴射指令信号の高さも変化させ、インジェクタ5Aの開弁量(リフト量)によって制御しても良い。
更に、第1の実施形態から第6の実施形態において、インジェクタ5Aは、直接各気筒の燃焼室内に燃料噴射を行うものとして説明したが、それに限定されるものではない。本発明は、インジェクタ5Aが、各気筒の燃焼室に隣接して形成される副室(予混合空間)に向けて燃料噴射を行う構成や、各気筒の吸気ポートに向けて燃料噴射を行う構成も含む。また、そのような構成においても、第1の実施形態から第6の実施形態と同様の作用効果が得られる。
《実施例》
図16に、本発明の第1の実施形態に係る燃料噴射装置1Aを用いて、燃料噴射方法を実施した際の実施例を示す。実施例では、メイン(Main)噴射に対するパイロット(Pilot)噴射の噴射間隔を、0μs、300μs、600μs、900μs、1200μsの5通りに変えてシミュレーションを行っている。
図16(a)は、クランク角度Crank Angleに対する実燃料供給率ROI(QORに相当)を示している。図16(a)に示すように、メイン(Main)噴射に対するパイロット(Pilot)噴射の噴射間隔によらず、メイン(Main)噴射のクランク角度を一定に設定している。パイロット噴射における実燃料供給率ROIのプロファイルは、噴射間隔によらず、同一にしているので、パイロット(Pilot)噴射における積算噴射量は一定になっている。そして、どの噴射間隔においてもメイン噴射は同じであるので、前記着火必要噴射量はどの噴射間隔でも一定であることから、メイン噴射の期間内に着火が起これば、どの噴射間隔でも着火の起こる時期は同時になるはずである。
そして、前記着火必要噴射量は、斜線のハッチングで示す面積に対応している。すなわち、クランク角度6degにおいて、どの噴射間隔でも着火が起きている。どの噴射間隔でもクランク角度6degにおいて着火が起きていることは、図16(b)において、クランク角度6deg以降の気筒の燃焼室内の圧力(Pcyl)が、全ての噴射間隔においてよく一致しながら上昇していることでわかる。また、図16(c)において、クランク角度6deg以降の熱発生率(ROHR)が、全ての噴射間隔においてよく一致しながら上昇していることでわかる。したがって、どれかの噴射間隔、例えば、噴射間隔0μsにおいて、前記着火必要噴射量を学習して記憶しておけば、前記の説明とは逆に、例えば、クランク角度6degにおいて記憶されている前記着火必要噴射量に達するように、他の噴射間隔300μs、600μs、900μs、1200μsにおいて、実燃料供給率ROI(QORに相当)を制御することになる。
《対比例》
図17に、従来の燃料噴射装置を用いて、従来の燃料噴射方法を実施した(本発明の燃料噴射装置1Aを用いての燃料噴射方法を実施していない)対比例を示す。対比例では、実施例と同様に、メイン(Main)噴射に対するパイロット(Pilot)噴射の噴射間隔を複数通りに変えてシミュレーションを行っている。なお、噴射間隔としては、740μs、1070μs、1620μsの3通りを設定した。
図17(a)に、クランク角度(Crank Angle)に対する気筒の燃焼室内の圧力(Pcyl)を示す。気筒の燃焼室内の圧力(Pcyl)が、着火によって上昇に転じるクランク角度が、6degであったり、8degであったりと、ばらついていることがわかる。また、図17(b)に、クランク角度(Crank Angle)に対する熱発生率(ROHR)を示す。着火後の熱発生率のプロファイルも、噴射間隔を変えると大きくばらついていることがわかる。
本発明の第1の実施形態に係る燃料噴射装置の構成図である。 本発明の第1の実施形態に係る燃料噴射装置を用いた燃料噴射方法のフローチャートである。 本発明の第2の実施形態に係る燃料噴射装置の構成図である。 本発明の第2の実施形態に係る燃料噴射装置を用いた燃料噴射方法のフローチャートである。 本発明の第3の実施形態に係る燃料噴射装置の構成図である。 本発明の第3の実施形態に係る燃料噴射装置を用いた燃料噴射方法のフローチャートである。 本発明の第4の実施形態に係る燃料噴射装置の構成図である。 本発明の第4の実施形態に係る燃料噴射装置を用いた燃料噴射方法のフローチャート(その1)である。 本発明の第4の実施形態に係る燃料噴射装置を用いた燃料噴射方法のフローチャート(その2)である。 本発明の第5の実施形態に係る燃料噴射装置の構成図である。 本発明の第5の実施形態に係る燃料噴射装置を用いた燃料噴射方法のフローチャート(その1)である。 本発明の第5の実施形態に係る燃料噴射装置を用いた燃料噴射方法のフローチャート(その2)である。 本発明の第6の実施形態に係る燃料噴射装置の構成図である。 本発明の第6の実施形態に係る燃料噴射装置を用いた燃料噴射方法のフローチャート(その1)である。 本発明の第6の実施形態に係る燃料噴射装置を用いた燃料噴射方法のフローチャート(その2)である。 本発明の第1の実施形態に係る燃料噴射装置を用いて、燃料噴射方法を実施した際の実施例を表しているグラフであり、メイン(Main)噴射に対するパイロット(Pilot)噴射の間隔を変えて示し、(a)はクランク角度(Crank Angle)に対する実燃料供給率(ROI)を示し、メイン(Main)噴射のクランク角度を一定にし、パイロット噴射における積算噴射量を一定にすることで、目標着火時期を一定に設定している様子を示し、(b)はクランク角度に対する気筒の燃焼室内の圧力(Pcyl)を示し、メイン噴射に対するパイロット噴射の間隔を変えても、クランク角度6deg以降の圧力上昇はよく一致し、目標着火時期に再現よく着火している様子を示し、(c)はクランク角度に対する熱発生率(ROHR)を示し、メイン噴射に対するパイロット噴射の間隔を変えても、クランク角度6deg以降の熱発生率の上昇はよく一致し、目標着火時期に再現よく着火している様子を示している。 従来の燃料噴射装置を用いて、従来の燃料噴射方法を実施した対比例を表しているグラフであり、メイン(Main)噴射に対するパイロット(Pilot)噴射の間隔を変えて示し、(a)はクランク角度(Crank Angle)に対する気筒の燃焼室内の圧力(Pcyl)を示し、メイン噴射に対するパイロット噴射の間隔を変えると、着火以降の圧力上昇にばらつきが見られる様子を示し、(b)はクランク角度に対する熱発生率(ROHR)を示し、メイン噴射に対するパイロット噴射の間隔を変えると、着火以降の熱発生率の上昇にばらつきが見られる様子を示している。
符号の説明
1A,1B,1C,1D,1E,1F 燃料噴射装置
2 燃料タンク
3A 低圧ポンプ
3B 高圧ポンプ(燃料ポンプ)
4 コモンレール(燃料蓄圧部)
5 燃料噴射弁
5A インジェクタ
6A アクチュエータ
8 着火検出装置
9 ドレーン通路
10 燃料噴射孔
21 高圧燃料供給管(燃料供給管)
70 吐出配管
71 戻り配管
72 圧力調整弁
73 戻り燃料配管
75 オリフィス
80A,80B,80C,80D,80E,80F ECU(制御部)
ST 温度センサ
SdP 差圧センサ
SPc 圧力センサ(蓄圧部圧力センサ)
SPs 圧力センサ(燃料供給管圧力センサ)

