JP2010150392A - ポリ乳酸組成物およびその成形品 - Google Patents

ポリ乳酸組成物およびその成形品 Download PDF

Info

Publication number
JP2010150392A
JP2010150392A JP2008330121A JP2008330121A JP2010150392A JP 2010150392 A JP2010150392 A JP 2010150392A JP 2008330121 A JP2008330121 A JP 2008330121A JP 2008330121 A JP2008330121 A JP 2008330121A JP 2010150392 A JP2010150392 A JP 2010150392A
Authority
JP
Japan
Prior art keywords
component
weight
parts
acid
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008330121A
Other languages
English (en)
Other versions
JP5536330B2 (ja
Inventor
Yuichi Matsuno
勇一 松野
Masaki Mitsunaga
正樹 光永
Mitsuru Doteguchi
満 土手口
Yoshitaka Shibata
佳孝 柴田
Saneo Oda
実生 小田
Takuro Kitamura
卓朗 北村
Masahiro Iwai
正宏 岩井
Kiyotsuna Toyohara
清綱 豊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd, Teijin Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2008330121A priority Critical patent/JP5536330B2/ja
Publication of JP2010150392A publication Critical patent/JP2010150392A/ja
Application granted granted Critical
Publication of JP5536330B2 publication Critical patent/JP5536330B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】本発明の目的は、熱安定性、特に湿熱安定性に優れたポリ乳酸組成物、その製造方法およびその成形品を提供することにある。
【解決手段】即ち本発明は、100重量部のポリ乳酸(A−α成分)5〜95重量%とポリオレフィン樹脂(A−β成分)95〜5重量%からなる樹脂成分(A成分)、0.001〜5重量部のホスホノ脂肪酸エステル(B成分)、0.01〜5重量部のリン酸エステル金属塩(C成分)、
0.001〜2重量部の、ホスファイト系化合物、ホスホナイト系化合物、ヒンダートフェノール系化合物およびチオエーテル系化合物からなる群より選ばれる少なくとも一種の酸化防止剤(D成分)、並びに0.001〜10重量部の末端封鎖剤(E成分、)を含有する組成物、その製造方法およびその成形品である。
【選択図】なし

Description

本発明は、ポリ乳酸組成物に関する。さらに詳しくは、本発明は、熱安定性、特に湿熱安定性に優れたポリ乳酸組成物およびその成形品に関する。
近年、地球環境保護の目的から、自然環境下で分解される生分解性ポリマーが注目され、世界中で研究されている。生分解性ポリマーとして、ポリ乳酸、ポリヒドロキシブチレート、ポリカプロラクトンなどの脂肪族ポリエステルが知られている。ポリ乳酸は、生体由来の原料から得られる乳酸あるいはその誘導体を原料とするため生体安全性が高く、環境にやさしい高分子材料である。そのため汎用ポリマーとしての利用が検討され、延伸フィルム、繊維、射出成形品などとしての利用が検討されている。また、利用の幅を広げるため、各種ポリマーアロイの検討も幅広く行われてきた。
