JP2010150922A - エコ住宅 - Google Patents

エコ住宅 Download PDF

Info

Publication number
JP2010150922A
JP2010150922A JP2010077774A JP2010077774A JP2010150922A JP 2010150922 A JP2010150922 A JP 2010150922A JP 2010077774 A JP2010077774 A JP 2010077774A JP 2010077774 A JP2010077774 A JP 2010077774A JP 2010150922 A JP2010150922 A JP 2010150922A
Authority
JP
Japan
Prior art keywords
moisture
heat
energy
moisture absorption
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010077774A
Other languages
English (en)
Inventor
Kojiro Tazaki
幸二郎 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENKO HOUSE KK
Original Assignee
KENKO HOUSE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENKO HOUSE KK filed Critical KENKO HOUSE KK
Priority to JP2010077774A priority Critical patent/JP2010150922A/ja
Publication of JP2010150922A publication Critical patent/JP2010150922A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology

Landscapes

  • Building Environments (AREA)

Abstract

【課題】 環境対策として省エネルギーを実現すると伴に、夏季の除湿・遮熱及び調湿の機能を高めながら、除湿に伴う凝縮熱の生成及び顕熱の排気を通じたヒートアイランド化への影響を抑え、その上、冬季の暖房効果を高める。
【解決手段】 住宅を構成する構造材・断熱層並びに内装材に、吸放湿材を用い、異なる吸放湿材の補完的連携及び組み合わせ・重ね合わせによる吸放湿とH2Oの相変化との連携の制御(促進・抑制)を通じ、含水率管理・湿度調節・エネルギー移動に地熱・放射冷却・太陽熱等の自然エネルギー及び深夜電力を活用し、快適な居住空間を実現する。
【選択図】 図2