Claims (10)

  1. 燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の全量を前記各気筒の燃焼室へ噴射する燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
    前記燃料供給管に配置されたオリフィスと、
    前記燃料供給管内の前記オリフィスの上流側及び下流側の差圧を検出する差圧センサと、
    前記燃料の着火を検出する着火検出装置とを有し、
    前記制御部は、
    前記差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
    前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記燃焼室に噴射された前記燃料の積算噴射量を算出し、
    前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とする燃料噴射装置。
  2. 燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の全量を前記各気筒の燃焼室へ噴射する燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
    前記燃料蓄圧部の圧力を検出する蓄圧部圧力センサと、
    前記燃料供給管に配置されたオリフィスと、
    前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
    前記燃料の着火を検出する着火検出装置とを有し、
    前記制御部は、
    前記燃料蓄圧部の圧力と前記下流側の圧力の差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
    前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記燃焼室に噴射された前記燃料の積算噴射量を算出し、
    前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とする燃料噴射装置。
  3. 燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の全量を前記各気筒の燃焼室へ噴射する燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
    前記燃料供給管に配置されたオリフィスと、
    前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
    前記燃料の着火を検出する着火検出装置とを有し、
    前記制御部は、
    前記燃料の噴射に伴う前記下流側の圧力の低下量を前記燃料供給管圧力センサを介して検出し、
    前記低下量に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
    前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記燃焼室に噴射された前記燃料の積算噴射量を算出し、
    前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とする燃料噴射装置。
  4. 燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の一部を前記各気筒の燃焼室へ噴射し、前記燃料の他の一部を前記燃料ポンプの前段に戻す燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
    前記燃料供給管に配置されたオリフィスと、
    前記燃料供給管内の前記オリフィスの上流側及び下流側の差圧を検出する差圧センサと、
    前記燃料の着火を検出する着火検出装置とを有し、
    前記制御部は、
    前記差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
    前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記オリフィスを通過した前記燃料の積算供給量を算出し、
    前記燃焼室へ噴射される前記燃料の積算噴射量と前記積算供給量との所定の分配比率と、前記積算供給量とに基づいて、前記積算噴射量を算出し、
    前記着火検出装置によって着火が検出されたときの前記積算供給量に基づいて算出した前記積算噴射量を、着火必要噴射量として記憶することを特徴とする燃料噴射装置。
  5. 燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の一部を前記各気筒の燃焼室へ噴射し、前記燃料の他の一部を前記燃料ポンプの前段に戻す燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
    前記燃料蓄圧部の圧力を検出する蓄圧部圧力センサと、
    前記燃料供給管に配置されたオリフィスと、
    前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
    前記燃料の着火を検出する着火検出装置とを有し、
    前記制御部は、
    前記燃料蓄圧部の圧力と前記下流側の圧力の差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
    前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記燃料の積算供給量を算出し、
    前記燃焼室へ噴射される前記燃料の積算噴射量と前記積算供給量との所定の分配比率と、前記積算供給量とに基づいて、前記積算噴射量を算出し、
    前記着火検出装置によって着火が検出されたときの前記積算供給量に基づいて算出した前記積算噴射量を、着火必要噴射量として記憶することを特徴とする燃料噴射装置。