しかしながらポリ乳酸は、結晶融解温度が約155℃と低いため耐熱性に限界がある。また、熱安定性、特に湿熱安定性が悪く、湿度により分解されやすいという欠点がある。
一方、L−乳酸単位からなるポリL−乳酸(PLLA)と、D−乳酸単位からなるポリD−乳酸(PDLA)とを溶液あるいは溶融状態で混合することにより、ステレオコンプレックスポリ乳酸が形成されることが知られている(特許文献1および非特許文献1)。このステレオコンプレックスポリ乳酸は、結晶融解温度が200〜230℃とPLLAやPDLAに比べて融点が高く、結晶性も高いことが知られている。
しかしながらステレオコンプレックスポリ乳酸の形成は容易ではなく、とりわけPLLAやPDLAの重量平均分子量が15万を超えるとその困難さはいっそう顕著となる(特許文献1)。即ち、ステレオコンプレックスポリ乳酸は、通常、単一相を示すことはなく、PLLAおよびPDLA相(ホモ相)と、ポリ乳酸ステレオコンプレックス相(コンプレックス相)の混合相組成物となる。この混合組成物において、コンプレックス相の割合が少ないとステレオコンプレックスポリ乳酸本来の耐熱性を発揮することが困難である。また、ステレオコンプレックスポリ乳酸も、ポリ乳酸ホモポリマーと同様、脂肪族ポリエステルの特徴として、湿度により加水分解を受けやすい欠点を有している。
このような現状を打開すべく、ポリ乳酸の熱安定性向上について種々検討がなされてきた。例えば、特許文献2には、分子量が5万以上に達した時点で、ポリ乳酸に触媒失活剤としてリン酸系化合物、或いは亜リン酸系化合物を添加することが提案されている。また特許文献3および4には、触媒失活剤として酸性リン酸エステル類またはキレート剤を添加し、ポリ乳酸の熱安定性を向上することが教示されている。しかしながら、特許文献2の如く低分子量のポリ乳酸に、触媒失活剤を添加することは、その後の重合反応が阻害され、高分子量体が得られないことを意味する。一方、特許文献3および4に記載の酸性リン酸エステルは、その酸性度のために製造設備の腐食、或いは樹脂の湿熱安定性を低下させる原因となる。また例示されているキレート剤は概ね耐熱性に乏しく、金属触媒を捕捉する前に焦成し、重大な着色や悪臭の原因となる。
特許文献5には、ポリ乳酸にホスホノ脂肪酸エステルを含有させることにより、ポリ乳酸中の残留触媒を効果的に失活でき、ポリ乳酸熱安定性が改善することが提案されている。しかしながら、湿熱安定性に関して検討はされておらず、湿度により加水分解されやすいという脂肪族ポリエステル特有の特徴に対して十分な対策が取られていない。
特開昭63−241024号公報 特許第2862071号公報 特許第3487388号公報 特開平10−36651号公報 国際公開第2007/114459号パンフレット Macromolecules,24,5651(1991)
本発明の目的は、熱安定性、特に湿熱安定性に優れたポリ乳酸組成物およびその成形品を提供することにある。また本発明の目的は、熱安定性、特に湿熱安定性に優れたポリ乳酸組成物の製造方法を提供することにある。
本発明者は、ポリ乳酸の熱安定性、特に湿熱安定性を向上させることについて鋭意検討した。
その結果、ポリ乳酸の熱安定性を低下させると考えられる残留触媒の失活剤としてホスホノ脂肪酸エステル(B成分)を用い、さらにリン酸エステル金属塩(C成分)を結晶核剤として用い、特定の酸化防止剤(D成分)を用いると、ホスホノ脂肪酸エステル(B成分)の失活効果が相乗的に高まり、熱安定性、特に湿熱安定性に優れたポリ乳酸組成物が得られることを見出した。更には、作業環境や使用環境の悪化原因となる末端封鎖剤由来の悪臭や悪臭原因物質由来と思われる金型汚染を低減させ、驚くべきことに、一定の湿熱安定性を発揮するために必要な末端封鎖剤(E成分)の添加量が低減できることを見出した。
また、ポリ乳酸へのホスホノ脂肪酸エステル(B成分)の添加は、ポリ乳酸の重合終了時のみならず、他の添加剤成分と混練してポリ乳酸組成物を調製する際にも行うと、熱に曝されていない新鮮な触媒失活剤を添加することにより、高効率な失活効果が得られ、更に高レベルな熱安定性、特に湿熱安定性に優れたポリ乳酸組成物が得られることを見出し、かつポリ乳酸と非相溶なポリオレフィン樹脂とのポリマーアロイにより、厚肉成形品にありがちなヒケの発生が抑えられ、成形品の表面性が良好となることを発見し、本発明を完成した。