Description

吸放湿材内外の熱移動の際の、顕熱的吸収と異なる、特に対流冷気の潜熱的吸収に適する、屋根体及び/又は壁体に用いる吸放湿とH2Oの相変化との連携の比率の高い吸放湿材に関する。
社会的背景について。
産業革命以後、化石エネルギーに依存する社会構造が定着し、そのお陰で我々は豊かな生活を送ることができた。ところが、今日社会的レベルで活動の活発化する一方で、地球環境への悪影響が強く意識され、広くその対策が議論される様になった。その方向は、京都議定書に表わされている。
ところで、個人レベルでは住宅で消費されるエネルギーが大きな割合を占めている。最近では、夏・冬の冷暖房による室内の空調は当たり前の時代である。それで、省エネルギーを実践しながら、快適な生活を送れる工夫が求められ、社会的コンセンサスを得られるに至った。省エネルギーの実践としては、一方では次世代型省エネルギー住宅に代表される省エネルギー化であり、他方、エアコン等の機器のエネルギー消費効率の改善による省エネルギーの追求である。
その様な時代背景の下、我々生活者の高まる欲求を満たしながら、自然エネルギーあるいは余剰の深夜電力の活用並びに高性能住宅の普及を通じて、省エネルギーを実践する第三の道を開拓し、広くはヒートアイランド化・地球温暖化等の環境問題への取組の一助にするものである。
寒冷地では、一般に暖房の為に消費するエネルギー量は多く、家計には大きな負担となっている。高気密・高断熱住宅は、開発された厳寒地では冬季に求められる省エネルギー効果は著しく、しかも、快適な住環境を提供しえるので、費用対効果を認められて普及しつつある。
ところが、温暖地においては省エネルギーによる費用対効果が小さく、又、冬でも氷点下に外気温が下がることは稀で、住環境面でも寒冷地に比較する程の改善効果が認められがたい。更に、決定的な所は、夏季の遮熱対策が未だ不十分であるというところにある。
高気密・高断熱住宅には一般に、熱損失の少ない合成樹脂系の断熱材が使用されている。冬には断熱性能の高さが発揮されるので、寒冷地向けの断熱材としては最適な資材である。又、結露の発生を阻止する上では、断熱性能に加えて気密性能の高さが求められる。その面でも、ボード状の合成樹脂系の断熱材は最適な資材である。
ところが、夏季は事情が逆転し、太陽の日射により壁体・天井等に用いられる断熱材は長時間加熱に曝される。断熱材は熱を吸収・蓄えて高温となり、又、その蓄熱効果によって発生する輻射熱により好適な室温を維持するのに支障が出てくる。
更に、昼間断熱効果によって蓄熱した分を、外側通気層を通じて夜間に放熱して冷却するものの、断熱材はその熱容量によって蓄熱体となる為、冷却するのに時間がかかる。冷却が進むまで、室内への輻射熱となり、室内の冷房負荷の増大要因となる。
以上の様な事情から、温暖地ほど夏季の遮熱対策は不可欠となり、これまで、不十分ながらも実施されているものを検討する。
簡単な方法としては、一つに「断熱材の表面の熱反射箔(アルミ箔)による太陽熱の反射によって、断熱材の表面への熱伝導が大幅に軽減でき、断熱材自体への加熱と蓄熱が減少するため、居室への天井・壁等の外周からの貫流熱量が減少され、その結果、居室内の冷房に要するエネルギー量を削減できる。」特開2003−328464号(特許文献1)
夏季に太陽熱を反射して顕熱の形で効率よく廃棄できる利点はあるものの、冬季は逆に、躯体は日射取得する太陽熱を蓄熱することが出来ない。形を変えた熱損失に繋がる。
二つに、壁体に二重通気層を設け、内側の通気層を屋根換気口及び床下換気口に連通し、屋根通気層・外側通気層・断熱層を経由して天井裏空間・内側通気層内に漏れた太陽熱の廃棄を通気によって図るものである。尚、内側通気層と外気との連通路の開閉により夏と冬とで相反する性能を具備する手段となり、夏季は壁体内の内側通気層内及び床下空間での結露の発生を抑制する手段となる。(特開2000−54519号)
さて、日本の気候は四季を持ち、夏冬の背反する気候に特徴がある。夏は、暑く、湿度は高い。冬は、寒く、湿度は低い。その背反する気候の下、快適な住まい造りが求められる。しかも、地球温暖化対策の一環としてのエネルギー消費の削減は大きな課題となっている。
先に示した高性能住宅の登場によって、冬季の省エネルギーで快適な住まい造りには一定の成果を得られている。しかし、夏季の冷房・除湿時の省エネルギー対策は未だ十分とは言えない。しかも、社会的に余剰の深夜電力の活用は、冬季の暖房に関しては多様な手段が提供されており、実用化されている。ところが、夏季の冷房・除湿に関しては氷蓄冷システム以外に特段の手段は提供されていない。
氷蓄冷システムは住宅への普及は進んでいない。それは、費用対効果の面で実用性に乏しいし、又、除湿の手段を別途必要とするという事情が重なっている。更に、氷蓄冷システムを冬季の暖房システムに応用することは難しく、夏と冬とで別個の空調設備を必要とする難点を抱えている。
ところで、深夜電力の利用料金は、季節別時間帯別契約の普及により、夏季の昼間の利用については超割高に設定されて、深夜に比較して粗5倍に達する。それで、この発明により深夜電力の利用を主体に夏季の温湿度調節を図ることが出来れば、家計の面でも大きな貢献をもたらす。
湿度調節に関しては、特開平8−193744号(特許文献2)・特開平8−285354号において、深夜電力を利用する室内の湿度調節方法が提供された。
それは、「深夜電力を利用できる時間帯に、設定湿度50%で除湿装置を稼動し、経済モードでは、昼間は設定湿度90%に達すると除湿装置は再稼動する。快適モードでは、昼間・夜間とも設定湿度70%に室内の湿度が達すると除湿装置は稼動する。」
上記方法では、経済モードでは昼間の室内の湿度が90%に達する迄電気使用は避けられ、当初の深夜電力利用の目的は達成される。只、記載内容からすると、昼間の室内の湿度は快適とされる70%以下を達成できるのか否かの言及は無い。それに対して、快適モードでは、湿度70%を保持されるので過ごしやすいが、昼夜を問わず頻繁に除湿装置を稼動することとなり、深夜電力利用で経済的に快適な室内湿度を達成することが出来ない。しかしながら、この記載から判断する限り、深夜電力利用で夜間に室内を除湿し、室内の快適さを保ちながら調湿板から放湿できるものの、昼間は、夜間の放湿によって含水率の低下した調湿板が室内から吸湿することで室内の調湿を行うにも拘らず、室内の湿度は70%超で90%以下の範囲に保たれるのみである。結局は、昼間の湿度を快適とされる70%以下に保つことはできない。
その原因は、吸放湿材の特性及び吸放湿とH2Oの相変化との連携及びその比率についての概念としての理解並びにその比率の違いのもたらす影響の違いについての技術水準を超えた理解に至らず、結局、技術水準を超えた手段に想到するに至らないからである。具体的には、吸放湿材の特性によって、あるいは吸放湿材に冷気を供給できる環境・手段を備えているか否かによって、吸放湿とH2Oの相変化との連携の比率は制約される。そして、吸放湿材の湿気吸収余力の回復できる範囲(相対湿度に投影される)の違いへと繋がってくる。
さて、上記文献では、調湿板として「水硬性組成物にゼオライト等の吸湿性フィラーを混入して板状に成形したもの、或は、無機質繊維内にアルカリ金属塩化合物を添加保持させて板状に成形したもの、或は、疎水性合成樹脂の空孔内部に親水性無機物を充填して板状に成形したもの」が例示されている。
例示された調湿板には、吸湿の際の液化との連携の比率の高いものが含まれる。しかし、調湿板の吸放湿特性については、湿気の吸収・放出の観点から記載されているのみで、吸放湿に伴う液化・気化についての記載は見られない。結局、吸放湿に際して、液化・気化を伴うか否かはその周囲の環境(温度・湿度)に左右されるものの、吸放湿材の特性によって、その作用は異なってくるのである。しかも、吸放湿に伴う液化・気化をエネルギー移転という観点から、換言すると、液化・気化のエネルギー移転のもたらす吸放湿の態様(吸放湿時の乖離)に及ぼす影響について、どの様な問題があるのかということに想到するに至ってはいない。それで、吸放湿材を用いる際に、液化・気化のエネルギー移転を考慮した選定は行われていない。
具体的に記せば、東北地方を始めとするII地域・III地域では、昼間に関しては温暖地と変わらない気温上昇を示すものの、夜間は放射冷却の影響で著しい気温低下を示す。昼夜の外気温の差は、10度を越えることもあるくらいに大きい。夜間の著しい外気温の低下によって、調湿板に冷気が供給され、吸冷・吸湿の液化を生じる。液化を生じると、相対湿度の変化に応じた吸放湿の機能は働かず、先の例で言えば、夜間に湿度50%に設定して除湿装置を稼動しても、調湿板から思惑通りの放湿は実施されず、含水率を思惑通りに低下させることができず、吸湿能力を回復できない。その結果、昼間は顕著な吸湿能力を備えず、室内の湿度を70%以下に保つことができない。
単純に、液化・気化の相変化を勘案せずに吸放湿に伴う湿度調節の効果を最大限に狙うのであれば、液化・気化を作用特性として保持しないものを調湿板として選択し・用いなければならない。技術水準の問題であるが、そこらあたりが十分把握されていない。
更に、新たな問題点を指摘すれば、一般に内外を隔てる内壁材を吸放湿材とし、室内空間に除湿装置を設置し室内空間の湿度を調節する場合、相対湿度との関係で吸放湿を捉える限り、吸放湿の方向性は含水率・平衡含水率・相対湿度の範囲で定まるので方向性を十分に制御できず、結果的に、効果を有する工夫を加えられず、屋外から吸湿し・屋内へ放湿すると言う吸放湿の逆転が起こり、除湿装置は余分に稼動し、余分なエネルギーを消費するのみならず、不要な凝縮熱の生成・排出に繋がる。それを避ける方法として、気密断熱層を二層構造に構成し、その屋内側に吸放湿性を具備する断熱材を用い、屋外側に吸放湿性を具備しない断熱材等を用いられている。それで、吸放湿に伴う屋外からの湿気の浸入を防止し、除湿装置に余分な負担を強いることは無くなる。しかも、工夫次第では深夜電力利用の効率的な除湿システムに進化することができる。只、従来は、技術水準としては、屋内外の相対湿度との関係及び相対湿度と平衡含水率との関係で吸放湿の方向性を捉える域を出るものではない。その限りでは、吸放湿の方向性を制御しつつ、除湿効果と遮熱効果を併せて実現できるシステムへの進化は困難である。換言すると、屋内外の相対湿度の高低差の影響を縮減(抑制)しながら、エネルギー移動の方向性を制御し、且つ、吸放湿及び湿気伝導(透過)の方向性を制御することを課題として想到できず、又、その課題を解決する手段を想到し、提示するに至らない。縮減には、湿気の伝導を遅らせる、あるいは、吸湿もしくは放湿の平衡含水率との関係を一定限度でずらす等が考えられる。只、湿気伝導性の抑制は促進と背反するものであり、断熱層の中で背反するものを時に応じて促進したり・抑制したりという具合に制御できなければならない。
更に具体的に記せば、屋内外の相対湿度の高低によって吸放湿材を境として吸放湿の方向は定まる。つまり、屋外側の相対湿度が屋内側の相対湿度より高ければ、平衡含水率に則る形で吸放湿材は屋外から吸湿し屋内へ放湿する方向に働く形で、湿気伝導の方向性は規制される。それで、相対湿度の低い屋内側から吸湿し、吸放湿材を透過して屋外に放湿すること、あるいは、屋内への放湿を止めて屋外から屋内へという湿気の流れを停止することは想到されない。これが、従来の技術水準である。只、この技術水準に留まる限り、人為的に相対湿度の低下した屋内側への屋外側からの湿気の浸入は避けられず、浸入した湿気を人為的に余分に除湿することで、エネルギーのロスと凝縮熱の無駄な生成に終わらざるを得ない。
そこで、ロスを避けるには、相対湿度の低い屋内側から吸放湿材に吸湿し、相対湿度の高い屋外側へ放湿するという方向性の促進(制御)、あるいは、相対湿度の高い屋外側から低い屋内側への湿気伝導の遅延を新たな課題として想到することが重要となる。かかる新規な課題を提起し、その課題を解決する手段を想到し、提示しなければならない。只、技術水準からして、自明な課題でもなく、容易に着想しうる課題でもない。
突破口は、液化・気化の相変化を伴うエネルギー移転を活用することにより見出せるが、液化は結露として歴史的・文化的に忌み嫌われてきたものであり、結露を作用として利用するには長く想到出来なかったことについての明らかな理由がある。即ち、結露のもたらす弊害についての技術常識が液化=結露を作用として利用することを阻んできた。(逆論理付け)
何れにしろ、吸放湿を液化・気化の相変化の有無の観点から適格に把握し、目的に即した吸放湿材の適切な選択及びその選択のもたらす効果・影響について想到することが求められる。
ところで、高気密・高断熱住宅ではないが、断熱材に吸放湿性の素材を用いることで、屋内に滞留する湿気・熱気を屋外に排出し、結露を防止する手段を特許第2585458号(特許文献3)において提供された。
請求項1に「建築物の壁体内に断熱層と壁体内の湿気を通す透湿性防水・防風層を組み合わせた構成よりなる透湿性断熱層を設け、・・・・床下に公知の開閉式換気口を設け、・・・・小屋裏換気口より排出せしめたり・・・・湿気と熱気とを排出せしめ、・・・・」の記載の通り、床下換気口より風を取り入れて流通させるので、屋内に滞留し易い熱気を排出することに関しては効果を望める。しかし、湿気に関しては床下換気口を通じて絶えず屋外から新たに供給され、しかも、気密性能が高いわけではないので、何処からでも湿気は浸入してくる。それで、屋内に滞留し易い湿気を風の流通によって透湿性の断熱層を経由しながら屋外に排出する効果は見込めるものの、湿度に関して室内環境の改善効果を表わすほどではない。しかも、先の記した様に、夏季の夜間は放射冷却の影響もあり、相対湿度の高くしかも重くなった空気は小屋裏換気口から壁体内・床下換気口を通じて下降し、それに伴い湿気の逆流は生じる
快適な室内の温湿度環境を求める人にとっては、湿度に限っても十分とは言えず、エアコン等の機器の除湿機能に頼らざるを得ない。その際、気密性の確保されていない部分に加えて、透湿性の断熱層を通じ屋外から屋内への湿気の浸入(逆流)は更に増加し、結果としてエネルギー損失を招き、その上、除湿による凝縮熱生成の増加に繋がり、ヒートアイランド化を助長する。それで、透湿性の断熱層を設ける利点は見出せない。あるいは、エアコン等の機器に頼らないことを前提にしているのであれば、それが実現できる温湿度環境は自然志向の人でも大きな我慢を強いられざるを得ない。
しかも、東西南北の壁体は、吸放湿性を具備する断熱材を用いる場合、太陽熱エネルギーを直接日射取得できるか否かで、その影響は大きく異なる。日射取得できれば、放湿を促し、断熱材は含水率を下げることが出来る。日射取得できなければ、湿気を呼び込む形で吸湿を促し、含水率は高止まりする。結局、含水率管理を好適に行い、高いレベルで躯体の健康と快適な住環境の実現を両立するまでに至らない。
更に、熱気の排出に当たり、透湿性の断熱層の媒介による相変化が見られず、湿気という潜熱の形に閉じ込める機能が見られない。即ち、熱気は顕熱の形で通気層を通じて排出されるに止まる。それは、潜熱化を図る上で必要となる冷却エネルギー供給手段が構成要素として認識されていないことに繋がる。
只、壁内に滞留する湿気の吸放湿性の断熱材を経た排出は、壁体内での結露の発生を阻止するという課題に答えるもので、重要である。しかし、湿気は結露防止の為に除去すべき対象ではあるが、湿気の内包するエネルギーを利用して、断熱材の媒介するH2Oの相変化との連携のもと屋内からのエネルギー移動を実現し、太陽熱エネルギ―の潜熱化を図るところまで、あるいは、湿気の流れる方向の制御を図るところまでは想到されていない。
実用新案出願公開昭63−58103号(特許文献4)において、室内の除湿方法が提供された。
「建物の天井及び壁の少なくとも一方に設けた内装材を通気性とし、この内装材の室外面に吸放湿材を設けたので、居室内の水分を含んだ空気は、内装材を通過して吸放湿材に水分を吸収される。この吸放湿材に風を触れさせる通風路を形成した通風路形成材を設けたので、吸放湿材の水分は通風路内に蒸発していく。この様に、居室内の空気に含まれている水分を居室外に出すことが出来るので、居室内を常に低湿度の状態に保てる。又、内装材の室内面に結露が発生するのも防止できる。」とするものである。
要点は、室内空間の湿気を吸放湿材に吸収し、室外側の通風路に放湿し、室内の湿気を除去し、低湿度の状態を保つと伴に、結露の発生を防止するものである。この点は、前項の文献の内容と同様の課題・効果である。更に、エネルギー移転の利用に関しても、湿気の内包するエネルギーを利用して、断熱材の媒介するH
2Oの相変化との連携の下エネルギー移動を実現し、太陽熱エネルギ―の潜熱化を図るところまでは想定されていないし、期待されてもいない。つまり、空気中の湿気は湿気として吸放湿材を透過し、湿気として放出されるに止まり、相変化の際のエネルギー移転を利用して、断熱性に背反する伝熱性を創出し、屋内からの冷却エネルギーの供給を太陽熱エネルギーの吸収に繋げて、除湿・遮熱の効果を実現するまでには至らない。それは、吸放湿材のH2Oを吸収・移動・放出する態様について気体状のH2O・液体状のH2Oを厳密に区別することなく理解しようとするところに(技術水準)起因するものであり、理解の限界を示すものである。それ故、断熱性に背反する伝熱性を創出すること、及び、伝熱性の創出を制御(促進・抑制)することを課題として想到することもない。
ところで、前二者ともに知らず知らずに冷気の吸収は生じ易く、吸放湿速度は吸湿が放湿に比べて優れているので、吸放湿とH2Oの相変化との連携の比率は考慮されていない。それで、太陽熱を直射により獲得できない「北面の断熱材の含水率は高止まり」する。又、エアコンの除湿機能を用い、居室内の湿度を下げた場合、通常湿気は居室外から吸放湿材を透過して居室内に逆流する。しかし、何れについても、その打開策は提示されていない。つまり、課題として想到されず、提起されていない。更に、吸放湿材の吸放湿性を利用して、湿気を除去し、結露を防止することが課題となっているように、「結露」は避けるべきものとして強く意識されている。
さて、内装材の屋外側に通風を確保することにより、室内から吸湿し、内装材を透過して湿気を屋外側に排出できる構成は重要である。只、現実の建物は多くの要素から成り立ち、夜間の放射冷却あるいは地熱等の種々の要因による通風路・床下空間での相対湿度の高まりの結果、床下・通風路から室内への湿気の侵入(逆流)及び除湿装置稼動の際の除湿負荷の増大、或いは、空気の滞留による床下空間での結露の発生という問題が出てくる。地熱・放射冷却等の自然エネルギーを加味して生じる新たな問題を総合的に解決する為に太陽熱エネルギーを活用できる湿気伝導の方向性の制御及び異質の湿気排出路の形成という課題を着想するに至っていない。結局、結露=液化を作用として利用することに想到しない限り、新たに生じる新規な課題を着想することは難しい。更に、課題を解決するための手段に想到することは難しい。
ところで、提供された除湿方法は、室内において湿度の飽和状態により生じる結露を避ける為に、吸放湿材に吸湿する趣旨であるから、室内の相対湿度は高いことが前提とされている。具体的には、夏季の屋外の相対湿度は概ね80%を越えるが、吸放湿材内において含水率の高低により屋内側から屋外側にH2Oを移動させるには、屋内の相対湿度は80%超で100%近辺となる。屋内の相対湿度の高止まりによってH2O移動の余地は生じる。つまり、室内の相対湿度が高くない場合に室内から吸湿することは、想定されておらず、期待もされていない。それは、逆に見れば、吸放湿材の吸湿能力を利用して室内の湿度を快適の目安とされる70%以下に保つことは、想定されておらず、期待されてもいないことを示すものである。
夏季の屋外の相対湿度は概ね80%を越える。その様な環境の下、相対湿度に対応する平衡含水率と吸放湿材の含水率との差によって吸湿又は放湿すると言う技術水準からして、吸放湿材に室内の湿度を一般に快適の目安とされる70%以下に保つ能力を期待されないのは当然の帰結である。
更に、先に提示した屋外から屋内への湿気の逆流に関連して記せば、相対湿度の低い屋(室)内から吸湿し、相対湿度の高い屋外に湿気を放出することを課題とすることは想到されず、期待されていない。
一見すると、本願発明と前記発明特定事項とは構成の面で類似しているものの、本願発明は上記技術とは課題の上で大きな相違点があり、しかも、技術水準からして自明でもなく・容易に着想し得ない新規な課題を有する。更に、技術水準から予測される範囲を超えた著効を奏する。その上、歴史的背景の下忌避されてきた結露=液化を作用として活用することによって新たな機能・効果を得られる。(逆論理づけ)尚、課題と効果は表裏一体の関係にある。
構成の面で言えば、請求項11では透湿率において相違し、機能・効果の差異を生み、請求項18では北側の断熱層は除外され、請求項19では相変化に伴うエネルギー移転の効率の面で相違する。
特開平10−309458号(特許文献5)において、「従来の吸放湿材に比較して吸放湿性に優れた吸放湿材を、室内を構成する壁面の少なくとも一部に沿って配設する室内の湿度調節方法」が開示されている。具体的には、「室内の湿度が高い時は、吸放湿材が室内の湿気を吸収するため、室内の湿度を下げることができ、室内の湿度が下がってくると、吸放湿材内に保持されていた水分が室内に放散され、室内の湿度を上昇させる。」(段落0049)「機械的な調節手段を最小限に用いるだけで、室内の雰囲気を快適な湿度に保持することが出来る。(段落0050)ここで、吸放湿性に優れた吸放湿材とは、周囲の環境の相対湿度の変化に応じて吸放湿でき、吸湿時の吸湿量並びに放湿時の放湿量の大きく、吸放湿を繰り返すものを示す。先の記載は、吸放湿材の定義そのものであり、技術水準を示すものである。
室内の湿度を調節する目的で壁面の内装材として吸放湿材を用いる場合、前記吸放湿の容量及び速度は重要である。しかし、日本の湿度の高い時期は短期間で終わるものではなく、6月上旬の梅雨時から9月まで概ね3ヶ月以上の間継続する。それで、如何に吸放湿性に優れた吸放湿材を用いたとしても、その間中室内の湿度を日変動差を越えて調節するだけの含水圧力差を、壁面の内装材に用いる吸放湿材の吸湿容量のみで確保し、快適な居住空間を保持することは難しく、早晩含水圧力差は解消し、特に特段の工夫を伴わずに、「吸放湿材を室内を構成する壁面の少なくとも一部に沿って配設する」(請求項4)だけでは、室内側のみならず室外側である壁内からも吸湿し、含水圧力差の解消のスピードは倍加して速まる。含水圧力差の解消されれば、日変動差を越えて調湿することはできなくなる。
ところで、1年の内の相対湿度の変化を利用する湿気の吸放湿サイクルを利用するだけでは、如何に優れた吸放湿材を用いたとしても、いずれ吸放湿材の含水率の変化は高位に安定し、かつ、含水圧力差は解消し、室内空間の調湿を行う為の吸湿能力を十分に回復できなくなる。それで、室内の湿度調節を長期間に渡って好適に実施できるわけではない。これは、日変動差の概念を用いた説明と内容は同一である。
さて、1日24時間の内の相対湿度の変化の範囲内で調湿能力を発揮する場合は如何に。吸放湿材によって、1日24時間の内の相対湿度の変化の範囲内で調湿したとしても、夏場の調湿の必要な時期の相対湿度は概して高いので、それだけで快適な湿度に達することは難しい。快適な室内を実現するには、1日24時間の内の相対湿度の変化の範囲を超えた調湿能力を保持する必要がある。具体的には、1日の内の室内空間の相対湿度の変化の範囲を超えて、吸放湿材の含水率を低下し、(新規な課題/対する技術水準は、相対湿度の変化の範囲内で、対応する平衡含水率に基づき含水率は上下する。)吸湿能力を回復する手段が不可欠となるが、開示された技術には、1日の相対湿度の変動の範囲を超えて吸湿能力を回復させる手段を備えていない。それで、夏季に向かった当初一時期、即ち、一年間を通した吸放湿のサイクルに基づき含水圧力差を保持し・吸放湿能力を発揮できる期間を除けば、室内を好適に調湿することは難しい。
それで、接する空気の相対湿度の変化の範囲を超えて吸湿能力を回復させる手段として、吸放湿手段の介在による天井裏空間・内側通気層内の空気の相対湿度の低下に伴う内装材からの放湿の役割は大きい。(屋外へ湿気を排出する流通流路の存在及び流路へ放湿し、流路から放湿できる工夫・手段が付加されれば、新たな機能・技術の開示に繋がる;通気層を通じた湿気の排出の技術分野の関連性を示す)放湿により含水率は低下し、吸湿能力の回復に繋げられる。しかも、太陽熱の輻射熱の影響に伴う内装材からの気化・放湿は内装材の含水率低下を促し、内装材の更なる吸湿能力の回復に繋がる。
さて、室内空間への放湿に大きく影響するのは、1日の内での相対湿度の変化である。そして、相対湿度の変化の範囲を超える上で除湿装置の役割は大きく、特に電力消費の平準化という課題にも応える上では、深夜に除湿装置を用いての吸湿能力回復策は費用対効果の面からも活用できる。
更に、特開2002−371645号(特許文献6)において、「断熱層に珪酸カルシュウム板からなる断熱材を用い、内装部に珪酸カルシュウム板からなる調湿材を配置され、前記断熱材と調湿材との間に空間が形成され」(請求項)「調湿材の吸放湿により室内の湿度を安定化させて、快適な居住空間を提供」(段落0020)できる技術が開示された。
「調湿材が吸収・放出する湿気の容量を断熱材が吸収・放出する湿気の容量よりも大きくすることができる。」「又、調湿材と断熱材との間に空間が設けられているので、調湿材に蓄えきれなくなった湿気を空間に移動させて、調湿材の調湿性能を維持することができるとともに、調湿材から断熱材への湿気の移動を緩和させて、断熱性が悪化することを効果的に防止することができる。」(意見書)
調湿材と断熱材との間の空間に湿気を含む役割を期待しているとはいえ、それらは、一体化の方向において「室内の湿度環境を快適な状態に年間を通して効率よく調節維持することが可能になるという効果を奏する。」(意見書)
つまり、それらは一体化によって室内に直に接する調湿材の吸湿能力(容量)を単独の場合に比較して増大することはできるけれども、空間の含湿能力は一過性のもので、周囲の環境の相対湿度の変化の範囲を超えて調湿材(内装材)の含水率を下げ、吸湿能力を回復させる意図・構成は見られず、回復させることはできない。(選定された吸放湿材は、一日の相対湿度の変化に敏感に反応して、含水率を下げられるわけではない。24時間の吸放湿のサイクルの面では、目立った特性を示さない。)段落0082に記載の用語を用いれば、選定された調湿材は日変動差を持たず、1日の内の相対湿度の変化が大きく無い場合、その変化に対して敏感に反応することが出来ない。つまり、相対湿度の変化に応じた含水率の変化に繋げられない。結局、室内からの湿気の吸収には、吸放湿材の含水圧力差に基づく作用が働いているのみである。更に、「調湿材が吸収・放出する湿気の容量を、断熱材が吸収・放出する湿気の容量よりも大きくすることができる」の記載からすると、断熱材の年間を通じた吸放湿のサイクルを利用して、調湿材の24時間の吸放湿のサイクルを補完する意図・構成は見られない。しかも、「調湿材が、夏の長時間続く湿潤時期には室内の多量の湿気を吸収し、冬の長時間続く乾燥時期には、逆に調湿材内に蓄えられたその湿気を室内へ放出して室内を潤し、年間の湿度変動を小さくする」の記載からも、調湿材及び断熱材は一体として1年を通じた吸放湿のサイクルを利用する構成となっていることが窺える。
ところで、吸放湿性を具備する断熱材に吸湿した場合の、断熱性能の低下についての指摘は重要である。つまり、吸放湿性を具備する断熱材への吸湿は、断熱性能低下を防止する観点からすれば避けるべきものである。(技術常識)何れにしろ、調湿材から断熱材への湿気の移動は緩慢であるものの、これは断熱性能の低下を避ける目的・課題の故からの着想である。それを裏付ける様に、課題として「良好な断熱性能を長期間維持すること」(段落0005)が記されている。尚、吸放湿材の断熱性能の低下は、吸収するH2Oの熱伝導性の高さによるものと考えられている(技術水準)が、それ以外に液化・気化を介した断熱性に背反する伝熱性創出の影響は大きい。しかし、技術水準は、断熱性に背反する伝熱性の創出を抑制できる工夫等による断熱性能低下を防止する方法の必要性について想到するに至らない。(吸放湿に伴うエネルギー移動の制御という新規な課題、あるいは、吸放湿の際のエネルギー移動を伴わないH2O移動の制御という新規な課題に想到しない。)その違いにより、断熱性に背反する伝熱性の創出を促進し、太陽熱を吸収する遮熱・除湿効果に繋がり、あるいは、断熱性に背反する伝熱性の創出を抑制し、太陽熱を吸収する断熱性能の改善に繋がる。
さて、珪酸カルシュウム材は、液化の比率が高く、吸湿・放湿の方向は日々の相対湿度の変化に対して敏感に反応できるわけではなく、特に放湿による日々の吸湿能力の回復の面では優れたものではない。効率的に吸湿能力を回復するには、太陽熱の輻射熱等のエネルギーが不可欠である。しかし、「胴縁によって形成される通気層がない構成にすることも可能である。」(段落0015)の記載を参考にすると、太陽熱からエネルギーを吸収し、気化・放湿できる構成(通気層から棟換気口を通じ屋外へ排出)は必要と見做されていない。それでは、内装材の吸放湿材内で液化したH2Oは活発に動くために必要な運動エネルギーを欠き、相対湿度の変化に応じて効率よく放湿を促し、効率よく吸湿能力を回復することは難しい。只、これは調湿材に求める性能の違いからもたらされた結果であるが、室内空間に接する調湿材としては適性を欠いた選択である。
一見すると、本願発明と前記発明特定事項とは類似しているものの、本願発明は、上記技術とは課題の上で大きな相違点があり、しかも、技術水準からして自明でもなく・容易に着想し得ない新規な課題を有する。更に、技術水準から予測される範囲を超えた顕著な効果を奏する。
天井輻射冷房の一例として、実開平01−22918号(特許文献7)に開示されたシステムがある。これは、天井面として格子天井材の上方に剥き出しの銅管を施し、この銅管に冷水を流し、冷房を行うものである。この様な天井面からの輻射による伝熱を利用した冷房は、不快な気流が発生しにくいことと、室内の上下温度分布が非常に小さくなることにより快適な室内条件を得ることができる。
冷房時・暖房時の何れもH2Oを冷媒(又は熱媒)として用いるが、空気に比較して比熱は大きく、大量のエネルギーを流通させるには適している。しかも、銅管の熱伝導率は高く、蓄熱性能は低いので、熱移動は効率よく実施される。それで、銅管内を流通する冷媒と室内空気との熱交換の際に、銅管表面付近は容易に露点に達して、結露を生じる。結露を生じると同時に凝縮熱も生成されるので、冷房の効率は低下し、エネルギー消費効率は低下する。
上記に記した問題点を解消しながら、複雑な設備を必要としない技術が開示された。特開平04−90432号(特許文献8)において、「空気を冷媒(又は熱媒)として、透湿性を有する天井材の裏面に形成される閉空間に冷空気(或いは暖空気)を循環させる。尚、透湿率1g/m2・h・mmHg以上である天井材で天井面を構成する。
冷房時、エアコンで冷却された空気は、その冷却の過程において含有水蒸気をドレイン水として放出し、低温度・低湿度の空気となる。今、前記低温度・低湿度の空気を、高温・高湿の室内と透湿性を有する天井材で仕切られた閉空間に流すと、室内の水蒸気分圧が閉空間の水蒸気分圧との分圧差を推進力として室内の水蒸気が閉空間に移動し、室内が除湿される。この除湿と同時に冷却された空気により天井材が冷却され、輻射及び自然対流で室内の冷房が行われる。」
この方法では、調湿された低湿度・低温度の空気が閉空間(天井裏空間)に供給される。それで、天井裏での結露の発生を抑制できる。又、天井表から室内空間の湿気を吸収して、天井材を透過後天井裏に放湿されるので、天井表(天井の室内側)での結露の発生を抑制できる。只、事前に調湿するために、エアコンの除湿装置は昼夜を問わず必要に応じて稼動しなければならない。しかも、室内空間から天井裏空間へ絶えず湿気は供給されるので、除湿装置の負荷は室内空間から直接除湿する際の負荷と変わらない。更に、除湿の際は凝縮熱が生成する。それで、大量の凝縮熱生成によりエネルギー消費効率は低下し、かつ、ヒートアイランド化を助長せざるを得ない。
しかし、エネルギー消費効率の低下以上に問題なのは、天井材の透湿性能が高いので、それに反比例する様に天井材のH2Oを保持する能力(吸放湿能力)が低くなることである。その結果、二つの齟齬を生じる。
一つは、湿気還流率が大きいので、室内の空気中の湿気は天井材をスムーズに透過し、構造材その他の備えるH2Oの保持能力を頼りに吸湿されるものの、その限界に到達する時期は早晩訪れる。つまり、構造材を含めた建物の四季を通じた吸放湿能力を活用して室内の調湿を図るにしても、室内空間に接する天井材は日々の吸湿と放湿を繰り返す能力が弱く、逆に、透湿性の高さの影響を強く受け、構造材への湿気の移動及び構造材の含水率上昇は避けられない。それに対し、天井裏空間に接する吸放湿材の含水率上昇を緩和できる手段・工夫を得られれば、除湿装置に頼らずに室内空間の調湿を行い、湿度の高くない室内環境を得られる。それで、除湿装置稼動による液化・凝縮熱生成による廃熱のもたらすヒートアイランド化の助長は防げる。しかし、天井材の湿気還流率が高ければ、この様な効果をもたらすことができない。つまり、ヒートアイランド化を助長する。それに対して、天井裏空間に接する吸放湿材の含水率上昇を緩和できる工夫の第一歩は天井の内装材に湿気還流率(透湿率)の高くないもの選定することにある。第二の工夫は、24時間の吸放湿のサイクルを利用できる吸放湿材を選定することにある。
二つは、深夜電力の利用の面に現れる。それが深夜電力の利用促進という面から、どの様な結果に繋がるかについて説明する。深夜電力利用の調湿システムは以下の様になる。「夜間に室内を除湿し、天井等の吸放湿材から放湿し、吸放湿材の含水率を低下させる。含水率の低くなった吸放湿材は、昼間湿度の高い室内から湿気を吸収して、室内の湿度を調整することができるが、その調湿能力は吸放湿材のH2Oの保持能力を積極的に利用することで成り立つものである。」それで、H2Oの透過能力が高く、H2Oの保持能力の低い天井材は、昼夜の相対湿度の差を埋めるだけの湿度調節能力を持たない。それで、本来の調湿システムの備える「深夜電力を利用して夜間に室内を除湿し、相対湿度の低くなった室内に天井材から放湿し、含水率を低下させられる。それで、含水率の低くなった天井材は昼間は一転して室内及び閉空間から吸湿し、調湿するという深夜電力利用の調湿システム」の円滑な実施を図れない。
更に、外気温の高い昼間に冷房の需要は高く、しかも、天井輻射冷房を実現するには元々電力使用量は大きくなるが、天井裏空間への昼間の太陽熱の影響も加わり、昼間の電力使用量は益々増加する。深夜電力の利用を促し、電力使用の平準化を図る上では、開示された技術は不適である。しかも、除湿済の冷空気を昼間閉空間に流す仕組みであるから、除湿に伴い生成される凝縮熱を昼間大量に排出し、ヒートアイランド化を助長することとなる。
さて、開示された技術は、低湿度に調湿された低温度の空気を冷媒として活用できるシステム構成となっている。それで、H2Oを冷媒として用いる際に、先の技術に示された工夫を生かせない。
又、技術水準の問題であるが、吸放湿とH2Oの相変化との連携の比率の高低については問われていない。只、室内の空気を除湿し、快適な空間を実現するには、閉空間に除湿された冷空気を流すだけでは十分とは言えず、しかも、連携の比率の高い吸放湿材を天井材に用いれば、閉空間で供給される冷空気により天井材への潜熱的蓄冷は進行し、含水率は高止まりするので、室内から吸湿し、透過する能力は縮減する。つまり、従来の技術水準において期待される室内の除湿効果を、単純には期待できないのである。
特開2000−54518号(特許文献9)において、「断熱層を境に外側通気層・内側通気層の二つの通気層を形成し、互いに独立して外気に連通し、内側通気層と外気との連通路の開閉により夏と冬とで相反する性能を具備する手段となり、夏季は壁体内の内側通気層内及び床下空間での結露の発生を抑制する手段」が開示された。但し、意見書では、「床下空間での結露の発生を防止することが可能になる」と表現されている。
冬は、内側通気層の上端の連通路及び下端の基礎布部ダンパーを閉じて気密性及び保温性を高め、夏は、連通路及びダンパーを開いて通風性を高め、冬と夏とで相反する性能を備えることが図られている。
それで、夏季に限れば、内側通気層は通気性を確保され、熱気・湿気は屋内に過剰には籠らず、日射による熱気の一部は外側通気層を通じて屋外に顕熱の形で排出されることを図られている。ところが、顕熱による排熱の方法は一般にその目論見に反して十分にその効果を表わさない。それは、排熱しながらも、一方で躯体への蓄熱は避けられないからである。更に、湿気の過剰の籠りは避けられ、内側通気層内での結露の発生を防止できるものの、屋内外の湿度は変わらず、屋内の湿度を屋外に比較して低く調節する機能を持たない。しかも、熱気・湿気は絶えず屋外から供給されるので、室内を除湿・冷房する負荷は増加する。それに対し、高気密高断熱住宅の欠点とされる夏季の熱の籠りは多少改善され、不快指数の上昇を多少抑える効能を持つものの、人為的な除湿・冷房を行なわずに、快適な屋内環境を実現するほどの効能は現さない。
さて、夏季の屋外の気温は高く、日中は35度前後の日が続く。人が生活する室内は通常それよりも低く保たれている。自然の状態で屋外より低く保てない場合は、空気調和機等の人為的手段を用い、快適に生活する上で概ね28度以下に室内の温度は保たれる。その場合、室内と内側通気層を隔てる内装材を通じて、内側通気層内の空気は冷やされる。その結果、内側通気層内の空気は屋外より重くなり、相対湿度は上昇する。更に、湿気は暖かいところから冷たいところに移動するので、相対湿度の上昇要因となる。しかも、重くなった空気は壁体内空間を下降する方向に働き、床下の換気口を通じて屋外に排出される。太陽熱を日射取得できない北側の内側通気層内は断熱層を透過する放射熱エネルギーを得られず、顕著に現れる。(もしくは、内側通気層内で停滞する。)
ところで、連通路内の送風ファンにより内側通気層内の通風は図られるものの、ダンパーを通じて湿気の供給は継続し、内側通気層内及び床下空間の相対湿度は高止まりする。それで、床下空間は地熱の冷気の影響で元々湿気が滞留し易いが、通風の効果が薄れる分床下空間での結露の発生に繋がり、構造材に付着する。それは、初期の目的である結露の発生を抑制する目的に反する結果となるが、通風の効果だけでは床下空間の結露の防止を図れない。結局、より快適な室内環境の実現を図り、エアコンで室内を冷房する場合、更に床下空間での結露を誘引する。
尚、請求項に記載されていないが、連通路内に送風ファンを装着した場合、暖かく湿った空気が屋外から絶えず供給されるので、冷房の負荷は増大する。しかも、除湿負荷を軽減できるとかの特段の効果は無い。又、内側通気層内の通気だけでは、機械式通気の効果の薄く淀み勝ちの床下空間での結露発生を抑制するに至らない。
内装材について特段の記載は見られない。只、送風ファンを用い内側通気層の通風を促進して室内の涼房効果を得ようとすれば、あるいは、エアコンで室内を冷房すれば、内側通気層内・床下空間への湿気の屋外からの流入は促される。元来湿気の滞留し易い床下空間で結露発生を防止する方法としては、内装材に吸放湿材を用い、吸湿する方法が有力である。ところが、内装材に吸放湿材を用いれば、条件次第では吸放湿材を通じた室内への湿気の透過・流入は避けられない。又、室内の湿度を下げるために除湿装置を用いて人為的に除湿した場合、内装材の内外で湿度の高低差が著しく生じ、内側通気層内・床下空間から内装材を通じて室内への湿気の透過・流入は継続する。結局、屋外からの湿気の供給(逆流)は増加し、室内における除湿の負荷は増大する。それは、冷房負荷の増大のみならず、除湿装置稼動による凝縮熱の生成の増加に繋がり、一層のヒートアイランド化の要因となる。
尚、特許番号第2980883号特許公報(特許文献10)に記載の内容は、形状記憶合金を利用して基礎換気口から内側通気層・棟換気口を通じて屋外に排気する流路内の空気の流れを夏冬で制御するもので、換気口等の開閉を通じて空気の流れを制御するという基本的な機能は前記特許文献3の内容と変わらない。それは、人為的手段を用いずに室内の環境を良好に保とうと意図するものである。具体的には、「内部通気層では空気は下方から上方へ通流する。・・・小屋裏の通気装置から外部に放出される。・・・壁面で空気が呼吸できるようにすることによって部屋内の湿度、換気調節、構造体の木材等の湿度、換気調節が極めて効果的になされ、住環境をきわめて好適な条件にすることが可能となる。」(0011〜0012)更に、「外部通気層及び内部通気層に空気を通流させることは、空気の流れによって住宅を涼しく維持することができることと、とくに蒸し暑い真夏などであっても、・・・木材が蒸れたりすることを防止し、住宅全体を良好な状態で維持管理することが可能となる。この様な空気の流れは壁面による呼吸作用を促進させ室内の湿度分を排出する作用としてきわめて有効である。」(0025)
元々技術の開発された場所が夏季の避暑地で有名な信州であり、蒸し暑い真夏でも比較的涼しく過ごせ、温暖湿潤な地域との気候的な差は大きい。それで、温暖湿潤な地域において、人為的手段を用いずに実現できる室内環境には限度があり、生活する人に我慢を強いらざるを得ない。
そこで、エアコンを用いてより快適な環境を求めた場合、前記技術の抱えている問題と同じ問題が現われる。具体的には、「内壁材を吸排湿可能に設ける」(請求項1)という具合に内壁の内装材に吸放湿材を積極的に用いて、「壁面による呼吸作用を促進させ室内の湿度分を排出する作用」により室内空間と内側通気層との間に湿気の透過を図っている分、用いる吸放湿材の選定しだいでは先の問題(エアコン稼動の際、室内の湿度低下により湿度の高い内側通気層から室内へ内壁材を湿気が浸透し、室内の除湿負荷は増大する)はより深刻に現れる。又、内壁の内外を隔てる吸放湿材が相対湿度の高低差によって湿気透過の方向性を規定される限り、先の問題から逃れられず、目的とされる「室内の湿度分を排出する作用」を期待できない。しかし、エアコン稼動時のこの問題は想到されていない。又、用いる吸放湿材の選定しだいで先の問題を解消できるのであるが、そもそも、問題の在所について想到されていないので、用いる吸放湿材の特性についての記述及び吸放湿材の特性の違いに基づく選定のもたらす影響についての言及は見られず、問題として想到されず、提起されていない。(技術水準)
更に、エアコンで冷房すれば、冷気は室内から内壁材を通じて内側通気層に伝わる。その結果、内側通気層内の空気は温度低下し、相対湿度は上昇する。更に、空気は重くなり、空気の上昇力も失われ、滞留・下降する。しかし、その滞留・下降を解消する手段は備わっていない。夏季に比較的涼しい信州の地と異なり暖かく湿潤の地で快適に過ごす上では、エアコン使用は避けられない。それ故、エアコン使用時に派生する問題(結露)を想到し、システムを好適に実施する為の方策(送風ファン等)を備える必要がある。
ところで、「この様な空気(内側通気層を上昇する)の流れは、壁面による呼吸作用を促進させ、室内の湿度分を排出する作用としてきわめて有効である」(0025)の記載から見れば、室内の除湿を図る上で、吸放湿の方向は相対湿度・含水率・平衡含水率の関係から把握されている。
尚、床下空間と室内を隔てる床材についての特段の記載は無い。内壁材の吸放湿特性を利用しながらも、通常床材として用いられる無垢板もしくは合板の吸放湿特性について考慮されていない。内壁については、「室内湿度分を排出する作用」により室内から内側通気層に排出される。内壁材の場合と同様に考えれば、床材については、室内から床下空間に湿気は浸透し、排出される。そして、床下空間・内側通気層を通じて上昇する。しかし、実際には床下空間の一部で通風は十分確保されず、床下空間の湿度上昇要因となる。湿度が上昇すれば、室内への逆流の可能性について検討を要する。しかも、床下空間は日射取得を得られず、地熱の影響で冷やされているので、床下換気口を通じた建物外から不断の湿気の流入も合わさり相対湿度は高止まりする。逆流の可能性は更に高まる。又、床下空間の一部は湿気の滞留し易く、結露発生の条件は満たされ、結露の発生リスクは内側通気層内に比較して格段に高く、適切な湿気の排出手段が無ければ、結露の発生は避けられない。結局、矛盾するものを止揚する技術の必要性については、課題として想到されず、解決する手段も想到されていない。(技術水準)
以上の問題を解決する方法としては、連通路・換気口を閉じて内側通気層と屋外との連通性を断ち、夏季も気密住宅とする。その場合、放射冷却・地熱のエネルギーを利用できず、又、目的の一つである内側通気層・連通路・換気口を通じた排湿による調湿機能の実現の可能性は消える。しかも、気密性能が高まるので、逆に24時間換気システム稼動の必要性が生じる。又、調湿機能の消失により除湿装置の除湿負荷は高まり、エネルギー消費は増加する。更に、エアコンの除湿機能の働きにより凝縮熱生成量は増加し、ヒートアイランド化を助長する。
そこで、涼しい信州の地から温暖湿潤の地まで異なる気候特性の下、冬季は、気密住宅の閉鎖性及び高い断熱性能を活かし、暖房効果を高めて省エネを追求しながら、夏季は、湿気を排出するために建築的工夫を最大限に追求しながら、地熱・放射冷却等の自然エネルギーを有効利用して、人為的なエネルギーの省エネ化を図りながら、冷房負荷の増大・除湿負荷の増大及びヒートアイランド化の助長を避けられ、しかも、床下空間の結露発生を抑制できるシステムの構築を図る。
日本に昔から伝統的な工法として伝わっている土壁造りの建物は、土の吸放湿機能を活かし、土の含水率と相対湿度との関係並びに運動エネルギーの供給による相変化を伴う放湿の際に発生する気化熱によって、太陽熱の日射により建物の屋根・壁に蓄熱した結果発生する輻射熱を抑制するものである。夏季に限定すれば、放射冷却エネルギーを得られる範囲に限られるとはいえ、遮熱効果を得られる。
只、土壁は熱伝導率が高く、しかもエネルギー移動の夏季と冬季とで生じる反転のもたらすエネルギー損失により、断熱性の確保が難しい。又、乾燥するほどにひび割れが進み、気密性を確保するのは更に難しい。それで、建物の基本性能として重要な気密・断熱性能を確保する上で問題が大きい。
気密性能が低いと、湿気を多量に含む空気の浸入を阻止できず、土壁の吸湿機能のもたらす湿度調節の効果を好適に維持できない。更に、建物内の空気循環の流路の確保並びに流路内の流通の制御が困難である。それで、湿気の供給及び吸湿促進、並びに、冷却エネルギーの供給及び吸収促進を好適に制御できない。結局、地熱の供給による冷却エネルギーの利用が出来ず、相対湿度の変化及びH2Oの相変化による吸湿促進を図れない。吸湿及び液化の促進、並びに、吸湿とH2Oの相変化との連携の比率、更に、吸放湿の方向については、全ては自然の通風による風任せに終わり、それが、屋内環境改善の限界である。
夏季に吸放湿とH2Oの相変化との連携により温度上昇を抑える効果を現す半面で、冬季に吸放湿とH2Oの相変化との連携により熱損失を被る場合がある。その熱損失を阻止する為には、建物内の空気循環の流路の確保並びに流路内の流通の制御が必要である。しかし、好適に制御できず、熱損失は免れない。あるいは、断熱性に背反する伝熱性の創出を促進する結果、夏と冬との間に生じるエネルギー移動の断熱層内での逆転を阻止する手段が必要であるが、簡単な工夫で阻止できる、換言すると断熱性に背反する伝熱性の創出を抑制する手段はこれまで提供されていない。否、断熱性に背反する伝熱性の創出について想到せず、更に、促進・抑制という制御について課題として想到せずというべきである。(技術水準との比較で、自明でもなく、容易に着想し得ない新規な課題である。)
ところで、特開平6−3000386号(特許文献11)に開示の通り、「水の蒸発する際に生じる気化熱を利用して、太陽熱の輻射熱による住宅の小屋裏内の温度上昇を抑え、それを室温上昇の抑制に繋げ、エアコンの冷房効果を高めることを目指す」小屋裏排熱方法が提供された。
前記発明は、「水分を吸収及び放出する吸放湿材を小屋裏に内装しておき、夜間に小屋裏をファンにより強制換気して、外気に含まれる水分を吸放湿材に吸収させ、昼間に、小屋裏をファンにより強制換気して吸放湿材に吸収させた水分を気化させ、水分の気化潜熱により小屋裏を冷却する」ことにある。
「要するに、水分の気化には多量の熱が必要であるから、気化潜熱による小屋裏の冷却能力は極めて高く、たとえ夏季であっても、太陽の日射による小屋裏の温度上昇を十分に抑制でき、室内の温度上昇を十分に抑制できる。」
その結果、初期の目的である室内でのエアコン使用に伴う省エネルギー効果は上げられる。概ね、10%程度の消費エネルギーの削減効果を示している。只、吸放湿材からの放湿が、液体状のH2Oの相変化によりもしくは気体状のH2Oの放出されたものかのいずれであるかによって、気化潜熱の効果で冷却能力を得られるか否かが定まる。そこら辺りが判然としていないのも難点である。
但し、吸放湿とH2Oの相変化との連携の下に、屋内の湿気を液化により吸収し、且つ、屋内で供給された冷却エネルギーを移動(伝熱)して、気化熱により太陽熱エネルギーを吸収し、湿気の形で排熱し、結果として、屋内の湿気を屋外に排出して除湿し、遮熱する機能を備えるに至っていない。
高気密・高断熱住宅に限らず、夏の高温・多湿の地域では、不快指数が高く、過ごしづらい。そこで、温度調節のみならず、一般的に除湿機・エアコンの除湿機能を用い、電気エネルギーを消費する形で室内空間の湿気を取り除いている。しかも、エアコンに依存して除湿する場合、冷房に比較して電気エネルギーの消費は多い。更に、除湿に伴い、水と凝縮熱を生成する。この凝縮熱は都会におけるヒートアイランド現象の一要因でもある。
さて、エアコンを用いた室内の温度調節の際は、室内に冷気を導入し、室内の熱気を屋外に排出する。この場合、室内に導入された冷気はいずれ屋外に排出され、先に排出された熱気と融合する。それで、排出した熱気の環境に及ぼす影響は中立的である。只、エアコンの稼動の為に消費するエネルギーの影響は残る。
湿度調節にエアコン等の除湿装置を用いると、空気中の湿気を液化する際に凝縮熱を生じる。つまり、室内の湿度調節を行なう際、エアコン等の稼動の為に電気エネルギーを消費するのみならず、水と凝縮熱を生成し、屋外に排出される。それで、周囲の環境に影響する。それは、社会問題化しているヒートアイランド現象を助長する要因となっている。結局、エアコンを利用する場合、湿度調節が温度調節よりも環境に及ぼす影響は大きい。それで、屋内の湿度調節に関し、部分的にせよエアコンの機能に代替できれば、環境負荷を軽減することができる。
壁体内空気循環システムを利用するにしても、春夏秋冬のスパンで見れば、夏の間は、屋内外の湿度は高く、構造材・仕上げ材に用いる木材・土類の吸放湿材は湿気を吸収するのみである。しかも、含水率と平衡含水率と間の乖離はいずれ消滅し、吸湿余力は無くなる。冬の間は、屋内外の環境は乾燥し、吸放湿素材は逆に湿気を放出する。それで、夏季の間に溜められた屋内の湿気の一部は壁体内空気循環システムによって建物外に放出される。
室内の除湿を行なうに当たり、一部は構造材・仕上げ材に用いる木材・土類の吸放湿の季節的変動を利用して建物外に放出されるにしろ、大部分は除湿機・エアコンの除湿機能により、電気エネルギーを消費して行なわれる。その際、生成される凝縮熱の排出は避けられない。しかも、除湿装置は大半夏季の昼間に稼動される。それで、冷房の需要の多い時期に重なり、夏季の昼間の電力需要は極端に大きくなる。昼間の除湿装置の稼動を避けられれば、電力需要の平準化に貢献する。
最近の高気密・高断熱住宅は24時間換気システムが必需品である。そして、換気の際に湿気の除去を行なう機能を備える全熱交換式換気扇を用いられる。それは、外気を取り入れる際に熱交換を行い、それと同時に湿気の除去を行なうものである。只、排気・給気の単純な換気に比較すれば、エネルギー消費は増加する。しかも、全熱交換式換気扇は、温暖・湿潤地においてそれだけで温湿度に関し、好適な室内環境を作り出せるほどの性能を備えていない。そして、必要不可欠の換気機能に湿度調節の機能を促進する効果が現れる程のシステムの向上に至っているわけでもない。
壁体内二重通気システムが開発され、そのシステムを利用した様々な方法が開発・提案されてきた。一つの方向として、内側の通気層(インナーサーキット)を空気の通気手段としてのみでなく、 (イ) 換気システムの一部を構成し、(ロ) エネルギー供給上の流路並びに流通を確保し、(ハ) エネルギー移転並びにエネルギー変換の機構の一部として活用される。建築的工夫に依存して建物の働きを高める代表的なものである。
特許第2905417号公報(特許文献12)に開示の通り、屋内外の換気の手段を冬季の暖房システムと一体化しながら運用する方法が提供された。具体的には、「空気循環建物は床下全体を建物全体で共通の空気の流通空間とし、この床下空間から空気を上昇させるようにして壁体の内側及び各室内内に空気を流通させる。」そして、「内壁部に設けた開口部は室内内にエアーを流入させるためのもの」と。
ところで、この記載の通り、天井裏空間は空気の流通路を構成していない。それは、以下の様な事情による。夏季の太陽の日射により取得される熱エネルギーの天井裏の断熱材への蓄熱の結果生じる輻射熱の天井裏空間への影響により、床下空間から流通する冷気を天井裏空間まで維持・流通するのが難しいという事情があるからである。あるいは、普通に換気機能のみを期待する場合、流通する空気は、天井裏空間を経由する過程で先の輻射熱の影響を受けて暖められ、それが室内に流入し、室内の温熱環境の悪化を招くからである。更に、開発された地域の気候特性から、夏季に求められる効果よりも、冬季に求められる効果の方が重要視されたからである。
それは、結局、前記空気循環建物は換気の手段を冬季の暖房時のエネルギー移動・エネルギー移転と連携して効果を上げることを目指すものであって、夏季の冷房時に効率的にエネルギー移動を行なうことに効果を上げることを目指すものではないからである。しかしながら、夏季の対策が全く不要であるわけではない。本来、壁体内を利用した空気循環システムは天井裏空間を含めて空気の流路として活用するものである。しかし、従来の方法では夏季の効率を考慮すると、天井裏空間での太陽熱エネルギーの影響を軽減することは重要である。それで、軽減する為の妥協の産物ではあるが、天井裏空間を流通空間から除外する手段として、空気が室内空間へ流入するための開口部の設置場所は天井部を除外し、内壁部が選択された。それで、床下空間から壁体の内側通気層及び室内空間に至る空気の流路を形成し、天井裏空間を経由した場合に比較しての熱損失を軽減しようとするものである。
以上を裏付ける様に、文献の図1では、内側通気層と天井裏空間は連通していない。特許請求の範囲並びに発明の詳細な説明の項目に具体的な記述は無いものの、図1の表記では、内側通気層と天井裏空間との間を隔てる壁が設けられている。この壁によって、内側通気層と天井裏空間との間の空気の流通は阻止されている。
但し、手段について技術的に確立していないのか、特許請求の範囲に室内に流入する開口部(連通口)の記載は見られない。それで、天井部に開口部を設けることも許容される。その場合、先に検討した様に太陽熱の蓄熱効果により、室内に流入する空気の温度上昇は一層避けられない。
ところで、これまでの空気循環の方法では、夏季にどの様な流路を選択するにしろ、太陽熱エネルギーの蓄熱の結果である輻射熱のもたらす熱損失を避けられない。それは、熱損失を小さくするために、天井裏空間への流通を避けたとしても同様で、東・西・南側の壁体を通じた熱損失は避けられないのである。しかも、開発された信州の地に比較して、温暖な地域では夏季の熱損失は更に大きくなり、夏季のエネルギー移動の手段の側面から見れば、上記空気循環の方法は不適である。更に、常温の空気を送るにしろ、冷気を送るにしろ、室内の温熱環境を良好に保つ上では不適である。
湿度調節に関しては、壁体内二重通気システムと全熱交換式換気扇との連携による除湿効果を狙っている。先に説明したように、全熱交換式換気扇は温湿度調節に関して好適な環境を実現できる能力を備えていない。そして、前記空気循環建物は温湿度調節に関して、全熱交換式換気扇の備える性能以上の性能を備えるに至っていない。
それを具体的に述べると、実用新案公報平5−38168号で開示された技術とエアサイクルの技術の流れで、壁体に二重通気層を備え、内側の通気層は空気を流通している。只、内側の通気層は換気のための空気の流路に活用されるものの、気密断熱層によって隔絶される外側の通気層との間に、その繋がりを断たれる工夫が重視され、その二つの通気層の間に補完的連携を創出・活用する発想・工夫は見出されない。
結局、温暖・湿潤の地域では大半をエアコンの除湿・冷房の機能に依存しなければ、昼夜を問わず、夏季の好適な屋内環境を実現できない。
さて、特許第2935942号公報(特許文献13)においても、前記空気循環建物と同様に、床下空間・壁内空間・天井裏空間は連通し、熱交換式換気扇を介して、屋内外の換気を行い、暖房時のエネルギー供給の手段とする方法が開示された。開示された技術には、遮熱対策に関する具体的な記述は無いものの、壁内空間と居住空間(室内空間)とを通じる通気口(連通口)は窓下部に設置されている。それで、空気の流路は連通する床下空間・窓下部の壁内空間・居住空間より構成される。それで、窓より上部の壁内空間は居住空間へ流通する流路から除外される。更に、居住空間に加えて天井裏空間の空気も熱交換式換気扇を介して屋外へ排気される。これは、前記の空気循環建物には見られない工夫で、天井裏空間に蓄積された熱気を新鮮な空気と一緒に強制的に屋外に排出し、屋根から被る熱損失を軽減し、太陽熱エネルギーの居住空間への影響を軽減するものである。この二つの手段によって、夏季の太陽熱エネルギーの屋根・壁体への蓄積によって生じる輻射熱の影響を軽減しようとするものである。
只、この技術では屋外から取り入れた酸素濃度の高い新鮮な空気を居住空間を経ずに排熱の目的から屋外に放出するので、換気の本来の目的からすると効率の面で不適である。その分、換気に要するランニングコストは上昇する。又、輻射冷房効果を実現する上でも不適である。しかも、外側通気層は形成されていないので、内側通気層と外側通気層との補完的連携による除湿・遮熱機構へと進展する余地は無い。即ち、断熱性に背反する伝熱性を創出し、屋内で吸冷・吸湿し、日射取得する太陽熱エネルギーを吸収し、外側通気層・屋根通気層(もしく小屋裏空間)を通じて屋外に潜熱の形で排熱し、除湿・遮熱の効果を実現するに至らない。
根本的な事情として、壁体に二重通気層は形成されていない。それで、外側通気層・小屋裏空間を通じた排熱の手段をもてない。排熱の手段を持たないと、日射される太陽熱エネルギーの蓄積効果である輻射熱の影響は大きい。それで、居住空間の温熱環境への影響を軽減する為には、天井裏空間から強制的な手段を用いて排熱せざるを得ないのである。換気と通気との連携による効率的な排熱の手段に見えるが、エネルギー消費の少ない送風機を別途設置し、外側通気層・小屋裏空間から排気・排熱の為に活用した方が断熱性に背反する伝熱性の創出を促す利用の方法に繋がり、効率はよい。
尚、前記二つの技術表記に当たり、特許請求の範囲に室内と壁内を連通する手段である連通口及び連通口を通じて壁内から室内に空気の流入する旨の記載は見られない。特に、後者においては室内へ流入する為の連通口のみならず、外部へ排出する路の形成上必要な吸気口及び排出路並びに外部から床下空間に給気する給気路について構成要素としての記載も見られない。
天井裏空間に冷媒を通じて冷却エネルギーを供給し、そこから冷却エネルギーを放出して、夏季の輻射冷房効果の実現を図る手段が提供されてきた。一つは、天井に面する配管装置に冷媒を通じ、熱交換によって冷気を供給する。二つは、天井裏空間に直接冷気を放出する。これは、エアコンの利用が典型的である。
さて、何れの方法による場合も、結露の問題は避けて通れない。天井裏という閉ざされた空間を冷房すれば、空気中の相対湿度は急上昇し、飽和点に容易に達する。それで、結露を避けることが重要となる。結露を避ける方法として、一つは、予め天井裏空間に除湿器を設置し、空気が飽和点に達しない様に除湿する。二つは、天井面に吸放湿材を用いて天井裏の湿気を取り除き、飽和点に到達するのを避ける方法である。三つは、予め調湿された空気を天井裏空間に送り込む方法による。(特開平4−90432号・特許文献7)
二つめの方法は、吸放湿材に吸湿されたとしても、湿気は屋内に留まった状態であるから、天井材の吸湿能力は季節の変わり目を迎える前に限界点を迎える。それで、除湿装置の機能を利用して吸放湿材から放湿し、又は、天井裏空間を除湿して、屋外に湿気を排出するしかない。それで、何れの方法も除湿装置の稼動は避けられない。その結果、冷房時の廃熱に併せて、除湿時に生成する凝縮熱も屋外に排出される。それは、ヒートアイランド化を一層助長するものである。
ところで、天井裏空間でエアコンから冷気を放出しても、冷却エネルギーを空気循環流路内で円滑に循環させることは簡単ではない。それは、先に説明した太陽熱エネルギーのもたらす熱損失に加えて、空気の循環流路内での気圧差が阻害要因となっている。
そこで、特開2003-120957号(特許文献14)に開示されたように、床下空間の空気圧を負圧に保つことによって、2階天井裏に設置されたエアコンから放出された冷気が壁体内空間を下降し、建物全体を循環できるようにしたものである。この技術によれば、冷房時に建物内の空気の循環を好適に確保出来るので、十分な冷却エネルギーを供給できれば、寒冷地では身体に優しい輻射冷房を利用することができる。
これは、冷房時の空気の循環を円滑に行なえるという観点では意義あるものであるが、それだけで、直ちに冷房効果が上がるわけではない。温暖地で冷房効果を上げられるには、太陽熱の蓄積の結果生じる輻射熱を抑えるために断熱材を冷やさざるを得ず、結局、社会的に電気使用量の多い夏季の昼間に大量の電気を消費し、大量に冷却エネルギーを供給せざるを得ない。又、床下空間と天井裏空間との気圧差を作り出すにも、送風ファンの駆動エネルギーを消費する。結局、 温暖・湿潤の地域で、太陽熱エネルギーの蓄熱の結果断熱材内で生じる輻射熱を抑制して、省エネルギーあるいは昼間の電力使用量の抑制を実現しながら、冷房の効果を効率的に得られる迄には至っていない。
更に、高気密・高断熱住宅に必要不可欠の換気の機能を備えていないので、別系統にしろ何らかの方法による換気の手段が必要になる。更に遡及すれば、送風ファンを用いて気圧差を作り出さないと、大量のエネルギー供給を円滑に行なうことができない。しかも、大量のエネルギー供給の為にエアコンを用いると、冷媒による冷却のために電気エネルギーを消費し、更に、屋外機を通じた排熱は昼間に集中するので、社会問題化しているヒートアイランド化を助長するものとなる。
その上、除湿に関してはエアコンの機能に全面的に依存するので、除湿の結果生成される凝縮熱の屋外への排出によるエネルギーの放出・移転は避けられない。それは、一層のヒートアイランド化を助長するものである。
何れも、日本国内の地理的条件で言えば、寒冷地に属する地域での発明であり、その地域特有の気候の下では有効なものである。気候的特性から、断熱気密は、寒さ対策に重点をおいた温度管理の重要な手段であった。
冬季に限れば、寒冷地に限らず、温暖な地域でも最良の選択である。しかし、夏季に限れば、それだけでは温度管理は十分ではなく、特に温暖な地域では、夏の強い日差しが直接照射される屋根、外壁の南面・東面・西面は日中の温度は60℃〜70℃に達し、その熱気をエネルギー源とする壁体等に発生する輻射熱は室内の温熱環境に多大の影響を及ぼしてきた。
何れにせよ、冬季に求められる断熱性能の高さ(熱貫流率の低さ)が逆に夏季には断熱材内における蓄熱効果を生み、輻射熱という厄介な存在を生み出す。それで、夏季の輻射熱対策は重要であるが、上記の発明では何れも、この輻射熱に対する対策は施されていない。その上好適な湿度調節並びに空気浄化の機能をも備えていない。
以上のごとく、IV・V地域の所謂高温・多湿の地域においては、夏季の湿気・猛暑対策が格別に重要である。夏に比較的に過ごしやすい北海道・信州とは比較できないほど重要である。
ところで、文献6及び7において、屋根面を介して集熱した太陽熱エネルギーを換気システムを介して冬季の暖房に利用する旨記載されている。只、寒冷地の大半の地域では、冬季の間積雪により屋根面に太陽熱を常時日射取得することは難しく、太陽熱エネルギーを安定して利用出来る地域は限られているのが実情である。それで、上記に示された換気システムを利用した冬季の省エネルギーの手法は、太陽熱を日射取得できない場合は効果を現すことは出来ない。
ところで、温暖地向けに比較すると寒冷地仕様として断熱性能の強化が必要で、求められている。一般には、断熱材の厚みを増すことで対処されている。只、その方法では、断熱材の熱還流率の数値に表される以上の性能を期待することは出来ない。又、断熱材を厚くすると、夏季に必要なエネルギー移動に支障が出てくる。それで、I・II・III地域の寒冷地では積雪時に相応しい断熱性能の向上に寄与する工夫が必要となる。
先の二つの発明では、壁体内は、通気と換気の機能を兼ね、エネルギーの流路並びに流通を担い、更に、エネルギー移動並びに変換の機構を担うことで、特色ある機能を備えるに至った。
ところが、実用新案公報平7−1367号に開示された様に、「断熱材の使用は、気密・断熱を図る上で目的とする二つの通気層の隔絶性を確保できるものとして使用された。それは冬季に特徴的な結露を防止するには、その源である湿気の侵入を阻止する」と言う意識を視野に考案されたものである。
以後、壁体内二重通気システムを採用した高気密・高断熱住宅は、結露防止というその発想の呪縛から逃れられずに今日に至っている。それで、吸放湿性が無く、透湿抵抗が高い、気密断熱性能の高い合成樹脂系のボード状の断熱材が暗黙の内に広く用いられてきた。
しかし、合成樹脂系の断熱材を用いて通気層を形成して、通気と換気の機能を兼ね、エネルギー移動の流路の役割を担う場合、夏季の夜間には新たに別の問題が生じる。床下空間に取り入れられた相対湿度の高い外気は、地熱の影響で冷やされ、露点に達し、床下で結露を生じやすい。しかも、輻射冷房を狙い、流路内にエアコンを設置して大量の冷気を生成・供給する場合は更に深刻となり、床下・壁体の通気層内で結露を生じやすくなる。
その解決策として、吸湿能力の高いシリカゲル等を流路内に設置して、床下空間内の除湿を行う。只、その効果は継続しないのが難点である。結局、エアコンの除湿機能に頼って除湿せざるを得ない。それは、除湿負荷の軽減に貢献できず、ヒートアイランド化を抑制する一助とはならない。
ところで、高気密・高断熱住宅の開発された寒冷地では、断熱性能の高さのもたらす寒さ対策が優先される地域の気候特性もあり、断熱性能の低下並びに結露の発生に対するリスクを侵してまで、吸放湿性を備える断熱材を使用する必要性が乏しいのが実情である。