  6. 燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の一部を前記各気筒の燃焼室へ噴射し、前記燃料の他の一部を前記燃料ポンプの前段に戻す燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
    前記燃料供給管に配置されたオリフィスと、
    前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
    前記燃料の着火を検出する着火検出装置とを有し、
    前記制御部は、
    前記燃料の噴射に伴う前記下流側の圧力の低下量を前記燃料供給管圧力センサを介して検出し、
    前記低下量に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
    前記噴射の開始から現時刻までの前記実燃料供給率を時間積分して、前記オリフィスを通過した前記燃料の積算供給量を算出し、
    前記燃焼室へ噴射される前記燃料の積算噴射量と前記積算供給量との所定の分配比率と、前記積算供給量とに基づいて、前記積算噴射量を算出し、
    前記着火検出装置によって着火が検出されたときの前記積算供給量に基づいて算出した前記積算噴射量を、着火必要噴射量として記憶することを特徴とする燃料噴射装置。
  7. 燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の一部を前記各気筒の燃焼室へ噴射し、前記燃料の他の一部を前記燃料ポンプの前段に戻す燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
    前記燃料供給管に配置されたオリフィスと、
    前記燃料供給管内の前記オリフィスの上流側及び下流側の差圧を検出する差圧センサと、
    前記燃料の着火を検出する着火検出装置とを有し、
    前記制御部は、
    前記差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
    前記燃焼室へ噴射される前記燃料の実燃料噴射率と前記実燃料供給率との所定の分配比率と、前記実燃料供給率とに基づいて、前記実燃料噴射率を算出し、
    前記噴射の開始から現時刻までの前記実燃料噴射率を時間積分して、前記燃料の積算噴射量を算出し、
    前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とする燃料噴射装置。
  8. 燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の一部を前記各気筒の燃焼室へ噴射し、前記燃料の他の一部を前記燃料ポンプの前段に戻す燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
    前記燃料蓄圧部の圧力を検出する蓄圧部圧力センサと、
    前記燃料供給管に配置されたオリフィスと、
    前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
    前記燃料の着火を検出する着火検出装置とを有し、
    前記制御部は、
    前記燃料蓄圧部の圧力と前記下流側の圧力の差圧に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
    前記燃焼室へ噴射される前記燃料の実燃料噴射率と前記実燃料供給率との所定の分配比率と、前記実燃料供給率とに基づいて、前記実燃料噴射率を算出し、
    前記噴射の開始から現時刻までの前記実燃料噴射率を時間積分して、前記燃料の積算噴射量を算出し、
    前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とする燃料噴射装置。
  9. 燃料ポンプによって送り出された燃料を蓄圧状態に貯留する燃料蓄圧部と、前記燃料蓄圧部から内燃機関の各気筒に向けて分岐した燃料供給管を通じて供給される前記燃料の一部を前記各気筒の燃焼室へ噴射し、前記燃料の他の一部を前記燃料ポンプの前段に戻す燃料噴射弁と、前記燃料噴射弁から前記燃料を噴射させるための噴射指令信号を出力する制御部とを備えた燃料噴射装置において、
    前記燃料供給管に配置されたオリフィスと、
    前記燃料供給管内の前記オリフィスの下流側の圧力を検出する燃料供給管圧力センサと、
    前記燃料の着火を検出する着火検出装置とを有し、
    前記制御部は、
    前記燃料の噴射に伴う前記下流側の圧力の低下量を前記燃料供給管圧力センサを介して検出し、
    前記低下量に基づいて、前記オリフィスを通過する実燃料供給率を算出し、
    前記燃焼室へ噴射される前記燃料の実燃料噴射率と前記実燃料供給率との所定の分配比率と、前記実燃料供給率とに基づいて、前記実燃料噴射率を算出し、
    前記噴射の開始から現時刻までの前記実燃料噴射率を時間積分して、前記燃料の積算噴射量を算出し、
    前記着火検出装置によって着火が検出されたときの前記積算噴射量を、着火必要噴射量として記憶することを特徴とする燃料噴射装置。
  10. 前記制御部は、
    外部の状況に応じて目標着火時期を設定し、
    前記目標着火時期に前記燃料が着火するように、前記目標着火時期に、前記着火必要噴射量の前記燃料を前記燃料噴射弁から噴射し終わるように前記噴射指令信号を出力することを特徴とする請求項1乃至請求項9のいずれか1項に記載の燃料噴射装置。
JP2008327141A 2008-12-24 2008-12-24 燃料噴射装置 Pending JP2010150938A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327141A JP2010150938A (ja) 2008-12-24 2008-12-24 燃料噴射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327141A JP2010150938A (ja) 2008-12-24 2008-12-24 燃料噴射装置