それにも拘らず、そのリスクを抑えて、吸放湿性を備える断熱材を採用するメリットをもたらす要因の一つは「強制的に潜熱式の排熱」を行い、屋内での湿気の滞留による吸放湿材の含水率の上昇を抑制できる可能性を孕むところにある。その可能性とは、H2Oに屋内で液化に必要な冷却エネルギーを供給し、相変化を媒介する断熱材を経由すると、日射取得する太陽熱エネルギーをH2Oの気化によって吸収し、その際湿気という潜熱の形に閉じ込めて屋外に排熱することが出来る。結局、太陽熱を顕熱から潜熱の形に閉じ込めながら、屋内の湿気を屋外へ排出する手段を提供できる。(以後、気密断熱層で隔絶された内側を屋内、外側を屋外と称す)
只、その可能性は、昔から日本の住宅を蝕んできた「結露」を活用するところに開けてくる。そこが、現実の住宅の性能・耐久性の問題に止まらず、人間の意識の上で克服すべき課題を提供している。
前記の小屋裏排熱方法は、H2Oの相変化によって太陽熱エネルギーを吸収・潜熱化するというこれまでに無い発想に基づくものであり、多様な可能性を内包するものである。
只、発明の発想に「室内の湿度調節という意識が希薄であった」のと「断熱材は気密性と断熱性の面で隔絶するものという過去の呪縛」によって、屋内の湿気を建物外へ排出し、又、屋内で供給された冷気を伝熱し、屋内の除湿効果と遮熱効果を同時に実現できる機能を備えるに至らなかった。
更に付言すれば、H2Oの相変化に伴うエネルギー移転に対する「認識」の違いから来るものである。即ち、H2Oの相変化によって、熱の移転が伴うのであり、相変化を伴わない吸放湿は熱エネルギー移転を伴わない。しかも、吸放湿性を具備する断熱材が湿気を吸収した後に、湿気の状態を保つのか、あるいは、液化した水の状態を保つのかという認識も重要である。断熱材に湿気の状態で保持され、断熱材から湿気として放出されても、エネルギー移転は生じない。その場合、冷却効果は現れない。
冷却効果の現れるエネルギー移転を生じるには、液化の相変化を経ることが必要である。そこで、相変化を促進する上でも、液化の際に生じる凝縮熱の処理の問題が出てくる。
具体的に言及すると、ファンによる強制換気により、小屋裏空間からの吸湿は効率的に行われても、天井裏空間からの断熱材を通じた吸湿の効率を高めることに繋がっていない。しかも、屋内からの冷却エネルギー供給を通じ吸湿の際に吸冷する潜熱的蓄冷は、湿気の伝導性を利用して断熱性に背反する伝熱性の創出に繋っていない。これは、断熱材は気密断熱性能によって、それを境に隔てられた通気層相互間を断絶するものであるという過去の呪縛からくるものである。
更に、吸湿し相変化する際に生成される凝縮熱に対する対策が考慮されていない。
二つの通気層の補完関係を確保し・機能せしめるには、湿気の吸収を促す要因としての吸放湿材の平衡含水率と含水率の兼ね合い、そこからくる通気層内の相対湿度との関係をH2Oの相変化「液化・気化」によるエネルギー移転の枠内で十分に把握しなければならない。
しかし、その把握が十分でないままに、吸湿し相変化する際に生じる凝縮熱は、知らない内に結果として、放射冷却により温度低下した外気によって冷却され、相対湿度の上昇と相まって、湿気の吸収余力が生じてくる。それで、昼間の太陽熱により生じる輻射熱を抑制する為に必要な水分の補給は行われ、水の水蒸気に相変化する際に奪われる気化熱によって室温の上昇は抑えられ、不十分ながら、初期の目的・効果は得られる。
以上を裏付けるごとく、吸放湿材が湿気を吸収し、相変化する際に生ずる凝縮熱について並びにその対策について言及している文面は見当たらない。凝縮熱についての認識が十分でなければ、冷却エネルギーを活用した湿気の吸収促進並びに「液化の促進」という発想は出てこない。更に、屋内から供給・吸収される冷却エネルギーを、背反する伝熱性と断熱性を止揚して、屋外側から日射取得する太陽熱エネルギーを吸収し、屋外へ湿気の形での排熱に利用する発想は出てこない。又、冷却エネルギーの影響を避けながら、湿気の吸収を促進し、かつ「液化を抑制」すると言う発想も出てこない。
只、液化は所謂結露と同義語であり、日本の気候の特性に由来する結露に対する忌避・嫌悪からすれば、液化を作用として利用することが無意識の内に避けられたのは当然である。
更に、吸放湿は液化・気化と結び付けられる場合、吸放湿と液化・気化は同一視され易い。即ち、吸放湿とエネルギー移転とを未分離の状況の元で把握する傾向が強い。前記記載でも露呈しているけれども、「水」と言う言葉で気体状のH2Oと液体状のH2Oは混同して用いられている。これに限らず、これまでの技術では大半が混同したまま、あるいは明確に区別されずに論じられている。そして、何処からか生成・供給された液体状のH2Oは、蒸発する際に周囲から奪われる気化熱の利用に繋げられる。いずれにしろ、気体状のH2Oと液体状のH2Oとの区別を明確に出来ない段階では、屋内からの冷気供給を通じた液化及び屋外からの運動エネルギー取得を通じた気化を経たH2Oの相変化に伴うエネルギー移転を、背反する断熱性と伝熱性を止揚したエネルギー移動に利用する発想には至らない。更に言及すれば、断熱性に背反する伝熱性の創出を抑制もしくは促進する形で制御すると言う発想に繋がらない。
従来、湿気・化学物質等は珪藻土等の壁等の仕上げ材の機能を活かして、吸湿し、吸着させることで、室内の空気環境を良好に保つ工夫がされてきた。只、無限に吸収できるものではなく、更に、壁等が吸収したものの一部は再び居室に放出され、室内の空気は汚染されるので、必ずしも空気浄化に繋がらない。
国内の電力需給の現状について。発電の面では、そのエネルギーを原子力に依存する割合が高まっている。原子力に発電のエネルギーを依存するメリットとしては、化石エネルギーを燃焼する際に発生する二酸化炭素の抑制に繋がることである。それで、地域によっては、その割合は50%を超えている。
需給面では、民需全般に一日の内での使用量に偏りがある。又、季節的な要因によって、一日の内での電力消費量の偏りは一層大きくなる。具体的には、夏季の冷房・除湿の必要な時期・時間帯に消費量は増加する。
以上の様な事情により、昼間に比較すると夜間の時間帯に、発電に必要なエネルギーは余剰となっている。それで、余剰のエネルギーの利用を促進する為の工夫として、多額の費用を要する揚水発電所を設置し、電力の再利用が図られている。結局、消費量の少ない深夜電力の使用を促すことは、社会的レベルで見れば、電力消費の平準化に繋がるのみならず、余剰のエネルギーの効率的利用に繋がる。
凝固・融解の相変化による潜熱式蓄熱の方法は、熱伝導の効率・熱損失の抑制等を考慮して床暖房のエネルギー供給手段として実用化されている。具体的には、特開2000−240958号公報に記載の内容に提供されている。それは、深夜電力を利用して蓄熱し、昼間の通電しない時間帯に放熱し、暖房のエネルギーに利用するものである。社会的に余剰のエネルギーを安価に有効活用できる点では、社会的にも個人的にもメリットは大きい。
只、これまでの利用の方法では、エネルギー消費効率は良くない。それは、潜熱式の採用で蓄熱容量は増大するものの、空調システムとしてのエネルギー消費効率を向上させる意図・手段の構成に繋がっていないからである。
また、太陽熱の集熱・蓄熱に利用したものとして特開2002−195587号公報に記載の内容に提供されている。何れも、暖房専用である。冷房への利用が出来ないと、機器・装置の効率的な利用に繋がらず、最終的にはイニシャルコスト低減に繋げることが出来ない。
更に、夏季の冷房・除湿に必要な冷却エネルギーの安定した供給を深夜電力から確保する手段のシステム的構成は未だ提供されていない。又、氷蓄冷システムとの比較で言及すると、冷房の効果は得られるものの、本発明の除湿効果および遮熱効果による二重の意味でのヒートアイランド化抑制効果には及ばない。結局、エアコン・蓄熱体のいずれも、単なる「置換」によっては、際立って優れた効果・異質の効果を奏することは出来ない。
ところで、深夜電力の有効利用を図る上で、夜間に貯湯し、24時間を通じて給湯できるHP式給湯器の普及は重要である。只、従来は貯湯する際に、同時に生成する冷気は廃棄され、有効に利用されていない。それは、室内を冷房する手段として活用を図る場合、室内環境の冷え過ぎは避けられず、快適な環境とは必ずしも言えない、という問題を抱えているからである。しかも、空気熱から熱を分離して活用するヒートポンプ方式の仕組みから、屋内の空気熱を利用するに留まる限り、エネルギー消費効率の低下は避けられない。
この問題を解決するには、1に、給湯システムに冷気の供給を制御するシステムを付加するか、2に、貯湯時に絶えず供給される冷気を有効利用するかの何れかの方法を採らざるを得ない。1の方法は、屋内に設置する冷房用熱交換器とは別に屋外に熱交換器を設置して冷気を廃棄するか、又は、蓄冷するかの何れかである。只、屋外に冷気を廃棄する方式を兼用すれば、冷気の有効利用には程遠いものとなるものの、HP式給湯器のエネルギー消費効率の低下は避けられる。又、蓄冷し・利用するには、先に記した氷蓄冷の手段が開発されているものの、大掛かりな設備を要する。
尚、除湿装置を用いる際に生成される凝縮熱は、冷房時の廃熱と併せて屋外に廃棄される。これ等の熱エネルギーは利用されることなく廃棄されているが、この廃棄されるエネルギーを給湯システムに利用できれば、ヒートアイランド化の抑制に働き、しかも、給湯システムの省エネルギー性能を向上させることができる。
エネルギーの蓄暖・蓄冷及び蓄熱容量の確保の面で改善が見られる。特許第3049536号(特許文献15)の記載によれば、「床面からの放射熱により部屋を暖める床暖房構造であって、スラブ床と地表面との間に砂層が形成され、砂層に電気抵抗加熱パネルが、地表面に直接または地表面の近くで埋設されて所定個数敷設、さらに、電気抵抗加熱パネルと地表面との間に積極的な断熱層を形成させないで、砂層及び地表面下の地層に蓄熱層を形成可能」とするものである。
この手段の優れた点は、冬季は暖房の蓄熱・放熱の手段として地中を含めた容量の大きい蓄熱層を利用できるところにある。
この手段の問題点は、蓄熱層とスラブ床面との間に空間を設けることなく、砂層で埋め尽くされているので、建物の管理上に課題を残すものとなっている。
一つには、床下の点検が簡単に出来ないので、建物基礎内に含まれる砂層の状態を把握できない。床下での害虫の発生等の発見の遅れに繋がり、被害を未然に防止することが難しい。この点での、消費者への不安解消は難しい。一つには、水道・下水道の配管の保守・点検の問題である。漏水が生じても、簡単には発見できない。しかも、漏水が生じると、蓄熱層の作用・効果に影響するのみならず、発熱体の耐久性にも影響してくる。
更に大きな問題であるが、暖房時の電気使用に伴うエネルギー消費効率が極端に悪い。今日の省エネルギー追及の時代にあっては、好適な手段とは言えない。また、スラブ床面からの室内空間へのエネルギー移動の手段が伝熱を利用した放暖・放冷によるもので、そこから、そのエネルギー移動の量的制御あるいはエネルギー移動の有無の制御あるいは時間帯による制御の困難さを招き、大きな問題となる。
上記手段は暖房の手段としてしか把握されず、冷房のエネルギー供給・蓄熱の手段としての可能性に乏しい。本来、地中の冷気を利用できるのであるが、それを室内の冷房に好適に利用する手段が伴わない。更に、蓄熱層への冷却エネルギー供給手段が地熱に限られ、深夜電力利用のシステムへの進化が困難である。それは、エネルギー消費効率の改善以前の問題である。
特開2003−328464号 特開平8−193744号 特許第2585458号 実用新案出願公開昭63−58103号 特開平10−309458号 特開2002−371645号 実開平01−22918号 特開平04−90432号 特開2000−54518号 特許番号第2980883号特許公報 特開平6−3000386号 特許第2905417号公報 特許第2935942号公報 特開2003-120957号 特許第3049536号
吸放湿性を具備する断熱材は、吸湿が進み含水率が高まると、一般に断熱性能の低下が見られる。つまり、吸放湿性を有する物質の含水率の高さに応じて、熱還流率は高まるというものである。その要因として、H2Oの熱伝導の高さによるものと考えられてきた。それは、吸放湿材よりも熱伝導性の高いH2Oを吸放湿材中にたくさん含有すれば、それだけ熱還流率は高くなり、断熱性能は低下するというものである。(技術常識)
それに対し、H2Oの熱伝導の高さ以外に、H2Oの相変化に伴うエネルギー移転が影響するという「知見」を得るに至った。具体的には、「吸放湿材が湿気を吸収し、吸冷する際のH2Oの相変化に伴うエネルギー移転及び吸放湿材が熱エネルギーを吸収、気化・放冷する際のH2Oの相変化に伴うエネルギー移転を通してのエネルギー移動によって、断熱性能の低下即ち熱還流率の上昇はもたらされる。」という知見を得るに至った。
これは、表現を変えれば、断熱性に背反する伝熱性の創出である。そこから、断熱性に背反する伝熱性の創出を促進又は抑制するという制御の問題が吸放湿材を活用する上での新規な課題となる。
新規な課題を前提として、吸放湿材を、吸放湿とH2Oの相変化との連携の比率の高低によって分けられる。つまり、吸放湿とH2Oの相変化との連携の比率の低ければ、吸湿に伴うエネルギー移転は少なく、必然的にエネルギー移動も少ない。只、吸放湿とH2Oの相変化との連携に伴うエネルギー移転を介した断熱性に背反する伝熱性の創出を抑制できても、促進する能力は備えない。
それに対し、吸放湿とH2Oの相変化との連携の比率が高ければ、吸湿に伴うエネルギー移転の量は大きく、それに応じてエネルギー移動は大きくなる可能性を有する。只、それは悪までも可能性であり、その可能性を現実のものとするのは、熱エネルギーの供給及び吸収次第に掛かっている。つまり、吸放湿材の属性のみではエネルギー移動の大小は定まらない。
只、吸放湿材中のエネルギー移動を効率の面から考える場合、最初に行えるのは、吸放湿材の属性による選別である。その選別は、「吸放湿とH2Oの相変化との連携の比率の高低」により行い。更に、「湿気伝導率(透湿率)の高低」により行う。
ここに、エネルギー移動を促進又は抑制し、制御できる可能性が開けてくる。
一つは、「熱エネルギーの供給される側への液化したH2Oの移動を抑えることによって、エネルギー移動を抑制できる。」ことを課題とする。
二つは、「供給される熱エネルギーが大きければ、熱エネルギーは吸放湿材を透過して吸放湿材の反対側にまで供給することができ、それによってエネルギー移動を促進することができる。」ことを課題とする。
供給される熱エネルギーが大きくなければ、熱エネルギーは吸放湿材を透過せず、エネルギー移動を促進するとは限らない。それで、「液化したH2Oの移動を抑えることによって、エネルギー移動を抑制できる。」ことを課題とする。
「冬季、液化したH2Oの移動を抑えることによって、エネルギー移動を抑制しながら、断熱性能の低下を阻止することができ、その上、移動を抑制された液化したH2Oに吸湿・吸冷を受けた側から熱エネルギーを供給・吸収することにより気化・放湿して熱還流率で表される断熱性能を改善することができる。」ことを課題とする。
吸湿の際のH2Oの相変化に伴うエネルギー移転が効率よく進み、気化・放湿の際のH2Oの相変化に伴うエネルギー移転が効率よく進んだ場合に、エネルギー移転が同一の場所(側)で生じれば、エネルギー移動に繋がらない。エネルギー移動が抑制される例であり、断熱性能を表す断熱性能の改善に繋がる。
簡単な工夫により、H2Oの移動に大きな制限を加えずに、吸放湿とH2Oの相変化との連携に伴うエネルギー移転を介した断熱性に背反する伝熱性の創出を制御(促進・抑制)でき、抑制により熱損失の増大を防ぎ、更に、熱還流率に表される断熱性能を向上させることができ、促進により相対湿度の低い室内から吸湿・吸冷し、屋外に気化・放湿する。
その簡単な工夫は、一つは、吸放湿材に透湿率の面で制限を加え、液化したH2Oの移動を阻止することによる。二つ目は、二つの吸放湿材の間に透湿防水防風シートを用いて、液化したH2Oの移動を阻止することによる。三つ目は、二つの吸放湿材の間に空間を設けて、この空間により液化したH2Oの移動を阻止することによる。この異なる工夫は、供給されるエネルギーの大きく無い側からのエネルギー移動を抑制できることに効果を発揮する。
吸放湿材と透湿防風防水シートと吸放湿材とを三層に積層し、含水圧力差に伴い移動するH2Oの内の液体状のH2O移動を抑制する方向に働き、エネルギー移動を抑制し、太陽熱エネルギーの日射取得によりH2Oの相変化に伴うエネルギー移動を促進する形で、背反する機能を並存(有)し、かつ、用いる部位に応じて日射される太陽熱を受け入れてH2Oの相変化に伴うエネルギー移動の方向を制御でき、熱還流率を改善でき、含水率管理を好適にできることを課題とする。(請求項1)
前記吸放湿材の湿気還流率(透湿率)は、1g/m2・h・mmHg未満であり、日変動差を有し、H2Oの相変化(液化・気化)を媒介する積層パネルの吸放湿機能により屋内外から吸湿・吸冷し、日射取得する太陽熱エネルギーにより気化・放湿し、含水圧力差を拡大し、日変動差を越えた含水率の低下を促し、相対湿度の変動の範囲を超えて吸湿能力を回復できることを課題とする。(請求項2)
H2Oの相変化に伴うエネルギー移動の方向を制御できた上に、H2Oの相変化に伴うエネルギー移転の効率及び量を改善し、夏季の求められる除湿・遮熱効果、及び、冬季に求められる熱還流率の改善を更に効率よく得られることを課題とする。(請求項3)
H2Oの相変化(液化・気化)との連携の制約から離れた形で日変動差を有し、その上、含水圧力差を拡大し、物性に基づき確保された日変動差を越えて吸湿能力を回復できることを課題とする(請求項4)
断熱層内でのH2Oの移動とエネルギー移動との連動を制御(促進・抑制)できることを課題とし、夏季は除湿・遮熱の効果を得られ、冬季は熱損失の増大を防止し、断熱性能を向上できることを課題とする。(請求項5)
断熱層に断熱性に背反する伝熱性を創出し、除湿・遮熱の効果を得られることを課題とする。(請求項11)
断熱層に用いる吸放湿材に透湿率の面で制限を加えることで、冬季屋外からの夜間の冷気とともに吸収されたH2Oが断熱層を透過し、屋内側に移動する前に昼間の太陽熱エネルギーを日射取得して、屋外に気化・放湿し、屋内側での熱損失の増大を防ぎ、更に、熱還流率に表される断熱性能を改善することができることを課題とする。これは、屋内から供給される熱エネルギーは、日射取得できる太陽熱エネルギーに比較して圧倒的に小さいという事情も介在・影響している。(請求項11)
屋内の湿度に比較して屋外の湿度が高いにも係らず、湿気の逆流を阻止し、しかも、太陽熱エネルギーの日射取得により含水圧力差を拡大し、日変動差を拡大し、屋内の相対湿度の変動の範囲を超えて吸湿能力の回復を図り、屋内の湿度調節を好適に行えることを課題とする。(請求項11)
人為的手段を用いて屋内の除湿を行い屋内外に更に大きな湿度差が生じた場合でも、湿気の逆流を阻止し、除湿装置の除湿負荷の増大を阻止できることを課題とし、更に、夏季の夜間の屋内外からの吸湿・吸冷の効率を高めて放射冷却等の利用の効率を高め、湿度の低い室内から吸湿・吸冷し、昼間の太陽熱エネルギーを吸収できる容量を拡大し、即ち、断熱性に背反する伝熱性の創出を促進して湿度の高い屋外へ気化・放湿して含水圧力差を確保・拡大でき、しかも、併せてH2Oの移動を促進し、及び、吸湿能力を回復し、併せて得られる除湿・遮熱効果を更に高められることを課題とする。(請求項20)
含水率上昇時の恒常的な断熱性能の低下を防止し、含水率管理を好適に行うことを課題とする。(請求項9及び19)
吸放湿性の物質の含水率の高さに応じて熱伝導が高くなる要因は、H2Oの熱伝導の高さによるものと考えられてきた。(技術常識)H2Oの熱伝導の高さ以外に、「H2Oの相変化を介したエネルギー移動が影響する」という知見を得るに至る。そこから、相変化を介したエネルギー移動を抑制することにより、熱損失を抑えられることを課題とする。
吸放湿材を用いる場合、その吸湿の特性の違いによる吸放湿材の選別を適切に行えないと、狙いとする吸放湿性を利用した室内空間の湿度調節を好適に行うことが出来ない。
吸放湿材が液化を伴う場合、放湿の機能は様変わりする。具体的に示すと、湿気を吸収する際の相対湿度と平衡含水率の関係と湿気を放出する際の相対湿度と平衡含水率との関係とは本来一致すべきものである。ところが、液化・気化という現象が伴う場合は、事情が変わってくる。つまり、エネルギー移転とは無縁の概念である吸放湿にH2Oの相変化に伴うエネルギー移転が繋がり・連携してくるので、エネルギー移転の概念を抜きにして吸放湿の事象を正しく把握することは出来なくなる。その上で、エネルギー移転との関係が強くなる程に大きくなる吸湿の際の平衡含水率と放湿の際の平衡含水率との乖離を小さくしなければ、吸放湿特性を利用した湿度調節を好適に行うことが出来ない。それで、同じ相対湿度・同じ温度の条件の下、吸湿の際の平衡含水率と放湿の際の平衡含水率との間に生じる乖離を出来るだけ小さく(少なく)することを課題とする。更に、乖離を大きくすることを課題とする。詳細に説明すると、吸放湿の日変動差と年変動差の乖離の小さい吸放湿材を選定できることを課題とする。更に、吸放湿材に含水圧力差を確保することを課題とする。日変動差及び年変動差及び含水圧力差についての詳細は、段落0082を参照のこと。
内装材に吸放湿の日変動差と年変動差の乖離の小さい吸放湿材並びに含水圧力差の小さくない吸放湿材を選定して、1日24時間の内で生じる室内空間の相対湿度の変化に敏感に反応して、吸放湿を効率よく繰り返し、しかも、日変動差を確保した上に透湿率の高低による含水圧力差を確保し、日変動差と含水圧力差の補完による吸湿能力(相対湿度の変動を超えた)の回復を図れ、吸放湿材の吸放湿特性(日変動差及び含水圧力差に基づく)を利用した湿度調節を好適に実施し、外気に比較して快適な居住空間を日々実現できることを課題とする。
さて、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材にしても、日変動差と年変動差との間に乖離が見られる。その乖離を太陽熱エネルギーの吸収即ちエネルギー移転を通じて小さくすることを課題とする。
更に、1日の内の室内空間の相対湿度及び吸放湿材の平衡含水率の変化の範囲を超えて、吸放湿材の含水率を低下し、内装材の吸湿能力を回復することを課題とする。換言すると、吸放湿材相互の補完関係による湿気の移動及び太陽熱を源とする輻射熱の影響による気化・放湿を通じ、内装材の日変動差を超えた含水率の低下を促し、かつ、含水圧力差を拡大し、吸湿能力の回復を実現し、調湿能力・調湿効果の増幅を実現することを課題とする。
1日24時間の内の相対湿度の変化の範囲を超え・増幅された調湿能力を、夏季を通して保持し、快適な室内を夏季を通して実現できることを課題とする。
それらの課題は、技術水準(長い時間間隔で見たとしても、相対湿度の変化の範囲内で、対応する平衡含水率に基づき吸放湿し、吸放湿材の含水率は上下する。)からして自明でもなく、容易に着想しうるものではない。(課題の新規性)
先の新規な課題を基礎に、吸放湿材に吸湿と液化との連携の比率の低いものを用いることで、狙いとする吸放湿性を利用した室内空間の湿度調節を好適に行い、具体的には夏季も湿度70%以下を確保できることを課題とする。又、この高い調湿能力を簡単な工夫によって夏季を通じて維持できることを課題とする。
更に、先の新規な課題を基礎に、深夜電力の利用できる夜間のみに除湿装置の稼動を限定しながらも、除湿装置を稼動しない夏季の昼間に室内空間の相対湿度を60%近辺に保持することを課題とする。
太陽熱を日射取得できない北側の気密断熱層に吸放湿性を具備する断熱材を用いながら、含水率管理を好適に実施でき、その上、屋内からの吸湿・吸冷を断熱性に背反する伝熱性の創出により屋外から得られる太陽熱エネルギー等の顕熱の潜熱化に繋げて遮熱の作用効果を得られ、更に、室内の除湿効果を得られることを課題とする。
含水率管理の面で効率を上げ、しかも、冷気・湿気の供給を屋内だけでなく屋外からも受けて、遮熱の効率を向上することを課題とする。
屋内からの冷エネルギー供給の増加に対応して、夜間の屋外からの吸湿・吸冷を抑制することで、屋内からの吸湿・吸冷及び屋内から屋外へのH2Oの移動の効率を向上し、屋内の除湿効果を上げることを課題とする。
夏季は所定の除湿効果及び遮熱効果を上げられ、その上、冬季にそのリスクとして想定されている気密断熱層を通じた屋外から屋内への冷気の移動による熱損失を抑え、その上更に、夜間屋外からの吸冷によって液化したH2Oの移動を制御し、かつ、昼間の太陽熱エネルギーの日射取得によって気化・放湿し、断熱材の性能を具体的に表す熱還流率の数値以上の断熱性能を実現し、床下輻射暖房効果を実現することを課題とする。
含水率管理を好適に実施しながら、夏季は屋内からの冷エネルギーの供給増に対応して、屋内からの吸冷・吸湿の効率を向上し、及び屋内から屋外へのH2O移動の効率を向上し、及び昼間の屋外への気化・放湿の効率を向上して、屋内の除湿効果及び遮熱効果を更に高めることを課題とする。
季節間の地域の気候特性を加味しながら、風土の特徴を取り入れて空調システムの一部とする自然志向の空調システムから、設備機器を効率的に利用しながら環境と共生する形で輻射冷房・輻射暖房の効果を実現できる空調システムまで、住む人の好みに応じて多様な空調システムを選択できる、換気機能を備えた高気密・高断熱住宅を提供できることを課題とする。
各請求項の構成要素の課題を記すと。
1 夏季の含水率管理と冬季の結露防止及び熱損失の防止を両立。
2 含水率管理に日射取得する太陽熱エネルギーを活用。
3 夏季の遮熱機能の向上と冬季の断熱性能の向上を両立。具体的には、断熱材の属性である熱貫流率の数値以上の断熱性能を実現する。
4 気密断熱層を通じた冬季の熱損失を軽減。
5 含水率管理と屋内からの冷却エネルギー吸収の効率向上を両立。
6 含水率管理と屋内の除湿及びH2O移動の効率向上を両立。
7 昼間の遮熱及び夜間の除湿に必要な冷却エネルギー源に深夜電力を利用し、ランニングコストの低減及び省エネルギー効果を実現。
8 含水率管理と安価なエネルギーの安定供給を両立し、更に、夏季の輻射冷房効果及び冬季の輻射暖房効果を、エネルギー消費効率を高めて実現。
吸放湿材が湿気を吸収した後に、湿気の状態で保持され、湿気として放出されても、エネルギー移転は生じない。エネルギー移転の生じるには、液化の相変化を経ることが必要である。そこで、液化の際に生じる凝縮熱の処理の問題が出てくる。
又、H2Oの相変化を媒介する吸放湿材は、液化により液体状の水と凝縮熱を生成するが、壁体への液体状のH2Oの直接の供給・吸収に代わるものとして、湿気の吸収並びに冷却エネルギーの吸収を連携して行い、壁体での凝縮熱吸収及び水の生成に繋がる相変化である潜熱的蓄冷が重要となる。しかも、断熱材内での液化の促進は、液化に伴い生成する凝縮熱を処理できる冷却エネルギーの吸収促進に依存する。ところが、冷却エネルギーの伝導が緩慢な分、液化も緩慢で、吸冷を促進することは難しい。それで、効率的な潜熱的蓄冷を図ることが課題となる。同じく、吸放湿材を用いた内装材は、夜間の放射冷却により潜熱的蓄冷を行っている。
しかも、相変化を経て液化する際に生じた凝縮熱を吸収する為に投じられた冷却エネルギーの総量(放射冷却・地熱)の範囲内で、潜熱を利用した遮熱の効果を得られる。
断熱性と伝熱性という背反的性能を、吸放湿機能とH2Oの相変化(液化・気化)に伴うエネルギー移転との連携を活用することで止揚し、太陽熱エネルギーを遮熱する手段を提供することを課題とする。更に、吸湿に伴う含水率の上昇を抑えながら、遮熱に利用できるエネルギー移動の量を増加することを課題とする。
又、相対湿度に対応する平衡含水率と吸放湿材の含水率との差によって吸湿又は放湿するという技術水準に対し、吸湿が液化を伴う潜熱的蓄冷による場合、相対湿度の高低によって吸放湿する性質のものではない。冷気を潜熱的に吸収する際に、相対湿度の低い場合でも吸湿でき、冷気を吸湿・吸冷し、潜熱的に蓄冷するが、技術水準との関係では、相対湿度の変動の範囲を超えて吸湿・吸冷することができる。つまり、冷却エネルギーを活用した湿気の吸収促進並びに「液化の促進」という発想による効率的な潜熱的蓄冷を図ることが課題となる。
更に、吸放湿性を具備する断熱材に吸湿した場合の、断熱性能の低下についての指摘は重要である。つまり、吸放湿性を具備する断熱材への吸湿は、断熱性能低下を防止する観点からすれば避けるべきものである。
そこから、気密断熱層を通じた熱損失を軽減することを課題とし、夏季の遮熱機能の向上と冬季の断熱性能の向上を両立、具体的には、断熱材の属性である熱還流率の数値以上の断熱性能を実現することを課題とする。
そこから、出来るだけ含水率の上昇を避けながら断熱性に背反する伝熱性を保持するには、吸放湿とH2Oの相変化との連携の比率を高く維持することが重要である。連携の比率を高く維持するには、一つには、相変化を伴わない吸湿を抑えることが大切で、課題となり、一つには、吸湿の際に効率よく冷却エネルギーを供給・吸収し、液化を促進する。それで、液体状のH2Oを吸収でき、結露を起こさない断熱材(吸放湿材)を用いる。つまり、断熱材もしくは内装材に用いる吸放湿材の特性を把握し、取捨選択して用いる。その選別の基準は、吸湿時に液化を伴う比率が高いか低いかにある。それで、含水率管理と冷却エネルギー吸収の効率向上を両立することができ、及び、含水率管理を好適に実施しながら、夏季は冷エネルギーの供給増に対応して、吸冷・吸湿の効率を向上し、潜熱的蓄冷手段を冷却エネルギー移転に利用することにより遮熱効果を更に高めることを課題とする。
さて、先の液化は所謂結露の意味です。結露は、昔から建物に被害をもたらすものとして、忌避されてきました。それだけに、結露を作用として利用することには精神的な葛藤・飛躍が必要です。只、精神的葛藤・飛躍だけで済むものではありません。具体的には、断熱材を含めた躯体の含水率の上昇は避けられず、含水率上昇に伴う弊害に留意が必要です。
ところで、躯体の含水率上昇は、カビ・腐朽菌の繁殖を招きやすい環境を醸成しがちです。その意味で、含水率上昇は必ずしも好ましいものではありません。しかし、遮熱機構の効率的運用・稼働を図るには、含水率は高く維持せざるを得ません。言わば、二律背反性を内包しています。それで、躯体の含水率の上昇を抑えながら、つまり、躯体の含水率を好適に管理しながら、吸湿・吸冷の効率向上及び放湿・吸熱の効率向上とを連携し、当該機構の効率的運用・稼働を図ることは大きな課題となっている。
只、結露は避けるべきものとして強く意識されている。それ故逆に、結露=液化を作用として利用することに想到しない限り、新たに生じる新規な課題を着想することは難しい。更に、課題を解決するための手段に想到することは難しい。
しかし、吸放湿材の媒介する液化を作用として利用することにより、二律背反性を内包する躯体の含水率を好適に管理しながら、放射冷却・地熱・深夜電力利用のエアコンのもたらす冷却エネルギーを潜熱的に吸収し、潜熱的に蓄冷して吸湿・吸冷を促進し、相変化を経て液化する際に生じる凝縮熱を吸収するために投じられる冷却エネルギーの総量の範囲内で、即ち、潜熱的蓄冷手段を冷却エネルギー移転に利用することにより昼間に日射取得する太陽熱エネルギーを吸収し、顕熱を湿気という潜熱の形での放湿・吸熱の効率向上に繋げ、遮熱機構の効率的運用・稼働を図ることは大きな課題となっている。
前記高気密・高断熱住宅の気密断熱層において、屋根・壁に日射取得され・蓄熱される太陽熱エネルギーを、地熱・放射冷却をエネルギー源とするH2Oの液化・気化の相変化によって吸収し、湿気という潜熱の形で屋外へ排熱し、更に、太陽熱エネルギーによって生じる内外の相対湿度の高低差並びに気密断熱層の平衡含水率と含水率との乖離を利用して屋内の湿気を屋外へ排出し、気密断熱層との間の湿気・冷気のやり取りを制御「促進・抑制」することで屋内の空気環境を改善することを課題とする。
更に、建築的工夫を通じ断熱材の属性である湿気伝導率を超えて湿気移動の効率を高め、屋内側での吸湿・吸冷の効率向上と呼応して、含水率上昇を抑制しながら除湿・遮熱の効率向上を実現することを課題とする。
太陽熱エネルギーを日射取得できない北側の気密断熱層に吸放湿性を具備する断熱材を用いる際、含水率の好適な管理を実施しながら、屋内で吸湿し屋外へ放湿する吸放湿の方向性を制御出来、屋外から屋内への吸放湿の逆流を阻止できることを課題とする。
更に、屋内の相対湿度を屋外の相対湿度に比較して低く維持することが出来、しかも、簡単な工夫でその低い相対湿度の条件の下で屋内から吸湿し、屋外へ放湿する方向性を維持できることを課題とする。
前項に記載の湿気・冷気のやり取りの制御・促進にCOPの高いエアコンの供給する冷エネルギーを利用し、且、深夜電力主体で昼間の電気使用量を抑制しながら、遮熱・除湿効果及びエアコンの生成する凝縮熱削減効果と併せてヒートアイランド化抑制効果を上げ、その上で、顕熱的蓄冷の効果でエネルギー変換に繋げ、輻射冷房効果を実現する。更に、深夜電力に限定してランニングコストを軽減しながら、輻射冷房効果を24時間・安定的に実現することを課題とする。
24時間給湯に利用できる熱エネルギーを生成する際に付随して生じる冷却エネルギーを屋内への冷気の供給に利用することで、屋内の冷房・除湿の際に生成・廃棄する熱エネルギーを削減し、ヒートアイランド化抑制の一助とし、更に、HP式給湯器のエネルギー消費効率の低下を避けながら、給湯システムの省エネルギー性能を向上することを課題とする。併せて、深夜電力の有効利用との両立を課題とする。
屋根体の遮熱システム(潜熱利用)の好適な実施には十分な断熱性及び伝熱性によって吸収できる十分な冷却エネルギーを必要とする。しかも、その効果を実現するには、図2又は3に示す様に構造上並びにエネルギー使用の面でコストアップ要因となる。図1に記載のごとく構造的に簡易な手段を採用すると建築コストは削減できるが、遮熱システムから漏れて断熱材を透過する太陽熱エネルギーは増加し、屋内の冷房負荷も増大する。その様な状況の下、遮熱システムと換気システムとの組み合わせの工夫によって、潜熱式の排熱を実施しながら先の透過する太陽熱エネルギーを顕熱の形で効率的に建物外に排出し、昼間の冷房負荷の増大を抑えることを課題とする。只、換気の主たる目的は新鮮な空気を取入れ、室内の酸素濃度を保つことに在る。この目的を効率よく果たし、その上で、蓄熱システムとの連携及び壁体の遮熱・除湿システムとの連携を好適に実施し、地熱・放射冷却の自然エネルギーに加えて深夜電力を利用して屋内の空気環境(温度・湿度・酸素濃度等)の改善を冬夏を通じて低コストで実現でき、更に、屋内の除湿の際に生成する凝縮熱を縮減して、ヒートアイランド化抑制の一助とすることを課題とする。
夏季における気密断熱層の除湿・遮熱機能を利用した高効率の輻射冷房システムを実現するに当たり、冬季に期待される輻射暖房効果の効率的実現を見据えたリスク管理をバランスよく行なうことを課題とする。
エアコン等の空調機器の省エネルギー性能は高まり、それに伴い住宅にも高い省エネルギー性能を求められる。高気密高断熱住宅はその流れに沿うものである。只、地熱・放射冷却・太陽熱等の自然エネルギーの有効利用を図りながら、補完的に空調機器を用いる場合、必ずしも省エネルギーに繋がらず、冷房負荷・除湿負荷の増大する場合がある。それは、凝縮熱の生成の増大に繋がり、ヒートアイランド化の助長に繋がる。そこで、自然エネルギーを有効活用しながら、冷房負荷・除湿負荷の増大を招かず、凝縮熱生成の増大に繋がらず、建築的工夫を最大限追及してエアコン等の空調機器を活用でき、省エネルギーを追求・実践できる新規な課題を提起する。更に、深夜電力の活用を図ることを課題とする。
その課題を解決するために更なる新規な課題を提起する。それは、相対湿度の低い側から吸湿し、吸放湿材を介して相対湿度の高い側に湿気を移動(伝導)し、放湿できることを課題とする。逆も真なりで、相対湿度の高い屋外側から相対湿度の低い屋内側への湿気の逆流(浸入)を阻止できることを課題とする。
地熱の影響で相対湿度は高止まりし、結露発生のリスクの高い床下空間での結露の発生を抑制することを課題とする。
その課題を達成するため、通風による湿気の排出路、吸放湿を利用した湿気の排出路、エアコンの除湿機能を利用した排出路を形成することを課題とする
先の課題を解決する手段として、本発明は次の構成を行なう。
第一に、吸放湿材と透湿防風防水シートと吸放湿材とから構成されることを特徴とする吸放湿パネル。
第二の構成は、前記吸放湿材の少なくとも一方(B面)の吸放湿材の湿気還流率(透湿率)は、1g/m2・h・mmHg未満であり、日変動差を有することを特徴とする請求項1に記載の吸放湿パネル。
第三の構成は、前記吸放湿材は、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いることを特徴とする請求項1又は2に記載の吸放湿パネル。
第四の構成は、前記吸放湿材の一方(B面)は、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用いることを特徴とする請求項1又は2又は3に記載の吸放湿パネル。
第五の構成は、図1又は図2又は図3又は図15又は16に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに断熱層を具備する屋根体・壁体から構成され、天井と内壁と床により室内空間を構成し、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、地熱・放射冷却のエネルギー、夏季の暖気、太陽熱エネルギーの日射に曝される建物であって、屋根体及び/又は壁体の少なくとも一部に、請求項1に記載の吸放湿パネルを、A面を屋外側にB面を屋内側に用い、吸放湿パネルは、H2Oの相変化(液化・気化)を媒介する吸放湿パネルの吸放湿機能により屋内外から吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側を除いた吸放湿パネルは、日射取得される太陽熱エネルギーを吸収し、湿気という潜熱の形に閉じ込めて屋外に排出することを特徴とするエコ住宅。
第六の構成は、屋根体及び/又は壁体の少なくとも一部に、請求項2に記載の吸放湿パネルを用いることを特徴とする請求項5に記載のエコ住宅。
第七の構成は、屋根体及び/又は壁体の少なくとも一部に、請求項3に記載の吸放湿パネルを用いることを特徴とする請求項5に記載のエコ住宅。
第八の構成は、屋根体及び/又は壁体の少なくとも一部に、請求項4に記載の吸放湿パネルを用いることを特徴とする請求項5に記載のエコ住宅。
第九の構成は、前記吸放湿パネルは、北側を除いた屋根体及び/又は壁体に用いることを特徴とする請求項5から8の項に記載のエコ住宅。
第十の構成は、前記吸放湿パネルを屋根体及び/又は壁体の少なくとも一部の断熱層に用い、少なくとも一部の当該断熱層の屋外側に外気に通じる屋根通気層及び/又は外側通気層を設けることを特徴とする請求項5から9の項に記載のエコ住宅。
第拾壱の構成は、図1又は図2又は図3又は図15又は16に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに断熱層を具備する屋根体・壁体から構成され、天井と内壁と床により室内空間を構成し、外気に通じる屋根通気層及び/又は外側通気層を少なくとも東西南面の屋根体及び/又は壁体の一部に設け、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、地熱・放射冷却のエネルギー、夏季の暖気、太陽熱エネルギーの日射に曝される建物であって、少なくとも東西南面の前記屋根体及び/又は壁体の断熱層の少なくとも一部に、湿気還流率(透湿率)は1g/m2・h・mmHg未満であり、日変動差を有する吸放湿材を用い、吸放湿材は、H2Oの相変化(液化・気化)を媒介する吸放湿材の吸放湿機能により屋内外から吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側を除いた吸放湿材は、日射取得される太陽熱エネルギーを吸収し、湿気という潜熱の形に閉じ込めて屋外に排出し、室内の調湿に必要な吸湿能力を回復することを特徴とするエコ住宅。
第拾弐の構成は、図1又は図2又は図3又は図15又は16に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに断熱層を具備する屋根体・壁体から構成され、天井と内壁と床により室内空間を構成し、天井裏空間及び/又は内側通気層は、開閉式換気口により外気に開放され、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、地熱・放射冷却のエネルギー、夏季の暖気、太陽熱エネルギーの日射に曝される建物であって、屋根体及び/又は壁体の内装材の少なくとも一部に、湿気還流率(透湿率)は1g/m2・h・mmHg未満であり、日変動差を有する吸放湿材を用い、吸放湿材は、H2Oの相変化(液化・気化)を媒介する吸放湿材の吸放湿機能により屋内外から吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側を除いた吸放湿材は、日射取得される太陽熱エネルギーを吸収し、湿気という潜熱の形に閉じ込めて屋外に排出し、室内の調湿に必要な吸湿能力を回復し、換気・通気することを特徴とするエコ住宅。
第拾参の構成は、図1又は図2又は図3又は図15又は16に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに断熱層を具備する屋根体・壁体から構成され、天井と内壁と床により室内空間を構成し、構造耐力を備え、基礎・断熱層を境に屋内と屋外は隔てられ、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、地熱・放射冷却のエネルギー、夏季の暖気、太陽熱エネルギーの日射に曝され、建物内に調湿手段を備える建物であって、断熱層の屋内側に天井・内壁の少なくとも東・西・南面の少なくとも一部の内装材により天井裏空間及び/又は内側通気層と室内空間を区画され、前記調湿手段は、天井裏空間及び/又は内側通気層の空気と室内空間の空気に接し、湿気還流率(透湿率)は、1g/m2・h・mmHg未満であり、日変動差を有し、吸放湿性を具備する内装材と、吸放湿性を具備する内装材によって室内空間から隔てられ、天井裏空間及び/又は内側通気層の空気に接する内装材以外の吸放湿材と、により補完的連携を形成され、内装材の少なくとも一部は、吸放湿材を用い、H2Oの相変化(液化・気化)を媒介する吸放湿材の吸放湿機能により吸湿・吸冷し、輻射熱による気化・放湿及び前記補完的連携による湿気の移動を通じ、内装材の含水圧力差を拡大し、日変動差を越えた含水率の低下を促し、吸湿能力を回復できることを特徴とするエコ住宅。
第壱四の構成は、図1又は図2又は図3又は図15又は16に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに断熱層を具備する屋根体・壁体から構成され、天井と内壁と床により室内空間を構成し、構造耐力を備え、基礎・断熱層を境に屋内と屋外は隔てられ、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、地熱・放射冷却のエネルギー、夏季の暖気、太陽熱エネルギーの日射に曝され、建物内に調湿手段を備える建物であって、断熱層の屋内側に天井・内壁の少なくとも一部に内装材により天井裏空間及び/又は内側通気層と室内空間を区画され、前記調湿手段は、天井裏空間及び/又は内側通気層の空気と室内空間の空気に接し、湿気還流率(透湿率)は、1g/m2・h・mmHg未満であり、日変動差を有し、吸放湿性を具備する内装材と、吸放湿性を具備する内装材によって室内空間から隔てられ、天井裏空間及び/又は内側通気層の空気に接する内装材以外の吸放湿材と、により補完的連携を形成され、内装材の少なくとも一部は、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、H2Oの相変化(液化・気化)を媒介する吸放湿材の吸放湿機能により吸湿・吸冷し、輻射熱による気化・放湿及び前記補完的連携による湿気の移動を通じ、内装材の含水圧力差を拡大し、日変動差を越えた含水率の低下を促し、吸湿能力を回復できることを特徴とするエコ住宅。
第壱五の構成は、棟換気口・屋根通気層及び/又は外側通気層を備え、前記棟換気口もしくは送風ファン付棟換気口により外気に開放され、前記内装材以外の吸放湿材は、少なくとも吸放湿性を具備する断熱材であり、屋根体及び/又は壁体を構成する断熱層の少なくとも一部に用いられ、吸放湿性を具備する断熱層は、H2Oの相変化(液化・気化)を媒介する断熱材の吸放湿機能により屋内外から吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側を除いた断熱層は、日射取得される太陽熱エネルギーを吸収し、湿気という潜熱の形に閉じ込めて屋外に排出することを特徴とする請求項13又は14に記載のエコ住宅。
第壱六の構成は、床により室内空間と区画される床下空間と前記内側通気層及び天井裏空間は連通し、前記内側通気層もしくは天井裏空間の何れかと室内空間とを連通口により連通し、前記建物外と室内空間とを排気用連通管により連通し、前記建物外と床下空間とを給気用連通管により連通し、前記排気用連通管及び給気用連通管は送風機能を具備する全熱交換式換気扇に連通し、前記排気用連通管の一端を便所・浴室・押入を含む各居室に連結して建物外に排気し、前記給気用連通管を通じて外気を取入れることを特徴とする請求項10又は11又は15に記載のエコ住宅。
第壱七の構成は、断熱層の屋外側に設置の屋根通気層及び/又は外側通気層は、天井裏空間及び/又は内側通気層に連通し、集熱された太陽熱エネルギーを、北側の天井裏空間及び内側通気層を通じて下降する空気とともに床下空間に流通・放熱し、土間コンクリートに蓄熱することを特徴とする請求項12から15の何れかの項に記載のエコ住宅。
第拾八の構成は、内壁・天井により天井裏空間及び/又は内側通気層は室内空間から区画され、断熱層の屋外側に設置の屋根通気層及び/又は外側通気層は、天井裏空間及び/又は内側通気層に連通し、集熱された太陽熱エネルギーを、北側の天井裏空間及び内側通気層を通じて下降する空気とともに床下空間に流通・放熱し、土間コンクリートに蓄熱することを特徴とする請求項10又は11に記載のエコ住宅。
第壱九の構成は、前記吸放湿材は、北側を除いた屋根体及び/又は壁体に用いることを特徴とする請求項11又は12又は13に記載のエコ住宅。
第弐拾の構成は、前記吸放湿材は、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いることを特徴とする請求項11又は12に記載のエコ住宅。
吸放湿手段は、柱・土台・梁・桁・間柱等の構造材に吸放湿性を具備する無垢材・集成材を用いる構成によって得られる。又、断熱層に吸放湿性を具備する断熱材を用いる構成によって得られる。又、天井・内壁・床に吸放湿性を具備する内装材を用いる構成によっても得られる。更に、天井裏空間・内側通気層・床下空間の流路内の何れかに吸放湿性の物質例えばシリカゲル・炭等を用いる構成によっても得られる。あるいは、除湿装置を用いる構成によっても吸湿手段は得られる。
吸放湿手段は、吸湿・放湿の方向性を制御し、及び、H2Oを保持する構成によって得られる。更に、断熱性に背反する伝熱性の創出を制御(促進・抑制)する構成によってエネルギー移動及びH2Oの移動を制御する構成を得られる。
蓄熱手段は、躯体への蓄熱及び躯体から放熱する構成によって得られ、輻射熱の発生手段へのエネルギー変換を伴う顕熱的蓄熱手段と成る。躯体への蓄熱は、構造材・内装材・断熱材・基礎土間コンクリート等に依る。又、蓄熱(冷)時の吸湿と液化の相変化との連携によって潜熱的蓄熱(冷)手段と成る。更に、凝固・融解の相変化によって蓄放熱する構成により得られる。
蓄熱体を構成し、相変化を生じる蓄熱材としては、塩化カルシュウム6水塩、硫酸ナトリュウム10水塩等が知られている。前記の蓄熱材は、融解温度以上の温度で液状になるので、伝熱性の密閉容器に封じ込めて蓄熱体を構成する。
蓄熱体は、エアコンから放出される対流エネルギーからエネルギーの供給を受けるので、エアコンを設置する床下空間、天井裏空間に設置するのが望ましい。又、設置する際に蓄熱体の上下に隙間を確保する。但し、土間コンクリート・地中を蓄熱層として活用する場合、土間コンクリート上に敷き置きする。
深夜の時間帯は、各電力会社との契約内容によって変わる。普及している時間帯は、夜の22時から翌朝8時まで利用できる内容である。又、夏季の昼間の時間帯の料金は割高に設定されている。深夜料金との比較では概ね5倍に達する。
尚、蓄熱暖房機は、エネルギー供給手段と蓄熱手段を兼ねるので、深夜電力を利用した暖房システムを簡便に実施できる。室内に設置するのが一般的な使用法であるが、装置を床下空間に設置して、床下輻射暖房効果を得る道もある。効果を実現できるか否かの鍵は、断熱・気密性能の高さとエネルギーの壁体内を通じた安定した流通・供給及び躯体への蓄熱にある。
さて、蓄熱・放熱に介在する地熱・放射冷却・太陽熱・暖気は作用を及ぼす構成を待って相変化を誘引する。具体的には、吸放湿性を具備する断熱層は、H2Oの相変化(液化・気化)を媒介する断熱材の吸放湿機能により屋内外から吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側を除いた断熱層は、日射取得される太陽熱エネルギーを吸収し、湿気という潜熱の形に閉じ込めて屋外に排出する。
壁下地材は、柱・土台・桁・間柱の構造材(無垢材又は集成材)から構成され、内壁の内装材又は天井の内装材に吸放湿性を求める場合は、両面ともに吸放湿性を備える杉板・檜板もしくはプラスターボード下地に珪藻土塗り仕上げ・プラスターボード下地に紙クロス等或いは断熱層の現わし仕上げとする。全ての内壁面を吸放湿材で施工する必要は無いものの、出来るだけ多くの面積に渡り施工し、室内と天井裏空間及び/又は内側通気層との間に湿気のやり取りの可能な構成とする。尚、構造材に吸放湿性を求めない場合、鉄骨材を用いるも可能。
吸放湿材としての杉板は、吸湿・保水能力は高い。只、湿気の透過する能力は高くない。ところが、無垢材は、柾目面に比較して木口面の湿気透過能力は10倍以上に達する。そこで、板材の表面に溝を刻み込む。刻み込みを入れることで、木口からの高い吸湿能力を活かし、杉板全体の吸湿能力を高めることができ、しかも、湿気の透過する速度を向上することができる。
尚、プラスターボードは、吸放湿とH2Oの相変化との連携の比率の低い吸放湿の部類に入るか否かは定かでないが、屋外から取得できる輻射熱の働きを勘案すれば、気化・放出はスムーズに行われ、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材として用いることができる。
(1)外断熱工法の一層の断熱材の施工に関して。
軸組みの外側に板状断熱材を一層に貼り並べ、板状断熱材どうしの接合部は気密テープにより密着し、気密性の確保を図る。柱・間柱の位置に胴縁を打ちつけ、外壁を施工すれば、外壁通気層が出来上がる。更に、透湿抵抗の高い防湿シートを板状断熱材の屋内側に、もしくは、透湿抵抗の低い透湿防水シートを屋外側に積層する。尚、断熱材と断熱材との接合部は、相尺り加工したものを張り合わせれば、簡単に気密性を高められる。
屋根体の断熱層は、板状断熱材の一層構造とする場合、壁体の断熱層と同様の手順により形成・施工できる。
(2)外断熱の二層構造に施工する場合。
断熱層の断熱材を二層とする場合、一層目の断熱材は柱と柱との間に配置し、断熱材と柱・土台・桁との間は気密テープを用いて気密を確保する。その上、透湿防風防水シートで全体を囲み、気密性の向上を図る。最後に、二層目の断熱材を柱の外側に配置し、三層の積層構造とする。更に、二層目の断熱材相互の繋ぎ目を気密テープで塞ぐ。二層目の断熱材は、一層目の気密シートを外からの暑さ・寒さから保護する役割を果たし、耐久性を増すことで、長期間の性能の維持に貢献する。尚、一層目の断熱材を柱外に配設し、その外側に二層目の断熱材を積層しても良い。その場合、1層目の接合部と二層目の接合部(目地)は重ならないように注意する。
内側に杉板等の無垢材又は集成材を用い、外側に珪酸カルシュウム材等の吸放湿性を具備する断熱材もしくは吸放湿性を具備しない断熱材(合成樹脂系)を用いる場合も、二層又は透湿防風防水シートを加えた三層の積層構造とする。尚、内側の無垢材は、柱の間もしくは柱の外側に張設する。所謂板倉造りにする場合、公知の方法により施工し、外側の断熱材も柱間に張設できる。又、内側の無垢材に替えて合板を用いても良い。更に、外側に合板を用い、構造耐力を兼ね備えた構造用パネルに構成することもできる。内側の合板は化粧仕上げとし、あるいは、杉板材は内装材を兼ね、現わしとすることもできる。
外壁は、モルタル下地に吹付け塗装仕上げ又はタイル張り仕上げあるいは胴縁を下地に板張り仕上げ・サイディング仕上げ等が多い。
外壁下地材は竪胴縁からなり、断熱層の種類及び外壁によっては外側通気層を構成する。
天井裏空間と屋根通気層もしくは小屋裏空間とを隔てる断熱層についても、断熱材を二層にする場合、透湿防風防水シートを間に挟み、壁体と同様の手順により三層の積層構造に構成すると好適に実施できる。
さて、木造軸組工法では、古くから尺貫法により寸法取りが行われてきた。それに伴い、内装材のボード類・外装材のボード類・断熱材等は工場出荷時に910mm単位に加工・切断されている。そして、その寸法取りを採用することで、個別の施工現場における施工時の手間及び資材のロスを最小限に抑えることが出来る。
ところで、図9に示す様に壁体の二層の断熱材は施工時の寸法が異なる。それで、柱と柱との間の寸法にメーターモジュールを採用するにしろ、尺貫法の910mmモジュールを採用するにしろ、現場にて切断・加工しなければ、施工時に使用することが出来ない。
切断・加工に当たっては、合成樹脂系のボード状の断熱材は現場で比較的簡単に出来る。それに対して、珪酸カルシュウム系のボード状の断熱材は、現場での切断・加工時の扱いが比較的難しい。それに伴い、資材のロス及び手間のロスも増大する。施工効率を追求する上での障害となる。
さて、図9に示す、隣接する柱間の寸法をメーターモジュールにより1000mm確保する。そして、柱の隅を15mm分切り欠き、柱と柱との間の切り欠き部分に断熱材の両縁部をはめ込んで貼設するとすれば、その寸法は910mmとなり、尺貫法の910mmモジュールにより工場出荷された資材は現場で加工することなくそのまま使用・施工できる。しかも、柱の外側に貼設する断熱材は、メーターモジュールにより工場出荷された資材を現場で加工することなく、そのまま使用できる。その分、現場で作業工程は減少し、施工の効率は向上する。ちなみに、ボード類の寸法は1000×2000・910×1820の二種類となる。
屋根体の断熱層において、請求項4の断熱パネルを施工する場合、杉板等の板材を垂木に貼り並べる。その屋外側に板状断熱材を壁体と同様の手順により施工する。尚、胴縁の代わりに通気垂木を用いて屋根材を施工すると屋根通気層が形成される。又、杉板等の板材は垂木を兼ねることが出来る。又、杉板等の板材と板状断熱材との間に透湿防風防水シートを挟み、三層の積層構造としても良い。この杉板は、天井の内装材を兼ねて表わしとすると、天井及び天井下地材を省略でき、施工工程の簡略化を図れる。
(3)断熱材の現場発泡による施工に関して。
外壁材は、柱との間に弱熱伝導性の部材を介在して貼り並べる。その外壁材の裏面に室内側から現場スプレー発泡により連続した樹脂系断熱層を形成・施工する。直接吹き付ける外壁材を合板等に替えれば、構造耐力壁を同時に実現でき、筋交いを省略し、施工工程を簡略化出来る。更に、その外側に胴縁・外壁材を用いれば、外側通気層を形成できる。
屋根体の断熱層は、先ず屋根下地材の内側の下地支承材に屋根下地材から離隔して一重のネットを張り付け、該ネットに現場樹脂発泡施工を行って、屋根下地材との間に空気層を同時に形成できる。或いは、屋根野地材に屋内側から現場スプレー発泡により樹脂系断熱層を形成・施工する。尚、壁体の断熱層と同様に弱熱伝導性の部材を介在すれば、連続した樹脂系断熱層を形成できる。
断熱層を形成する断熱材として吸放湿性を具備するセルロースファイバーを用いる場合、一般には内断熱の施工に向いている。壁体部の施工方法としては、柱の外側に透湿防風防水シートを張設し、吸放湿性を具備する断熱ボード(合板は耐力性を兼ねられる。)を外側に積層する。内側に専用の透湿シートを張り、その間の隙間を埋める様にセルロースファイバーを吹き込む。その室内側に内装材を積層して張設する。尚、断熱ボードは断熱材としての役割のみならず、構造耐力壁の役割を果たしている。それで、断熱ボードを用いない場合は、筋交いを用いて構造耐力壁を形成する。又、吸放湿性を具備する断熱ボードに替えて吸放湿性を具備しない断熱ボードを用いれば、段落0072に記載の断熱材の積層Bに該当する。あるいは、プラスターボードは壁体の熱還流率算出の際はその断熱性能を付加されるので、内装材としてプラスターボードを用いる場合、吸放湿性を具備する断熱材と透湿防風防水シートと吸放湿性を具備する断熱材との三層の積層構造の一例となる。
天井部の施工は、天井材を下地代わりにしてセルロースファイバーを吹き込むと施工が楽で、内装材に積層する断熱層を簡単に施工できる。尚、屋根勾配に沿って断熱層を形成する場合、壁に用いた透湿シートを用い、壁体の断熱層に準じて施工する。
尚、内断熱・現わしの工法による場合、通気層を確保できない。それで、天井材もしくは内壁材と断熱層との間に隙間を設け、通気層としての役割を担うことも可能である。
天井下地材は、桁・垂木等の構造材から構成される。天井の内装材は、表わしの場合屋根体の断熱層が兼用される。断熱層に積層される天井もしくは断熱層との間に天井裏空間を形成する天井は、両面とも吸放湿性を備える桐板等の自然素材もしくは同様の吸放湿性を備える素材を用いて内装材とする。全ての天井面を吸放湿材で施工する必要は無いものの、出来るだけ多くの面積に渡り施工し、室内空間と断熱層との間に湿気のやり取りの可能な構成とする。
除湿負荷の好適な管理を断熱パネルで構成する断熱層の機能に依存する場合、内壁・天井に用いる内装材は、吸放湿性を具備し・吸放湿とH2Oの相変化との連携の比率の低い内装材を用いても良い。尚、吸放湿とH2Oの相変化との連携の比率の低い内装材は、吸放湿の方向性・湿気伝導の方向性の制御に関しては、相対湿度・含水率・平衡含水率の従来の技術により実施できる。
床材には、吸放湿とH2Oの相変化との連携の比率の低いものを用いる。具体的には、杉厚板材・檜材等の無垢板材、或いは、透湿性の合板等の積層されたもので、厚さは25から30mmを確保すると重量物への耐力性から好都合である。尚、下地材として透湿性の合板を用い、織布のカーペット類を積層しても良い。
それらの建材の性能を総合した熱損失係数(Q値)は、次世代型省エネルギー住宅の基準を上回るものとする。更に、隙間相当面積(C値)は1.0未満とする。
建物内に明るさをもたらす窓を開ければ、通風及び換気の手段となる。地域の気候条件次第では、夏季の夜間の放射冷却により温度低下した外気(冷気)を通風により建物内に取り込むことが出来る。尚、気密性が高い建物では24時間換気システムが必需品であるが、換気システムを通じて冷気を取り込める。
換気システムの簡単な方法は、室内空間の空気を強制的に排出すれば、負圧となった室内空間に新鮮な外気が流入できるので自然と換気できる。又、台所の換気扇を用いても同様の効果を得られる。更に、給排気を強制的に行うと換気の効率は高まる。
断熱パネル及び断熱層・気密断熱層に用いる断熱材の機能・特性を表す具体的資材、構成等を次に示す。
A:吸放湿機能を具備する断熱材
−1 珪酸カルシュウム主成分(ヒューミライト等)の一層又は二層構造
−2 インシュレーションボード+透湿性の断熱ボードの一層又は二層構造
−3 セルロースファイバー+透湿性の断熱ボードの一層又は二層構造
B:吸放湿機能を具備しない断熱材+吸放湿機能を具備する断熱材
−1 プラスチック系断熱材+インシュレーションボードの二層構造
C:吸放湿機能を具備しない断熱材(透湿抵抗の大きい断熱材)
−1 プラスチック(合成樹脂)系断熱材の一層構造又は二層構造
同等の性能を備えるものであれば、上記の資材に限定されるものではない。
次に、部位別・地域の気候特性・目的別に好適な断熱材の組合せを例示する。
壁(北側) 壁(その他) 天井裏/屋根
(イ) C C A
(ロ) C B A
(ハ) C A A
(二) A A A
(ホ) B A A
(ヘ) B B A
(ト) C A B
(チ) C A C
(リ) A A B
(ヌ) A A C
(ル) B A C
(ヲ) B A B
(ワ) C C B
(カ) C B B
(ヨ) B B B
(タ) C B C
(レ) B B C
(ソ) C C C
A:吸放湿機能を具備する断熱材の内、機能の違いにより二種類に分類し、
X :気体状のH2O、液体状のH2Oのいずれをも吸収できる断熱材
代表例 ケイ酸カルシュウム主成分(ヒューミライト等)、土壁材
Y : 気体状のH2Oのみ吸収できる断熱材
代表例 杉無垢板
透湿防風防水シートとしては、湿気は透過するが、防水性を備えるという具合に、異質の機能を有する極細ポリエチレン繊維質のタイベック(商品名)が広く使用されている。しかも、顕熱を反射する遮熱の機能を備える透湿防風防水シート(商品名、タイベック・ハウスラップ)も販売・使用されている。これを用いると、シートを境にして熱エネルギーの浸透は阻まれ、気化に必要な運動エネルギーの供給に影響(減少)する。それで、遮熱性を活用すれば、気化・放湿を制御でき、そこから湿気移動の方向を制御することが可能となる。それは、除湿負荷の管理を効率よく行う上で効果を表す。対して、遮熱性能の低い透湿防風防水シートを吸放湿とH2Oの相変化との連携の比率の高い吸放湿材との積層の三層構造の断熱パネルに使用する場合、断熱性に背反する伝熱性の創出を促進し、更に、除湿負荷の好適な管理に繋げられる機能を得られる。
上記の組み合わせの内、断熱層を透湿防風防水シートの併用により三層の積層断熱パネルにする場合、断熱材AはX+X、X+Y、Y+Yの3通りの重ね合わせから選択できる。しかも、透湿防風防水シートに遮熱機能を求めるか否かの違いによって、6種類の積層構造が可能。只、屋内外の別を考慮に入れれば、8種類の積層構造が可能。尚、上記の代表例に限定するものではなく、同等の性能を持つものであれば各種の断熱材・透湿防風防水シートを使用できる。
選択の際、地域の気候条件を考慮することは重要である。X+Xの重ね合わせは、断熱材の属性によって屋内外からの吸湿・吸冷の効率を高めることが出来るので、夏季の遮熱・除湿の効率を高める上では貢献する。只、冬季氷点下の気候条件のもとでは、先のXを用いると結露を通り過ぎて氷結する可能性がある。そのマイナス面は、氷結の際のH2Oの膨張の影響が懸念される。氷結と融解を繰り返す内に、耐久性の阻害される恐れがある。それで、屋内側にX、屋外側にYの重ねあわせを採用すると互いの長所を活かし、短所を縮減することが出来る。
A−3に記載のセルロースファイバーは、一般に吸湿した状態で液化を生じにくい断熱材として知られている。それで、通常の使用例ではYの特性を有する断熱材に含められる。只、親水性も備えているので、X・Yの何れの特性を有するかは不明。尚、古くから建物に使用されてきた土壁類はXの特性を有する資材として扱うことが出来る。但し、単独での使用には断熱性能の面から難があるが、工夫を加えることで断熱性能を改善し、潜熱式の蓄熱性能を活かすことができる。
熱貫流率で表される断熱性能は、暖かい空間から冷たい空間への熱エネルギーの移動に関するもので、冬季の寒さ対策を構築する上で重要で、その断熱性能を数値的に表わす上で役に立つものである。
吸放湿材を断熱材として用いる場合、H2Oの吸収に伴い断熱性能の低下する現象が見られる。H2Oを多く含む程、断熱材の熱還流率は低下するというものである。それで、断熱材の含水率上昇を防止する必要性は技術常識に属する。(特許文献4の意見書段落0008の後段を参照)
技術常識に反して、断熱材への吸湿を促し、含水率上昇を招いたとしても、簡単な工夫を加えることで断熱性に背反する伝熱性の創出を抑制しながら、しかも、必要に応じて、断熱性に背反する伝熱性の創出を促進することができる。つまり、断熱材の熱還流率の低下を防止し、その上、熱還流率の改善に繋がる。しかも、H2Oの移動を促進あるいは抑制しながら暖房負荷に加えて除湿負荷の改善及び好適な含水率管理に繋がる。
先に示した吸放湿性を具備する断熱材の含水率上昇を防止する技術常識からすれば、結露=液化に対する嫌悪と同様に、課題の着想・作用を含む手段の着想に関して大きな影響を及ぼされる。
さて、夏季の暑さ対策を構築する上では、冬季の貢献に比較すると一様ではない。それは、夏季に日射取得する太陽熱エネルギーの大きさから来るものである。具体的には、熱貫流率で表わされる断熱性能が高くても、一部は反射もせず、伝熱もせず、断熱材内に滞留する。夏季の日射取得される太陽熱エネルギーの量は膨大で、その一部が断熱材内で滞留するのみでも、その影響は大きい。具体的には、断熱材内に滞留し、蓄積された熱エネルギーは放射熱エネルギーの形で屋内の温熱環境に影響する。所謂輻射熱は対流熱エネルギーに比較すると、その影響は異なる。熱源である太陽の日没後も断熱材からの輻射熱の影響は持続し、更に、エアコンにより冷却エネルギーを対流熱エネルギーの形で供給しても、伝熱しにくい断熱材を対象とするので、冷却効果が出るには時間がかかる。つまり、断熱性能が高くても、放射熱エネルギーの発生を阻止できないので、日没後も屋内の温熱環境への影響は持続する。
結局、夏季の暑さ対策の構築に当たっては、熱還流率で表わされる断熱性能にのみ依存しても夏季に求められる性能を確保できないので、太陽熱エネルギーを吸収するか、反射するかの手段を備える必要がある。つまり、太陽熱エネルギーを吸収・反射して放射熱エネルギーの発生・影響を抑制し、断熱する方法である。以後、この方法を遮熱と呼ぶ。
従来の技術では、断熱層に吸放湿性を具備する断熱材を用いるにしろ、吸放湿性を具備しない断熱材を用いるにしろ、概ね日射取得する太陽熱エネルギーを如何に効率よく排熱するかを課題としている。それも、顕熱の形での排熱である。
それに対して、顕熱の形での排熱を否定するものではないが、逆に、太陽熱エネルギーを作用の一部として活用を図る。同様に、壁体等で生じる結露に関して、従来は防止すべきものとして大きな課題と見做されてきた。ここでは、逆に結露を作用の一部として活用を図る。しかも、この結露と潜熱的排熱とはそれぞれ独立した作用でありながら、断熱層によって隔絶される二つの空間の補完的連携、並びに、常温・通常気圧の下での吸放湿とH2Oの相変化との連携、この二つの連携の交差に結びつけ、しかも、断熱性と伝熱性という背反するものを止揚する契機を見出すところに、この発明の発想の独自性がある。更に、従来相変化によるエネルギー移転は、常温での液体状のH2Oから気体状のH2Oへの変化及び気化熱の利用について注目されてきた。ここでは更に進んで、太陽熱エネルギーから放射熱エネルギーとして運動エネルギーを取得し、相変化(気化)のエネルギーとし、太陽熱エネルギーを湿気という潜熱の形に閉じ込めることが、伝熱性による冷却エネルギー供給の制御の可能性により、制御(促進)出来る点、並びに、屋内側での液化を経て屋内の湿度調節に繋げられる点で画期的である。
さて、日射取得する太陽熱エネルギーを屋外で吸収する冷却エネルギーを断熱層を介して屋内から供給し・利用するには、断熱材に伝熱性を確保しなければならない。只、伝熱性は冬季に求められる断熱性とは背反し・矛盾するものである。この発明は、冬季に求められる断熱性能によって太陽熱エネルギーを遮り、且つ、伝熱性能によって太陽熱エネルギーを吸収し、断熱性と伝熱性という背反する機能を止揚して、遮熱機能を高めるものである。しかも、屋内の除湿効果を併せて得られる。更に、冬季は夜間の外気の冷気の影響を昼間の太陽熱エネルギーの日射取得により緩和し、断熱機能を高めるものである。
太陽熱エネルギーを作用の一部として活用を図る上で、断熱層によって隔絶された二つの空間の補完的連携は不可欠である。更に、断熱層で起こる湿気移動の方向性及びエネルギー移動の方向性を制御できなければ、好適な温湿度を実現できず、それらが逆転するとエネルギー損失を招く。具体的には、屋内の湿気を取り除いても、屋外から断熱層を通じて湿気の浸入を招き、屋内湿度の顕著な改善に支障が出る。しかも、除湿負荷は増大する。又、冬季は屋内を暖房中に屋外の冷気を誘引し、エネルギー損失を招く。
湿気移動に関する補完的連携の制御(促進・抑制)をまとめると、
「相変化を媒介する吸放湿を意図する方向に促進する補完的連携」は、屋内側で冷却エネルギーを供給され、相対湿度上昇及び相変化(液化)促進による吸湿促進、且つ、屋外側で日射取得する太陽熱エネルギー及びファン稼動により、相対湿度低下・相変化(気化)促進による放湿(平衡含水率との乖離・運動エネルギーの供給)及び気圧上昇の抑制もしくは気圧低下の誘引による放湿(気圧と沸点の関係)を促し、気密断熱層内でのH2O移動の圧力を方向付け、保持される。尚、吸放湿機能とH2Oの相変化との連携により断熱性に背反する伝熱性を生み、太陽熱エネルギーを湿気という潜熱の形で吸収し、屋外から建物外へ排出できる。
「相変化を媒介する吸放湿を意図しない方向を抑制する補完的連携」は、屋内側で冷却エネルギーを供給され、且つ、屋外側でファン停止により、保持される。
さて、冷房に利用するエネルギーを冷(却)エネルギーと言い、蓄冷・放冷・冷気と言う言葉を用いる。暖房に利用するエネルギーを暖エネルギーと言い、蓄暖・放暖・暖気という言葉を用いる。尚、蓄熱には蓄暖・蓄冷の両方、放熱には放暖・放冷の両方の意味をもつ。
さて、内側通気層・天井裏空間の流路を通じて冷却エネルギーを屋内側から気密断熱層に供給する。その冷却エネルギーを屋内側でのH2Oの液化の制御・吸湿の制御に活用し、太陽熱エネルギーを屋外側でのH2Oの気化の制御・放湿の制御に活用する。そして、吸放湿とH2Oの相変化に伴うエネルギー移転との連携によって、気密断熱層における伝熱性を確保する。その伝熱性によって、屋内側で供給する冷却エネルギーを、気密断熱層を通じたエネルギー移動を可能にし、その上で、屋外側での太陽熱エネルギーの吸収に活用する。更に、太陽熱エネルギーの効率的排熱という課題に対し、湿気という潜熱の形で排熱する新規な手段により応える。
ところで、以上に見られる様に、冷却エネルギーの屋内での供給による、エネルギー伝熱の方向並びに吸放湿の方向は、屋外での太陽熱エネルギーの日射取得も合わさり、同一方向に促進される。それで、H2Oの相変化に伴うエネルギー移転と吸放湿機能との連携は好適に保持され、吸放湿を利用した気密断熱層内でのエネルギー移動が可能となる。
吸放湿性を具備する断熱材は、その吸湿の特徴から二つに別けることが出来る。一つは、H2Oの液体の状態で吸収し、且、湿気の状態でも吸収出来る。一つは、H2Oの液体の状態では吸収できないが、H2Oの気化した状態では吸収できる。前者の例は、ケイ酸カルシュウムを主成分とする断熱材である。後者の例は、自然素材の代表格である杉板等である。
エネルギー移転である潜熱的蓄冷との関連で言及すると、前者の例では、H2Oの液体の状態で吸収できるので、吸湿直前に冷気の吸収の効率を高めて飽和状態に至れば、液化を促し、液体の状態のまま吸収される。潜熱的蓄冷の一例である。又、湿気の状態での吸湿・放湿には、空気中の相対湿度と素材の含水率との関係が影響する。それは、空気中の温度を下げれば相対湿度は上昇し、平衡含水率との乖離が生じ、その分吸湿は促される。逆に、空気中の温度が上昇すれば相対湿度は下降し、平衡含水率との乖離が生じ、その分放湿は促される。この吸放湿の過程で液化という相変化を生じると、併せて凝縮熱を生じる。この凝縮熱を吸収することで、潜熱的蓄冷を行なうことが出来る。潜熱的蓄冷は、湿気を液化するために冷却エネルギーを投入し、相変化を伴う。
前者の例に示されるように、H2Oの液体の状態でも吸収出来る素材から作られる断熱材を用いると、前記二種類の潜熱的蓄冷手段を冷却エネルギー移転に利用する上では好適である。
さて、一般にH2Oの沸点は1気圧のもとでは100℃である。只、多孔質の物質の介在により運動エネルギー吸収の効率を高めると、1気圧のもと30℃前後の常温で、液体から気体への相変化である気化を生じる。具体的には、30℃の水1リットルが気化する際、周囲から588キロカロリーを奪う。これが気化熱の冷却エネルギーである。
これを吸放湿の見地から表現すれば、相変化を伴なう放湿である。前記二種類の潜熱的蓄冷手段と合わさり、H2Oの相変化を媒介する吸放湿性を具備する断熱材は、吸放湿に当たり、液化により液体状の水と凝縮熱を生成し、気化により水蒸気(湿気)と気化熱を生成する。しかし、吸放湿速度に関しては相変化を伴う場合、吸湿に比較して放湿速度は劣る。それで、太陽熱エネルギーの日射取得がないと、含水率は高止まりする。それで、含水率管理に太陽熱は不可欠である。
相変化を伴わない放湿では、湿気の状態を保持されて、そのまま放出される。通常、相対湿度の変化による放湿の一部がこれに当たる。尚、相変化を経る場合でも、断熱材の内部で必要量の運動エネルギーを供給されて気化を生じる場合は、吸放湿材の表面では相対湿度の変化に応じて放湿できる。
尚、上記の通り、1気圧・30℃の下、太陽熱エネルギーの日射取得を得られない場合でも、吸放湿材の媒介によってH2Oの相変化(気化)による冷却エネルギーの利用は可能である。只、気化熱の影響で周囲に冷却効果が現れ、温度低下すれば、そのままの状態では相変化は持続しなくなる。それに対し、太陽熱エネルギーを日射取得できれば、放射熱エネルギーの効果により、気密断熱層に運動エネルギーを直接・持続的に供給できる。それで、相変化は持続する。かかる効果の有無を考慮のうえで、北側の気密断熱層は仕様を変更する。
断熱されていながら「吸放湿とH2Oの相変化の連携による伝熱手段」を確保し、屋内への冷却エネルギー供給によって隔絶された領域での太陽熱エネルギーの吸収・排熱を方法的・量的に制御することが出来る。
ところで、二種類の吸湿を促進すると、断熱材内の含水率は高まる。又、気密断熱層を移動する圧力を保つ上では、屋内側の含水率は高止まりせざるを得ない。只、含水率は高すぎると弊害を生む可能性がある。そこで、出来るだけ含水率の上昇を避けながら断熱性に背反する伝熱性を保持するには、吸放湿とH2Oの相変化との連携の比率を高く維持することが重要である。「連携の比率」を高く維持するには、一つには、相変化を伴わない吸湿を抑えることが大切で、課題となり、一つには、吸湿の際に効率よく冷却エネルギーを供給・吸収し、液化を促進する。それで、液体状のH2Oを吸収でき、結露を起こさない断熱材を用いる。更に、湿気の吸収後に冷却エネルギー吸収等により液化を経れば、連携の比率は高まる。
さて、隔絶性を構成する気密性と断熱性の内、気密性を高めると屋内への湿気の浸入を阻止できる。それは、吸湿すべき湿気の量の削減に繋がり、冷却エネルギー供給に対して吸放湿とH2Oの相変化の「連携の比率」を高める効果を表わす。それで、含水率上昇の抑制を視野に入れながら、潜熱的蓄冷手段を効果的に利用することが出来る。尚、含水率の計算上、吸放湿材の保持する気体状・液体状のH2Oの割合は考慮されず、保持するH2Oの重量比で算出される。
さて、相対湿度と平衡含水率との乖離により吸湿を促し含水率を上げたとしても、直ちに断熱材内での相変化(液化)の促進に繋がるわけではない。液化の促進は液化に伴い生成する凝縮熱を処理できる冷却エネルギーの吸収促進に依存する。ところが、断熱材はその断熱性により内部に冷却エネルギーを伝導する能力は低い。つまり、冷却エネルギーの伝導が緩慢な分、液化も緩慢である。潜熱的蓄冷を図るにしても、効率はよくない。それでは、たとえ冷却エネルギーの供給を増加したとしても、吸冷を促進することが難しい。それで、効率的な潜熱的蓄冷を図ることが課題となる。
以上を潜熱的蓄冷の過程との関係で把握すれば、気密断熱層の表面で液化したH2Oを吸収できる特性を備える断熱材を用いると、空気中の湿気を吸収する際に凝縮熱を吸収し・液化を促進し、かつ、液体状のH2Oを吸引・吸収することで、吸放湿とH2Oの相変化の「連携の比率」を高く維持することに貢献する。それで、昼間含水率の低下した場合でも、冷却エネルギーの吸収・保持に繋げて、効率的なエネルギー移動を継続し、遮熱・除湿効果の維持に繋げることができる。尚余談ながら、潜熱的蓄冷が顕熱的蓄冷に比較して周囲の温度低下を招かないのは、冷却エネルギーが凝縮熱の吸収に用いられるからである。
さて、液体状のH2Oを吸収・吸引できる断熱材は、表面に多孔質の形質を保持している。しかも、湿気伝導率との関係で連続した空隙は多い。それで、円滑なH2Oの移動に乗ってエネルギーの移動も可能となる。ところが、断熱材内の空隙の連続性が増すと気密性に問題が出てくる。具体的に記すと、断熱材に液体状のH2Oを含水する量の多い夏季と液体状のH2Oを含水する量の少ない冬季とを比較すると、エネルギーの伝導性とともに気密性能に差が出てくる。その差の生じる源は断熱材内の空隙にある。しかも、空隙の連続性を保持された断熱材ほど湿気伝導率は高い。只、湿気伝導率が高いと気密性の保持が困難で、湿気の浸入を制御することが難しくなる。その意味から、湿気の移動は断熱材の属性である湿気伝導率に依存してその効率を向上させる試みは限界を持っている。
それで、素材と素材以外の要素の組み合わせの中で、湿気移動の効率を向上することが求められる。あるいは、湿気伝導率の異なる断熱材の重ね併せにより課題を解決する。
そこに送風ファンの力を借りると、昼間断熱材の屋外側で含水率の著しい低下を招く。それは、H2Oの移動の圧力となり、先の空隙の浸透をより促進することとなり、同時に、空隙内の気圧の低下を通じ更なるH2Oの気化を促進する。つまり、H2Oの相変化に伴い生じる気圧の上昇の結果である湿気の浸透との相乗効果により、太陽熱エネルギー吸収を伴うH2O移動の圧力を創出・保持することが出来る。このH2O移動の圧力を活用することで、エネルギー移動及び太陽熱エネルギー吸収(遮熱)の効率の向上を図れる。又、湿気の移動によって、断熱材内の気圧の低下を促された分、空隙内で更なるH2Oの気化を促進することが出来る。
具体的には、連通する外側通気層・屋根通気層を通じて排熱・排湿を促進する送風ファンの働きを利用します。つまり、日没後も送風ファンを稼動すると、逆に屋外からの吸湿・吸冷を促す。それを阻止する為に、日没後は停止します。停止によって屋外からの湿気の吸収を抑制し、創出・保持されたH2O移動の圧力を日没後も保つことが出来ます。しかも、内側通気層・天井裏空間でのエアコンを通じた大量の冷却エネルギーの供給と連携して別種の作用を促進します。即ち、断熱材に液体状のH2Oを吸収できれば、吸冷には液化の際に吸湿が伴うので、屋内の除湿効果は高まります。吸湿とH2Oの相変化との連携の比率が高いので、断熱材内でのH2O移動の効率向上は屋内からの吸湿・吸冷の効率の向上に直結し、含水率の高低に係り無く除湿効率を高めます。
結局、送風ファンの活用によって、含水率管理の上では、吸湿とH2Oの相変化との連携を高め、太陽熱エネルギーの日射取得等を活用し、断熱材の属性の改良にのみ依存せずに、屋内から大量に供給された冷却エネルギーを効率的に吸収し、効率的なエネルギー移動に繋げながら、遮熱・除湿の効果を高めて課題を解決するものです。エアコンの冷却エネルギー生成・供給能力を活かし、断熱材の伝熱性能を飛躍する上で、構成する要素の組み合わせの妙といえます。この組み合わせによって、際立って優れた効果・異質の効果を奏する。
問題点の着目(問題の指摘)
除湿装置を利用して、吸放湿材の吸湿能力を強制的に回復し、除湿装置を稼動しない昼間の時間帯に吸放湿材の吸湿能力に依存する形で室内空間の湿度を所定の範囲に収める試みが成功するか否かは、吸放湿材それぞれに備わった特性を正しく認識し、その上で、吸放湿材内で起こり得る液化現象に対する対応を適切に行わなければならない。
しかし、現実には背景技術の項(0006)で指摘した通り、吸放湿材内で起こる液化現象に対して正しく認識されず、液化現象を起こしやすい吸放湿材を選別することなく選択・使用する例が示されている。それがどの様な結果を招くのかについて、つまり液化現象を起こし易い吸放湿材を用いた場合にどの様な事態が起こり得るのかについて、具体的に例示したい。
技術水準
吸湿に液化が伴うことについては、ぼんやりではあるが知られている。一つの例として、吸放湿材の吸放湿機能に着目して室内空間の湿度調節を行う場合、室内温度は無視されがちである。これは、純粋に吸放湿現象のみを取り出して、そこに起こり得る液化現象を無視し、凝縮熱の生成をも無視する姿勢に繋がる。
事例で述べた現象についての認識が不十分で、またその対処の工夫も実施されていない。例えば、
1:吸湿とH2Oの相変化との連携の比率の低い(弱い)材料を選別して使用する。その上で、吸放湿の必要量を確保する。
2:吸放湿材にその機能を求める範囲で実現できる環境を整える。
イ:冷気の供給を抑制する。
ロ:太陽熱エネルギーを利用した気化・放湿によるエネルギー移転に繋げて、
元の吸湿能力の回復を図れる工夫を加える、等の工夫は実施されていない。
具体的に説明すると、木材の相対湿度と平衡含水率との関係は相対湿度60%に対し概ね11%で、75%に対し概ね15%見当である。それで、吸放湿材内で液化が進行していなければ、含水率15%の吸放湿材は相対湿度60%の環境の下、11%近辺にまで含水率は低下する。しかし、液化が進行し、吸湿とH2Oの相変化との連携の比率が高くなると、相対湿度60%に対する平衡含水率は15%近辺まで上昇し、相対湿度60%の環境の下でも含水率は15%から低下しなくなる。つまり、液化の進行の影響によって吸放湿材の吸湿能力は回復することが出来ないのである。その結果、先の15%の含水率の吸放湿材は概ね85%以上の相対湿度の環境の下でのみ吸湿することが出来るようになる。
つまり、上記の例で考えれば、相対湿度60%未満の環境の下吸放湿材から放湿でき、また、相対湿度85%以上の環境の下吸放湿材は吸湿できる。結局、相対湿度60%から85%の範囲の環境の下では、吸放湿材の機能は吸湿面で作用効果を得られなくなる。尚、上記の例は潜熱的蓄冷を進行できるという前提のもとでの数字である。現実には、木材を吸放湿材として選択した場合、冷気の吸収は効率よく進行せず、吸湿と液化との連携の比率を高めることは難しい。それで、問題を明示する為の数字的な例である。
さて、吸湿開始時の含水率と放湿開始時の含水率との1日の内での差を日変動差と言い、吸湿開始時の含水率と放湿開始時の含水率との年間を通じた差を年変動差と言う。上記の例で言えば、相対湿度60%と75%に対応する含水率の年変動差は4ポイントあるが、日変動差は零である。つまり、1日の内での相対湿度の変化に応じた吸放湿の繰り返しは生まれない。但し、年変動差とは、一年を通じた相対湿度の最高値と最低値に対応する含水率の差を示すものではない。1日の相対湿度の高低差に対応したものを指す。つまり、1日では含水率の高低差に反映できない場合でも、長時間をかければ反映できる趣旨及び年間を通したサイクルに拠るもの。
尚、日変動差の有る場合は、日変動差の大小に関わらず、増幅の見込みは大きい。日変動差が無い場合は、増幅の見込みは乏しい。又、日変動差が大きく無いとは、小さい場合及び零の場合を含む。日変動差の大小は、吸放湿材に決め付けられるものではなく、吸放湿材を用いる地域の気候特性、あるいは、環境によって変わってくる。尚、吸放湿とH2Oの相変化との連携の比率の高低は、日変動差の有無・大小に反映する。断熱層を透過する輻射熱は減少しているものの、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材に作用して、気化・放湿による含水率低下及び吸湿能力の回復に貢献することが出来る。
さて、日変動差を越えた調湿能力とは、年変動差と日変動差との間の乖離によって吸放湿材は一般に年間を通じた吸放湿のサイクルに則り周囲の環境の相対湿度の変動の範囲を超えて吸湿能力を発揮することが出来る。只、周囲の環境の相対湿度の変動の範囲を超えて吸湿能力を発揮できる期間は極短い。
具体的には、杉板材が12mm厚で、日々の吸湿の影響は2mmとして、杉板材の表面近辺は周囲の環境の相対湿度の変動に応じて含水率が変化したとしても、1日の内で湿気は杉板材を移動しないので裏面近辺の含水率との間には乖離が存在する。その乖離によって、吸放湿材は表面から裏面へ湿気を移動させることが出来る。それが、日変動差を越えて含水率の低下を促される所以である。つまり、表裏の含水率の差によって生じる含水圧力差により室内側表面から裏面へ湿気は移動し、表面の含水率低下を、相対湿度の変動の範囲を超えて誘引することが出来、吸湿能力の回復を図れる。
さて、表裏の間に存在する含水圧力差は、透湿率の高低によって影響される。透湿率が高ければ、湿気は透過するのみで含水圧力差は生まれない。吸放湿材により隔てられる空間の相対湿度の高低差により日変動差を拡大する作用・効果(相対湿度の変動の範囲を超えた吸湿能力の回復)を期待する上で、内装材に用いる透湿率は1g/m2・h・mmHg未満とするのが良い。
只、周囲の環境の相対湿度の変動の範囲を超えて吸湿能力を発揮できる期間は短く、上記の例では6日で終わる。最も、現実には相対湿度の年サイクルの上昇に伴い、平衡含水率自体も上昇するので、直ちに周囲の環境の相対湿度の変動の範囲を超えて吸湿能力を発揮できる期間は終わるわけではない。
しかし、相対湿度の年サイクルの上昇が到達点に達すれば、その終了は近い。それで、吸放湿材の年サイクルを利用した室内の調湿能力も発揮できなくなる。
ここで、吸放湿材相互の補完関係について言及すると、上記杉板材の表面と裏面との間に起こった現象を異なる吸放湿材の間に起こすことの出来る関係を言う。つまり、吸放湿材の間に湿気の移動を図ることで、先の「周囲の環境の相対湿度の変動の範囲を超えて吸湿能力を発揮できる期間」の拡大を図り、室内の調湿能力の維持を図れる関係を謂う。
その補完関係がうまく実施できるためには、湿気の侵入を許容しない環境が求められる。それで、吸放湿材は積層されるか、又は、吸放湿材の接する天井裏空間・内側通気層は閉鎖空間であればよい。尚、換気循環システムを採用する場合、湿気は新鮮な空気と伴に絶えず閉鎖空間に供給されるので、その湿気供給量に見合った吸湿・排湿能力が求められる。それで、断熱層に高い吸湿・排湿能力が具備されれば、その条件は越えられるのである。逆に考えると、換気循環システムに高い吸湿・排湿能力の具備された断熱層は不可欠であるといえる。
先の技術水準では、吸湿の際の平衡含水率と放湿の際の平衡含水率との乖離を小さくすることを課題としながら、吸放湿材の機能を利用して除湿装置を使用しない状況下において、室内の湿度を快適の目安とされる70%に調節することには想到出来ない。それで、課題として提示することに想到できない。
この場合、湿度70%に調節できる為には、吸湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、更に、液化によって生成する凝縮熱を吸収する冷気の供給を抑える必要がある。別の表現をすれば、潜熱的蓄冷の作用を抑制する必要がある。
吸放湿材内部で生じる液化に伴い生成される凝縮熱を吸収する上で必要な冷エネルギーを含む冷気を供給することで生じる現象は、作用面では潜熱的蓄冷の一形態である。
夏季は室内の除湿を行うだけでは快適な温熱環境を維持できない。冷房も必要になる。只、冷房によって冷エネルギーの供給が増加すれば、液化を伴う吸湿の割合は高くなるだけでなく、潜熱的蓄冷の量も増大する。それは、放湿の面から言えば、相変化を伴わない放湿は減縮することを意味する。それで、太陽熱の日射取得による熱エネルギーの取得でもない限り、気化・放湿は十分に機能せず、含水率は下がらない。つまり、吸湿・吸冷により液化が進行すれば、放湿は阻止され、含水率は高止まりする。吸放湿材は、相対湿度の変動の範囲を超えて、液化により生成された液体状のH2Oを保持する。
結局、ものの特性としての平衡含水率自体が、先の連携の比率或は用いる環境によって大きく影響され、上下する。それで、除湿機の機能アップにより室内の湿度を十分下げても、吸放湿材から放湿できず、含水率は必要な水準まで下降しない。それで、昼間の吸湿能力を回復するに足るまで、夜間に放湿することが出来ない。
以上のような理由によって、快適とされる70%を確保するには、昼間も除湿装置を稼動せざるを得なくなる。しかし、気密性能を向上し、吸放湿材を適材のものに代えれば、夜間の除湿のみで昼間は除湿せずとも、昼間の湿度を70%以下に維持することは可能である。
ところで、吸放湿に液化・気化が伴うか否か、あるいは、液化・気化をどの様に活用するかは、重要ではあるものの、ここでは問題の核心といえるものではない。要は、液化・気化を促進したり・抑制したりという形で制御すると言う発想及び制御する手段を如何に応用して、成果に繋げられるか否かに在る。具体的には、含水率管理の好適な実施・湿度調節の好適な実施・エネルギー移動の制御(背反する断熱性と伝熱性とを止揚し、創出された伝熱機能を増幅もしくは抑制する形で制御する)及びエネルギー移動を伴わないH2O移動の制御及び屋内外の相対湿度の高低差に依存しない吸放湿の方向性の制御の好適な実施に繋げられるか否かにあります。そこが、課題の新規性の核心部分です。
寒冷地では、夏季の夜間の外気温の低下は著しく、20℃前後の日が続く。昼夜の温度差は10度を超え、夜間の放射冷却エネルギーの利用は期待できる。
それに対し、温暖地では、夏季の夜間の外気温の低下は鈍く、25℃を超える熱帯夜が連日続く。その場合、夜間の放射冷却の利用は期待できない。むしろ逆に、夜間でも外側通気層・屋根通気層内の気圧上昇を制御できれば、屋外への気化・放湿を持続することが可能である。
吸放湿とH2Oの相変化との連携の比率の低い吸放湿材(断熱材を含む)は、液化・気化を伴わない純粋に吸放湿のみを行っているわけではなく、若干の液化・気化を伴っている。只、それは含水率の高止まりを招くに至っていないのである。一つの例として、構造材に杉材は広く用いられている。北側に面する位置にも用いられるが、太陽熱エネルギーを日射取得できないからと言って、直ちに杉材等の構造材の含水率は高く止まるわけではない。
先に記した様に、温暖地では熱帯夜が続き、昼夜を問わず、気密断熱層からの気化・放湿は持続する。それで、太陽熱エネルギーを日射取得できない北側の気密断熱層においては、その気化・放湿の能力の範囲に収まっている限り、屋内から吸湿・吸冷を継続したとしても、含水率の高止まりの要因とはならない。
天井裏空間・床下空間の流路内でエアコンを稼動する場合に比較すると、生活するうえでの快適温度との兼ね合いもあり、エアコンを室内に設置した場合、室温を大きく下げるわけにはいかない。
温暖地では、北側の気密断熱層の内側に吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、室内空間でエアコンから冷却エネルギーを供給すれば、室内空間の温度は下降し、外気温に比較して低くなる。その場合、相対湿度は屋内側が屋外側より高くなり、屋内側から吸湿し・屋外側へ放湿する吸放湿の方向性は堅持される。
更に、屋内側で吸湿・吸冷により液化が進行すれば、吸湿時の平衡含水率と放湿時の平衡含水率との間に乖離が生じ、その分屋内側への放湿は阻止され、屋内側から吸湿し・屋外側へ放湿する吸放湿の方向性は更に堅持される。
つまり、H2Oの移動に太陽熱エネルギーの日射取得を必ずしも必要としないので、温暖地では条件が整えば太陽の日射しない夜間でも、又、東西南北に関係無く、屋内側から吸湿し・屋外側へ放湿する吸放湿の方向性を堅持することが出来る。
ところで、冬季の断熱性能及びH2Oの移動に伴うエネルギー損失の発生を防止するには、吸放湿性を具備する断熱材を二層に分け、その間に透湿防風防水シートを張設し、気密断熱層を三層構造に構成するのが望ましい。ところが、透湿防風防水シートは夏季には冬季と逆方向への働きを現す可能性がある。それは、以下のよう事情による。
北側の気密断熱層は太陽熱エネルギーを日射取得できない。それで、北側の気密断熱層の気化・放湿の能力は屋外の気圧・温度に影響される。一般に、温暖地・寒冷地を問わず夏季の昼間の外気温は30℃を越えるので、北側の気密断熱層を通じた気化・放湿は起こりえるものである。しかし、先に記した様に屋内側から屋外側への液化したH2Oの移動は、透湿防風防水シートの介在によって阻止される。それで、屋外側での気化・放湿は持続せず、気密断熱層内の含水率を低下させる機能はこの面では働かない。
さて、液化したH2Oの移動は難しくとも、気体状のH2O(湿気)は移動する。そこで、気密断熱層の屋内側に吸放湿とH2Oの相変化との連携の比率の低い断熱材を用いれば、適度の含水率管理を実施しながら、屋内側から吸湿し、屋外側に放湿する吸放湿の方向性を維持しながら、しかも、屋外側から屋内側への吸放湿の逆転現象を阻止する上で貢献する。
構造材に用いる杉材等は吸放湿性を備えているが、温暖湿潤な地域で用いても含水率管理上問題は無い。それで、吸放湿とH2Oの相変化との連携の比率の低い水準の目安は杉材等に表される。
さて、エアコンを用いて冷却エネルギーを生成・供給する場合に、屋内の除湿効果及び昼間の太陽熱の遮熱効果を現すのは、以下の様な次第である。
北側の気密断熱層の屋内側に吸放湿とH2Oの相変化との連携の比率の低い断熱材を用いた場合、連携の比率が低い材料でも液化を生じないわけではない。それで、液化を生じた分、吸湿時の平衡含水率と放湿時の平衡含水率との間に乖離が発生する。それが、吸放湿の方向性を堅持できる要因である。更に、先に記した様に気密断熱層を透湿防風防水シート利用の三層構造とした場合、屋内側で吸湿・吸冷により液化したH2Oを吸収しても、屋外側への移動は阻止され、屋外側から気化・放湿されない。只、気体状のH2Oは屋外側へ放湿可能であるから、含水率が上昇すれば、屋外の相対湿度との関係で屋外へ放湿される。適度に含水率管理の実施される所以である。
さて、気密断熱層内の透湿防風防水シートを境に屋内側では気体状のH2Oの割合は低くなり、液体状のH2Oの割合は高くなる傾向にある。それで、屋内側からの吸湿時の平衡含水率と放湿時の平衡含水率との間に生じる乖離は更に拡大する。それで、北面を除いた東西南面の気密断熱層は昼間の太陽熱の日射取得による含水率低下で、夜間に屋内からの吸湿は促され、室内の湿度は低下するものの、一方、北側の気密断熱層では、先の乖離の拡大により屋内側への放湿は抑制され、屋外側から屋内側への湿気の逆流は阻止される。その結果、屋内の湿度を好適に維持することが出来る。以上の要因に加えて、温暖地では以下の要因も加わる。
吸放湿材の吸湿・放湿は主に周囲の相対湿度との関係に規定される。さて、温暖地では夜間の外気温は25℃を越える熱帯夜が続く。それで、エアコンの冷房機能に頼らざるを得ない。そして、冷却エネルギーを生成・供給すれば、屋内の気温は低下し、その気温低下に応じて屋内の相対湿度は上昇する。その結果、気密断熱層を通じて、屋内側から吸湿し・屋外側へ放湿する吸放湿の方向性は堅持されることとなる。
エアコンの生成・供給する冷却エネルギーを気密断熱層にて吸収するメリットは、以上に見られた屋内の除湿効果であり、即ち、夜間に深夜電力を利用して潜熱的に蓄冷して得られる除湿効果に代表されながら、北側以外の気密断熱層を通じて得られる昼間の遮熱効果である。極論すれば、給湯のエネルギーを夜間に蓄える過程で冷却エネルギーを生成・供給できるが、その冷却エネルギーを利用して屋内の除湿・遮熱効果を得ることが出来る。
ところで、吸放湿性を備えている断熱材の中で、羊毛あるいはセルロースファイバーを原料とする断熱材は湿気を吸収しても液化を生じない旨を謳い文句に販売されている。只、使用方法次第では、湿気を吸収後に液化を生じないわけではないものの、通常の使い方では液化を生じにくい。それで、吸湿時の平衡含水率と放湿時の平衡含水率との間に乖離は生じ難く、その乖離を利用して、屋内外の吸放湿の方向性を制御するには工夫を要する。又、気密性能を確保するにも工夫を要する。
吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用いることで、必要とする吸放湿の日変動差と年変動差の乖離の小さい吸放湿材を適切に選定できる。更に、透湿率の大きくないものを適切に選定することにより、吸放湿材に含水圧力差を確保することが出来る。日変動差及び年変動差及び含水圧力差についての詳細は、段落0082を参照のこと。
内装材に吸放湿の日変動差と年変動差の乖離の小さい吸放湿材並びに含水圧力差の小さくない吸放湿材を選定して、1日24時間の内で生じる室内空間の相対湿度の変化に敏感に反応して、吸放湿を効率よく繰り返し、しかも、日変動差を確保した上に透湿率の高低による含水圧力差を確保し、日変動差と含水圧力差の補完による吸湿能力(相対湿度の変動を超えた)の回復を図れ、吸放湿材の吸放湿特性(日変動差及び含水圧力差に基づく)を利用した湿度調節を好適に実施し、外気に比較して快適な居住空間を日々実現できる。
さて、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材にしても、日変動差と年変動差との間に乖離が見られる。その乖離を太陽熱エネルギーの吸収即ちエネルギー移転を通じて小さくすることができる。
更に、1日の内の室内空間の相対湿度及び吸放湿材の平衡含水率の変化の範囲を超えて、吸放湿材の含水率を低下し、内装材の吸湿能力を回復することを課題とする。換言すると、吸放湿材相互の補完関係による湿気の移動及び太陽熱を源とする輻射熱の影響による気化・放湿を通じ、内装材の日変動差を超えた含水率の低下を促し、かつ、含水圧力差を拡大し、吸湿能力の回復を実現し、調湿能力・調湿効果の増幅を実現することができる。
1日24時間の内の相対湿度の変化の範囲を超え・増幅された調湿能力を、夏季を通して保持し、快適な室内を夏季を通して実現できる。
その効果は、技術水準(長い時間間隔で見たとしても、相対湿度の変化の範囲内で、対応する平衡含水率に基づき吸放湿し、吸放湿材の含水率は上下する。)から予測される範囲を超えた顕著なものである。
又、除湿装置に頼らずとも、屋外の湿度80%超の梅雨時・夏季でも、室内の湿度を70%未満に抑えることができる。又、地域の気候特性に合わせて吸放湿材の吸湿容量を確保する等の簡単な工夫を加えることにより、この高い調湿能力は信州に限らず夏季を通じて維持することができるので、除湿装置稼動の際の凝縮熱を生成せず、広くヒートアイランド化抑制の一助となる。
夜間深夜電力を利用する除湿装置で除湿して室内の相対湿度を効率よく下げることによって、吸放湿材から温度変化を伴わずに放湿し、効率よく吸放湿材の含水率を低下することが出来る。その分、吸放湿材の吸湿余力の回復を効率よく行うことが出来る。昼間は、除湿装置を稼動せずとも、建物の隙間からの湿気浸入を阻止し、しかも、吸放湿材は凝縮熱生成による室内の温度上昇(エネルギー移転)を伴わずに効率よく室内の湿気を吸収し、室内の湿度60%近辺を保持することが出来、技術水準から予測できない著効を奏する。
補完的連携により形成される調湿手段は、間に空間を介して液化したH2Oの移動を阻止することができる。それで、冬季の夜間に屋外からの冷気を吸収し、液化したH2Oは、内側通気層・天井裏空間を跨いで内装材に吸収されることはない。つまり、屋内から暖房に伴い供給される熱エネルギーは大きく無いので、断熱性に背反する伝熱性の創出による熱損失の増大を招くことはない。逆に、夜間の屋外からの吸冷(潜熱的蓄冷)を昼間の太陽熱エネルギーの日射取得により気化・放湿し、断熱性能の改善に繋げられる。又、空間に滞留する空気は断熱層として機能する。技術水準から予測できない著効を奏する。
夏季の酷暑の時期には冷房に頼らざるを得ないが、夜間の冷房による潜熱的蓄冷の効果で吸放湿材の吸湿機能が昼間働かず所定の湿度を保てない場合に、日射取得する太陽熱エネルギーを利用した遮熱手段の実施により屋内の湿気を屋外へ排出する方法を加えて、屋内の除湿効果及び遮熱効果をあげられる。
エネルギー(冷気)供給手段として銅管を配置し、その管内を液体状の冷媒を用いて熱交換した場合でも、課題であった結露の発生を抑制できる。尚、エネルギー供給手段として対流熱によるエアコンを使用すると、COP6とエネルギー消費効率の非常に高い機器を最大限に有効利用することが出来る。しかも、顕熱的蓄熱手段との組み合わせにより、輻射冷房の効果を簡便に得られる。
更に、深夜電力の時間帯に限定して使用しても、蓄熱体・土間コンクリート・地中を蓄熱層として利用できるので、昼間の冷房・暖房に必要なエネルギー量を十分蓄冷・蓄暖することが出来る。
一年を通して、地表下2Mの年間を通して温度の安定した地熱を利用することが出来る。夏季にあっては、18℃前後の地中温度で基礎土間コンクリート及び蓄熱体への熱伝導を経て、冷房のエネルギー供給の補助的手段に活用することが出来る。深夜電力使用量の削減効果を得られる。
冬季にあっては、16℃前後の地中の温度で地中を通じた放熱による熱損失は小さく、効率のよい蓄熱層として地中を利用することが出来る。
蓄熱体は、地中を巨大な蓄暖層・蓄冷層として機能するのみならず、蓄熱体内の蓄熱材の相変化に伴うエネルギー移転を利用して床下空間の温度変化に応じた効率的な放暖・放冷を可能とし、質的にも量的にも暖房・冷房のエネルギーとして24時間安定した供給を可能とする。
太陽熱エネルギーの日射取得により気化放湿出来ない北側の断熱材の含水率上昇の抑制を視野に入れながら、断熱材は室内の湿気を吸収し、屋外に排出することにより除湿効果を上げ、併せて、屋外側で夜間に放射冷却の吸収に伴い吸湿・吸冷し、昼間に常温で気化・放湿する形で、更に、日射取得する太陽熱エネルギーを吸収する形で遮熱効果を上げることが出来る。
太陽熱エネルギーの日射取得に関係なく気化・放湿を促し、全ての断熱材の含水率上昇の抑制を視野に入れながら吸放湿材は室内の湿気の吸収により除湿効果を上げ、併せて、屋外側で夜間に放射冷却の吸収促進に伴い吸湿・吸冷し、昼間に常温で気化放湿する効率を向上する形で、更に、日射取得する太陽熱エネルギーを吸収する形で遮熱効果を上げることが出来る。
地中・土間コンクリート・蓄熱体から成る巨大な蓄熱層から、蓄熱体の有する相変化に伴うエネルギー移転の機能を活用して、床下空間の温度変化に対応してエネルギーの供給が可能で、空気循環手段を経由して室内へ24時間安定したエネルギー供給を継続することが出来る。
冬季は、エネルギー供給手段の源としての地熱・太陽熱・深夜電力利用のエアコンによる暖エネルギーを有効利用し、自然エネルギーの最大限の活用を図ることが出来る。
透湿防風防水シートを挟み、断熱層を三層に構成することで、夏季は除湿・遮熱効果を上げられ、冬季は、屋外からの潜熱的蓄冷による冷気吸収を屋内への気化・放出という形で生じる熱損失を阻止することが出来る。簡単な工夫を加えることで、夏季のみならず冬季も低コストで快適な温熱環境を実現できる。
夏季はエネルギー供給手段の源としての地熱・放射冷却・深夜電力利用のエアコンによる冷エネルギーを有効利用し、自然エネルギーの最大限の活用を図ることが出来る。
屋内側から冷気を継続して供給し、効率的に吸湿・吸冷することで、夜間に気密断熱層内に潜熱的蓄冷を効率的図ることが出来、夜間の湿度調節効果及び昼間の遮熱効果を得られる。昼間も継続的に室内に冷気を供給できるので、室内への気化放湿は避けられ、湿気の屋内から屋外の方向への放出を誘導・維持し、室内の湿度調節効果を得られる。しかも、それが躯体の適切な含水率管理を睨みながら得られる。屋内から屋外への湿気の放出及びエアコンによる除湿負担軽減によるヒートアイランド化抑制効果を得られ、更に、低コストで快適な湿度・温度環境を得られる。
しかも、冷気の供給に給湯システムから廃棄される冷気を有効利用することにより、除湿時に生成する凝縮熱を有効利用でき、併せて、給湯システムの省エネルギー性能を向上することができる。更に、HP式給湯器のエネルギー消費効率の低下を避けながら、給湯システムの省エネルギー性能を向上することができる。併せて、深夜電力の有効利用との両立を図ることが出来る。
1A:太陽熱エネルギーの日射取得による含水率低下の機能を持たないものの、北面の壁体の断熱材の含水率上昇のもたらす弊害を予め除去することで、液化=結露を作用として活用する道を開く上で必要な他の断熱材の含水率の好適な管理に繋げることが出来る。
B:冬季、寒気により生じる結露の防止に繋がる。冬季の断熱性能の低下並びに熱損失の増加を防止する。
C:循環流路内の暖気の流通のもたらす冬季の熱損失を、夏・冬での流路の変更により軽減する相乗効果を得られる。
2A:前記1の効果をもたらす手段との組み合わせにより、昼間の太陽熱エネルギーの日射取得により断熱材からのH2Oの気化・放出は促進され、昼間・夜間を通して、断熱材内で生じる気圧差により過度の含水率上昇を必要とせずに、H2Oの屋内側から屋外側への移動の適度の圧力を生じ、そこに生じる含水率の乖離を利用して、屋内側からの吸湿・吸冷を促せる。
B:吸放湿とH2Oの相変化の連携の比率を高めることが出来、効率的な蓄冷および効率的なエネルギー移動に繋がる。
3A:冬季、気密断熱層に用いる断熱材の夜間の断熱性能面は熱貫流率で表わされる数値以上の断熱性能を実現する。
B:寒冷地において、冬季に懸念される暖気の流路内の流通を通じた熱損失(H2Oの相変化を利用した冷却エネルギーの屋外から屋内への逆移動に因る)を避けることが出来る。また、除湿・遮熱システムを温暖地から寒冷地まで熱損失を増加せずに活用できる。
C:寒冷地において、夏季の昼夜の温度差を利用して、夜間の放射冷却エネルギーを相変化により断熱材に蓄冷し、昼間の放冷のエネルギー源とし、液化・気化・放湿による遮熱効果を得られる。
4:夏季は、冷気・湿気の供給に好適な循環流路を確保し、冬季は流路を変更することで熱損失を軽減する。
夏季は除湿・遮熱機能により調湿・輻射冷房、冬季は顕熱的蓄熱により輻射暖房の実現に貢献する。
冬季の外側通気層を断熱空気層として利用して壁体全体の断熱性能を向上し、気密断熱層からの熱損失を軽減。輻射暖房の実現に貢献する。
5A:気密断熱層を構成する断熱材の含水率の上昇を伴わず、遮熱のエネルギー源である潜熱的蓄冷つまり吸冷を促進できる。液化したH2Oは空隙内で湿気浸透の壁となり、気化の際の気圧上昇によるH2O移動の効率向上及び屋内から屋外への方向性の保持に貢献する。
B:その上、断熱材を除く躯体のその他の部位の含水率を抑える含水率管理を好適に行なうことが出来る。
6A:昼間は送風ファン稼動により気密断熱層における屋外への湿気の放湿を促し、液体状のH2Oの気化・膨張により生じる圧力との相乗効果により、断熱材内での屋内側から屋外側へのH2O移動の圧力は高まり、断熱材の吸湿・吸冷の高い効率と併せて屋内の除湿の効率を向上することが出来る。
夜間は送風ファンを停止し、屋外からの吸湿・吸冷を抑制する。抑制できた量を屋内からの吸湿・吸冷により余分に補充し、その分屋内からの除湿の効果は高まる。
昼間・夜間の何れも、素材(断熱材)の備える湿気伝導率を越えて屋内側から屋外側へのH2O移動の圧力を創出・保持し、内側通気層・天井裏空間を通じた吸湿の促進並びに含水率回復を促すことを通じて、含水率の上昇を抑えながら屋内側での吸湿・吸冷の効率を向上し、屋内の除湿の効率を向上させることが出来る。
B:夏季に限定せず、屋内の湿気の吸収を促し、屋外へ排出する機構の働きを利用して屋内の空気中に浮遊する揮発性の化学物質を除去することが出来る。低い含水率でも湿気の移動の効率を保持できるので、屋内の相対湿度を必ずしも高く維持する必要は無い。それで、屋内の空気浄化の機能は夏季以外の湿度の高くない時期にも活用できる。
断熱性と伝熱性という背反的性能を、吸放湿機能とH2Oの相変化(液化・気化)に伴うエネルギー移転との連携を活用することで止揚し、太陽熱エネルギーを遮熱する手段を提供することができる。更に、吸湿に伴う含水率の上昇を抑えながら、遮熱に利用できるエネルギー移動の量を増加することができる。つまり、効率的な潜熱的蓄冷を図ることができる。
それで、断熱材もしくは内装材に用いる吸放湿材の特性を把握し、取捨選択して用いる。その選別の基準は、吸湿時に液化を伴う比率が高いか低いかにある。それで、含水率管理と屋内からの冷却エネルギー吸収の効率向上を両立することができ、及び、含水率管理を好適に実施しながら、夏季は屋内外からの冷エネルギーの供給増に対応して、屋内外からの吸冷・吸湿の効率を向上し、遮熱効果を更に高めることができる。
吸放湿材の媒介する液化を作用として利用することにより、二律背反性を内包する躯体の含水率を好適に管理しながら、放射冷却・地熱・深夜電力利用のエアコンのもたらす冷却エネルギーを蓄えて吸湿・吸冷を促進し、相変化を経て液化する際に生じる凝縮熱を吸収するために投じられる冷却エネルギーの総量の範囲内で、昼間に日射取得する太陽熱エネルギーを吸収し、顕熱を湿気という潜熱の形での放湿・吸熱の効率向上に繋げ、遮熱機構の効率的運用・稼働を図ることができる。
吸湿とH2Oの液化の連携の比率を高く維持することで、背反する躯体の含水率管理と潜熱的蓄冷とを好適に行い、更に、冷却エネルギーの供給能力の向上に相応しい効率的吸冷能力並びに効率的エネルギー移動の能力を得て、それらの相乗効果により一層の遮熱効果及びヒートアイランド化抑制の効果を得られる。
8A:深夜電力を利用して生成する冷却エネルギーの蓄冷手段を躯体と蓄熱体・基礎コンクリート・地中から構成される蓄熱層に分散でき、躯体(木質系の構造材・断熱材等)から吸湿・吸冷の負担に伴う悪影響(カビ・腐朽菌等の繁殖、断熱性能の低下)を軽減できる。更に、安価な繊維質の断熱材の利用に道が広がる。
B:エネルギー消費効率の高いエアコンと蓄熱体との組み合わせで深夜電力のみを利用しても、24時間継続的に安定して安価な冷却エネルギーを対流熱の形で直接循環流路に供給出来る。同じく、暖房のエネルギーを一日中継続して安定して安価に対流熱の形で直接循環流路に供給できる。更に、省エネルギー効果を得られる。
C:深夜電力のみを冷房のエネルギー源としながらも、冷気の24時間を通しての継続的供給を通じて昼間の吸放湿の方向性を制御でき、低コストで24時間を通じて屋内の除湿効果を高められる。
D:冷気の継続的供給を通じ、低い含水率の場合でもH2Oの相変化を利用した冷却エネルギーの移動を好適に確保できる。更に、連携の比率と背理関係にあるH2Oの移動の効率を向上し、屋内の除湿効果を高められる。
E:蓄熱体に蓄冷する際、寒冷地程放射冷却により温度低下した夜間の外気を利用でき、COPの数値を超えて少ないエネルギー消費で昼夜の冷房・除湿・遮熱に必要な冷却エネルギーをエアコンから循環流路に供給でき、結局、機器の性能と使用する環境の両面から一層の省エネルギー効果を得られる。また、蓄熱層を介して地中から冷却エネルギーは常時供給され、しかも、蓄熱材の特性を活用して好適な温度で放熱・供給される。その面で、省エネルギー効果は大きい。
F:蓄熱材の融解時に利用できる対流熱エネルギーのままでは、23℃の冷気は特に夜間は直接人肌に触れるには低すぎる。循環流路を流通する過程で、躯体に吸冷・蓄冷され、輻射冷房のエネルギー源として人肌に優しい空調のエネルギーを供給する。
21℃乃至23℃に限定された温度領域での相変化を利用したエネルギーの放出を、循環流路内での躯体との顕熱的エネルギー移転により吸収し、冬季の輻射暖房と夏季の輻射冷房とを、夏季の遮熱・除湿効果と冬季のエネルギー損失軽減効果とを両立しながら安価なエネルギーを利用して24時間安定して好適に実現する。又、地熱・放射冷却・深夜電力の融合された更なる有効活用を通じ、尚一層の省エネルギー効果・エネルギーコストの低下および好適な含水率管理のもと一層のヒートアイランド化抑制効果を得られる。
9:屋根の断熱層を透過する太陽熱エネルギーを、遮熱システムと換気システムとの組み合わせの工夫によって潜熱的・顕熱的に効率的に建物外へ排出し、昼間の冷房負荷の増大を抑えることが出来る。しかも、換気の目的を効率よく果たしながら、その上更に、地熱・放射冷却に加えて深夜電力の効率的な利用を可能として屋内の環境(温度・湿度・酸素濃度等)を年間を通して低コスト(建築コスト・ランニングコスト)で改善することが出来る。
東西南側の気密断熱層では、太陽熱エネルギーの日射取得は屋内側から吸湿液化し・屋外側へ気化放湿する吸放湿の方向性を担保するものの、北側の気密断熱層では、屋外側への気化放湿に頼らずに、屋内側から吸湿し屋外側へ放湿する吸放湿の方向性を堅持することが出来る。その結果、除湿効果を実現できる。
冬季は、気密住宅の閉鎖性及び高い断熱性能を活かし、暖房効果を高めて省エネを追求しながら、夏季は、湿気を排出するために建築的工夫を最大限に追求しながら、地熱・放射冷却等の自然エネルギーを有効利用して、人為的なエネルギーの省エネ化を図りながら、冷房負荷の増大・除湿負荷の増大及びヒートアイランド化の助長を避けられるシステムの構築を図れる。
相対湿度の低い側から吸湿し、吸放湿材を介して相対湿度の高い側に湿気を移動(伝導)し、放湿できる。逆も真なりで、相対湿度の高い屋外側から相対湿度の低い屋内側への湿気の逆流(浸入)を阻止できる。
床下空間の湿気の建物外への排出路として二つの排出路を形成し、排出の効率を改善することにより、床下空間での結露の発生を抑制できる。
以下、本発明の実施の形態を、図面を用いて説明する。
図1及び図2及び図3は、本発明の実施例を示す概略断面図。図4は、図1・2・図3に示す建物の壁体の斜断面詳細図である。図5は、屋根体・壁体の概略断面図である。図6は、屋根体の概略断面図である。図7は、屋根体の概略断面図である。図8は、屋根体の概略断面図である。図9は、壁体の断熱パネルを示す平面概略断面図である。図10は、壁体の現わしを示す平面概略断面図である。図11は、壁体の内断熱を示す平面概略断面図である。図12は、壁体の平面概略断面図である。図13は、壁体断熱パネルを示す平面概略断面図である。
図14は、壁体の平面概略断面図である。図15及び16は、本発明の実施例を示す概略断面図である。
これらの図において、1は棟換気口、2は屋根、3は屋根通気層、4は野地板、5は垂木、6は垂木受け、7は断熱材A、8は気密断熱層、9は外側通気層、10は気密材、11は基礎、12は桁、13は柱、14は土台、15は内壁、16は杉厚板材、17は実、18は断熱材B、19は胴縁受け、20は、連通管21は胴縁、22は外壁、23は基礎天端、24は結合金物、25は接合金物、26は吸気口、27は熱交換式換気扇、28は透湿防風防水シート、29は内側通気層、30は床、31は床下空間、32は1000MM、33は15MM、34は910MM、35は切り欠き部、36は地中、37は天井裏空間、38は棟下換気口、39は屋根棟下空間、40は棟下連通口、41は送付ファン、42は給気用連通管、43は第二棟下連通管、44は床下換気口、45は蓄熱体、46は第二棟下連通口、47は第二送風ファン、48はエアコン、49は室内空間、50は天井、51は排気用連通管、52は基礎土間コンクリート、53は小屋浦空間を示している。
夏季の温暖湿潤の気候の下、特に温暖化の進行している時代にあっては、冷房・除湿は不可欠のものとなっている。只、背景技術のところで記している様に、冷房と除湿を比較するとエネルギー消費或は環境へ及ぼす影響の両面で、除湿時の負担は冷房時よりも大きい。そこから、先ず除湿の負担を軽減することが社会的にも有意義・有用なものとなってくる。
本願発明の新規なところは断熱材もしくは内装材に用いる吸放湿材の特性を把握し、取捨選択して用いるところにある。その選別の基準は、吸湿時に液化を伴う比率の高いか低いかにある。そこで、先ず吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用いる。その代表例として杉板を上げることが出来る。ここで言う吸放湿材とは、吸湿したH2Oを保持し、一定の含水率を確保でき、更に、周囲の環境の条件に応じて湿気を放出し、併せて自らの含水率を低下させられ、又、周囲の環境条件の変化に応じて湿気を吸収する働きを繰り返すことができるものをさす。具体的には、24時間の吸放湿のサイクルを利用できる吸放湿材を選定する。/段落0012参照
図10又は11に示された断熱層の内、屋根体及び/又は壁体の断熱層の室内側に杉板・桐板等を用いる。その外側に合成樹脂系に代表される吸放湿性を具備しない断熱材もしくは吸放湿とH2Oの相変化との連携の比率の高い断熱材を用い、二つの断熱材の間に透湿防風防湿シートを挟み設する。それだけの僅かの工夫で、吸湿時の平衡含水率と放湿時の平衡含水率との乖離を小さく維持でき、室内の湿度を吸放湿材の吸放湿によって調節することが出来る。尚、二層から成る断熱層の外側に配置される断熱材の特性によって、潜熱的遮熱機能の有無に関わり、遮熱機能に連動する除湿機能の有無に関わる。
内装材と断熱材とを兼用できるプラスターボードは、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材に属す。但し、太陽熱の輻射熱の影響を受けやすい場所(東・西・南に面する屋根体・壁体)に限定して用いれば、吸放湿とH2Oの相変化との連携の比率の低くないことによるマイナス面は補い得る。それで、東・西・南に面する屋根体・壁体に限定して用いる限り、吸放湿とH2Oの相変化との連携の比率の高いプラスターボードは、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材として内装材・断熱材に使用できる。/段落0128
さて、独立項である請求項1に関して課題として示した、
(い)断熱層に断熱性に背反する伝熱性を創出し、除湿・遮熱の効果を得られ、
(ろ)吸放湿材に透湿率の面で制限を加えることで、冬季、熱損失の増大を防ぎ、更に、断熱性能を改善でき、
(は)屋内の湿度に比較して屋外の湿度が高いに係らず、湿気の逆流を阻止し、しかも、太陽熱エネルギーの日射取得による含水圧力差を拡大し、屋内の相対湿度の変動の範囲を超えて吸湿能力の回復を図り、屋内の湿度調節を好適に行うには、(0034)
内装材に用いる吸放湿材は、多孔質材の表面で湿気の飽和状態により凝縮熱及び液体状のH2Oを生成し、凝縮熱の処理に冷気を吸収し、液化したH2Oを吸収でき、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いる。つまり、「凝縮熱の処理を促し、液化したH2Oを吸収できる」吸放湿材を用いる。(請求項1)
具体的に説明すると、液体状のH2Oを吸収・吸引できる吸放湿材は、表面に多孔質の形質を保持している。表面で液化したH2Oを吸収できる特性を備える吸放湿材を用いると、空気中の湿気を吸収する際に凝縮熱を吸収し・液化を促進し、かつ、液体状のH2Oを吸引・吸収することで、「吸放湿とH2Oの相変化との連携」の比率を高く維持することに貢献する。(段落0080)珪酸カルシュウム主成分の吸放湿材は、H2Oの液体の状態で吸収できるので、吸湿直前に冷気の吸収の効率を高めて飽和状態に至れば、液化を促し液体の状態のまま吸収される。(段落0078)
ところで、珪酸カルシュウム材は、液化の比率が高く、吸湿・放湿の方向は日々の相対湿度の変化に対して敏感に反応できるわけではなく、特に放湿による日々の吸湿能力の回復の面では優れたものではない。(段落0010参照)
24時間の吸放湿のサイクルを利用でき、(段落0012)相対湿度の変化に応じて効率よく放湿を促し、効率的に吸湿能力を回復するには、太陽熱の輻射熱等のエネルギーが不可欠である。(段落0010参照)
尚、内壁・天井に用いる内装材の内、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材は、太陽熱エネルギーを日射取得できる断熱層に面し、そこから輻射熱を得られる天井及び東西南側の内壁に限定される。(段落0139)
先ず、請求項1に記載の「建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、天井と内壁と床により室内空間を構成し、構造耐力を備え」た躯体を建築する。
国内において建築された建物は、地熱・放射冷却のエネルギー、夏季の暖気、太陽熱エネルギーの日射に曝される。(請求項1)
請求項1に記載の「北側を除いた東西南面の屋根体及び/又は壁体の少なくとも一部に、透湿率は、1g/m2・h・mmHg未満であり、日変動差を有し、多孔質材の表面で湿気の飽和により液化したH2Oを吸収できる、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材として用いる吸放湿材は、」
(A−2)吸放湿とH2Oの相変化との連携の比率の高い吸放湿材(請求項)
(い)珪酸カルシュウム主成分の板材(タイライトウッド等)
(ろ)下地材として用いるプラスターボード(石膏ボード)材
仕上げ材として珪藻土塗り仕上げ・紙クロス仕上げとする。(段落0128・0139)
以上、何れも透湿率は1g/m2・h・mmHg未満である。
(は)土壁材(0128)
土壁材は、乾燥するほどにひび割れが進み、気密性を確保するのは難しい。(段落0015)透湿防風防水シートとの併用も可能。(段落0128)
尚、同等の性能を備えるものであれば、上記の資材に限定されるものではない。
太陽熱を日射取得できない北側の断熱層を通じた輻射熱の影響は乏しく、輻射熱を利用した気化・放湿は期待できない。それで、北側に用いる内装材は吸放湿性を具備しないものを用いるのがいい。プラスターボード下地にビニルクロスは、室内側に吸放湿性を備えず、内側通気層側に吸放湿性を備えているので、室内側に放湿することは無く、好都合である。尚、部屋と部屋との間の間仕切壁についても同様である。(段落0140)
含水率の好適な管理の面で、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用いるのは、適切な選択である。(段落0012)
吸放湿材の屋外側に外気に通じる通気層は、
屋根通気層及び/又は外側通気層(通気層の施工手順は、段落0138参照。通気層の働きは、0109・0110参照)であり、吸放湿材は断熱材(0138参照)として用いられ、屋根通気層及び/又は外側通気層の屋外側には、屋根及び/又は外壁を設ける。
天井裏空間及び/又は内側通気層(通気層の働きは、段落0141参照)の役割を担う。吸放湿材は内装材(0139参照)として用いられる。
尚、天井裏空間及び/又は内側通気層は、密閉状態で外気に開放されない場合、内装材は内装材以外の吸放湿手段と補完的連携を形成し、吸湿能力を回復できる。
「室内空間に冷気を供給する給冷手段」は、通常の換気手段である24時間換気システムを利用して、「室内を循環した空気を建物外に排出する通風を含めた換気する手段」により冷気を取り込める。(段落0071)、もしくは、HP式エアコンの冷気生成機能を併用した場合、より多くの冷気を得られる。段落0097参照
従属項である請求項4に関して。
吸放湿材と合成樹脂系断熱材との積層構造の形成に用いる吸放湿材は、室内側に用いる杉板・桐板等に替えて、多孔質材の表面で湿気の飽和により液化したH2Oを吸収できる、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いる。具体的には、「合成樹脂系断熱材とプラスターボードの積層構造、
あるいは、合成樹脂系断熱材と珪酸カルシュウム材主成分の板材と積層構造」も用いられる。
内装仕上げには、プラスターボード下地に紙クロス仕上げ、あるいは、珪藻土塗り仕上げが広く用いられている、(0128)
尚、合成樹脂系断熱材は、透湿抵抗が高く、防湿層としての役割を担える。(0024)又、合成樹脂系断熱材を積層する代わりに、防湿シートを吸放湿材の屋外側に貼り設しても良い。(0139)
尚、同等の性能を備えるものであれば、上記の資材に限定されるものではない。
従属項である請求項6に関して。
「吸放湿材の屋外側に積層する吸放湿材」は、
(A−1)吸放湿とH2Oの相変化との連携の比率の低い吸放湿材
(い)杉板・檜板・桐板材等の無垢材又は集成材を挙げられる
(ろ)合板・集成材
(は)構造部材(柱・土台・梁・耐力壁等)に用いる吸放湿性を備える無垢材、又は、集成材。耐力壁として構造用合板、杉厚板材(段落0128)
(A−2)吸放湿とH2Oの相変化との連携の比率の高い吸放湿材
(い)珪酸カルシュウム主成分の板材(タイライトウッド等)
(ろ)下地材として用いるプラスターボード(石膏ボード)材
仕上げ材として珪藻土塗り仕上げ・紙クロス仕上げとする。(段落0128・0139)
以上、何れも透湿率は1g/m2・h・mmHg未満である。
(は)土壁材(0128)
土壁材は、乾燥するほどにひび割れが進み、気密性を確保するのは難しい。(段落0015)透湿防風防水シートとの併用も可能。(段落0128)
(A−3)インシュレーションボード材(段落0072)、又は、セルロースファイバー材、(0069・0072)又は、羊毛(0085)等が広く使用されている。
従属項である請求項7で用いる透湿防風防水シートは、広く用いられている極細ポリエチレン繊維質のタイベックを使用する。(段落0074)
施工の手順については、段落0069に記載のように施工する。
請求項11以降に関し。
北側を除いた東西南面の屋根体及び/又は壁体の少なくとも一部に、透湿率は、1g/m2・h・mmHg未満であり、日変動差を有し、多孔質材の表面で湿気の飽和により液化したH2Oを吸収できる、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材として用いる吸放湿材は、
(A−2)吸放湿とH2Oの相変化との連携の比率の高い吸放湿材
(い)珪酸カルシュウム主成分の板材(タイライトウッド等)
(ろ)下地材として用いるプラスターボード(石膏ボード)材
仕上げ材として珪藻土塗り仕上げ・紙クロス仕上げとする。(段落0128・0139)
以上、何れも透湿率は1g/m2・h・mmHg未満である。
(は)土壁材(0128)
土壁材は、乾燥するほどにひび割れが進み、気密性を確保するのは難しい。(段落0015)透湿防風防水シートとの併用も可能。(段落0128)
尚、同等の性能を備えるものであれば、上記の資材に限定されるものではない。
請求項14に記載の「地熱を源とする冷気」は、「1年を通して、地価下2mの年間を通して安定した地熱を利用することが出来る。夏季にあっては、18度前後の地中温度で基礎土間コンクリート及び蓄熱体への熱伝導を経て、冷房のエネルギー供給の補助手段に活用できる。」(段落0086)
夜間の放射冷却を源とする冷気及び/又は地熱の冷気を利用した作用・効果の詳細は、段落0139から0146の記載を参照のこと。
請求項19に記載の
吸放湿材の屋外側の通気層を通じて冷気を供給する給冷手段は、
外気に通じる屋根通気層及び/又は外側通気層(通気層の施工手順は、段落0138参照。通気層の働きは、0109・0110参照)であり、吸放湿材は断熱材(0138参照)として用いられ、屋根通気層及び/又は外側通気層の屋外側には、屋根及び/又は外壁を設ける。
吸放湿材の含水率上昇を緩和できる工夫は、第一に、吸放湿材に透湿率の高くないものを選定する。第二に、24時間の吸放湿サイクルを利用できる吸放湿材を選定する。段落(段落0012)内装材には、透湿率の優れたものでなく、しかも、24時間の吸放湿サイクルを利用できる吸放湿材を選定する。その為に、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材と、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材と、を区別して適宜選定する。(段落0092)
構造材・仕上げ材・断熱材の具備する吸放湿機能は、一日の内の温度の変化、相対湿度の変化によって左右される短期的なサイクルのものから、夏季の湿度の高い時期にもっぱら吸湿し、冬季の湿度の低い時期にもっぱら放湿する四季を通じての含水率増減の長期的なサイクルのものまで見られる。
夏季の一日で見ると、夜間、吸放湿材は屋内側では概ね吸湿活動に励み、吸放湿材の含水率は高まる。昼間、室温の上昇に伴い相対湿度は低下するので、吸放湿材から放湿する。只、吸湿量と放湿量とを比較すれば、吸湿量が多い。それは、四季を通じての長期的な変動からも裏付けられる。
地域の気候特性によって、この現象は如実に現れる。具体的には、信州等では夏季の昼間の相対湿度は温暖・湿潤地に比較すると低い。只、夜間は放射冷却の影響により外気温は著しい低下を示す。それで、相対湿度は急上昇する。
相対湿度の上昇は、放射冷却による冷気の供給と合わさり、潜熱的蓄冷を実施する上での条件の整備に繋がる。つまり、相変化を媒介するものの介在によって、液化の生じる環境は整っているということである。逆に考えれば、吸放湿とH2Oの相変化との連携の比率の高低の違いによる影響がはっきり現れるのである。
又、四季を通じて吸放湿材は吸放湿の方向性を環境に制御されている。具体的には、相対湿度の低い冬には吸放湿材から放湿して含水率は低下する。そして、含水率の低下した吸放湿材は、夏に向かって相対湿度の高い環境から吸湿する。つまり、夏季の相対湿度に対応する平衡含水率に達するまで、吸湿の方向に働く。
この吸放湿の方向に対する環境の影響は、四季を通じるものに限定されない。一日の内の昼夜の間でも、環境の影響は強く現れる。特に、昼夜の外気温の差が大きければ、それは一日の内での相対湿度の変化の大きさに繋がり、一日の内で吸放湿の方向性は環境に影響され、制御されることとなる。
そこで、年間を通じた吸放湿のサイクルを利用して、調湿材の24時間の吸放湿のサイクルを補完する意図・構成により、調湿材の吸湿能力を回復する。/段落0010
それで、どの様な目的で吸放湿材を用いるかについて十分に把握した上で、その目的を果たす上で合致する性能を有する吸放湿材を取捨選択することが重要となる。湿気伝導性・熱伝導性・H2Oの保持力・液化の比率等の面から選択する。尚、H2Oの保持力を備える吸放湿材は、湿気還流率(透湿率)の数値1g/m2・h・mmHg未満とする。因みに、9.5mm厚プラスターボードの湿気還流率の数値は、0.95である。
相対湿度と含水率と平衡含水率との関係によって吸放湿の方向が定まる吸放湿材を吸放湿手段に用いる場合、一日の内での外気温の変化・相対湿度の変化に反応して吸放湿の方向(吸湿又は放湿)は定まり、含水率も上下する。具体的には、信州の地の気候特性を有する場合、夜間は放射冷却により気温低下し、それに応じて相対湿度は上昇する。それで、室内で快適に過ごすには何らかの除湿を行う。ここでは、夜間は相対湿度の高い室内から吸湿して、調湿する。昼間は、温度上昇もあり屋内外の相対湿度は低下する。それで、吸湿によって含水率の高まった吸放湿材から昼間は逆に放湿して、室内を調湿する。放湿によって吸放湿材の含水率は低下し、吸湿能力を回復して次の吸湿時に備えることができる。つまり、夏の間はこの繰り返しによって、昼夜を問わず比較的快適に過ごすことができる。
しかし詳細に検討すると、梅雨から夏季にかけては放湿量よりも吸湿量が多く、壁体・屋根体へのH2Oの蓄積は増大する。それは、相対湿度の上昇に応じて壁体等の平衡含水率も上昇するからである。しかも、一日の内での相対湿度の変化に対応して壁体等の平衡含水率も上下する。平衡含水率が高くなれば、含水率との乖離は大きくなり、その分湿気を吸収する圧力は大きくなる。
その上、建物の気密性能を保持することで、吸放湿材の季節変動を利用した室内の湿度調節機能は向上し、除湿装置を使用しない場合でも一般に快適な湿度とされる70%近辺の湿度を保持することが出来る。
さて、天井により室内空間と天井裏空間を区画する場合、室内空間の湿度調節の効果を天井裏空間の湿度調節の好適な実施に繋げるには、用いる天井材には湿気伝導性の確保並びにH2Oを保持しながら吸放湿の方向を制御できることが求められる。つまり、湿気還流率が高ければ、湿気の伝導性・透過性は高まるが、湿度・温度等の環境の変化に応じて吸湿又は放湿するという具合に吸放湿の方向を好適に実施できない。それで、湿気還流率が高くなく、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を天井材に用いる。
先の例に即して説明すると、夜間は放射冷却の影響で温度低下し、それに応じて相対湿度は上昇する。湿度の高まった室内の空気から天井材へ吸湿され、室内は調湿される。更に、天井裏に冷気を供給する場合も同様に天井裏空間の相対湿度は高まる。その場合も、湿度の高まった天井裏空間の空気から天井裏空間に接する吸放湿材へ吸湿され、天井裏空間は調湿される。昼間は、外気温が上昇するにつれ、室内の相対湿度は低下する。それで、夜間に含水率の上昇した吸放湿材から室内に放湿して、調湿する。只、この吸放湿を繰り返す過程で、天井の吸放湿材の含水率は上昇し、適切な湿度を維持できる吸湿能力はいづれ無くなる。その上、室内空間の昼夜の相対湿度の変化の範囲を超えて、天井材の含水率を低下し、吸湿能力を回復することは通常不可能である。
しかし、天井裏空間に面する他の吸放湿材のH2Oの保持能力を利用することで、吸湿能力を回復することができる。それは、日々の吸放湿の過程で天井の吸放湿材から室内側に放湿できず、含水率低下を果たせなかった分を天井裏空間に面する他の吸放湿材に吸収し、湿気の移動を図ることにより実現できる。つまり、湿気の移動を果たせた分、天井材の含水率は低下する。只、天井の吸放湿材は湿気還流率の高くないものを用いるので室内空間から天井裏空間への湿気の移動は緩慢となる。そして、天井裏空間の相対湿度上昇も緩慢となり、天井裏空間に面する他の吸放湿材の湿気の吸収も緩慢となる。ここが要諦である。つまり、天井裏空間に面する他の吸放湿材は、間接的にしろ室内空間の湿気を一気に吸湿するわけではなく、天井材を補完する形で吸湿するので、吸放湿材である天井材の「表裏の含水圧力差を増幅し」、「吸湿余力を創出でき」、その上、創出された吸湿余力は日々の吸放湿を繰り返しながらも比較的長く持続できる。この吸放湿手段相互の補完的連携によって、室内の調湿能力は、その性能の高さを日々維持することができ、又、長期間に渡り維持することができる。尚、太陽熱のもたらす輻射熱の影響により、天井材は気化・放湿する。この働きは、天井材の含水率低下を促し、天井材の吸湿能力の回復を促す。
天井裏空間に面する吸放湿材としては、柱・梁・間柱等の構造材あるいは断熱層を形成する断熱材あるいはシリカゲル・炭等を挙げられる。この吸放湿手段の組み合わせによって建物内に大量のH2Oを保持することができ、信州等の過ごしやすい地域から温暖湿潤の地まで地域の気候特性に合わせて必要な吸放湿手段及び能力を選べる。尚、吸放湿性を具備する断熱材の介在により、断熱性に背反する伝熱性を創出し、太陽熱の遮熱効果と屋内の除湿効果を一つの働きにより得られる。又、棟換気口等の排気手段及び天井裏空間等の流路を介した通気の手段により、室内から除湿された湿気を建物外に排出することができる。何れも、室内の調湿手段を担うものの一つである。