Publications (1)

Publication Number Publication Date
JP2010150938A true JP2010150938A (ja) 2010-07-08

Family

ID=42570307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327141A Pending JP2010150938A (ja) 2008-12-24 2008-12-24 燃料噴射装置

Country Status (1)

Country Link
JP (1) JP2010150938A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314585B1 (ko) 2012-04-04 2013-10-07 주식회사 리테크 선박용 디젤엔진의 연료분사밸브 테스트 장치
CN109209715A (zh) * 2017-06-29 2019-01-15 通用汽车环球科技运作有限责任公司 带有泄漏校正的喷射器输送测量
CN112443440A (zh) * 2019-09-02 2021-03-05 福爱电子(贵州)有限公司 一种燃油喷射单元

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314585B1 (ko) 2012-04-04 2013-10-07 주식회사 리테크 선박용 디젤엔진의 연료분사밸브 테스트 장치
CN109209715A (zh) * 2017-06-29 2019-01-15 通用汽车环球科技运作有限责任公司 带有泄漏校正的喷射器输送测量
CN112443440A (zh) * 2019-09-02 2021-03-05 福爱电子(贵州)有限公司 一种燃油喷射单元

Similar Documents

Publication Publication Date Title
JP4424395B2 (ja) 内燃機関の燃料噴射制御装置
US8104334B2 (en) Fuel pressure sensor performance diagnostic systems and methods based on hydrodynamics of injecton
US9588016B2 (en) Fuel injection device and adjustment method thereof
JP4835715B2 (ja) 燃料噴射状態検出装置
US7835850B2 (en) Injection characteristic detection apparatus, control system, and method for the same
US7933712B2 (en) Defective injection detection device and fuel injection system having the same
US8406982B2 (en) Fuel injection detecting device
US8061331B2 (en) Fuel injector for internal combustion engine
EP2031226B1 (en) Fuel injection device, fuel injection system, and method for determining malfunction of the same
US8566005B2 (en) Fuel injection detecting device
JP4582191B2 (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP4835716B2 (ja) 燃料噴射状態検出装置
US20090063011A1 (en) Fuel injection device and method for examining the same
JP3885888B2 (ja) コモンレールシステム
JP5141723B2 (ja) 内燃機関の燃料噴射制御装置
JP4211610B2 (ja) 内燃機関用燃料噴射制御装置
CN103573453A (zh) 内燃机的控制装置及控制方法
JP2010101245A (ja) 燃料噴射装置
JP5370348B2 (ja) 内燃機関の燃料噴射制御装置
JP2010150938A (ja) 燃料噴射装置
JP5817597B2 (ja) 内燃機関の噴射異常判定装置
JP2010007504A (ja) 燃料噴射装置
JP2010101235A (ja) 燃料噴射装置
JP4375432B2 (ja) 燃料噴射特性検出装置及びエンジン制御システム
JP3948294B2 (ja) 燃料噴射装置