構造材を吸放湿材として活用する場合、含水率管理は重要である。含水率の高い状態が継続すると腐朽菌の繁殖する環境を作り出すこととなり、建物に被害の生じる可能性は高くなる。それで、構造材以外の吸放湿材を同時に利用することが望ましい。例えば、断熱層を形成する断熱材あるいはシリカゲル・炭等を挙げられる。シリカゲル・炭等の吸放湿材は、天井裏空間・内側通気層・床下空間のいたるところに設置可能であるから、地域の気候特性を考慮しながらその適量を調節できる。尚、四季の変化によって、具体的には冬季に向かって外気の相対湿度は大きく下降し、室内空間・内装材を介して天井裏空間・内側通気層・床下空間に接する吸放湿材の含水率の下降に繋がり、好適な含水率管理に繋がる。
尚、内壁材の内装材に吸放湿材を用いて室内空間と内側通気層を区画する場合も、同様の工夫によって室内の調湿能力を確保・持続する。天井裏空間と内側通気層は連通する場合、あるいは、連通しない場合のいづれも効果を得られる。
さて、天井裏空間ではエネルギー供給手段を通じた冷気の供給により、露天近辺の高い湿度の空気から湿気を吸収して、結露の発生を抑制する。天井裏空間から吸収された湿気は、吸放湿材を透過する形で室内空間に放出されるか、断熱層を透過する形で屋外に放出されるか、あるいは、構造材・断熱層等の吸放湿材に保持される。尚、天井裏空間は閉空間であるから、一度吸収すれば頻繁に湿気を吸収する必要はなく、吸放湿材の吸湿の負担は小さい。
エネルギー供給手段として天井裏に配管する銅管にH2Oを始めとする液体を熱媒に流し込む。熱媒が銅管を流通する過程で熱交換により天井材を冷やし、顕熱的蓄冷を遂げる。顕熱的蓄冷の結果、放射冷却の実現を図れる。尚、天井裏空間の除湿の効果により結露の発生を抑制できる。
更に進んで、社会的に余剰の深夜電力を利用して、室内の湿度調節を実施する。その技術については、アイデアとして既に提供されていることを先に記した。只そのアイデアでは室内の湿度を快適とされる70%に維持するには、昼間も頻繁に除湿装置を稼動せざるを得ず、深夜電力の使用を目的とする除湿システムとしては、未完成の段階である。
さて、快適とされる湿度60%を維持するには、深夜電力を利用できる時間帯に限定して除湿装置を稼動する。設定湿度を50%に確保すれば、室内の相対湿度は当然低下する。それに伴い吸放湿材からは放湿するが、相対湿度に対する平衡含水率9%の近辺まで放湿は継続する。只、一日のうちで吸放湿によって移動するのは表面から2〜3mm程度である。
そして、夜間の内に含水率の低下した吸放湿材は、昼間は一転して室内空間の空気中の湿気を吸収することが出来る。それで、除湿装置を昼間稼動しなくとも、室内空間の湿度を60%に維持することが出来る。
室内空間の湿度調節の効率を向上するには、気密性能の向上は不可欠である。気密性能が向上すれば、湿気の漏れは少なくなり、除湿装置或は吸放湿材を用いた湿度調節はより効果を挙げられる。その結果、昼間除湿装置を稼動しなくとも、驚異的ともいえる湿度60%近辺を維持することが出来る。
尚、室内空間に除湿装置を設置し、深夜電力を利用して室内を50%の設定の下除湿すると、室内の湿気及び天井裏空間の湿気を吸収して含水率の高まった天井に用いる吸放湿材から湿気を放出する。昼間は、除湿装置を稼動しなくとも、天井に用いた吸放湿材が室内の空気から吸湿し、湿度60%以下に調湿できる。更に、室内の調湿を行うだけでなく、天井材の含水率の低下をも誘導する。その結果、天井材は昼夜を通して天井裏空間から吸湿し、天井裏での結露発生の抑制に効果を現わす。内壁についても、天井と同様に実施できる。
壁体・屋根体の外側では、夏季の昼間の太陽の日射取得により、外壁は60℃〜70℃の温度に達する。それで、外側通気層内・屋根通気層内の相対湿度は極端に下降する。その分湿気を放出する圧力は高くなる。しかも、多孔質の建材から構成される壁体及び/又は屋根体は、昼間の太陽の日射取得によりH2Oの蒸発に必要な運動エネルギーの供給を受ける。その結果、夜間に蓄えられたH2Oは多孔質の建材から容易に気化・放湿し、蒸発する。外壁材に吸放湿材を付加する形をとれば、この冷却効果は大きくなり、断熱層への蓄熱を防止する効果がある。いずれも、夜間に潜熱的に蓄冷したエネルギーは、昼間太陽熱エネルギーを吸収する形で遮熱に利用でき、冷房負荷の増大の縮減に貢献する。(0134)
南側の屋根体の断熱層を吸放湿性を具備する断熱材のみで構成し、その上、屋根体に屋根通気層を設けると、夏季の昼間は太陽熱エネルギーの日射取得によって蓄熱したエネルギーを屋外へ排出する手段となり、夜間は屋外からの放射冷却を吸収する手段となる。しかも、屋内からの冷気の吸収及び屋外からの冷気の吸収により液化を生じれば、それは昼間の太陽熱エネルギーの日射取得を通じての顕熱を湿気という潜熱の形に変えた排熱に繋がる。それは、顕熱の潜熱化による遮熱効果を生むのみならず、屋内からの吸湿を通じて屋内の除湿を実施することで、室内空間の湿度調節を行うことができる。つまり、夜間に室内空間を冷房したとしても、冷気の供給による液化の影響(吸湿時の平衡含水率と放湿時の平衡含水率との乖離)を昼間の太陽熱エネルギーの吸収を通じた気化・放湿(顕熱の潜熱化による)により抑えることに繋がる。尚、普及しているHP式エアコンは、除湿機能稼働時に併せて冷房機能も働き、冷気の生成・供給が行われる。
*顕熱の潜熱化による遮熱効果をもたらす潜熱的遮熱の二態様について。
さて、前記の多孔質の建材からの気化・放湿は、具体的には、太陽熱エネルギーを起源とする対流熱・放射熱の形で熱エネルギーを得て、気化・放湿する。即ち、放射熱及び対流熱から運動エネルギーを得て、気化・膨張する。(0144)
従来相変化によるエネルギー移転は、常温での液体状のH2Oから気体状のH2Oへの変化及び気化熱の利用について注目されてきた。(0076)
具体的には、1気圧・30℃の下、太陽熱エネルギーの日射取得を得られない場合でも、吸放湿材の媒介によってH2Oの相変化(気化)による冷却エネルギーの利用は可能である。(0078)
例えば内装材からの放湿の場合、内側通気層内は、太陽熱の影響による上昇気流の発生により通気性に優れているので、気化・放湿は促進され、しかも、放出された湿気は速やかに建物外に放出される。(0142)又、断熱材からの放湿の場合、「太陽熱エネルギーの日射取得に関係なく気化・放湿を促し、全ての断熱材の含水率上昇の抑制を視野に入れながら吸放湿材は、昼間に常温で気化放湿する。」(0087)
只、気化熱の影響で周囲に冷却効果が現れ、温度低下すれば、そのままの状態では相変化は持続しなくなる。(0078)それは、通気による気化・放湿の限界を示すものである。それに対し、太陽熱エネルギーを日射取得できれば、放射熱エネルギーの効果により、運動エネルギーを直接・持続的に供給できる。それで、相変化は持続する。(0078)
また、太陽熱エネルギーの日射取得がないと、含水率は高止まりする。それで、含水率管理に太陽熱は不可欠である。(0078)
ここでは、太陽熱エネルギーから放射熱エネルギーとして運動エネルギーを取得し、相変化(気化)のエネルギーとし、太陽熱エネルギーを湿気という潜熱の形に閉じ込める点で画期的である。(0076)
尚、内壁・天井に用いる内装材は、気化・放湿に必要な運動エネルギーを通気以外の手段によって安定的に供給されるためには、太陽熱エネルギーを日射取得できる断熱層に面し、そこから輻射熱を得られる天井及び東西南側の内壁に限定される。(0139)
以下は、断熱層に吸放湿材を用いた場合の、顕熱の潜熱化による遮熱効果についての具体例である。
昼間は、相対湿度との関係で、あるいは、気化に必要な運動エネルギーへと転化して、吸放湿の素材からは放湿し、気化熱により躯体を冷却する方向に働く。断熱材に吸収された湿気は、H2Oの相変化を経て、外側通気層・屋根通気層を通じ建物外に排出される。しかも、顕熱の一部は湿気という潜熱の形で建物外に排出される。(0117)
*潜熱的遮熱と潜熱的蓄冷との関係について。
尚、潜熱式の排熱は、無限に行えるわけではない。エアコンの生成する冷気によって、H2Oの相変化の一面である液化により生成する凝縮熱を吸収する量に応じて、気化熱により太陽熱エネルギーを吸収する量が限定される。(0117)又、湿気の吸収並びに冷却エネルギーの吸収を連携して行い、壁体での凝縮熱及び水の生成に繋がる相変化である潜熱式蓄冷が重要となる。しかも、相変化を経て液化する際に生じる凝縮熱を吸収する為に投じられた冷却エネルギーの総量(放射冷却・地熱)の範囲内で、潜熱を利用した遮熱の効果を得られる。(0104)
更に、夜間の屋外からの吸冷(潜熱的蓄冷)を昼間の太陽熱エネルギーの日射取得により気化・放湿し、断熱性能の改善に繋げられる。(0086)
*吸放湿材に冷気を供給できる給冷手段について。
従来は、熱気の排出にあたり、湿気という潜熱の形に閉じ込め、潜熱化を図る上で必要となる冷却エネルギー供給手段が構成要件として認識されていない。(0024参照)
しかも、吸放湿材の特性によって、あるいは、吸放湿材に冷気を供給できる環境・手段を備えているか否かによって、吸放湿とH2Oの相変化との連携の比率は制約される。(段落0005)
具体的作用は、内装材への吸湿・吸冷により、夜間の地熱・放射冷却のエネルギーは大半を凝縮熱の吸収に消費され(段落0141)、あるいは、深夜電力を利用してエアコンから冷気を放出し、建物を構成する吸放湿材を冷却する。冷却されることで、相変化(液化)によって生成される凝縮熱を吸収する。(段落0117)、それで、吸放湿材内部で生じる液化に伴い生成される凝縮熱を吸収する上で必要な冷却エネルギーを含む冷気を供給することで生じる現象は、作用面では潜熱的蓄冷の一形態である。(段落0083)
以下、吸放湿材に冷気を供給できる手段についての具体例を記すと、
1.冷気の供給される源としては、
(A)夜間の放射冷却によりもたらされる自然エネルギー(課題は、0037参照)
(B)地熱の自然エネルギー(課題は、0037参照)
(C)HP式エアコン又は給湯エアコンの生成する対流冷気(課題は、0039参照)
2.冷気を供給する方法・経路の違いにより
(A−1)夜間の放射冷却は、換気システムを介して室内空間より吸放湿性を備える内装材へ供給される。(詳細は、段落0071参照)
(A−2)夜間の放射冷却は、壁体内換気システムを介して天井裏空間及び/又は内側通気層により吸放湿性を備える内装材及び/又は吸放湿性を備える断熱材へ供給される。(詳細は、段落0113・0114、図1・2・3参照。課題は0034)
(A−3)夜間の放射冷却は、開閉式換気口を介して天井裏空間及び/又は内側通気層により吸放湿性を備える内装材及び/又は吸放湿性を備える断熱材へ供給される。(詳細は、段落0139〜0145、図15を参照)
(A−4)夜間の放射冷却は、外気に開放された屋根通気層及び/又は外側通気層により吸放湿性を備える断熱材及び/又は吸放湿性を備える外装材へ供給される。(詳細は、段落0106、図16を参照)
(B−1)地熱の自然エネルギーは、壁体内換気システムを介して天井裏空間及び/又は内側通気層の内少なくとも内側通気層により吸放湿性を備える内装材及び/又は吸放湿性を備える断熱材へ供給される。(詳細は、段落0099・0107・0113・0114、図1・2・3を参照)
(B−2)地熱の自然エネルギーは、開閉式床下換気口及び床下空間を介して天井裏空間及び/又は内側通気層の内少なくとも内側通気層により吸放湿性を備える内装材及び/又は吸放湿性を備える断熱材へ供給される。(詳細は、段落0139〜0145、図15を参照)
(C−1)HP式(給湯)エアコンの生成する対流冷気は、室内空間に設置のエアコンを介して吸放湿性を備える内装材へ供給される。(詳細は、段落0119・0144、図1を参照)
(C−2)HP式(給湯)エアコンの生成する対流冷気は、天井裏空間及び/又は床下空間に設置のエアコンを介して天井裏空間及び/又は内側通気層により吸放湿性を備える内装材及び/又は吸放湿性を備える断熱材へ供給される。(詳細は、段落0117・0134、図2・3参照)
*給冷手段の吸放湿材にもたらす潜熱的蓄冷と給冷手段との関係について。
吸放湿材内部で生じる液化に伴い生成される凝縮熱を吸収する上で必要な冷エネルギーを含む冷気を供給することで生じる現象は、作用面では潜熱的蓄冷の一形態である。(0083)凝縮熱についての認識が十分でなければ、冷却エネルギーを活用した湿気の吸収促進並びに液化の促進という発想は出てこない。(0027)
断熱材が湿気を吸収し、相変化で液化する過程で凝縮熱が生成される。夜は、外気は放射冷却が加わり温度低下する。更に、温度の低い地熱との相乗効果により、断熱材・仕上げ材等の吸放湿材の吸湿・相変化し、液化に伴い生成する凝縮熱を吸収する。(0114)
具体的には、夜間、深夜電力を利用してエアコンから冷気を放出、建物を構成する吸放湿素材を冷却する。冷却されることで、吸湿を促し・相変化(液化)によって生成される凝縮熱を吸収する。(0117)
内装材への吸湿・吸冷により、・・・夜間の地熱・放射冷却のエネルギーは大半を凝縮熱の吸収に消費される。(0141)
*潜熱的蓄冷の二態様について。
断熱材はその断熱性により内部に冷却エネルギーを伝導する能力は低い。つまり、冷却エネルギーの伝導が緩慢な分、液化も緩慢である。潜熱的蓄冷を図るにしても、効率は良くない。冷却エネルギーの供給を増加したとしても、吸冷を促すことは難しい。(0080)エアコンにより冷却エネルギーを対流熱の形で供給しても、伝熱しにくいので、冷却効果が出るには時間がかかる。(0075)
ところが、吸放湿材である珪酸カルシュウム主成分の板材は、H2Oの液体の状態で吸収でき、吸湿直前に冷気の吸収の効率を高めて飽和状態に至れば、液化を促し、液体の状態のまま吸収される。潜熱的蓄冷の一例である。吸放湿の過程で液化という相変化を生じると、併せて凝縮熱を生じる。(0078)
それで、空気中の湿気を吸収する際に凝縮熱を吸収し・液化を促進し、かつ、液体状のH2Oを吸引・吸収することで、吸放湿とH2Oの相変化との連携の比率を高く維持することに貢献する。(0080)即ち、夜間の放射冷却を源として、多孔質の建材から構成される壁体は屋内外から吸湿・吸冷し、潜熱的に蓄冷する。(0137)
H2Oの液体の状態で吸収できる素材を用いると、二種類の潜熱的蓄冷手段を冷却エネルギー移転に利用する上では好適である。(0078)
*潜熱的蓄冷手段について
吸湿を促進する手段として、地熱・放射冷却の持つ冷却エネルギーを利用し、もっと吸湿の効率を上げ、潜熱式の蓄冷の効率を上げるには、エアコンを用い、冷却エネルギーを供給する。吸放湿並びにH2Oの相変化に伴うエネルギー移転を利用し、建物の建築上の工夫によって、躯体を用いた蓄冷装置の役割を果たす。(0116)
躯体への蓄熱は、構造材・内装材・断熱材等に依る。蓄冷時の吸湿と液化の相変化との連携によって潜熱的蓄冷手段となる。(0065)
例えば、放射冷却・地熱・深夜電力利用のエアコンのもたらす冷却エネルギーを蓄熱し、吸湿・吸冷を促進する。(0106)対流熱の形でエネルギーを供給できるエアコンは、対流熱エネルギーの形で(対流冷気を)空気の流路に供給し、蓄熱体・躯体に対しそのまま潜熱的に蓄冷する。(0120)しかも、H2Oの液体の状態で吸収できる素材を用いると、潜熱的蓄冷手段を冷却エネルギー移転に利用する上では好適である。(0078)即ち、吸放湿材とH2Oの相変化との連携の比率の高い吸放湿材を用いれば、冷気により潜熱的蓄冷は進行し、含水率は高止まりする。(0012)
*技術水準との比較
相対湿度に対応する平衡含水率と吸放湿材の含水率との差によって吸湿又は放湿するという技術水準に対し、吸湿が液化を伴う潜熱的蓄冷による場合、相対湿度の高低によって吸放湿する性質のものではない。冷気を潜熱的に吸収する際に、相対湿度の低い場合でも吸湿でき、冷気を吸湿・吸冷し、潜熱的に蓄冷するが、技術水準との関係では、相対湿度の変動の範囲を超えて吸湿・吸冷することができる。つまり、冷却エネルギーを活用した湿気の吸収促進並びに「液化の促進」という発想による効率的な潜熱的蓄冷を図ることができる。しかも、H2Oの液体の状態で吸収できる素材を用いると、潜熱的蓄冷手段を冷却エネルギー移転に利用する上では好適である。(0078)即ち、吸放湿材とH2Oの相変化との連携の比率の高い吸放湿材を用いれば、冷気により潜熱的蓄冷は進行し、含水率は高止まりする。(0012)具体的には、液化という相変化の際に生成される凝縮熱の働きを利用して、冷気を吸収する。(0124)
*冷気を吸収する、蓄冷の二態様について
「冷たい空間に接する面から冷気を吸収する蓄冷」と「凝縮熱の働きを利用して冷気を吸収する蓄冷」という具合に二種類の蓄冷を導くことができる。
前者について説明すると、技術常識の範囲に収まるもので、例えば、(天井裏空間の)冷却された空気により天井材が冷却され、輻射及び自然対流で室内の冷房が行われる。(0011)建物外から取り入れた新鮮な空気は床下区間を経る過程で、夏であれば冷やされ、冷えた空気は、床下空間から内側通気層を経由する過程で内壁部を冷やす。(0099)顕熱的蓄冷の効果でエネルギー変換に繋げ、輻射冷房効果を実現する。(0041)顕熱的蓄冷を意味する。
後者については、液化という相変化の際に生成される凝縮熱の働きを利用して、冷気を吸収する(0124)に開示されているが、相変化に伴い生じる凝縮熱の処理に対しても、放射冷却による温度低下によって、前記の外側通気層の下端から取り入れる外気は冷却され、その冷却エネルギーの効果で、前記の凝縮熱は処理される。(0106)凝縮熱を吸収することで、潜熱的蓄冷を行うことができる。(0078)吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いる。吸放湿材はその冷気を潜熱的に吸収する際に、相対湿度の低い室内から吸湿することができる(0144)潜熱的蓄冷を意味する。
*蓄冷手段としては、冷却エネルギーの蓄冷手段を躯体と蓄熱体・基礎コンクリート・地中からなる蓄熱層に分散でき(0090)、躯体への蓄熱は、構造材・内装材・断熱材等による。蓄冷時の吸湿と液化の相変化との連携によって潜熱的蓄冷手段となる。(0065)温度の低い地熱との相乗効果により、断熱材・仕上げ材等の吸放湿材の吸湿・相変化し、液化に伴い生成する凝縮熱を吸収する。冷却エネルギーの移転を伴う潜熱的蓄冷により、吸湿はさらに促進される。(0114)蓄熱体は、相変化を生じる蓄熱材から構成される。(0065)更に、氷蓄冷システムがある。(0004)又、躯体に顕熱的蓄冷し躯体全体から輻射冷房効果を得られる。(0128)尚、蓄熱には、蓄暖・蓄冷の両方の意味をもつ。(0076)
*吸放湿とH2Oの相変化との連携の比率の高い吸放湿材において、前記二種類の潜熱的蓄冷手段と、供給される冷気との関係について、下位概念的に表現すると、
(1)冷気による凝縮熱の処理及び冷気を潜熱的に吸収する蓄冷手段
(2)冷気による凝縮熱の処理及び冷気を顕熱的に吸収する蓄冷手段に区別できる。
*吸放湿材の断熱性能の低下とその防止及び断熱性能の向上について。
断熱性に背反する伝熱性の創出を促進し、太陽熱を吸収する遮熱効果に繋がり、あるいは、断熱性に背反する伝熱性の創出を抑制し、太陽熱を吸収する断熱性能の改善に繋がる、という制御の問題が吸放湿材を活用する上での新規な課題となる。(0033)
具体的には、凝縮熱の働きを勘案すると、断熱材の実際の断熱性能は、熱還流率という数値で表される数値以上の性能を有することになる。更に、屋外の冷気により液化したH2Oは透湿防風防水シートを透過しない。それで、熱損失を増幅することはない。(0124)更に、夜間の屋外からの吸冷(潜熱的蓄冷)を昼間の太陽熱エネルギーの日射取得により気化・放湿し、断熱性能の改善に繋げられる。(0086)
*吸放湿材に放射冷却及び/又は地熱を源とする冷気を吸放湿材の屋外側から供給する手段について。
(A−2)夜間の放射冷却は、壁体内換気システムを介して天井裏空間及び/又は内側通気層により吸放湿性を備える内装材へ供給される。(詳細は、段落0113・0114参照)
(A−3)夜間の放射冷却は、開閉式換気口を介して天井裏空間及び/又は内側通気層により吸放湿性を備える内装材へ供給される。(詳細は、段落0139以下参照)
(A−4)夜間の放射冷却は、外気に開放された屋根通気層及び/又は外側通気層により吸放湿性を備える断熱材へ供給される。(詳細は、段落0106参照)
(B−1)地熱の自然エネルギーは、壁体内換気システムを介して天井裏空間及び/又は内側通気層の内少なくとも内側通気層により吸放湿性を備える内装材へ供給される。(詳細は、段落0099・0107・0113・0114参照)
(B−2)地熱の自然エネルギーは、開閉式床下換気口及び床下空間を介して天井裏空間及び/又は内側通気層の内少なくとも内側通気層により吸放湿性を備える内装材へ供給される。(詳細は、段落0139以下参照)
*請求項1に記載の北側を除いた東・西・南面の屋根体及び/又は壁体の少なくとも一部に用い、含水率が日変動差を有し、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材としては、
(1)珪酸カルシュウム材主成分の板材/ヒューミライト(0074)・タイライトウッド(0139)
(2)土壁材(0074・0128)
(3)プラスターボード(0069・0128・0139)
尚、仕上げ材としては、プラスターボード下地に珪藻土塗り仕上げ、プラスターボード下地に紙クロス。(0068)
上記の吸放湿材の内、土壁材、プラスターボード、珪酸カルシュウム材主成分の板材は、内装(下地)材・断熱材の何れの用途にも用いられる。土壁材は、主に断熱材として用いられる。
尚、同等の性能を備えるものであれば、上記の資材に限定されるものではない。
以下、前項の作用・効果に加えて、遮熱機能に連動する除湿機能の有る場合の具体的な作用・効果及び断熱性能向上の作用・効果の説明が加わる。
断熱材は、物質固有の断熱性能を有し、それは熱還流率という数値で表される。それを簡単な工夫によって、当該断熱材の断熱性能を向上し、本来有する熱還流率の数値の改善を図れる。その簡単な工夫は、同一種類もしくは異なる種類の断熱材の重ね合わせの方法による。
吸放湿性を具備する断熱材は、湿気を吸収・放出できる性質を有するので利用価値は高いが、実験的に検出された熱還流率の数値は総体的に低く、製造コストが高いこともあり、費用対効果の面では割高感が強い。そこに、簡単な工夫で熱還流率を改善できれば、その特性を活用する上での費用対効果は改善し、価格的な障害は小さくなり、普及に道が開ける。
具体的には、透湿防風防水シートを二枚の断熱ボードの間に挟むように重ね、三層構造とする。それだけの工夫である。請求項5に記載の断熱パネル(吸放湿性を具備する断熱材と透湿防風防水シートと吸放湿性を具備する断熱材の三層の積層構造)は、段落0074に記載の通り、吸放湿とH2Oの相変化との連携の比率の低い断熱材と透湿防風防水シートと吸放湿とH2Oの相変化との連携の比率の高い断熱材(断熱パネル1)、吸放湿とH2Oの相変化との連携の比率の高い断熱材と透湿防風防水シートと吸放湿とH2Oの相変化との連携の比率の高い断熱材(断熱パネル2)、吸放湿とH2Oの相変化との連携の比率の低い断熱材と透湿防風防水シートと吸放湿とH2Oの相変化との連携の比率の低い断熱材の三種類の積層構造を持つ。気体状のH2Oは透湿防風防水シートを透過するものの、液体状のH2Oは透過しない。液体状のH2Oを透過するか否かで、エネルギーの伝導の態様に差異が生じる。又、液化の比率の違いにより、相対湿度の変化に対する反応の濃淡・強弱が規定され、エネルギー移転を伴わない吸放湿の制御に繋がる。しかも、透湿率を1g/m2・h・mmHg未満とすることにより、日変動差に加えて含水圧力差を保持することが出来、その上、積層する吸放湿材との補完的連携により、含水圧力差を増幅することが出来る。それで、吸放湿材は、自らの調湿能力を越えて室内を調湿する能力及び調湿効果を得られる。尚、請求項12に記載の断熱パネルは、更に、調湿手段の作用・効果が加わり、現わしの形により直接室内空間に接し、直接室内空間の調湿を行うことが出来る。
熱還流率で表される断熱性能は、暖かい空間から冷たい空間への熱エネルギーの移動に関するものである。
さて、A面が冷たい空間に接し、B面が暖かい空間に接しているとする。吸放湿性を具備するので、A面で吸冷と吸湿が併行して生じれば、液化によって凝縮熱と液体状のH2Oを生成する。B面で吸収される熱エネルギーによって気化が生じれば、気化熱によって先の凝縮熱は相殺され、断熱性能は本来の数値と変わらない。只、B面で熱エネルギーの供給が継続されれば気化・放湿は更に促進され、熱還流率の低下に繋がるだけでなく、現実の熱損失は大きくなり、特に輻射暖房効果の実現を図る場合に影響が出やすい。これは、断熱性に背反する伝熱性の創出を抑制できない場合の例である。
さて、液体状のH2Oは透湿防風防水シートを透過しない。それで、透湿防風防水シートを境にして熱エネルギーの移動に差異が生じる。A面から太陽熱エネルギーの日射取得を得られる場合は、B面側の液体状のH2Oに放射エネルギーとして影響し、気化が生じる。これは、夏季の断熱性に背反する伝熱性の創出の態様を表す。ところで、断熱材に対して熱エネルギーを供給される実際の環境においては、冬季の場合、屋外側のA面で太陽熱エネルギーを日射取得するか、屋内側のB面で暖房の熱エネルギーを吸収するかの何れかである。前者では、冷たいものを吸収し液化したH2Oを保持する側と同じA面側で太陽熱エネルギーを吸収し、気化・放湿するので、透湿防風防水シートの働きも加わり、冷たいものはB面側に伝導しない。後者では、暖房の温度は概ね20度位であるから、B面側に液体状のH2Oが移動していれば気化・放湿する。しかし、透湿防風防水シートを境にして、A面側の液体状のH2OはB面側への移動を阻止されている。少なくとも、B面側は断熱性能を有するので、境まで暖気を伝導して気化放湿することは極稀と考えられる。それで、熱損失の拡大は阻止できる。断熱性に背反する伝熱性の創出を抑制する例である。実際の住宅に用いる場合は、前者と後者との合わさったものと成る。つまり、昼間A面側で日射取得する太陽熱エネルギーで、夜間にA面側で吸収する冷気を相殺できる分、冷気はB面側に到達せず、熱還流率は改善する。
用いる吸放湿材は、冬季の場合、屋内側に配置するB面の属性が吸放湿とH2Oの相変化との連携の比率が高いか低いかの違いによって、その熱還流率の改善の程度に差異は生じない。但し、屋内外の配置を逆にして屋外側にB面を配置すれば、断熱パネル1は吸放湿とH2Oの相変化との連携の比率が低く、夜間に吸収される冷気は大半顕熱の形をとり、室内側に浸透する。又、昼間は屋根通気層・外側通気層に日射取得された太陽熱エネルギーの断熱層に吸収される量は潜熱の形での吸収に比較して多くなく、しかも、顕熱の形での排出量は少なくない。それで、太陽熱エネルギーを活用した熱還流率の改善効果は大きくない。つまり、差異は大きい。
ところで、差異は夏季に現れる。夏季は、B面で屋内から冷気が供給されても断熱性に背反する伝熱性の創出によってエネルギー移動は生じる。現実には、夜間にA面で放射冷却のエネルギーを吸収して、昼間に太陽熱エネルギーを日射取得して気化・放出する。それで、夜間に潜熱的に蓄冷した量に応じて昼間に太陽熱エネルギーを吸収できる。つまり、昼間の遮熱能力の大小及び夜間の屋内の除湿効果の大小に影響する。それで、断熱パネル1及び2の何れも遮熱能力は大きい。
断熱パネル1は、B面からの潜熱的蓄冷の能力は低く、その分遮熱に連動する除湿の能力は高くない。A面から透湿防風防水シートを超えて太陽熱エネルギーを透過する必要性は乏しく、遮熱性能の高い透湿防風防水シートを選択するとシート面で顕熱を反射し、B面への顕熱の透過は更に減少する。顕熱の透過を阻止し、顕熱を潜熱化する効率を高めることに貢献できる。対する断熱パネル2は、B面からの潜熱的蓄冷の能力は高く、その分遮熱に連動する除湿の能力も高い。除湿・遮熱の能力は高いので、エアコンを用いて大量の冷気を生成・供給できる場合に最適である。断熱性に背反する伝熱性の創出を促進する上で、A面から透湿防風防水シートを超えて太陽熱エネルギーを透過する必要性は高く、遮熱性能の低い透湿防風防水シートを選択すると顕熱はシート面を透過し、液体状のH2Oの気化に貢献する。尚、気化したH2Oが何れの方向に向かって透過するかは色々な要素が絡み合う。物質の本来備える湿気伝導率を超えて伝導の効率を高める工夫が重要であり、遡って、その工夫は気圧低下による気化の生じる環境整備に影響する。
断熱パネル2の実施例では、屋内から吸湿・吸冷する潜熱的蓄冷の例である。屋外から太陽熱エネルギーを日射取得すれば、シートの屋外側から気化・放湿される。この相変化が進行すれば、輻射熱の形でシートの屋内側のH2Oに直接働きかけ、気化を促す。その際、気化膨張による圧力と送風ファンの働きによる外側通気層内の気圧低下により、大半のH2Oは屋外側に放湿される。しかも、この間に屋内から冷気の供給が継続されれば、湿気移動の方向はそのまま維持される。冷気の供給は、地熱・放射冷却・エアコンの生成する冷気による。
エアコンを用いて生成する冷気を、遮熱のエネルギーとして活用しない場合、断熱パネル1の実施例に従い実施する。但し、室内の除湿負荷は縮減できないので、エアコンの除湿能力に依存せざるをえない。その分、凝縮熱の生成・放出量は増加する。但し、段落0082−0083、0096に記した様に、深夜電力利用の除湿システムの好適な実施に繋げられる。
夜間の放射冷却の作用が加わり屋外側で吸湿・吸冷が促され、断熱層は液化したH2Oを保持できる。液化したH2Oは、湿気の伝導を阻止する働きを示し、又、シートは液化したH2Oの伝導を阻止する。それで、液化したH2Oを保持している間は、断熱層の内外の相対湿度の高低に関係なく、湿気の逆流を阻止することができる。つまり、屋外側から吸収される湿気は、自ら液化することにより透湿防水シートを透過できない物質に変化し、その上、湿気として吸収され・湿気として保持されるH2Oの屋内側への透過(逆流)を阻止する役割を果たす。
通風による冷気の利用を促すために、外側通気層・屋根通気層を設け、吸放湿とH2Oの相変化との連携の比率の高い断熱層への吸湿・吸冷を促し、放射冷却の利用を図る。夏季は、夜間に潜熱的に蓄冷したエネルギーを昼間の遮熱のエネルギーとして利用できる。
送風ファンを利用すると、外側通気層・屋根通気層内の通風量を高められる。それは、夜間は放射冷却を源とする冷気と湿気の供給を促す。潜熱的蓄冷の効率を高められるので、昼間利用できる遮熱のエネルギー源も大きくなる。その効果を狙えるので、送風ファンは昼夜稼動する。但し、エアコンを用いて屋内から大量の冷気を生成・供給でき、しかも、伝熱性の創出を促進し、気化・放湿の促進を図る場合は、送風ファンを夜間停止し、屋内からの液化したH2Oの移動の効率を高めるのも有力である。その場合、屋内の除湿効果は高まる。段落0080−0081参照。
断熱パネル1の実施例では、夜間の放射冷却のエネルギーは、屋外側での利用は潜熱的蓄冷の形で促されるが、屋内側では促されない。それは、屋内側でエアコンを使用した場合に顕著に現れる。つまり、エアコンの生成する冷却エネルギーを使用した潜熱的蓄冷は促されず、その結果、エネルギー移動は促されず、湿気の移動をエネルギー移動と分離して図ることができる。
吸放湿とH2Oの相変化との連携の比率の低い吸放湿材として杉板等の無垢板を内壁材に用いる場合、天井及び内壁材の吸放湿能力を増幅することで、高い調湿能力を得られ、しかも、除湿装置を用いずとも、夏季を通して室内の湿度を70%未満に維持することが出来る。更に、天井及び内壁の吸放湿機能とエアコンを併用した湿度調節を好適に実施できる。具体的には、深夜電力を利用してエアコンを稼動し、室内を冷房・除湿する場合、湿気の逆流を阻止しながら効率的に除湿できるのみならず、昼間はエアコンで除湿しなくとも、内装材に吸湿して室内から除湿し、室内の相対湿度を60%以下に保つことができる。つまり、深夜電力を利用した昼間の湿度調節をシステムとして実施できる。
尚、遮熱機能の実施に当たっては、屋内から吸湿し断熱層を介して屋外に排湿する除湿効果を併せて見込める。
湿気の逆流については、前項を参照。
結局、機能としては、B面から吸湿し、B面へ放湿する作用・効果(相対湿度・平行含水率・含水率の関係を超えて含水率の低下を促す含水圧力差を増幅する機能を含む)。B面から吸湿し、湿気の伝導後A面から放湿する作用・効果(断熱性に背反する伝熱性の創出)。A面から吸湿し、A面から放湿する作用・効果(防水シートを利用したエネルギー移動抑制による冬季の断熱性能改善)。以上三つの作用・効果を実現でき、更に、A面から吸湿し、湿気の伝導後B面から放湿する作用を抑制することが出来る。
尚、A面側・B面側ともに吸放湿とH2Oの相変化との連携の比率の低い断熱材によって断熱パネルを構成する場合も、断熱性に背反する伝熱性の創出を促進・抑制することが出来、湿気の逆流及び除湿負荷増大を抑制することが出来、更に、断熱性能をその数値で表わす熱還流率も改善することができる。
請求項9及び20に記載の換気通気の手段について。
給気用連通管を通じて床下空間に取り入れられた新鮮な空気は、床下空間の蓄熱・放熱手段により暖気もしくは冷気の供給を受けることが出来る。その為、床下空間は正圧に保たれる。一方、室内空間は負圧に保たれているので、床下空間から内側通気層を経由した空気は連通口を通じて連通する室内空間に流入することが出来る。その際、床下空間で供給された暖エネルギーもしくは冷エネルギーは、通気層内を空気の流れに乗って対流式のエネルギーとして移動する。只、通気層内を移動する際に躯体としての壁へのエネルギー移動が生じ、壁体を暖めもしくは冷やすこととなる。それは、輻射式の暖房もしくは冷房の一要素となる。床面からの輻射エネルギーと併せて、輻射暖房もしくは輻射冷房のシステムの形成に繋げることが出来る。
ところで、輻射暖冷房を好適に実施するには、熱損失を最小にしなければならない。壁を通じての熱損失には、施工時の気密性能に設計段階の断熱性能が影響する。寒冷地では、付加断熱の方法により断熱性能を高めることも必要となる。
屋根体の構造を簡素にする場合、太陽熱エネルギーの大きさとの比較で、遮熱の手段は機能したとしても少なからずエネルギーは透過する。そこで、遮熱にプラスして効率的なエネルギーの排出を併せて実施する。その場合、換気と室内の空気循環とを効率的なエネルギー排出に繋げることが肝要である。
夏は、屋内の最上部に設置の吸気口を開放する。屋根体の断熱層を透過した太陽熱は室内の空気を暖めるが、暖められた空気は軽く、上昇して屋内の最上部に集中する。そこで、吸気口から排気用連通管を通じて、暖気は効率よく建物外に排出される。言わば、屋根体の構造及び暖気の性質を利用して、暖気を効率よく集め、排出するものである。
冬は、屋内の最上部に設置の吸気口を閉鎖して、排気を不可能とする。それで、床面近辺もしくは中間地点に設置の吸気口のみから排気することになり、暖められ上昇した空気は室内を循環した後に、吸気口から排気用連通管を通じて建物外に排出される。結果として、室内へのエネルギー供給及び酸素を豊富に含んだ新鮮な空気の供給と言う役割を果たしながら、換気することが出来る。
通常の換気システムは、1階用・2階用の換気扇をそれぞれ設置する。それに対し、壁体内空間を通気層として換気システムに組み込んだ場合、換気扇は一台で賄うことが可能である。その場合、新鮮な空気を室内に流入し、室内を循環した後に吸気口から建物外に排出するのは気密性能を確保できれば実施できるが、部屋割りされた小さな居室内で夏季の昼間に、暖気と冷気を分離して排気するのは簡単ではない。
建物の居住スペースの中で、位置的にも面積的にも重要な要素である居間もしくはリビングダイニングルームにおいて、1階から2階及び小屋裏に通じる吹抜け部を設ける。
暖かくて軽い空気は上昇し、冷たくて重い空気は下降する性質を持つ。それで、吹抜け部を通じては暖められて軽くなった空気は上昇し易く、しかも、換気システムを利用することで吹抜け部の最上部に設けた吸気口から建物外に排気できるので、その部分の気圧は低下する。それで、暖められて軽くなった空気は一層上昇し易く、冷気と分離し易くなる。
さて換気システムは、建物外に排気する為に排気用連通管を設ける。排気用連通管に連結する吸気口を吹抜け部の最上部に設ける。それで、最上部から吸気口を通じて建物外に排気することが出来る。一方、建物外と床下空間は給気用連通管によって連通し、壁体内の内側通気層に連通して流路を形成し、壁部の連通口を通じて室内空間に連通する。それで、建物外から取り入れた新鮮な空気は床下空間を経る過程で、夏であれば冷やされ、流路を流通して室内空間に流入する際は未だ冷たくて重い。全体としては、室内空間の内人間の体に接する箇所を新鮮で冷えた空気は流通する。尚、床下空間から流路を経て室内空間へ流入できるのは、床下空間と室内空間との間に生じる気圧差によるものである。この気圧差が無ければ、冷えた空気は内側通気層を上昇して室内空間に流入することは無い。
尚、床下空間から内側通気層を経由する過程で内壁部を冷やす。それは、輻射冷房効果を現す。その一方、内壁部近辺の室内空間の空気は中心部分に比較すれば冷たい。そして、冷えた空気は対流冷気として室内空間を流通する過程で酸素・冷気を消費されるが、その一方暖められ軽くなる。暖められ軽くなった空気は、吹抜け部の負圧の要因と合わさり上昇するので、最上部の吸気口を通じて建物外に排出される。結局、上昇する過程で対流式の冷気と暖気が混合するとしても、輻射冷房効果により涼房効果は持続する。
以上の簡単な工夫によって、輻射冷房効果を得ながら、暖かい空気と冷たい空気を分離し、暖かくて酸素を消費された空気を優先的に排気することが出来る。
湿度調節に関しては、壁体の断熱層に吸放湿性を具備する断熱材を用いる場合、床下空間において放射冷却・地熱・エアコンから冷却エネルギーを供給された後、流路内を流通する過程で冷却エネルギーは吸放湿性を具備する断熱材に吸冷・吸湿される形で湿気を失う。その結果、相対湿度の低下した空気が流路から室内に流入し、室内の温湿度環境を改善する。
吸放湿性を具備する断熱層は、屋外側で放射冷却の冷却エネルギーを吸冷・吸収する一方、屋内で吸収し液化したH2Oと合わせて昼間日射取得する太陽熱エネルギーの吸収・潜熱可に貢献する。即ち、遮熱である。
遮熱の効果は、屋内の温度上昇を抑制できるだけに止まらない。太陽熱を吸収する形で断熱層内の湿気を安定して屋外に気化・放湿出来るので、屋外の相対湿度の高さに関係なく、相対湿度の低い屋内側から湿気を吸収し屋外側に移動することができ、屋外から屋内への湿気の逆流を阻止できる。
さて、床材はその性質上・用いる環境上、その吸放湿・湿気伝導の方向は相対湿度・含水率・平衡含水率との関係により定まる。そして、床下空間の空気は、地熱・放射冷却もしくはエアコンの生成・供給する冷気により冷やされ、相体湿度は上昇する。それで、相対湿度の上昇する床下空間から湿気を吸収し、床材を透過して相対湿度の低い室内空間に放湿できる。床材の含水率管理の上からも、床下空間における結露発生のリスクを縮減する上からも、課題は解決される。更に、室内の湿気は太陽熱エネルギーを待って、室内に接する断熱層を透過して屋外に排出される。結局、除湿負荷を好適に管理する上でも、課題は解決される。
換気システム稼動により外気を床下に導入する場合、夏季の相対湿度の高い空気に含まれる多量の湿気は、床下空間に連通する内側通気層を経由し、壁体の断熱層を透過して屋外に排出される。それで、床下空間に接する床材を透過して室内に放湿される排出路と合わせて、二つの異質の排出路を形成される。
二つの異質の排出路の役割は補完性を持っている。一つは、通風により、即ち、対流熱によるエネルギー移動と同様の方法により湿気を移動する。この方式の欠点は、床下空間全体の通風を満遍なく好適に維持することが難しいところにある。しかも、空気汚染を引き起こす撹拌等の手段を特別に用いることは難しい。その様な状況の下では、床下の一部に偏って滞留する湿気を吸放湿材によって吸収する効果は大きく、相対湿度の高止まりを未然に防止し、結露発生のリスクを無くすことができる。換言すると、吸放湿に伴う排出路は、夏季に相対湿度の高止まりを未然に防止し、結露発生のリスクを無くせる限りにおいて形成されるのであり、つまり、必要なときに形成されるのであり、冬季の様に外気の相対湿度が低い時期には排出路は形成されない。
床下空間内及び室内に設置のエアコンを稼動する場合、湿気は直接屋外に排出される。この三つ目の排出路が形成され、現実に作用・効果を及ぼした場合、先の二つの排出路はエアコンの除湿負荷を増大することなく、好適に稼動し、湿気の屋外への排出に貢献する。即ち、三つの排出路はその機能の及ぶ範囲で好適に実施する限り、併せて屋内の除湿効果の実現に貢献でき、快適な屋内環境を実現できる。
最終的には、太陽熱エネルギーの活用を図ることにより、湿気を屋外に好適に排出でき、しかも、それぞれの部材(床・壁・天井の仕上げ材、土台・柱・梁等の構造材)の含水率管理を好適に実施できる。
地熱・放射冷却・太陽熱等の自然エネルギーは全てが常時利用できるわけではない。夜間のみとか昼間のみとかで、直接利用できる時間帯に制約を受ける場合がある。その場合でも、余剰のエネルギーを蓄熱に回して、本来利用できない時間帯に有効利用できれば、その蓄熱システムは価値あるものとなる。
さて、自然エネルギーを効果的に利用する上では、補完的に利用できるエネルギーを準備することが大切である。しかも、蓄熱システムは同じものを兼用できることが、コスト削減の上からも望ましい。そうなると、エネルギー消費効率の高さから言っても、第一の候補はエアコンによるエネルギー供給である。しかも、社会的に余剰の深夜電力を有効利用できれば、イニシャルコスト・ランニングコストの両面からも有益となる。なお、空気循環手段及び蓄熱手段への対流熱によるエネルギー供給の効率を考慮すると、エアコンは床下空間に設置するのが好適である。
エネルギー供給手段が対流熱によるエネルギー供給を旨とする場合、蓄熱・放熱の効率の面から蓄熱の方法は限られてくる。基礎土間コンクリートへの直接の蓄熱は十分にその効果を得ることは出来ず、必要な蓄熱量を確保できない。只、蓄熱容量は、地中への蓄熱をも併せると膨大となり、十分な容量を確保することが出来る。
さて、凝固・融解の相変化に伴うエネルギー移転を利用した蓄熱・放熱は効率の面からは優れたものがある。但し、蓄熱材の蓄熱容量が大きくは無いので、建物全体の冷暖房の必要量を確保するとなると、施工上並びにイニシャルコストの面から制約が出てくる。
そこで、図1に記載の様に、蓄熱材から構成される蓄熱体及び基礎土間コンクリート及び地中を一つの蓄熱層と考える。蓄熱体と基礎土間コンクリートは直接接しているので伝熱の方法で熱を伝導することが出来、同じく基礎土間コンクリートから地中へも伝熱の方法で熱を伝導することが出来るので、エネルギーの移動が効率的である。また、気密断熱性能の高い建物内での直接のエネルギー移動であるから、エネルギー損失は生じず、この面でも非常に効率の高い蓄熱手段だといえる。
地中は地表下5M位で年間を通して温度が安定している。只、そこから大量にエネルギーを安定的に供給できる為には、設備・装置が大掛かりになり、イニシャルコストの面で不利になる。それで、地表下2Mの環境を蓄熱に利用する。その為の工夫の一つとして、建物周囲の布基礎部から2M乃至3Mの部分は基礎土間コンクリ−トの下面に断熱材を敷き置きする。それだけの工夫で、地表の温度変化による影響を軽減することが出来、断熱材を敷き置きしない部分では、地表下2乃至3Mの環境を実現でき、その環境を有効に利用したエネルギー供給手段を兼ねた蓄熱層として、その分熱損失を防止することが出来る。また、基礎土間コンクリートの下面に防湿シートを貼設することで、地中からの湿気の浸入を阻止でき、同時に、熱損失の防止にも効果を表す。なお、建物の利用に不可欠の配管設備は建物周囲の基礎近辺に集中するので、例え、漏水が発生しても蓄熱層への影響は小さい。また、管理・補修も簡単に行えるメリットがある。
蓄熱の効率だけでなく、放熱に関しても効率が高い。冷房時に例をとれば、蓄熱体からは床下空間の温度変化に対応する形で融解しながら放熱(冷)する。しかも、直接接する基礎土間コンクリートに蓄えられたエネルギーは伝熱式により蓄熱体に補充されるので、蓄熱体の蓄熱容量を超えて放熱しても床下空間へのエネルギー供給を継続することが出来る。
床下空間及び蓄熱層へのエネルギー供給は、太陽熱・エアコンにエネルギー源を求める場合対流熱の形で直接床下空間に供給され、それを、一方で床下空間から室内空間への空気循環手段を経由して室内空間へ供給され、他方で床下空間から蓄熱体を経由して蓄熱体と基礎土間コンクリートと地中で構成される蓄熱層にエネルギーを蓄熱することができる。更に、地熱は地中から伝熱によって蓄熱層に直接供給されるが、特に冷房のエネルギー源としての冷気の利用効率を高める点で効率的である。蓄熱体を経由して放熱する工夫を加えることで、冷気としての使い勝手がよくなり、床下空間と室内空間との空気循環手段を経由した冷気の供給は、供給する時間帯をも制御することが出来る。また、連通管に備わった送風ファンの方向を変更することで、冷房用・暖房用の循環路の変更が簡単に出来る。なお、太陽熱の集熱は屋根通気層を通じて実施し、床下空間への供給は連通管を用いた公知の手段を用いる。
さて、先の「液化」は所謂結露の意味です。結露は、昔から建物に被害をもたらすものとして、忌避されてきました。それだけに、結露を「作用」として利用することには精神的な葛藤・飛躍が必要です。只、精神的葛藤・飛躍だけで済むものではありません。具体的には、断熱材を含めた躯体の含水率の上昇は避けられず、含水率上昇に伴う弊害に留意が必要です。
ところで、躯体の含水率上昇は、カビ・腐朽菌の繁殖を招きやすい環境を醸成し勝ちです。その意味で、含水率の上昇は必ずしも好ましいものではありません。しかし、遮熱・除湿機構の効率的運用・稼動を図るには、含水率は高く維持せざるを得ません。言わば、二律背反性を内包しています。それで、躯体の含水率の上昇を抑えながら、つまり、躯体の含水率を好適に管理しながら、吸湿・吸冷の効率向上及び放湿・吸熱の効率向上とを連携し、遮熱・除湿機構の効率的運用・稼動を図ることは大きな課題となっています。
ところで、夜間に壁体に吸湿する際の相対湿度は周囲の温度低下により上昇し、吸湿の圧力は高まるが、その際、H2Oの相変化によって液化を生じると、同時に生成する凝縮熱により温度上昇要因を生むこととなる。結局、液化を生むだけの冷却エネルギーの供給が持続しなければ、相変化も持続しない。
H2Oが相変化して蒸発する際には、周囲から気化熱が奪われる。この気化熱の発生が持続すると、気化熱の蓄積によって太陽熱の日射取得に因る壁体の温度上昇は抑えられる。
ところで、壁体に液体状の「水」を直接供給・吸収させれば、それが気化・蒸発する際に周囲から気化熱を奪うので、継続して昼間太陽熱を吸収し、気化・蒸発することが可能である。只、水を直接吸収させる方法を採用していないので、これまでの方法では周囲から継続して気化熱を奪うことはない。
それで、「水」の供給・吸収に代わるものとして、湿気の吸収並びに冷却エネルギーの吸収を連携して行い、壁体での凝縮熱及び水の生成に繋がる相変化である潜熱式蓄冷が重要となる。しかも、相変化を経て液化する際に生じる凝縮熱を吸収する為に投じられた冷却エネルギーの総量(放射冷却・地熱)の範囲内で、潜熱を利用した遮熱の効果を得られる。
壁体への湿気の供給、並びに、冷却エネルギーの供給を制御できない場合でも、吸放湿とH2Oの相変化との連携は見られる。
その連携を具体的に記すと、土壁から形造られる古来の住宅は、通風を旨とし、しかも、真壁造りとなっている。それで、通風によって湿気並びに放射冷却エネルギーの供給が行なわれる。そして、土壁への湿気の吸収及び放射冷却吸収の連携により、夜間潜熱式の蓄冷は可能である。只、湿気を吸収することと液体状のH2Oを吸収することとの相違について、手段・効果の面で曖昧なまま区別されることも無く処理されてきた。それが、従来の技術水準である。
そして、昼間の太陽の日射取得の際に、放湿並びに相変化による気化熱の発生は起こる。これが、湿気の吸収・放出と放射冷却の吸収・放出との連携の中で、遮熱に繋がる機構の原始的なものである。但し、湿気の吸収の方向付け並びに湿気の放出の方向付けの制御が行われていないので、昼間屋内の湿度調節の効果は小さい。又、結露(液化)を作用としてエネルギー移転から見直し、伝熱性のエネルギー移動の一部として捉え、太陽熱エネルギーの日射取得の有無を含水率管理に利用しながら、除湿・遮熱の効果を高めることも無かった。結局、吸放湿とH2Oの相変化との連携を、その方向等に関して制御できる高度の遮熱・除湿機構への展開には繋がらない。更に、伝熱性創出の制御が出来ないので、冬季にエネルギー損失の発生を抑える手段を持たない。
それに対し新しい技術では、放射冷却・地熱・深夜電力利用のエアコンのもたらす冷却エネルギーを蓄熱しながら、一方で、室内空間へ供給して断熱層における吸湿・吸冷を促進し、室内の湿度調節を行い、しかも、太陽の日射取得を利用した湿気という潜熱の形での排出に繋げながら、昼間の遮熱機能を好適に実施することができる。
含水率管理に関しては、吸放湿性を具備する断熱材の潜熱的蓄冷の態様の違いを利用して好適に実施する。具体的には、太陽熱の日射取得を得られない北側の断熱層は、吸湿と液化との連携の比率の低い断熱材を用い、もしくは、吸放湿性を具備しない断熱材を用いて構成する。その簡単な工夫によって、断熱層の含水率上昇を抑えながら、液化を伴った潜熱的蓄冷を促進し、一方で室内の湿度調節の効果を上げながら、他方で昼間の遮熱効果をも上げることができる。
詳しく説明すると、断熱層を吸湿と液化との連携の比率の低い断熱材を用いて構成すると、吸収された湿気は大半が湿気のまま保持され、外側通気層・屋根通気層を通じて屋外へ排出される。潜熱のエネルギーを多く含まないので、太陽熱の日射取得を必要とせず、昼間の常温の気体から気化に必要な運動エネルギーの供給を受けることができる。それで、太陽の日射しない北側の断熱層は、吸湿と液化との連携の比率の低い断熱材を用いて構成しても、必要な放湿を実施することが出来、結果として含水率の高止まりを避けることができる。
但し、上記の手段では室内の湿度調節は限界点が早く訪れ、快適とされる湿度調節を好適に行う迄には至らない。快適とされる湿度調節を実現できるためには、簡単ではあるが一工夫が必要である。それは、吸放湿性を具備する断熱材を二層に分け、その間に透湿防風防水シートを挟み、三層構造に構成する。その簡単な工夫によってより快適とされる湿度環境を実現することが出来る。それは、温暖地で室内に除湿装置を用いて除湿する場合、あるいは、エアコンを用いて冷却エネルギーを供給して除湿する場合に顕著にその効果は現れる。(詳細は、段落0084−0085を参照のこと。)
昼間、屋根棟下換気口に通じる送風ファンを駆動し、屋根通気層及び屋根棟下空間の空気を強制的に建物外に排出する。すると、気圧の関係で、屋根通気層に連通する外側通気層を通じた外気の流量は増大する。空気の流れが活発化すれば、相対湿度の上昇並びに気圧上昇は阻止され、むしろ、相対湿度の低下並びに気圧低下のもたらす沸点の低下により断熱材からの放湿は持続的に促進される。つまり、放湿の効率向上である。そして、外気の流入を制御し、棟換気口からの逆流を防止する為に、開閉式の棟換気口は閉じる。
断熱層の断熱材からの放湿が継続・強化されれば、断熱材の含水率は表面ほど急激に低下し、含水圧力差が生ずる。それで、H2Oの補充が必要になる。
夜間、送風ファンを駆動すると、昼間の放湿によって断熱材の含水率の低下した分の補充を、外側通気層を通じて取り入れる外気に含まれる湿気から積極的に行なう結果となる。そこでは、湿気の吸収及び相変化に伴い生じる凝縮熱に対しても、放射冷却による温度低下によって、前記の外側通気層の下端から取り入れる外気は冷却され、その冷却エネルギーの効果で、前記の凝縮熱は処理される。断熱材に熱は籠らないので、湿気の吸収は効率よく継続・維持される。
そして、夜間に液化によって蓄冷されたエネルギーは、昼間に日射取得する太陽熱エネルギーを吸収し、顕熱を湿気という潜熱の形での気化・放湿のエネルギー源へと変化する。それは、昼間の遮熱効果に繋がる。
尚、送風ファンを夜間は稼動しない場合、外側通気層と屋根通気層を通じた放射冷却の取得は抑制され、結果として屋外からの吸湿も抑制される。その分、断熱層における昼間の含水率低下を要因とする屋内からの吸湿は促進され、室内の除湿効果を高めることができる。
新しい技術では、確保された流路を空気が流通する中で、放射冷却・地熱のもたらす冷却エネルギーを供給する。同時に流路の確保によって、湿気の供給及び吸湿活動を制御し、促進することが出来る。しかも、吸湿に液化の相変化を伴う場合、冷却エネルギーを断熱層に移転した後の空気は温度上昇する。それで、湿気を吸収された後の相対湿度の低下した空気及び温度の上昇した空気の流通及び室内への流入が可能である。同時に、新たな冷却エネルギーの流通・供給が継続的に必要かつ可能である。それで、吸湿と液化の連携の比率を制御することが出来、断熱性に背反する伝熱性を保持し、エネルギー移動の量の制御に繋がる。これは、壁体内二重通気システムと建物内の換気システムとの連携した24時間換気システムによって可能になる。
更に、相変化の有無に関わらず、壁体からの湿気の放出及び通気層を通じた排湿活動を促進することが出来る。又、屋外から取得する運動エネルギーの量に制約されるが、屋内からのエネルギー移動を可能にする。この湿気の形での排熱システムと、先の24時間換気システムの備える給湿・給冷システムとの補完的な連携によって、補完的連携による制御(促進・抑制)を通じた屋内の調湿効果と温度上昇抑制効果が繋がる高度の遮熱・除湿機構へと発展することが出来る。
前記の屋内の吸放湿機能とH2Oの相変化とを連携する機構の働きを意図する方向に導き、より快適な室内環境をもたらすには、それぞれの役割を担う機能が更に効率を高めなければならない。
前記の屋内の吸放湿機能とH2Oの相変化とを連携するには、断熱材によって互いに隔てられる外側通気層と内側通気層並びに屋根通気層と天井裏空間が互いの補完関係を意図し、強化し、それぞれの機能の効率を追求する中で、吸放湿性を具備する断熱材の表面並びに内部で起こる「H2Oの相変化」に伴うエネルギー移転を迅速に実現しなければならない。
屋根通気層と外側通気層は連通し、通常、その下端から外気を導入し、外壁を通じて太陽熱で熱せられて膨張すると、自然に上昇し、連通する屋根棟下空間・棟換気口を通じて建物外へ放出される。熱を吸収した空気の相対湿度は低下し、断熱材の平衡含水率も低下する。その分従前の含水率との乖離は大きくなり、放湿の圧力は大きくなる。又、日射取得により断熱材自身は熱を蓄え、断熱材内での運動エネルギーの移転は容易となり、気化による膨張で空隙内の気圧上昇し、H2Oの相変化(気化)に伴う湿気の伝導および放湿の圧力は更に高まる。それで、導入された外気は断熱材から放出された湿気(相変化を伴う湿気・相変化を伴わない湿気)を大量に含み、湿気を運び出す役割を担う。
日射取得される太陽熱エネルギーを排熱するに当たっては、従来の壁体内二重通気システム並びに吸放湿性の断熱材を用いたシステムでは、顕熱の形で空気と一緒にエネルギーを建物外に排出するのに対して、新しい技術では、湿気という潜熱の形に閉じ込めて空気及び残余の顕熱と一緒にエネルギーを屋外の外側通気層・小屋裏空間・棟下空間を通じて建物外に排出する。
さて、棟換気口と屋根棟下空間を連通する開閉式の屋根棟下換気口を閉じた上で、棟下空間から外気に通じる連通管・送風ファンを駆動し、小屋裏空間の空気を強制的に建物外に排出する。すると、気圧の関係で、屋根通気層に連通する外側通気層を通じた外気の流量は増大する。空気の流れが活発化すれば、相対湿度の上昇並びに気圧上昇は阻止され、むしろ、相対湿度の低下並びに気圧低下のもたらす沸点の低下により断熱材からの放湿は持続的に促進される。つまり、放湿の効率向上である。
断熱層の断熱材からの放湿が継続・強化されれば、断熱材の含水率は表面ほど急激に低下する。それで、H2Oの補充が必要になる。
夜間、送風ファンを駆動すると、昼間の放湿によって断熱材の含水率の低下した分の補充を、外側通気層を通じて取り入れる外気に含まれる湿気から積極的に行なう結果となる。そこでは、湿気の吸収及び相変化に伴い生じる凝縮熱に対しても、放射冷却による温度低下によって、前記の外側通気層の下端から取り入れる外気は冷却され、その冷却エネルギーの効果で、前記の凝縮熱は処理される。断熱材に熱は籠らないので、湿気の吸収は効率よく継続・維持される。
この発明では、上記の送風ファンの駆動は昼間のみに限定し、放湿の効率の向上の方策として活用する。夜間は、送風ファンを駆動せず、前記の流路での空気の流れを抑制し、外側通気層・屋根通気層を通じた断熱層への屋外からの湿気の供給を抑える。
この件を更に詳しく説明する。昼間、送風ファンを駆動して相対湿度並びに気圧を低下させると、断熱材内の平衡含水率並びにH2Oの沸点は低下し、放湿する。その結果、断熱材の含水率は従前より低下する。
夜間、外気温が低下すると相対湿度は上昇し、断熱材内の平衡含水率は上昇し、断熱材内の含水率との乖離が生じ、含水率の回復余力が生じる。
通常、含水率の回復は断熱材内部からの補充及び外側通気層・小屋裏空間を通じた吸湿により行なわれる。昼間、送風ファンを用いた分前記の「乖離」の幅は大きくなり、夜間送風ファンを用いてその「乖離」の幅の増大した分を埋めない限り、断熱材内部からの補充に対する依存度は大きくなる。それは結果として、断熱材内での内側から外側に向かってのH2O移動の圧力となる。それで、夜間送風ファンを停止して用いない場合に、屋外からの吸湿は抑制されるので、屋内側から屋外側へのH2O移動の圧力は大きくなる。
さて、連続した空隙を多く設ける等、素材の属性にのみ依存して湿気伝導率を高めると、気密性能、更に、冬季に必要な断熱性能の維持に支障が出る。それで、素材の性能と素材の性能以外の要素の組み合わせにより性能を高める。
昼間は送風ファン稼動により断熱層における屋外への湿気の放湿を促し、液体状のH2Oの気化・膨張により生じる湿気伝導の圧力との相乗効果により、断熱材内での屋内側から屋外側へのH2O移動の圧力は高まり、断熱材の吸湿・吸冷の高い効率と併せて屋内の除湿の効率を向上することが出来る。
夜間は送風ファンを停止し、屋外からの吸湿・吸冷を抑制する。抑制できた量を屋内からの吸湿・吸冷により余分に補充し、その分屋内からの除湿の効果は向上する。
昼間・夜間の何れも、素材の備える湿気伝導率を越えて屋内側から屋外側へのH2O移動の圧力を創出・保持し、内側通気層・天井裏空間を通じた吸湿の促進並びに含水率回復を促すことを通じて、含水率の上昇を抑えながら屋内側での吸湿・吸冷の効率を向上し、屋内の除湿の効率を向上させることが出来る。この作用・効果は、太陽熱の日射取得により担保される。
湿気の供給サイドである内側通気層・天井裏空間の働きを中心に、湿気の供給並びに吸湿の高い効率を如何にして実現するか。
一方、昼間の太陽熱エネルギーの日射取得によるH2Oの放出による断熱層における含水率低下は、夜間の内での吸湿余力の回復を創出する。それは、結果として室内空間の湿気の吸収による、室内空間の湿度調節機能へと繋がっていく。只、先にも記した通り、送風ファンを夜間も稼動すると、屋外からの湿気及び冷気の供給を促すこととなり、その分、屋内からの湿気の吸収・移動は縮減することとなる。
温暖地に比較して極寒地に近い気候の下では、暖房の結果、冬季は屋内と屋外との温度差は激しい。それで、断熱層を通じた湿気の出入り、並びにH2Oの相変化に伴う熱エネルギーの移動については、夏季と逆方向の動きをリスクとして対処することが肝要である。連通口を開閉する手段によって、冬季と夏季とで空気循環の流路を変更する。それによって、断熱層によって隔絶される天井裏空間と小屋裏空間の連携を好適に制御することが出来る。
冬季の熱損失対策について。冬季は、室内と天井裏空間を連通する連通口を閉じることで、天井裏空間から室内への空気の流れはなくなる。それで、天井裏空間への流路は空気循環路から外れ、空気の供給は促進されない。それで、断熱層によって隔絶される二つの空間の連携は絶たれる。その結果、断熱層を通じた天井裏空間と屋根通気層との間の湿気の出入りは促進されず、それを要因とする熱損失は避けられる。
空気循環は、内壁に設けた連通口を通じて内側通気層と室内空間を連通し、給気用連通管により導入された外気は床下空間・内側通気層を通じた流路を経由する形で行なわれる。更に、床下空間で熱エネルギーの供給を受けると、床下空間・内側通気層を通じた流路を経由する過程で、熱エネルギーを移転し、顕熱的に効率よく蓄熱する。そこで、前項に記したエアコン等のエネルギー供給手段及びエネルギー蓄熱手段から床下空間に熱エネルギーを供給すると、十分なエネルギー量が循環流路を経由して躯体に顕熱として蓄熱され、輻射熱としての暖房効果を好適に得られる。
夏季は、内壁に設けた連通口の一部を閉じ、天井に設けた連通口を開放して天井裏空間と室内空間並びに内側通気層と室内空間を連通し、床下空間・内側通気層・天井裏空間を通じた流路を確保する。そこで、給気用連通管により導入された外気は、床下空間・内側通気層・天井裏空間を通じた流路を経由する。それで、断熱層によって隔絶される天井裏空間と屋根通気層との連携は確保・促進される。そして、隔絶された二つの空間の連携を促進する機構の働きにより、流路を流通する湿気は断熱層を通じて屋根通気層に放出される。
液化を促す断熱材及び促さない断熱材について。
相対湿度と平衡含水率との乖離により吸湿を促し含水率を上げたとしても、直ちに断熱材内での相変化(液化)の促進に繋がるわけではない。液化の促進は液化に伴い生成する凝縮熱を処理できる冷却エネルギーの吸収促進に依存する。ところが、断熱材はその断熱性により内部に冷却エネルギーを伝導する能力は低い。つまり、冷却エネルギーの伝導が緩慢な分、液化も緩慢である。潜熱的蓄冷を図るにしても、効率はよくない。それでは、たとえ冷却エネルギーの供給を増加したとしても、その増加に応じて効率よく吸冷出来ない。それで、効率的な潜熱的蓄冷を図ることが課題となる。
以上を潜熱的蓄冷の過程との関係で把握すれば、断熱層の表面で液化したH2Oを吸収できる特性を備える断熱材を用いると、空気中の湿気を吸収する際に凝縮熱を吸収し・液化を促進し、かつ、液体状のH2Oを吸引・吸収することで、吸放湿とH2Oの相変化の「連携の比率」を高く維持することに貢献する。それで、昼間含水率の低下した場合でも、冷却エネルギーの吸収・保持に繋げて、効率的なエネルギー移動を継続し、遮熱・除湿効果の維持に繋げることができる。尚余談ながら、潜熱的蓄冷が顕熱的蓄冷に比較して周囲の温度低下を招かないのは、冷却エネルギーが凝縮熱の吸収に用いられるからである。
連携の比率の低い断熱材は、太陽熱エネルギーを日射取得できない北側の気密断熱層に用いると、含水率管理を好適に実施しながら、他の断熱層における潜熱的蓄冷を促進することができる。
尚、北側の断熱材に吸放湿性を具備しない断熱材を用いると、含水率管理の上では同様の効果を実現することが出来る。
請求項3及び14では、外気は熱交換式換気扇の稼動により、給気用連通管を通じ直接床下空間に放出される。床下空間は内側通気層・天井裏空間に連通し、取り入れた外気は流路内を流通する圧力を生じる。同じく、熱交換式換気扇の稼動により、空気は排気用連通管を通じ建物内の各居室から建物外に排出される。その結果、各居室の空気圧は負圧となり、内側通気層・天井裏空間と連通口を通じて連通し、空気の流入を無理なく可能にする。つまり、熱交換式換気扇の稼動により、居室に負圧を生じ、床下空間に正圧を生じ、その結果、屋内に気圧差を設ける。取り入れた外気の流通は、居室・床下空間と連通する内側通気層・天井裏空間を流路として、その気圧の差によって円滑に行なわれる。しかも、24時間継続する。
夏に例を取れば、床下空間に取り込んだ外気は、湿気が豊富で、湿度も高い。ところで、床下空間では地中・基礎土間コンクリート・蓄熱体で形成される蓄熱層を通じて地熱を取り入れることが出来る。夏は、地熱は20℃以下であるから、取り入れた外気を冷却することが出来る。その結果、温度低下によって、もともと高い相対湿度は更に高くなる。それを、先の空気循環の流路に乗せて、内側通気層・天井裏空間に供給する。
更に詳しく説明する。夜間導入された外気は夏の季節的要因及び放射冷却により相対湿度は高い。それで、吸湿する側の平衡含水率は高く維持され、断熱材内の含水率との乖離は大きく、その分、吸湿のエネルギーは大量に確保されている。
さて、昼間の太陽熱エネルギーの吸収の結果として、北側の壁体の断熱層以外の断熱材内でH2O移動の圧力は増大し、しかも、内側通気層・天井裏空間に近い断熱材内の含水率は一層低下している。
以上二つの要因により、夜間断熱材内における含水率と平衡含水率との乖離は更に拡大し、吸湿のエネルギーは増大する。そこに、相対湿度の高い空気が接触するわけである。自然と、内側通気層・天井裏空間を通過する空気中に含まれる湿気は断熱材に吸収される。特に、夜間はその動きは一層促進され、昼間に比較して吸湿の効率は高い。只、北側の壁体を構成する気密断熱層は、吸湿とH2Oの相変化との連携の比率の低い吸放湿材を用いるので、吸湿=液化による含水率の高止まりは避けられる。それで、含水率を管理しながら、除湿・遮熱の効果を実現することが出来る。
さて、断熱材が湿気を吸収し、相変化で液化する過程で凝縮熱が生成される。その熱によって、吸湿機能は低下する。昼間は通常、外気の温度上昇も加わり吸湿機能は低下する。昼と逆で夜は、外気は放射冷却が加わり温度低下する。更に、温度低下した外気は24時間稼動する空気循環システムで確保される流路を経由する中で、温度の低い地熱との相乗効果により、断熱材・仕上げ材等の吸放湿材の吸湿・相変化し、液化に伴い生成する凝縮熱を吸収する。冷却エネルギーの移転を伴う潜熱的蓄冷により、吸湿は更に促進される。
屋外側では、外側通気層・屋根通気層を通じて夜間の放射冷却のエネルギー及び湿気が同時に供給される。吸放湿性を具備する断熱材は、屋外側に吸放湿とH2Oの相変化との連携の比率の高い性質を備えることで、液化を促されしかも吸収し易い。屋外側から潜熱的に溜められたエネルギーは、屋内側に移動する要因は無く、翌昼間に太陽熱エネルギーを日射取得することで屋外側へ気化・放出し、遮熱のエネルギーに転化する。
只、この段階で活用できる冷却エネルギーは、放射冷却・地熱のもたらすものに限られる。それで、吸湿とH2Oの相変化との連携により生じる伝熱性のもたらすエネルギー移動は量的に限られ、太陽熱エネルギーを吸収し、遮熱する能力は限定的である。そこが、自然志向に止まる場合の屋内環境改善の限界でもある。
又、冬季についても、蓄熱層を通じて得られる地熱は暖エネルギーとして質的に十分ではなく、太陽熱その他の補完的なエネルギー供給手段と併用しない限り、暖房のエネルギーとして快適な室内環境をもたらすことは難しい。但し、蓄熱層の蓄熱容量の大きさ及び蓄熱・放熱の効率の高さは、地熱・放射冷却・太陽熱等の自然エネルギーと深夜電力との併用を好適に実施することを可能とする。それで、夏季の冷房・除湿・遮熱の効果のみならず、冬季の輻射暖房効果の実現に繋がる。
さて、放射冷却・地熱から得られるエネルギー以外に冷却エネルギーを求める場合、同じ効果をより高い水準で得られることが重要である。その点から言えば、吸湿は更に促進され、液化の相変化も更に促進され、その上、吸湿と液化に伴うエネルギー移転の連携の比率は高まり、含水率上昇の抑制を睨みながら連携の比率の上昇を実現できることが重要である。それで、エアコンを利用して新たな冷却エネルギーを供給した場合に、何等エネルギー損失を生じることなく、同じ効果をより高い水準で得られるか否かが問題である。
内装材・断熱材に用いる吸放湿材は、空気中の湿気を吸収する過程で、同時に、空気中の揮発性の化学物質・汚染物質を吸収する。吸放湿材の保水力によって、化学物質・汚染物質は溶解し、H2Oの移動とともに吸放湿材の内部を移動する。それで、最後は断熱材からH2Oが水蒸気として外部に放出される際に、一緒に排出される。肝心なことは、化学物質・汚染物質は吸着材である断熱材に蓄積される一方ではなく、居室を経由せずとも適宜建物外に排出される手段が用意されている。
結局、外気を取り入れた際に含まれる揮発性の化学物質・汚染物質は24時間稼動する空気循環システムの流路を経由する過程で浄化され、室内には浄化された空気が流れ込む。その上、湿度を調節され、温度を調節された空気環境の下で過ごすことが出来る。
先の発明では、循環流路内で、断熱材が吸湿し、液化の相変化を遂げる際に生じる凝縮熱を抑え、更に、相対湿度の上昇をもたらし、吸湿を促進する手段として、地熱・放射冷却の持つ冷却エネルギーを利用した。
自然志向の空調システムとしては、最適の手段であり、その意図する性能を好適に実現することが出来る。さて、個人の好みは多様である。自然志向の空調システムの意図する性能・操作性に満足しない人も存在する。以下の手段は、その様な人向けの空調システムを簡便に提供する。
先のシステムからもっと吸湿の効率を上げ、潜熱式の蓄冷の効率を上げるには、エアコンを用い、深夜電力の利用できる時間帯に限って、冷却エネルギーを供給する。吸放湿による除湿、並びに、H2Oの相変化に伴うエネルギー移転を利用した空調システムの効率向上に繋がる。
これは、深夜電力を利用した躯体への蓄冷機構として捉えることが出来る。即ち、従来の氷蓄熱(冷)装置に代わり、建物の建築上の工夫によって、躯体を用いた蓄冷装置の役割を果たす。
具体的には、夜間、深夜電力を利用してエアコンから冷気を放出し、それを空気の流路に従い循環する過程で、流路内の相対湿度を上げ、建物を構成する吸放湿素材を冷却する。冷却されることで、吸湿を促し・相変化(液化)によって生成される凝縮熱を吸収する。その結果、室内に流入する空気は、湿度を調整され、適温に調整される。
昼間は逆に、太陽熱の日射取得により、躯体は断熱材を含め暖められる。相対湿度との関係で、あるいは、気化に必要な運動エネルギーへと転化して、吸放湿の素材からは放湿し、気化熱により躯体を冷却する方向に働く。さて、二つの通気層の補完関係によって、断熱材に吸収された湿気の一部は断熱材を通過・透過し、H2Oの相変化を経て、外側通気層・屋根通気層を通じ建物外に排出される。それで、室内の湿度は高くならず、又、躯体を通じた伝熱による温度上昇は抑えられ、住みよい環境を形成する。しかも、日射取得された太陽熱は全て顕熱の形で建物外に排出されるのではなく、一部は湿気という潜熱の形で建物外に排出される。但し、窓を通じての太陽熱エネルギーの浸入及び換気時の熱損失は避けられないので、その影響による温度上昇を抑制し、快適な室内の温熱環境を実現するために昼間エアコンから冷却エネルギーを供給する。更に、昼間も輻射冷房の効果を実現するには、エアコンから昼間空気の循環流路内に冷却エネルギーを供給する。何れも、断熱材に蓄熱して発生する輻射熱を抑える為に用いるわけではないので、昼間の電気使用量が著しく増加するわけではない。
ところで、潜熱式の排熱は無限に行なえるわけではない。即ち、断熱材が吸湿・放湿するに当たり、H2Oの相変化の一面である液化により生成する凝縮熱をエアコンの冷却エネルギーによって吸収する量に応じて、気化熱により太陽熱エネルギーを吸収する量が限定される。そして、その限定された範囲ではあるが、輻射熱の影響を軽減し、屋内の温度上昇の抑制に貢献できる。(地熱・放射冷却を考慮しない場合)
結局、深夜電力を利用してエアコンを稼動し、冷却エネルギーを供給することで、そのエネルギーの一部を潜熱的に仕上げ材・構造材・断熱材に蓄冷し、昼間の暖かくなった時点で放冷し、屋内の温度上昇を抑えることが出来る。又、気化熱による太陽熱エネルギーの吸収は、湿気という潜熱の形に変えた熱エネルギーの放出・移転である。その上、冷却エネルギーの一部は夜間・昼間を問わず顕熱的に蓄冷され、エネルギー変換を遂げて輻射冷房の効果を与え、昼間の電気使用量を抑えながら快適な温熱環境の実現に貢献する。
さて、エアコンを流路内の床下空間・天井裏空間の両方に配設すると、冷却エネルギーは流路を好適に流通する。但し、床下空間にのみ配設する場合、流路内の流通に工夫を要する。具体的には、床下空間から送風ファン・連通管を通じて天井裏空間に冷却エネルギーを送ると、流路内での流通並びに部材への供給は好適に行なわれる。
尚、エアコンの生成・供給する冷却エネルギーは地熱・放射冷却の自然エネルギーに比較すると圧倒的に大きい。それで、大きなエネルギー供給能力を活かすには、断熱層内における屋内からの吸湿・吸冷及び断熱層での屋内から屋外へのエネルギー移動・H2Oの移動及び屋外への潜熱的排熱のそれぞれの機能が効率を向上することが必要である。そして、それらの相乗効果によって最適な除湿・遮熱システムを得られる。
さて、断熱層に用いる断熱材は、北側の壁体を除いて吸湿の際に冷却エネルギーの吸収の効率を高めて液化を促し、液体の状態のまま吸収し、結露を生じない断熱材を用いる。エアコンによる冷却エネルギーの生成・供給の増加を遮熱・除湿の効果の向上に繋げるには、断熱層における断熱材の属性による吸湿・吸冷の効率向上が不可欠である。それで、気候特性によりX+X、X+Yの断熱材の重ね合わせを採用する場合、吸湿・吸冷する屋内側に必要な機能(X)を設ける。
段落0081に記載の通り、断熱材内でH2Oの気化・膨張に伴う湿気移動の圧力は高まる。一方、屋内からの吸湿・吸冷は、エアコンの冷却エネルギーの生成・供給能力及び断熱材の吸湿・吸冷能力の向上により高まり、液化し液体状のH2Oとして空隙内を埋める形で保持される。その分、断熱材の気密性能は向上する。それで、液体状のH2Oが気化・膨張し、湿気として伝導する際は、気密性能を高めて壁として湿気の伝導を阻止する。それで、屋内側への湿気の伝導は進まず、空隙を通じた屋外側への湿気の伝導は進展する。そして、屋外でのファンの働きとの相乗効果で、屋外への湿気伝導の効率は高まる。
ところで、液体状のH2Oの伝熱性を通じて空隙内の気体状のH2Oに冷却エネルギーを供給して液化を促し、あるいは、湿気伝導の効率の向上によって、気圧上昇した空隙内の気圧の低下に繋がり、新たな運動エネルギーを太陽熱エネルギーの日射取得により獲得して、屋内から供給された液体状のH2Oの気化を繰り返すことが出来る。つまり、液体状のH2Oの伝熱性およびH2Oの相変化を活用して断熱性に背反する伝熱性を創出し、屋内から屋外へのエネルギー移動を可能とする。しかも、H2O移動の効率向上にあわせて、冷却エネルギー移動の効率も向上する。結局、含水率の上昇を必要としないで、諸々の機能の効率を高め、又、それら機能の相乗効果によって、除湿・遮熱の効果を一層高めることが出来る。
エアコンはエネルギー消費効率の高く、性能のいいものを使用することで、省エネルギーに貢献する。更に、昼間に比較して夜間は、気温の低下により必要な冷房温度との差が小さくなり、少ないエネルギー消費で必要な冷房温度に達する。結局、機器の性能、あるいは、使用する環境の二つの面から、省エネルギー効果を上げられる。
ところで、給湯システムにも深夜電力の利用が図られている。具体的には、深夜電力を利用して熱湯を作る。深夜に貯湯された熱湯を、昼間から夜間の給湯のエネルギーとして利用する。それで、この熱湯を作る際に必要なエネルギーの一部を、深夜の冷房・除湿の為に稼動するエアコンから排出される凝縮熱等を活用して賄えれば、更にエネルギー消費効率の高い給湯システムを構築できる。
逆に考えると、夜間に給湯のエネルギーを蓄熱しながら、その一方でヒートポンプ式故に生成可能な冷却エネルギーをエアコンを通じて利用できる。省略して記述すれば、深夜電力を利用して貯湯しながら、その一方で、生成分離される冷エネルギーを供給して室内を冷房し、併せて、除湿効果を得られる。更に、昼間は遮熱効果を得ることが出来る。
対流熱の形でエネルギーを供給できるエアコンは、対流熱エネルギーの形で空気の流路に供給し、蓄熱体・躯体に対しそのまま潜熱的に蓄冷・放冷し、冷房のエネルギーとして利用できるので、熱交換に伴う熱損失を避けられる好適な機器といえる。又、凝固・融解によって放熱・蓄熱する蓄熱体を循環流路内に配設するのは、対流熱エネルギーの形でエネルギー移動を行なう上では好適である。しかも、蓄熱体に夜間に蓄冷し、昼間に周囲の温度を感知しながら放冷するので、地熱・深夜電力のみをエネルギー源としながら、24時間安定して必要な冷却エネルギーを供給し・利用することが出来る。
尚、エアコンは天井裏空間と床下空間のそれぞれには配設して利用するのが好適である。更に、蓄熱体と併せて用いると好適である。
通常、暖気は軽く上昇し易く、冷気は重く下降し易い。それで、エアコン並びに蓄熱体を床下空間に配設した場合、冷気は床下空間に滞留し易く、流路内を上昇する力は弱い。又、床面は断熱性能の高い杉板等を用いるので、床下空間は四方を断熱材で囲われた状態に等しい。それで、屋外の温度変化の影響を受けにくく、蓄熱体からの放冷は長時間持続でき、冷却エネルギーを安定して供給出来る。その結果、室内の温度が多少上がっても、床面を通じた輻射冷房効果を得られる。
躯体とは別に潜熱式の蓄冷手段を得られると、蓄冷量を躯体と蓄熱体(蓄熱層を含む)の両方に分散することが出来る。それで、躯体への蓄冷の負担を軽減できる。その結果、躯体への潜熱式蓄冷による躯体の含水率の上昇を抑えることが出来る。それで、安価な繊維質の断熱材(インシュレーションボード等)の利用に道が拡がる。
更に、エアコンの機器は冬の間、暖房機器として使用できる。又、先の蓄熱層を控える蓄熱体を併用することで、夜間の内にエアコンから供給された熱エネルギーを蓄え、昼間に周囲の温度を感知しながら放熱することで、一日中暖房のエネルギーとして利用できる。即ち、地熱の自然エネルギーに深夜電力を併用したエネルギー消費効率の高い輻射暖房システムを実現できる。
深夜電力は、社会的に見れば余剰の電力で、昼間の料金に比較して約25%の料金で利用できる。社会的エネルギー需給のバランスの上からも、個人の家計の負担軽減の上からも、選択の余地はある。
太陽の日射時間が少なく、雨の日が続く湿度の高い梅雨時、あるいは、断熱材の組み合わせによっては、屋内の湿度を快適な状態に保持するには工夫が必要である。
自然志向が強く、快適とされる湿度70%以下の実現を目安とする場合、季節的サイクルに基づく湿度の調節機能によって、目標とする室内環境は実現できる。具体的には、冬季の間、屋内の湿度は恒常的に40〜50%に保たれている。その湿度に対応して、吸放湿性の材料は放湿によって含水率を下げている。それで、梅雨時を迎えるに当たっては、所要の相対湿度との関係では吸湿余力を残している。それで、躯体の吸放湿機能によって、快適とされる室内の湿度を70%以下に保持することが出来る。
只、湿度60%辺りを湿度調節の目安とする場合、深夜電力の利用を検討する。 夜間は、設定湿度50%でエアコンの除湿機能を稼動すると、換気装置を経て床下空間に導入された外気は、循環流路を流通する過程で内装仕上げ材・構造材に含まれる余分な湿気の放湿により、湿度上昇し、更なる、流通過程で気密断熱層への吸放湿により湿度60%辺りに保持出来る。
昼間は、エアコンの除湿機能を稼動しない。同じく、外部から導入された外気は流路を流通する過程で、流路を構成する内装仕上げ材・構造材に調湿され、流路から室内に流入する際には快適な湿度とされる60%辺りを保持することが出来る。尚、床下空間で除湿する際の気温と室内に流入する際の気温の差によって、絶対湿度の上昇にも関わらず、相対湿度の数値は大きく変わらない。
その上更に、断熱層の具備する吸放湿機能による屋内から屋外への湿気の排出機能、並びに、建物を構成する構造材・仕上げ材の吸放湿機能を活用することによって、深夜電力を利用できる時間帯に除湿機能を稼動するのみで、24時間湿度60%辺りを保持できる。
結論として、エアコンの除湿機能の稼動は、躯体の季節的サイクルによる調湿効果で室内の湿度を60%に保持できない場合に利用すると、少ないエネルギー消費で狙いとする調湿効果を得られる。又、躯体への吸湿を必要以上に促進しないので、含水率上昇による弊害を予め阻止することが出来る。
断熱材の組み合わせに(イ)を選択した場合の空気循環の流路について。
温暖地に比較して極寒地に近い気候の下では、暖房の結果、冬季は屋内と屋外との温度差は激しい。それで、気密断熱層を通じた湿気の出入り、並びにH2Oの相変化に伴う熱エネルギーの移動については、夏季と逆方向の動きをリスクとして対処することが肝要である。連通口を開閉する手段によって、冬季と夏季とで空気循環の流路を変更する。それによって、気密断熱層によって隔絶される天井裏空間と屋根通気層との連携を好適に制御することが出来る。
冬季は、室内と天井裏空間を連通する連通口を閉じることで、天井裏空間から室内への空気の流れはなくなる。それで、天井裏空間への流路は空気循環路から外れ、空気の供給は促進されない。それで、気密断熱層によって隔絶される二つの空間の連携は絶たれる。その結果、気密断熱層を通じた天井裏空間と屋根通気層との間の湿気の出入りは促進されず、それを要因とする熱損失は避けられる。
空気循環は、内壁に設けた連通口を通じて内側通気層と室内空間を連通し、給気用連通管により導入された外気は床下空間・内側通気層を通じた流路を経由する形で行なわれる。更に、床下空間で熱エネルギーの供給を受けると、床下空間・内側通気層を通じた流路を経由する過程で、熱エネルギーを移転し、顕熱的に効率よく蓄熱する。そこで、前項に記したエアコンから床下空間に熱エネルギーを供給すると、十分なエネルギー量が蓄熱され、輻射熱としての暖房効果を好適に得られる。
夏季は、内壁に設けた連通口の一部を閉じ、天井に設けた連通口を開放して天井裏空間と室内空間並びに内側通気層と室内空間を連通し、床下空間・内側通気層・天井裏空間を通じた流路を確保する。そこで、給気用連通管により導入された外気は、床下空間・内側通気層・天井裏空間を通じた流路を経由する。それで、気密断熱層によって隔絶される天井裏空間と屋根通気層との連携は確保・促進される。そして、隔絶された二つの空間の連携を促進する機構の働きにより、流路を流通する湿気は気密断熱層を通じて屋根通気層に放出される。
断熱材の組み合わせに(ロ)を選択した場合のリスク管理について。
空気循環に関しては、前項と同様に考え、天井裏空間を流路に編入するか、流路から外すかという季節の変化に伴う選択を行なう。
ところで、北側を除く壁体は断熱材を二層にし、透湿防風防水シートで三層構造に構成し、その外側は吸放湿機能を具備する断熱材とする。この場合、外側の断熱材は冬季の外気のもたらす冷気により冷やされる。只、断熱材の保持するH2Oの相変化によって、この冷気を吸収することが可能である。つまり、液化という相変化の際に生成される凝縮熱の働きを利用して、冷気を吸収する。それで、外気の冷たさは緩和される。
昼間は、太陽熱の日射取得により壁面は暖められ、外側通気層内の相対湿度は低下する。更に、冬季でも気化という相変化に必要な運動エネルギーを日射取得し、断熱材内での気化・膨張及び湿気の伝導を経て壁体からの放湿を促す。昼間のこの働きは、夜間の冷気を吸収する準備であると位置づけられる。
この凝縮熱の働きを勘案すると、断熱材の実際の断熱性能は、熱貫流率という数値で表される数値以上の性能を有することになる。それで、夜間の冷気による外壁を通じた熱損失を軽減することが出来る。更に、屋外の冷気により液化したH2Oは透湿防風防水シートを透過しない。それで、屋内の循環流路に暖気を供給したとしても、内側通気層を通じた熱損失を増幅することはない。輻射暖房効果を実現する場合に、好都合である。但し、これは地域の気候特性を参照しながら、採用しなければならない。
前記(ハ)もしくは(二)の断熱材の組み合わせを選択する場合は、自然志向の住宅選びが基準の一つに上げられる。それで、先の輻射暖房効果を得る為の熱エネルギーの供給源として、太陽熱エネルギー活用の可能性を開拓したい。具体的には、窓を通じて得られる日射取得に関わる太陽熱エネルギーにより昼間に必要な暖房のエネルギーを確保し、あるいは、屋根面に注がれる太陽熱エネルギーを公知の簡単な手段で集熱し、床下空間等の流路に配設された蓄熱体に供給し・蓄熱する。そして、蓄熱体を構成する蓄熱材の凝固・融解の相変化により、日没後の周囲の温度変化に応じて放熱し、日没後の暖房のエネルギーを供給する。
ところで、屋根面に日射する太陽熱は、屋根通気層を通じて屋根棟下空間において集熱する。そして、熱交換式換気扇に直結し、その送風能力によって床下空間に暖められた空気を送る。そして、循環流路を流通する過程で顕熱的効果によって、輻射暖房を実現できる。
この方法の利点は、換気システムの送風設備を活用することが出来るので、装置の上でも、あるいは、駆動エネルギーの上でも、二重の負担を生じないところにある。この時、換気扇の熱交換機能は停止する。そして、屋根面で集熱した暖かい空気は、適宜フィルターを用いて塵・虫等を除去された後、床下空間に導入され循環流路を経由して室内に流入する。
凝固・融解の相変化を蓄冷(暖)・放冷(暖)に活用できる蓄熱体は、その相変化の温度の設定によっては、蓄放冷・蓄放熱の両方の手段を提供する。
凝固・融解の温度を21℃から23℃近辺の温度域に設定できれば、深夜電力とエアコンの組み合わせの中で、夏季の輻射冷房並びに冬季の輻射暖房に必要なエネルギーの蓄放冷・蓄放熱の手段を好適に提供できる。蓄熱層を通じ供給される地熱をも有効利用できる。
自然志向から冬季の太陽の日射取得により熱エネルギーを確保する場合、凝固・融解の温度は若干幅を大きくとり、19℃から23℃見当に設定すると太陽熱を好適に蓄熱し・活用できる。具体的には、日没後は周囲の温度に応じて蓄熱体から放熱し、床下空間に熱エネルギーを供給する。そして、循環流路を流通する過程で顕熱的蓄熱効果によって、輻射暖房を実現できる。
さて、寒冷地において冬季の間にヒートポンプ式エアコンの高いエネルギー消費効率(COP)を維持するには工夫が必要である。
エアコンのCOPの数値は、暖房時の室内温度20℃・屋外温度7℃の条件下でのエネルギー消費効率を示している。それで、屋外温度が7℃を下回る条件下では、エネルギー消費効率は低下する。換言すると、ヒートポンプ式エアコンの魅力が低下する。そこで、寒冷地でもヒートポンプ式エアコンを魅力あるものとするには、エネルギー消費効率の低下を避け、高い効率を維持できる工夫が求められる。具体的には、24時間換気システムの駆動の際に外部に放出される空気とともに排出される熱エネルギーの回収をエアコンの室外機を利用して行なう。以上の工夫を加えることで、ヒートポンプ式エアコンを寒冷地で使用する際に生じるエネルギー消費効率の低下を緩和することが出来る。
請求項1に記載の外壁は、一般にサイディングを用いるが、モルタル下地に吹付け塗装仕上げもしくはタイル張りでも差し支えない。何れの材料も断熱材として使用されるものではないが、吸放湿とH2Oの相変化との連携を利用した遮熱機能を有する。
尚、断熱層に用いる断熱材は、吸放湿性の有無を問わない。吸放湿性を具備しない合成樹脂系の断熱材を用いることができる。それで、合成樹脂系の断熱材に内装材として自然素材を合わせて用いれば、外断熱工法に自然素材を組み合わせた高性能住宅の実施例となる。
請求項2及び5〜7に記載の断熱パネルは、構造耐力を備えたパネルとしてもよい。
一般に筋交いを柱と柱との間・土台と桁との間に設置し構造耐力壁を形成するが、構造耐力壁形成に必要な筋交いを省き、構造躯体の見える「現わし」とするのに好適である。
構造耐力壁との兼用の例として、杉板倉造りにより構造耐力(耐震)を備え、且つ、吸放湿性を具備する断熱材を兼ねることが出来る。同じく、構造用合板も兼ねることができる。
構造耐力パネルとして、構造用合板を用いてもよい。合板は、断熱材の屋内側のみ、もしくは、屋内側・屋外側の両側に貼設する。(図10参照)又、付加断熱として屋外側に貼設すると断熱性能は向上する。あるいは、2枚の合板の間に断熱材を挟み、三層に積層する場合、合板は吸放湿性を具備する断熱材として機能することが可能で、合成樹脂系の断熱材との積層構造を構成する。尚、気密防水又は透湿防風防水シートを構造用合板の内側及び/又は外側に張設する。
更に、板倉造りと透湿防風防水シート及び土壁と併せて三層構造とすることで、夏季の遮熱・除湿性能を高め、その上、冬季の断熱性能を高めることが出来る。
請求項2・14・20に記載の屋根通気層と外側通気層は連通すると好適に実施できる。
棟換気口に関し。棟換気口と送風ファンとを一体とした構成とすることもできる。その場合、屋根棟下空間及び送風ファン及び屋根棟下換気口を別に設けなくても良い。
請求項10に記載の天井裏空間と内側通気層とは連通して、床下空間を合わせた空気循環路を形成することが出来る。その場合、循環路内に強制的に空気を流通させると、天井裏空間で生成・供給された冷気は室内空間の周囲を循環し、躯体に顕熱的蓄冷し、躯体全体から輻射冷房効果を得られる。
尚、天井裏空間等は閉鎖空間であり、エアコンから冷気を生成・供給したとしても、相対湿度の上昇は一過性のものであり、構造材その他の吸放湿材に吸収すれば、天井裏空間等の相対湿度の低下を図れる。それで、結露の恐れも無く、又、室内空間の調湿効果を得ながら、天井輻射冷房効果を得られる。
請求項11に記載の内容は、室内空間に接する吸放湿材を断熱材に見做せば、内装材と断熱材を兼用した現わしの工法となるが、内装材と見做せば内断熱工法による調湿手段の実施例を示すものでもあり、あるいは、吸放湿性を具備する断熱材を積層した外断熱の現わし工法の実施例となる。具体的には、内装材に透湿防風シートに吸放湿性を具備する断熱材を積層する(セルロースファイバー等を用いる内断熱工法の)実施例となり、あるいは、杉厚板材に吸放湿性を具備する断熱材を積層する(現わし外断熱工法の)実施例となる。
尚、内装材と断熱材とを兼用できるプラスターボードは、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材に属さない。但し、太陽熱の輻射熱の影響を受けやすい場所(東・西・南に面する屋根体・壁体)に限定して用いれば、吸放湿とH2Oの相変化との連携の比率の低くないことによるマイナス面は補い得る。それで、東・西・南に面する屋根体・壁体に限定して用いる限り、プラスターボードは、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材として内装材・断熱材に使用できる。
請求項13に記載の吸放湿材は、単独で内装材・断熱材を兼用しながら用いることも出来るが、杉厚板材に吸放湿性を具備しない合成樹脂系の断熱材を積層した断熱パネル、更に、構造耐力を具備する断熱パネルとしても良い。杉厚板材の現わしで、断熱性能の高い住宅工法の一例である。
ところで、断熱パネルを下地材として活用し、柱等の構造材を「現わす」所謂真壁とする場合、断熱パネルに直接紙クロスの積層貼り仕上げ、又は、珪藻土塗り仕上げとすることができる。或いは、プラスターボードを用いた場合、断熱材及び内装下地材を兼ねて、それに紙クロスの積層貼り仕上げ、又は、珪藻土塗り仕上げとすることができる。
請求項9及び20に関して。壁体を除いた屋根体の断熱層は特定されていないので、杉板に吸放湿性を具備しない合成樹脂系の断熱材を積層した断熱パネル、あるいは、杉厚板材に透湿防風防水シート・吸放湿性を具備する珪酸カルシューム材を積層した断熱パネル等を用いることが出来る。更に、吸放湿性を具備しない合成樹脂系の断熱材を単独で、あるいは、積層して用いることが出来る。尚、杉厚板材は仕上げ材として屋根部の天井の内装材を兼ねることができる。(これは、請求項11に記載の積層された吸放湿手段に該当する。)更に、垂木の構造材を兼ねることも出来る。(図5参照)同様に、断熱パネルは、壁体部について内壁の内装材を兼ねることができる。(図10参照)屋根部・壁体部について、所謂「現わし」の内装方法である。
ところで、断熱パネルを下地材として活用し、柱等の構造材を「現わす」所謂真壁とする場合、断熱パネルに直接紙クロスの積層貼り仕上げ、又は、珪藻土塗り仕上げとすることができる。或いは、プラスターボードを用いた場合、断熱材及び内装下地材を兼ねて、それに紙クロスの積層貼り仕上げ、又は、珪藻土塗り仕上げとすることができる。(請求項20)
請求項23に記載の北側に面する断熱層は、吸放湿とH2Oの相変化との連携の比率の低い断熱材と透湿防風防水シートと吸放湿とH2Oの相変化との連携の比率の低い断熱材の三層の積層構造にすると冬季の暖房負荷の増大を避けられる。又、吸放湿性を具備しない合成樹脂系の断熱材との積層構造も実施例として挙げられる。尚、吸放湿性を具備しない合成樹脂系の断熱材を単独、もしくは、積層して用いても、含水率管理上の目的は達成できる。
請求項24に記載の蓄熱体は、基礎コンクリート及び地中を含めた蓄熱層の熱交換部としての役割を担っている。その場合、地中から屋外への熱損失を縮減する上で、基礎コンクリートの周囲の下端に断熱処理を行うといい。
請求項13及び26に記載の除湿装置は、HP式エアコンの除湿機能を利用すると効率的である。
請求項4及び15及び22に記載の循環流路内に設置のエアコンは、HP式給湯器を利用すると効率的である。尚、循環流路内は換気システムとの合体により絶えず外部から新鮮な空気とともに多量の湿気が供給される。それで、凝縮熱生成に不可欠の湿気は十分確保され、冷気生成の際に生じる暖気と合わせ、貯湯不足の事態は避けられる。HP式給湯器は、冷房・冷房給湯・給湯の機能を備えれば、夏季以外の秋・冬・春には給湯の機能を活用できる。それで、夏に限定されず、年間を通してヒートポンプの回路は利用できる。
請求項10に記載のエアコンに代えてHP式給湯器を利用する場合、貯湯不足の可能性が残る。それを避けるには、請求項1に換気循環システムを合体すると、貯湯のエネルギーは確保できる。尚、その際は請求項4に記載の吸放湿性を具備する断熱材を用いる必要はなく、吸放湿性を具備しない断熱材を用いても良い。あるいは、HP式給湯器は、冷房・冷房給湯・給湯の機能を備えれば、貯湯不足は解消できる。しかも、夏季以外の秋・冬・春には給湯の機能を活用できる。
尚、HP式給湯器に暖房機能を付加し、HP式給湯エアコンとして用いても良い。只、一つのHP回路を、暖房及び貯湯の機能を稼動する際に、同時に利用することはできない。
請求項27に記載のHP式給湯器は、料金の安い深夜電力を通常用いる。輻射冷房による空調方法の採用は、冷房効果と貯湯量の確保との両立を図る上で貢献する。しかも、HP式給湯器は、冷房・冷房給湯・給湯の機能を備えれば、貯湯不足を解消できる。
図2・図3に記載の、天井及び内壁に設ける連通口を開閉式とすると、流路を変更でき、夏・冬で空気循環を好適に実施できる。
天井裏の断熱層を図3に記載の様に桁・梁上に乗せる場合、断熱層の上側に小屋裏空間及び屋根通気層を区別して配置してもいい。その場合、小屋裏空間内の空気と屋根通気層内の空気とは混合しない様に、互いに隔て、小屋裏空間から直接屋外に排気できる排出口を設ける。又、排気口に送風ファンを連結して、排気の効率を高めることもできる。小屋裏空間と外側通気層とは連通して外気に通じるか、あるいは、それぞれ独立して外気に通じるか、何れも可である。尚、断熱層・小屋裏空間・屋根通気層・屋根を含めて屋根体と称する。
図2に記載の建物において、断熱層は屋根に沿って配設するものの、天井は桁・梁下に吊っても良い。
住宅の空調方法として、その快適さ・健康に及ぼす影響・蘇生力等の比較では、輻射冷房・輻射暖房に勝るものはない。それで、地域の気候特性・断熱材の組み合わせ・省エネルギー・ヒートアイランド化抑制・含水率管理・除湿負荷縮減等を勘案しながら、背理的機能である輻射冷房・輻射暖房効果の実現を、夏・冬の太陽熱エネルギー・深夜電力・HP式エアコン・潜熱式蓄熱体・基礎土間コンクリート・地中等エネルギー供給手段・蓄熱手段との好適な組み合わせの中で実施する。
断熱材の組み合わせは、いずれも選択できる。地域の気候特性に関わりなく、先のエネルギー供給手段の運用方法等によって、その違いを吸収する。尚、気密断熱層を通じた冬季の熱損失を避ける為、外側通気層を後記の断熱空気層として活用すると、寒冷地から温暖地まで、右実施例を好適に実施できる。
潜熱式蓄熱体の相変化(凝固・融解)の温度域を21℃から23℃の間を中心に設定する。
夏季は、夜間エアコンから冷却エネルギーを床下空間等の流路に放出する際の温度は凝固点を考慮すると、21℃以下である。昼間は、蓄熱体からのエネルギー移転により、融解点23℃と同程度の温度を床下空間で保持できる。また、蓄熱層を構成する地中から継続して冷却エネルギーは供給されるので、エアコン等のエネルギー供給源に依存する割合は小さい。その分、省エネルギーに繋がる。しかも、地熱のエネルギーは単なる省エネルギー効果をもたらすのみならず、吸放湿性を具備する断熱材の創出する伝熱性を応用した太陽熱エネルギーの潜熱化を図るシステムに活用され、ヒートアイランド化抑制の一助に貢献する。
冬季は、夜間エアコンから融点23℃以上の温度で放出し、同程度の温度を床下空間で保持する。昼間は、蓄熱体からのエネルギー移転により、凝固点21℃程度の温度が床下空間で保持される。
上記の凝固・融解の温度は、冷暖房の方法をもっぱら対流熱エネルギーによる温熱環境の実現に依存する場合、冷房の温度としては低過ぎ、特に夜間の冷房エネルギー供給に関しては不適である。しかし、対流熱エネルギーを放射熱エネルギーに変換し、輻射式の冷暖房方法に依存すると事情は変わる。
夏、床下空間等の流路で22℃から23℃の間に保たれた空気は、内側通気層から天井裏空間へ通じる空気の流路を流通する過程で、内壁仕上げ材・柱等の構造材・断熱材の躯体に蓄冷する。エネルギーを躯体に移転した後の対流熱エネルギーは人肌に優しい温度に変わり、暑過ぎず・寒過ぎない好適な温熱環境を実現する。
夏季、建物内の流路を冷気が流通するのを阻害する最大の要因は、昼間の太陽熱の蓄熱効果により発生する輻射熱である。それで、輻射熱の発生を抑制することが大きな課題となる。ところで、遮熱対策として吸放湿機能を具備する断熱材を用い、構造材・仕上げ材等にも吸放湿機能が備わっているので、太陽熱から運動エネルギーを獲得してH2Oが相変化して気化する際に、輻射熱の発生を抑制する。それで、空気の流路は好適な状態を保持できる。
床下空間・天井裏空間でエネルギー供給手段或いは蓄熱手段を介して供給された冷却エネルギーは空気の流路を流通する過程で躯体に蓄冷するが、一方躯体は空気中の湿気を吸収し、相変化で液化する過程で凝縮熱を発生する。つまり、潜熱式の蓄冷効果によって、表面上の温度変化は起こらない。それで、対流熱エネルギーによる温度変化は最小限に抑えられる。しかも、躯体への潜熱的蓄冷を実施する際、一方で循環流路内の湿気を吸収する。それで、連通口を通じて循環流路内から室内空間へ空気の流入する際は、相対湿度は低下する。
建築的な工夫により、床下空間・内側通気層・天井裏空間を連通する流路を確保し並びに流路を流通する過程で躯体に蓄冷(顕熱)し、対流熱エネルギーを放射熱エネルギーに変換する機構を形成する。対流熱エネルギーの一部を放射熱エネルギーに変換することで、室温の面で好適な環境の実現に貢献する。又、吸放湿機能を備える断熱材等の潜熱式の蓄冷により対流熱エネルギーは吸収される。更に、上記流路を流通する過程で熱損失により外部へのエネルギー移転も生じる。結局、床下空間で22℃から23℃に保たれた空気は、空気循環システムにより先の流路を流通する過程で様々な形でエネルギーを移転し、対流熱エネルギーの形で室温を形成する際には25℃から26℃の好適な環境を実現する。
輻射暖房の技術は公知の技術であるが、全国的には普及の途上にある。その技術の中核は、施工上の高い技能による高い気密性能の確保にある。設計上の工夫では、断熱材を二層構造とすることで高い気密性能・地域特性に応じた断熱性能を実現できる。施工技能に設計上の工夫を加えて、C値0.5以下、Q値1.8以下の高性能を実現できる。更に、設計段階では、建築的な工夫及び連通口の開閉により、床下空間・内側通気層から室内を連通する流路を確保し並びに流路を流通する過程で躯体に蓄熱し、対流熱エネルギーを放射熱エネルギーに効率的に変換する機構を形成する。対流熱エネルギーの一部を放射熱エネルギーに変換することで、室温の面で好適な環境の実現に貢献する。
昼間の太陽熱エネルギーもしくは深夜電力によりエネルギー消費効率の高いエアコンから供給される熱エネルギーを活かし、24時間を通し、好適な環境を実現する。
前記の手段で確保された熱エネルギーは一部を床下に配設された潜熱式蓄熱体・基礎土間コンクリート・地中から構成される蓄熱層に蓄熱される。それで、熱エネルギーが継続的に供給されなくとも、床下空間の温度が低下すると蓄熱体を通じて放熱し、一定の温度を保持する。ここでは、凝固・融解の温度を21℃から23℃の間に設定された潜熱式蓄熱体は、温度センサーの助けを借りずに、床下空間において蓄熱・放熱を繰り返し、熱エネルギーの安定供給に貢献する。
冬季、床下空間で21℃から23℃の間に保たれた空気は、空気循環システムにより冬季用の流路を流通する。
夜間、床下空間で23℃を保った空気は、前記流路を流通する過程で躯体への蓄熱あるいは外部へのエネルギー移転である熱損失により、連通口より室内に流入する際には、室温20℃前後を保持する。
昼間、床下空間で21℃を保った空気は、前記流路を流通する過程で躯体への蓄熱あるいは外部へのエネルギー移転である熱損失により、連通口より室内に流入する際に温度低下するものの、太陽の日射取得もあり、室温20℃までは低下しない。むしろ、太陽の日射による室温上昇に注意が必要である。
以上の効果で、外気の温度の高低に関わらず、室温は恒常的に20℃前後を確保できる。20℃の室温は対流熱エネルギー主体であれば必ずしも暖かいとは言えない。しかし、輻射暖房の特徴は、対流熱エネルギーの一部を放射熱エネルギーに変換することで、室温に関係なく直接住む人の身体の内部(細胞レベル)に放射熱エネルギーを伝えることにある。条件が整えば、床・壁・天井の六面から輻射熱エネルギーを受けることが出来る。室温20℃で暖かい好適な環境を実現出来るのは、輻射式暖房方法の優位なところと言える。
断熱材の組み合わせは、地域の気候特性を考慮して0069に記載の何れかを選択しても良い。
寒冷地において請求項に記載のシステムを利用する場合、その気候特性を考慮した利用によりランニングコストを抑えて好適な住環境を得られる。
夏季は、寒冷地といえども昼間の気温は温暖地に比べて目立って変わらない。只、夜間に限れば温暖地に比較すると外気温の低下は著しい。それで、夜間の冷気を昼間に日射取得する太陽熱エネルギーの吸収に利用する。
換気通気システムにより夜間温度低下した外気を取り入れる。放射冷却のエネルギーを取り込んで、循環流路を流通する過程で気密断熱層に冷却エネルギーを供給し、潜熱的に蓄冷する。そして、H2Oの相変化と吸放湿機能との連携を日射取得する太陽熱エネルギーの吸収により促進し、昼間の遮熱・除湿に利用することが出来る。夜間の温度低下の大きさから、地熱と屋外側で供給する放射冷却エネルギーとを併せれば、昼間の遮熱・除湿効果は十分得られる。
冬季は、深夜電力利用による輻射暖房の効果を実現することは可能である。しかし、エアコンは一般に寒冷地ではエネルギー消費効率が低下する。それで、別のエネルギー供給手段を検討する。例えば、灯油もしくはガスを使ったボイラーを利用する。その場合、同じく循環システムを利用する為に床下にボイラーを設置する。床下で温められた空気は冬季用の循環流路を流通し、熱エネルギーを供給し、エネルギー変換を遂げた後の輻射熱の利用が可能である。
屋根体の断熱層に吸放湿性を具備する断熱材を用いる場合、冬季の空気循環の流路は、夏季と異なり、連通する空間から天井裏空間を除いて構成する。それで、天井裏空間と屋根通気層とを隔てる気密断熱層を経た熱損失の増加を阻止出来る。
断熱材の組み合わせは、段落0073に記載のいずれを採用するも可能である。尚、外側通気層への下端からの通気は、熱損失を招く冷却エネルギーを継続的に供給する。それで、熱損失を防ぐ手段として、外側通気層に空気流入を阻止する開閉弁を設けると、通気層が断熱空気層の役割を果たし、断熱性能を高める上で効果的である。
尚、寒冷地仕様とする場合、併せて、基礎土間コンクリートの下側全面に断熱材を敷き置きする。冬季の地中への熱損失を避け、床下輻射暖房の効果を上げる場合に効果を表す。只、地熱の利用は不可能である。それで、夏季は放射冷却のエネルギーのみで十分で、地熱の利用を必要としない場合に適する。
天井輻射冷房に関して。
天井裏空間に冷気供給手段を用いて冷気を供給すると、閉鎖された空間である天井裏空間の空気の相対湿度は上昇する。それで、空気は容易に飽和点に達し、天井裏空間の面材に結露を生じやすい状態がもたらされる。しかも、屋根体の断熱層に吸放湿性を具備する断熱層を用いた場合、昼間の日射取得により断熱層から気化・放湿して、断熱材の含水率は著しく低下している。その様な状態の下、断熱材に吸放湿材を用いれば、吸湿し・吸冷する作用は容易に生じる。しかも、吸湿によって天井裏空間の空気から除湿され、相対湿度は低下する。それで、吸放湿とH2Oの相変化との連携の比率の低い天井材の働きによって、室内空間から天井裏空間への湿気の移動は可能となる。つまり、天井裏空間に冷気を供給することにより、天井裏空間のみならず室内空間の調湿効果を得られる。この移動は、平衡含水率・含水率・相対湿度の関係によって生じる。
さて、断熱材への吸湿・吸冷は潜熱的蓄冷と呼ばれるもので、液化の際に生成する凝縮熱を吸収し、天井裏空間内での温度低下を招かない。つまり、断熱材が潜熱的に吸冷出来る限り、冷気を天井裏空間に供給し続けても、温度低下を招かず、室内の温度に直接に影響を及ばさずに済ませられる。尚、室内へは輻射冷房という形で影響し、対流冷気を室内に直接注がなくとも、室内の温度は適度に低下する。更に、先に記した様に室内空間から天井裏空間へ湿気は移動するので、室内空間の湿度は低下する。この湿度低下と輻射冷房の効果とが合わさり、室内に快適な環境をもたらすことが出来る。
HP式給湯システムの冷房用熱交換装置を利用して室内の冷房を行う場合、快適な室内環境をもたらすには冷房の制御が重要と成るが、躯体への潜熱的蓄冷の手段によって、この冷房の制御は必要性が薄れる。つまり、室内の冷し過ぎを心配することなく、冷房しながら・貯湯する回路を常時稼動することが出来る。しかも、貯湯のエネルギーは、冷房時の廃熱に限られず、除湿時に生成する凝縮熱を併せて活用することができる。その結果、給湯システムはその省エネルギー性能を向上することができる。
HP式給湯システムは深夜電力を利用して夜間に稼動するので、夜間に常時室内を冷房する場合冷し過ぎには注意を要する。しかし、潜熱的蓄冷により天井裏空間の著しい温度低下を生じず、その上、室内に快適な環境をもたらすことが出来る。しかも、深夜電力の有効利用を図りながら、HP式給湯器のエネルギー消費効率の低下を避けられる。
夜間に潜熱的に蓄冷したエネルギーは、昼間太陽熱エネルギーを吸収する形で遮熱に利用でき、冷房負荷の増大の縮減に貢献する。
HP式給湯器の仕組みは、公知の技術であるが、簡単に説明すると以下の通り。
給湯用ヒートポンプ装置の回路において、圧縮器で圧縮された高温・高圧のガス冷媒は温水用熱交換装置に送られ、そこで貯湯槽から送られた水と熱交換され、水に熱を奪われて凝縮し、液冷媒となる。熱交換により奪われた熱は熱湯の形で貯湯槽に蓄えられ、必要に応じ給湯の用に供される。一方、この液冷媒は、絞り機構に送られて減圧された後、蒸発機に送られた際に外気から熱を奪って、蒸発し、ガス冷媒へと変化する。この熱交換によって外気から熱を奪う際に生じた冷気はファンの働きにより冷気排出口からヒートポンプ装置の外に廃棄される。
この熱交換装置を屋内に設置し、屋内の暖気から熱を奪い、冷気を屋内に供給すれば、HP式給湯器から廃棄される冷気を冷房に利用できる。只、このままでは冷房の冷気は貯湯中絶えず供給され、制御できず、冷え過ぎの弊害を生む。しかも、HP式給湯器は深夜電力を有効利用できることで、その費用対効果を認められている。そこで、冷房用熱交換装置とは別に熱交換装置を回路上に接続し、冷房の必要の無いときは冷気を廃棄しながら貯湯出来る様に回路を構成する。しかも、屋外に冷気を廃棄し、屋外から熱を回収する場合、エネルギー消費効率の低下を招く可能性は小さい。しかし、屋外に廃棄する冷気は少ないほど、エネルギーの有効利用に繋がる。
蛇足ながら、四方弁の操作によりHP回路を専ら貯湯に活用できる。
さて、エネルギー消費効率を考える上からは、その用いる温熱環境は重要です。温熱環境は、熱交換時に回収できる熱エネルギーの量の増減に影響し、エネルギー消費効率の高低に影響する。つまり、温度の高い環境で用いるほど効率は高いのである。その面から考えれば、天井裏空間という閉鎖された空間は熱エネルギーを回収する上での効率は低くならざるを得ない。その条件を抱えた上で、HP式給湯器のエネルギー消費効率の低下を避けながら、且つ、給湯システムの省エネルギー性能の向上を図るには、工夫が必要となる。
先ず、廃棄される冷気を閉鎖空間において常時利用できるシステムが必要となる。このシステムには、建築的工夫が重要な鍵となる。具体的には、天井裏空間への冷気の供給及び吸放湿性を具備する断熱材への潜熱式蓄冷の手段及び昼間の太陽熱を吸収する際の気化・放湿の手段を組み込む。それによって、天井裏空間内及び室内空間内の湿気を除去する際に生成する凝縮熱を、冷房の廃棄熱と併せて、貯湯のエネルギーに利用することが出来る。つまり、屋内外の暖気から冷気を分離する際に生じる熱を利用できる工夫に留まらず、建築的工夫を通じて断熱材が湿気を吸収し潜熱的蓄冷を行う際に生成される凝縮熱を、有効に活用することができる。それで、給湯システムの、HP式給湯器のエネルギー消費効率の低下を避けながら、省エネルギー性能を向上できる。尚、液化の際に生成される液体状のH2Oは断熱材に吸収され、昼間の気化・放湿による太陽熱の吸収・潜熱化に活用される。又、室内空間の調湿の為の除湿装置の稼動は必要なく、除湿に伴う凝縮熱の生成・排出はなくなり、太陽熱の潜熱化と併せてヒートアイランド化抑制に貢献できる。尚、潜熱的蓄冷の効率を高め、除湿効果を高めるには、吸放湿性を具備する断熱材としては、吸放湿とH2Oの相変化との連携の比率の高い断熱材を選択する。
天井裏空間は、内側通気層・床下空間とともに構成する流路を通じて建物全体に繋げられ、連通する。それで、流路内の空気の循環を利用することにより、建物全体に冷気を流通・供給し、液化を伴う断熱材への蓄冷を通じて建物全体の調湿効果を得ることができる。逆に考えれば、壁体の断熱層の断熱材内で液化する際に生成する凝縮熱の利用の効率を高められる。つまり、HP式給湯器のエネルギー消費効率の低下を避けながら、給湯システムの省エネルギー性能を更に向上することができる。その上、床・壁・天井を通じた六面輻射冷房効果を実現することができ、快適な室内環境を得られる。
上記流路に換気システムを合体すれば、新鮮で湿気の豊富な暖気を流路に常時供給でき、HP式給湯器の熱交換時のエネルギー消費効率の低下を避けられる。
吸放湿パネルを壁体に用いる。壁体の外側では、夏季の昼間の太陽の日射取得により、外壁は60℃〜70℃の温度に達する。しかも、多孔質の建材(外壁)から構成される壁体は、昼間の太陽の日射取得によりH2Oの蒸発に必要な運動エネルギーの供給を受ける。この様な形で、積層された吸放湿材のA面は外壁としての機能を併せ持つことができる。その一方、夜間放射冷却を源として、壁体は屋内外から吸湿・吸冷し、潜熱的に蓄冷することができる。液化したH2Oは、液体状のままでは透湿防風防水シートを透過することがない。その状態で昼間を迎えれば、太陽熱エネルギーの日射取得により運動エネルギーを大量に受容し、壁体中に止まった液体状のH2Oにより熱エネルギーを吸収し、気化・放湿する。結果として、外気に開放された多孔質の建材から容易に気化・放湿するのみならず、屋内の湿気を吸収し、除湿・遮熱の効果を得られる。
吸放湿パネルを屋根体及び/又は壁体の断熱層として用いる。断熱層の外側に通気垂木及び/又は通気胴縁を貼設し、屋根及び/又は外壁との間に屋根通気層及び/又は外側通気層を設ける。屋根材及び/又は外壁材は、吸放湿材に限定されず、金属製等の防火性能を備えるものであれば良い。
壁体内二重通気工法について。
断熱層に用いる断熱材としては、合成樹脂系(ポリスチレン・ポリウレタン等)、繊維系(グラスウール・ロックウール)、鉱物系(珪酸カルシューム主成分)のボード状断熱材の中から選択できる。尚、吸放湿性の有無は問わない。断熱材は、一層もしくは二層とし、適宜透湿防風防水シート・防湿シートを併用して断熱層を構成する。あるいは、請求項1・2に記載の断熱パネルを用いて構成する。
内壁・天井に用いる内装材としては、吸放湿とH2Oの相変化との連携の比率の高い材料を用いるが、具体的には珪酸カルシューム主成分の板材(タイライトウッド等)が好適である。あるいは、プラスターボード下地に吸放湿性を具備する紙クロス張り又は珪藻土塗り仕上げとすることが出来る。何れも、厚みは9mmから12mm程度が、費用対効果から好適である。尚、透湿性を備え、H2Oの保持力を備える吸放湿材は、湿気還流率(透湿率)の数値1g/m2・h・mmHg未満とする。因みに、9.5mm厚プラスターボードの湿気還流率の数値は、0.95である。
床に用いる内装材は、吸放湿とH2Oの相変化との連携の比率の低い材料を用いる。具体的には、杉・檜等の無垢板材が好適である。あるいは、湿気を透過できる合板でもいい。厚みは、重量物に耐えられるように、無垢板材では30mm程度、合板では12mm厚板材の二重張りが費用対効果から好適である。尚、湿気還流率(透湿率)の数値は、1g/m2・h・mmHg未満に限定されない。
床の面積に比較すると、天井の面積は1.4倍程度、屋外側の断熱層・内側通気層に面する内壁の面積は1.6倍程度に達し、合計すると3倍程度になる。これは断熱層に面する内壁・天井の面積量である。それで、室内からの吸湿は単純に考えれば、床下からの吸湿の3倍に達する。これは、湿気伝導の効率の低い吸放湿材を用いても、結果として室内の除湿効果を得られる所以である。
内壁・天井に用いる内装材の内、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材は、除湿負荷管理の面からは全ての内壁・天井の内装材に用いても支障なく、室内からの湿気排出の効率は高くなる。但し、含水率管理の側面を考慮し、更に、気化・放湿に必要な運動エネルギーを通気以外の手段によって安定して供給されるためには、太陽熱エネルギーを日射取得できる断熱層に面し、そこから輻射熱を得られる天井及び東西南側の内壁に限定される。それらが、用いる面積・範囲の上限である。即ち、含水率管理を優先すれば、輻射熱を得られる東西南側の内壁以外の間仕切り壁を含む内壁は吸放湿性を具備しない内装材を用いる。尚、吸放湿性を具備しない内装材に代えて吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用いた場合、湿気の排出路形成に貢献せず、除湿負荷管理の上から逆効果を表す。
翻って、請求項21に記載の湿気の排出路を形成する上では、床材に吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、内壁・天井の内装材に吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いれば、その目的は果たせる。しかも、内壁・天井の内装材に吸放湿性を具備しない内装材を用いても、内壁・天井の内装材の一部に吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いれば、その目的は果たせる。只、屋外への湿気排出の効率を高め、除湿負荷管理の課題に応えるには、床に用いる吸放湿とH2Oの相変化との連携の比率の低い吸放湿材の面積よりも、内壁・天井の内装材に用いる吸放湿とH2Oの相変化との連携の比率の高い吸放湿材の施工面積は広く確保する。
さて、太陽熱を日射取得できない北側の断熱層を通じた輻射熱の影響は乏しく、輻射熱を利用した気化・放湿は期待できない。更に、暖気は東西南北に関係なく利用できるが、通気の際に床下の地熱から冷気を受け取るので、運動エネルギーの供給源としては弱い。それで、北側に用いる内装材は吸放湿性を具備しないものを用いるのがいい。プラスターボード下地にビニルクロスは、室内側に吸放湿性を備えず、内側通気層側に吸放湿性を備えているので、室内側に放湿することは無く、費用対効果を考慮すれば好都合である。尚、部屋と部屋との間の仕切り壁についても同様で、断熱層に面することは無く、輻射熱の影響は期待できない。それで、除湿負荷管理及び含水率管理の上からは、吸放湿性を具備しない内装材を用いる。
図15に記載の天井は、屋根勾配に沿って施工されているが、図3に示す様に桁・梁の下側に施工・配置してもいい。
夏季、床下換気口及び第二棟下換気口は開放し、連通する床下空間・内側通気層・天井裏空間・棟下空間で形成される流路内の空気の流通を図る。内壁・天井に用いる内装材は、吸放湿とH2Oの相変化の連携の比率が高いので、放射冷却で冷えた外気から冷エネルギー及び湿気を吸収できる。冷エネルギーと伴に湿気を放出した空気は軽くなり、上昇して第二棟下換気口から屋外に排出される。液化して吸収されたH2Oは室内側に移動することなく、翌昼間内側通気層内に気化放湿される。この気化及び内側通気層内への放湿のエネルギーは、気温30度の空気のもつエネルギーであり、断熱層に日射取得される太陽熱エネルギーに由来し、内装材に至る輻射熱である。
送風ファンを稼動する場合、第二棟下換気口は閉じ、先ずは昼夜ともに稼動する。夜間は、放射冷却の影響から空気の上昇力は弱い。床下空間を経由して地熱の効果で冷やされれば、空気は重くなり、上昇力をもたない。それで、送風ファンの力を借りて上昇力を得れば、内側通気層内を上昇する過程で内装材への吸湿・吸冷により空気は軽くなり、容易に連通口より屋外に排出される。尚、信州等の寒冷地では、夏季の夜間の外気温の低下は著しく、エアコンを用いずとも涼房効果を得られる。それに対し、温暖湿潤の地域では、夜間の温度低下は緩慢で過ぎし辛く、快適に過ごすにはエアコンを必要とする。何れにしろ、夜間の地熱・放射冷却のエネルギーは大半を凝縮熱の吸収に消費され、室内の冷房効果を期待するのは難しい。逆に、昼間は気化・放湿により遮熱効果を期待でき、室内の温度上昇の抑制に多少なりとも効果を期待できる。
用いる内装材の日変動差の大きく無い場合、そのままでは室内への放湿により吸湿能力を回復する機能は十分に働かない。それは、一面では室内の相対湿度が下がっても、室内へ放湿する機能は十分に働かないということである。換言すると、除湿装置を用いて除湿しても、内装材からの放湿は少なく、除湿負荷を大きく増大させるものではない。
さて、昼間は太陽熱の日射取得により断熱層に蓄熱され、そこから輻射熱が発生して、内装材に熱エネルギーを供給することができる。液化の比率の高い吸放湿材を用いた内装材は、夜間の放射冷却により吸湿・吸冷し、内装材の屋外側で潜熱的蓄冷を行っている。用いる内装材は元々透湿性の高いものではないので、内装材の屋外側で生じた含水率の上昇が夜間の内に室内側表面に移動し、内装材の室内側に影響を及ぼすことも無い。つまり、屋外側で生じた含水率の上昇により室内側表面からの放湿圧力に影響を及ぼすことは無い。
さて、夜間の放射冷却により気温低下し、湿度の上昇した環境の下、室内から内装材は吸湿することが出来る。それは、相対湿度の上昇と放射冷却を利用した吸湿・吸冷の潜熱的蓄冷の結果である。つまり、内装材の日変動差は元々大きく無いので、相対湿度の変化を超えて吸湿能力を持たない。しかし、昼間の輻射熱の影響により気化・放湿して含水率低下を引き起こすことは可能である。しかも、内側通気層内は、太陽熱の影響による上昇気流の発生により通気性に優れているので、気化・放湿は促進され、しかも、放出された湿気は速やかに建物外に放出される。その分、内装材の含水率低下は著しく、内装材固有の日変動差を越えて吸湿能力を回復することが出来る。
それが、先に記した様に夜間に室内から吸湿・吸冷して、室内を調湿出来る謂いに繋がってくるのである。しかも、内装材の室外側の相対湿度が室内側に比較して高くなったとしても、湿気の逆流による室内への放湿といった事態は避けられる。しかも、室内からの吸湿は液化を伴う潜熱的蓄冷によるもので、相対湿度の高低によって吸放湿する性質のものではない。それらの作用が合わさった結果、例え除湿装置を用いて室内を調湿したとしても、室内の除湿負荷増大は避けられる。
連通する床下空間・内側通気層から換気口を通じて建物外に湿気を排出する排出路は二つ確保できる。一つ目は、床下空間から床材を透過して室内に流入し、室内から内壁・天井の内装材を透過して内側通気層に流入し、天井裏空間・第二棟下換気口から建物外に排出される排出路である。量的には僅かであるが、床材に吸放湿とH2Oの相変化との連携の比率の低いものを用いることで、含水率・平衡含水率・相対湿度の関係で吸放湿の方向は定まる。二つ目は、床下空間から内側通気層を経て天井裏空間・第二棟下換気口から建物外に排出される排出路である。この二つの排出路の働きは大きい。床下空間に滞留し易い湿気は、通風以外に相対湿度・含水率・平衡含水率の関係によって排出され、床下空間内での結露の発生を抑えられる。しかも、湿気伝導率の高くない吸放湿材(床材)を用いれば、床を通じて室内に透過する湿気の量より多くの湿気が内壁・天井の内装材を通じて内側通気層・天井裏空間・棟下換気口から建物外に排出され、室内の除湿負荷の増大を招かない。尚、二つの排出路の形成は、結露=液化を作用として活用することで可能となる。逆論理付けに止まらず、発明特定事項の構成の困難性にも繋がる。尚、エアコンを用いて室内を除湿する場合、床下空間からの湿気の排出路は増える。
第二送風ファンを稼動する際は、第二棟下換気口を閉じる。それで、排出路は第二棟下換気口から第二棟下連通口に代わる。
床材に用いる杉板材の厚みは30mmに達する。通常、1日の内に吸湿もしくは放湿できる範囲は深さ2mm程度である。それ故、常時一方に湿気が流れたとしても、浸透するには15日を要する。内壁・天井の内装材に見られる浸透の態様に比較すれば著しく緩慢である。それだけ、室内の湿度調節への影響は小さいと言える。それでも、床下空間から吸湿できる働きの効果は、結露防止の観点から大きい。
室内でエアコンを稼動して除湿・冷房する場合、室内の相対湿度は内側通気層内の相対湿度より低下する。その場合、内装材に吸放湿とH2Oの相変化の連携の比率の低いものを用いると室内から内装材へ吸湿できない。更に、内側通気層内から室内に湿気の逆流が生じる。逆流し室内への湿気の透過を阻むには、湿気の吸収の際に液化を促し、液体の状態で吸収できる吸放湿とH2Oの相変化との連携の比率の高いものを用いる。液体状のH2Oは気体状のH2Oと異なり、相対湿度と含水率と平衡含水率との関係によって移動の方向を規定されるわけではなく、気化を誘引する熱エネルギーの獲得に影響される。具体的には、昼間太陽熱エネルギーを起源とする対流熱・放射熱の形で熱エネルギーを得て、内側通気層に気化・放湿する。最終的に建物外へ湿気を放出することで、室内への湿気の逆流は阻まれる。
結局、エアコンを用いて除湿する場合、機能の上から除湿するのみならず、冷気を生成・供給する。吸放湿材はその冷気を潜熱的に吸収する際に、相対湿度の低い室内から吸湿することが出来る。それで、エアコンの除湿負荷は増大せず、軽減される。つまり、エアコンの除湿負荷を増大することなしに、三つの異なる湿気の排出路を確保し、床下空間の除湿は図られる。
ところで、液化して吸収したH2Oが伝導して内側通気層へ放出されるか否かは、別の観点が加わる。即ち、湿気の伝導効率の問題に関わる問題である。伝導を促す要因としては、太陽熱に由来する輻射熱及び対流熱から運動エネルギーを得て、気化・膨張する力が大きい。しかし、それだけではなく、送風ファンの役割は大きい。
送風ファンは、昼夜稼動しても差し支えないが、昼間のみ稼動し、夜間は稼動しない場合は湿気の伝導効率(室内から内側通気層へ)を高められる。それで、液化を経ることで昼夜相対湿度の低い室内から吸湿し、昼間熱エネルギーを吸収して相対湿度の高い内側通気層に気化・放湿する速度を向上できるだけでなく、H2O移動の効率を固有の湿気伝導率より改善できる。段落0081を参照。それは、室内からの吸(除)湿効率の向上に繋がり、エアコンの除湿負荷を軽減し、結果的に、凝縮熱生成の縮減及びヒートアイランド化の抑制に繋がる。
吸放湿とH2Oの相変化との連携の比率の低い吸放湿材として杉板等の無垢板を内壁・天井の内装材に用いる場合、下地材に吸放湿とH2Oの相変化との連携の比率の高い吸放湿板材を用い、柱・間柱の構造的下地材の室内側に重ねて張る。下地の板は珪酸カルシューム主成分の板材が好適である。予算が無ければ、プラスターボードで代替するも可。その工夫によって、エアコンを用いて室内を冷房・除湿し、室内の相対湿度が内側通気層内の相対湿度より低くなっても、内壁・天井の内装材を介した内側通気層内から室内への湿気の浸透(逆流)の阻止に貢献できる。
結局、機能としては、B面から吸湿し、B面へ放湿する作用・効果(含水率と平衡含水率との乖離)。B面から吸湿し、湿気の伝導後A面から放湿する作用・効果(断熱性に背反する伝熱性の創出)。A面から吸湿し、A面から放湿する作用・効果(防水シートを利用したエネルギー移動抑制による冬季の断熱性能改善)。以上三つの作用・効果を実現でき、更に、A面から吸湿し、湿気の伝導後B面から放湿する作用を抑制することが出来る。
更に、深夜電力を利用してエアコンを稼動し、室内を冷房・除湿する場合、湿気の逆流を阻止しながら効率的に室内の除湿ができる。それで、表面に張った吸放湿材から放湿するほどに室内の相対湿度を下げる。結果、表面に張った吸放湿材の含水率は低下する。それで、昼間はエアコンで除湿しなくとも、内装材に吸湿して室内から除湿し、室内の相対湿度を70%以下に保つことができる。この効果は、二種類の吸放湿材の間に透湿防風防水シートを挟むと、より効果的に実現できる。つまり、深夜電力を利用した昼間の湿度調節をシステムとして実施できる。しかも、放射冷却を活用した遮熱の効果も同時に得られる。
冬季は、第二棟下換気口及び床下換気口を閉鎖して、気密住宅として活用し、暖房効率を高める。夏季だけに止まらず、冬季も省エネルギーを実践しながら、快適な室内環境を実現できる。
南に面する壁体もしくは屋根体において、太陽の日射により暖まり・軽くなった空気は上昇する圧力を生じる。対する北に面し、太陽の日射を受けられない壁体もしくは屋根体においては、逆に外気により冷やされ、重くなった空気は下降する。内側通気層内を空気が下降すれば、外側通気層内もしくは屋根通気層内の温まった空気は、それに引っ張られる形で北面の内側通気層内及び天井裏空間を下降し、床下空間に到達する。床下空間で暖気の一部は土間コンクリート等に熱を移転・蓄熱する。
昼間土間コンクリート等に蓄熱されたエネルギーは、夜間は床下空間の空気中に放熱され、暖まり・軽くなった空気は北側を除いた内側通気層内を上昇する。そして、北側の内側通気層内の下降する空気と連動し、連通する床下空間内・内側通気層内・天井裏空間内の流路内を循環する形で、エネルギーも循環する。流路内を循環する過程で、躯体への顕熱的な移転・蓄熱が生じ、内壁・天井等を通じて生じる輻射熱の一部となる。輻射熱は、冬季室内に生活する居住性を快適なものとする。
以上は、冬季の壁体内空気循環の例であるが、夏季、東西南北の壁体は、吸放湿材を用いる場合、太陽熱エネルギーを日射取得できるか否かで、その影響は大きく異なる。日射取得できれば、放湿を促し、含水率を下げることが出来る。日射取得できなければ、湿気を呼び込む形で含水率は高止まりする。
さて、段落0015に記載の「開閉式換気口を閉じて、夏季も気密住宅とする」場合、内装材と内装材以外の吸放湿手段との関係は、段落0092に記載の関係と同じ様に実施できる。又、換気手段も同様に備え、換気手段により夜間の冷気を室内空間に取り入れることが出来る。尚、プラスターボード下地に珪藻土塗り仕上の内装材は室内側に吸放湿性を備えるが、対するプラスターボード下地にビニルクロスの内装材は、室内側に吸放湿性を備えない点で異なる。プラスターボード下地にビニルクロスの内装材は、内装材全面に用いることができる。
さて、夏季も連通する床下空間・内側通気層・天井裏空間で形成される流路内の空気の流通を図る。季節に関わらず、内側通気層内は、太陽熱の影響による上昇気流の発生する。夏季は、南に面する壁体もしくは屋根体において、太陽の日射により暖まり・軽くなった空気は上昇する圧力を生じる。しかも、太陽の日射による輻射熱は日没後も影響するので、太陽熱の影響による上昇気流により、日没後も、流路内の空気の流通を図る。
対する北に面し、太陽の日射を受けられない壁体もしくは屋根体においては、日没後逆に外気により冷やされ、重くなった空気は下降する。床下空間を経由して地熱の効果で冷やされ、通気の際に床下から冷気を受け取る。北側の内側通気層内の下降する空気と連動し、連通する床下空間内・内側通気層内・天井裏空間内の流路内を循環する形で、エネルギーも循環する。
ところで、内装材に液化して吸収されたH2Oは、翌昼間内側通気層内に気化・放湿される。内装材の気化及び内側通気層内への放湿のエネルギーは、気温30度の空気のもつエネルギーであり、断熱層に日射取得される太陽熱エネルギーに由来し、内装材に至る輻射熱である。そして、昼間内側通気層に気化・放湿し、含水率の低下した内装材は、夜間吸湿・吸冷し、内装材の屋外側で潜熱的蓄冷を行う。内装材への吸湿・吸冷により空気は軽くなり、即ち、冷エネルギーと伴に湿気を放出した空気は軽くなり、内側通気層内を上昇する。しかも、通気の際に床下から冷気を受け取る。そして、夜間の地熱のエネルギーは、大半を吸湿・吸冷の潜熱的蓄冷の際の凝縮熱の吸収に消費され、昼間は気化・放湿により遮熱効果を期待できる。
内壁・天井に用いる内装材としては、輻射熱を得られる東・西・南に面する内装材には、吸放湿とH2Oの相変化との連携の比率の高い材料を用いるが、具体的には珪酸カルシューム主成分の板材(タイライトウッド等)が好適である。あるいは、プラスターボード(石膏ボード)下地に吸放湿性を具備する紙クロス張り又は珪藻土塗り仕上げとすることが出来る。なお、内装材は吸放湿性を具備しないものを用いる場合、プラスターボード下地にビニルクロスは、室内側に吸放湿性を備えず、内側通気層側に吸放湿性を備えているので、室内側に放湿することは無い。
さて、外気に開放された、開閉式床下換気口と天井裏空間に連通する開閉式換気口とを別途設置すれば、段落0139〜0145に記載の壁体内二重通気工法と同じ構造となる。地熱に加えて、放射冷却で冷えた外気から冷エネルギー及び湿気を吸収できる。
請求項21・22に関し。
具体的には、空気調和機を用いる場合、室内と内側通気層を隔てる内装材を通じて、内側通気層内の空気は冷やされる。冷気の吸収は生じやすく、又、湿気は暖かいところから冷たいところに移動する。それで、湿気を呼び込む形で吸湿を促し、含水率は高止まりする。更に、夜間の放射冷却により吸湿・吸冷し、太陽熱エネルギーの日射取得がないと、含水率は高止まりする。それで、含水率管理に太陽熱は不可欠である。
それで、エアコン使用時に派生する問題(結露)を想到し、システムを好適に実施する為の方策を備える必要がある。
「PB下地にビニルクロスは、室内側に吸放湿性を備えず、内側通気層側に吸放湿性を備えている」ので、室内側に放湿することは無い。しかも、用いる内装材の透湿率は高くないので、内装材の屋外側で生じた含水率の上昇が夜間の内に室内側表面に移動し、内装材の室内側に影響を及ぼすことも無い。それで、東西南北の少なくとも北面の内装材の少なくとも一部に用いる。
「内装材の室内側から冷気を供給する給冷手段」は、室内空間に設置のHP式エアコン又はHP式給湯機の冷気生成機能によるか、又は、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段による。換気システムは、室内空間の空気を強制的に排出すれば、負圧となった室内空間に新鮮な外気が流入でき、更に、給排気を強制的に行うと換気の効率は高まる。
「天井裏空間及び/又は内側通気層に給冷する手段」は、「天井裏空間及び/又は内側通気層は、開閉式換気口により外気に開放され、建物外から外気を導入し、建物外に排出する通気する手段」であり、開閉式の棟換気口及び開閉式の床下換気口、あるいは、外気に開放された送風ファン等を用いる。放射冷却で冷えた外気から冷エネルギー及び湿気を供給する。(請求項3又は4)それで、液化の比率の高い吸放湿材を用いた内装材は、夜間の放射冷却により吸湿・吸冷し、内装材の屋外側で潜熱的蓄冷を行っている。更に、昼間の輻射熱の影響により気化・放湿して含水率低下を引き起こす。しかも、内側通気層内は、太陽熱の影響による上昇気流の発生により通気性に優れているので、気化・放湿は促進され、放出された湿気は速やかに建物外に放出される。その分、含水率の低下は著しい。
あるいは、開閉式換気口の齎す冷気によらない場合、「天井裏空間及び/又は内側通気層に給冷する手段」は、請求項6に記載の「天井裏空間及び/又は内側通気層」に設置の除湿機能付空気調和機(HP式エアコン又はHP式給湯機)によることが出来る。又、床下空間の地熱を利用する場合(請求項2)、その仕組みは段落0147に記載の内容を参照。
内壁・天井に用いる内装材としては、輻射熱を得られる東・西・南に面する内装材には、吸放湿とH2Oの相変化との連携の比率の高い材料を用いるが、具体的には珪酸カルシューム主成分の板材(タイライトウッド等)が好適である。あるいは、プラスターボード(石膏ボード)下地に吸放湿性を具備する紙クロス張り又は珪藻土塗り仕上げとすることが出来る。なお、内装材は吸放湿性を具備しないものを用いる場合、プラスターボード下地にビニルクロスは、室内側に吸放湿性を備えず、内側通気層側に吸放湿性を備えているので、室内側に放湿することは無い。
本発明の実施例を示す概略断面図である。 本発明の実施例を示す概略断面図である。 本発明の実施例を示す概略断面図である。 図1・2・3に示す建物の壁体の斜断面詳細図である。 屋根体・壁体の概略断面図である。 屋根体の概略断面図である。 屋根体の概略断面図である。 屋根体の概略断面図である。 壁体の断熱パネルを示す平面概略断面図である。 壁体の現わしを示す平面概略断面図である。 壁体の内断熱を示す平面概略断面図である。 壁体の平面概略断面図である。 壁体断熱パネルを示す平面概略断面図である。 壁体の平面概略断面図である。 本発明の実施例を示す概略断面図である。 本発明の実施例を示す概略断面図である。

1.棟換気口 2.屋根 3.屋根通気層
4.野地板 5.垂木 6.垂木受け
7.断熱材A 8.気密断熱層 9.外側通気層
10.気密材 11.基礎 12.桁
13.柱 14.土台 15.内壁
16.杉厚板材 17.実 18.断熱材B
19.胴縁受け 20.連通口 21.胴縁
22.外壁 23.基礎天端 24.結合金物
25.接合金物 26.吸気口 27.熱交換式換気扇
28.透湿防風防水シート 29.内側通気層 30. 床
31.床下空間 32.1000MM 33.15MM
34.910MM 35.切り欠き部 36.地中
37.天井裏空間 38.棟下換気口 39.屋根棟下空間
40.棟下連通口 41.送風ファン 42.給気用連通管
43.第二棟下換気口 44.床下換気口 45.蓄熱体
46.第二棟下連通口 47.第二送風ファン 48.エアコン
49.室内空間 50.天井 51.排気用連通管
52.基礎土間コンクリート53.小屋裏空間

Claims (1)

  1. 建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、天井と内壁と床により室内空間を構成し、
    上記屋根体及び/又は壁体の断熱層に屋外側から冷気を供給する給冷手段を備え、
    上記断熱層に、上記冷気を吸収する潜熱的蓄冷手段を備える建物であって、
    上記潜熱的蓄冷手段は、含水率が日変動差を有し、多孔質の、液化の際生成される凝縮熱を上記冷気により処理し、液体状のH2Oを保持する、吸放湿材と透湿防水シートと吸放湿材とから構成されることを特徴とするエコ住宅。

JP2010077774A 2005-09-12 2010-03-30 エコ住宅 Withdrawn JP2010150922A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077774A JP2010150922A (ja) 2005-09-12 2010-03-30 エコ住宅

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005263926 2005-09-12
JP2006134777 2006-05-15
JP2006179199 2006-06-29
JP2006193680 2006-07-14
JP2010077774A JP2010150922A (ja) 2005-09-12 2010-03-30 エコ住宅

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009057394A Division JP2009121234A (ja) 2005-09-12 2009-03-11 エコ住宅

Publications (1)

Publication Number Publication Date
JP2010150922A true JP2010150922A (ja) 2010-07-08

Family

ID=39835448

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008141256A Pending JP2008215073A (ja) 2005-09-12 2008-05-29 エコ住宅
JP2009057394A Pending JP2009121234A (ja) 2005-09-12 2009-03-11 エコ住宅
JP2010077774A Withdrawn JP2010150922A (ja) 2005-09-12 2010-03-30 エコ住宅

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2008141256A Pending JP2008215073A (ja) 2005-09-12 2008-05-29 エコ住宅
JP2009057394A Pending JP2009121234A (ja) 2005-09-12 2009-03-11 エコ住宅

Country Status (1)

Country Link
JP (3) JP2008215073A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037215A (ja) * 2010-08-11 2012-02-23 Fukuchi Kenso:Kk 壁掛けエアコンのショートサーキット防止装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4357686A1 (en) 2021-06-17 2024-04-24 Mitsubishi Electric Corporation Ventilation system
KR102613468B1 (ko) 2022-11-09 2023-12-13 우리기술 주식회사 단열재 및 이를 이용한 단열부재

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144646A (ja) * 1994-11-17 1996-06-04 Tetsuya Inaba 建築物用引き戸枠
JP2002070192A (ja) * 2000-08-31 2002-03-08 Osamu Ogoshi 建物の壁構造
JP2004333106A (ja) * 2002-07-01 2004-11-25 Kenko House:Kk 空調システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037215A (ja) * 2010-08-11 2012-02-23 Fukuchi Kenso:Kk 壁掛けエアコンのショートサーキット防止装置

Also Published As

Publication number Publication date
JP2009121234A (ja) 2009-06-04
JP2008215073A (ja) 2008-09-18

Similar Documents

Publication Publication Date Title
JP3921673B1 (ja) エコ住宅
JP2007332533A (ja) エコ住宅
US20170248332A1 (en) Geothermal Heating, Cooling, and Dehumidification Ventilation System
JP7038551B2 (ja) 湿度変動からのエネルギーの収穫
JP3709465B1 (ja) 屋内環境改善建物
JP2006112214A (ja) 屋内環境改善建物
Chenvidyakarn Passive design for thermal comfort in hot humid climates
JP2008039372A (ja) エコ住宅
JP2010150922A (ja) エコ住宅
JP2008038584A (ja) エコ住宅
JP2008285851A (ja) エコ住宅
US8776467B2 (en) Climate positive building envelope for housing
JP2008038589A (ja) エコ住宅
JP2010156170A (ja) 省エネ建物構造
JP2008285986A (ja) エコ住宅
JP6875671B1 (ja) 住宅
JP2008285990A (ja) エコ住宅
JP2008039372A5 (ja)
JP2018040105A (ja) パイプ状発泡断熱材
JP2004333106A (ja) 空調システム
Baniyounes et al. Solar desiccant cooling and indoor air quality for institutional building in subtropical climate
Bahadori Natural air-conditioning systems
JPH06299712A (ja) 家 屋
JP7340307B1 (ja) 建物、複層通気パネル及び通気断熱方法
JP2012211724A (ja) 蓄冷・放冷及び蓄湿・放湿による天井放射冷房システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110830

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906