即ち本発明は、100重量部のポリ乳酸(A−α成分)5〜95重量%とポリオレフィン樹脂(A−β成分)95〜5重量%からなる樹脂成分(A成分)、
0.001〜5重量部のホスホノ脂肪酸エステル(B成分)、
0.01〜5重量部のリン酸エステル金属塩(C成分)、
0.001〜2重量部の、ホスファイト系化合物、ホスホナイト系化合物、ヒンダートフェノール系化合物およびチオエーテル系化合物からなる群より選ばれる少なくとも一種の酸化防止剤(D成分)、並びに
0.001〜10重量部の末端封鎖剤(E成分、)
を含有する組成物である。
また本発明は、(i) 100重量部のポリ−L乳酸(A−α−1成分)に対して、0.001〜3重量部のホスホノ脂肪酸エステル(B成分)を含有する組成物−1および100重量部のポリ−D乳酸(A−α−2成分)に対して、0.001〜3重量部のホスホノ脂肪酸エステル(B成分)を含有する組成物−2を、組成物−1および組成物−2の合計100重量部に対して、0.01〜5重量部のリン酸エステル金属塩(C成分)の存在下、溶融混練してステレオコンプレックスポリ乳酸(A−α―3成分)を調製する工程、並びに
(ii) 得られたステレオコンプレックスポリ乳酸5〜95wt%とポリオレフィン樹脂(A−β成分)95〜5wt%からなる樹脂成分100重量部に対し、0.001〜2重量部のホスホノ脂肪酸エステル(B成分)、0.001〜2重量部の、ホスファイト系化合物、ホスホナイト系化合物、ヒンダートフェノール系化合物、チオエーテル系化合物からなる群より選ばれる少なくとも一種の酸化防止剤(D成分)、並びに0.001〜10重量部の末端封鎖剤(E成分)を溶融混練する工程、
からなる前記組成物の製造方法である。
また本発明は該組成物からなる成形品を包含する。
本発明のポリ乳酸組成物およびその成形品は、熱安定性、特に湿熱安定性に優れる。また本発明の製造方法によれば、熱安定性、特に湿熱安定性に優れたポリ乳酸組成物を提供することができる。さらにはポリオレフィン樹脂とのポリマーアロイにより、ヒケが無く、良好な表面性を有する組成物を提供できる。
〈ポリ乳酸:A−α成分〉
ポリ乳酸(A−α成分)は、主としてL−乳酸単位からなるポリ−L乳酸(A−α―1成分)、主としてD−乳酸単位からなるポリ−D乳酸(A−α―2成分)またはこれらの混合物である。
ポリ−L乳酸(A−α―1成分)は、主として下記式(4)で表されるL−乳酸単位からなる。A−α−1成分は、好ましくは90〜100モル%のL−乳酸単位および0〜10モル%のL−乳酸以外の共重合単位からなる。
ポリ−D乳酸(A−α―2成分)は、主として下記式(4)で表されるD−乳酸単位からなる。A−α−2成分は、好ましくは90〜100モル%のD−乳酸単位および0〜10モル%のD−乳酸以外の共重合単位からなる。
Figure 2010150392
ポリ−L乳酸(A−α―1成分)もしくはポリ−D乳酸(A−α―2成分)の光学純度は、90〜100モル%であることが好ましい。光学純度がこれより低いと、ポリ乳酸の結晶性や融点が低下し、高い耐熱性が得られにくい。このため、ポリ−L乳酸(A−α―1成分)もしくはポリ−D乳酸(A−α―2成分)の融点は、好ましくは160℃以上、より好ましくは170℃以上、さらに好ましくは175℃以上である。
かかる観点において、ポリマー原料の乳酸、ラクチドの光学純度は、好ましくは96〜100モル%、より好ましくは97.5〜100モル%、さらに好ましくは98.5〜100モル%、とりわけ好ましくは99〜100モル%の範囲である。
共重合単位としては、ポリ−L乳酸(A−α―1成分)であればD−乳酸単位、ポリ−D乳酸(A−α―2成分)であればL−乳酸単位であり、乳酸以外の単位も挙げられる。
乳酸単位以外の共重合単位は、0〜10モル%、好ましくは0〜5モル%、より好ましくは0〜2モル%、さらに好ましくは0〜1モル%の範囲である。
共重合単位は、2個以上のエステル結合形成可能な官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等由来の単位およびこれら種々の構成成分からなる各種ポリエステル、各種ポリエーテル、各種ポリカーボネート等由来の単位が例示される。
ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸等が挙げられる。多価アルコールとしてはエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコール類あるいはビスフェノールにエチレンオキシドが付加させたもの等の芳香族多価アルコール等が挙げられる。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸等が挙げられる。ラクトンとしては、グリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等が挙げられる。
ポリL−乳酸(A−α―1成分)およびポリD−乳酸(A−α―2成分)の重量平均分子量は、本発明の組成物の機械物性および成形性を両立させるため、好ましくは8万〜30万、より好ましくは10万〜25万、さらに好ましくは12〜23万の範囲である。
ポリ乳酸の重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定し標準ポリスチレンに換算した値である。
ポリL−乳酸(A−α―1成分)およびポリD−乳酸(A−α―2成分)の製造方法は、とりわけ限定はなく、従来公知の方法で製造することができ、例えば、L−またはD−ラクチドの溶融開環重合法、低分子量のポリ乳酸の固相重合法、さらに、乳酸を脱水縮合させる直接重合法等を例示することができる。
重合反応は、従来公知の反応装置で実施可能であり、例えばヘリカルリボン翼等高粘度用攪拌翼を備えた縦型反応器あるいは横型反応器を単独、または並列にて使用することができる。また、回分式あるいは連続式あるいは半回分式のいずれでも良いし、これらを組み合わせてもよい。
固相重合法では、プレポリマーは予め結晶化させることが、ペレットの融着防止、生産効率の面から好ましく、固定された縦型或いは横型反応容器、またはタンブラーやキルンの様に容器自身が回転する反応容器(ロータリーキルン等)中、プレポリマーのガラス転移温度以上融点未満の温度範囲の一定温度あるいは重合の進行に伴い次第に昇温させ重合を行う。生成する水を効率的に除去する目的で前記反応容器類の内部を減圧することや、加熱された不活性ガス気流を流通する方法も好適に併用される。
本発明の組成物は、ポリ乳酸を製造する際に用いる金属触媒を含有する。金属触媒は、アルカリ土類金属、希土類金属、第三周期の遷移金属、アルミニウム、ゲルマニウム、スズ、およびアンチモンからなる群から選ばれる少なくとも一種の金属元素を含む化合物である。アルカリ土類金属として、マグネシウム、カルシウム、ストロンチウム等が挙げられる。希土類元素として、スカンジウム、イットリウム、ランタン、セリウム等が挙げられる。第三周期の遷移金属として、鉄、コバルト、ニッケル、亜鉛が挙げられる。金属触媒は、例えばこれらの金属のカルボン酸塩、アルコキシド、アリールオキシド、或いはβ−ジケトンのエノラート等として組成物に添加される。重合活性や色相を考慮した場合、オクチル酸スズ、チタンテトライソプロポキシド、アルミニウムトリイソプロポキシドが特に好ましい。
金属触媒の含有量は、100重量部のポリ乳酸に対して、好ましくは0.001〜1重量部、より好ましくは、0.005〜0.1重量部である。金属触媒の含有量が少なすぎると重合速度が著しく低化する。逆に多すぎると反応熱による着色、或いは解重合やエステル交換反応が加速されるため、得られる組成物の色相と熱安定性が悪化する。
重合開始剤としてアルコールを用いてもよい。かかるアルコールとしては、ポリ乳酸の重合を阻害せず不揮発性であることが好ましく、例えばデカノール、ドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール等を好適に用いることができる。
〈ステレオコンプレックスポリ乳酸〉
ポリ乳酸は、ステレオコンプレックス結晶を含有することが好ましい。このステレオコンプレックス結晶を含有しているポリ乳酸を、ステレオコンプレックスポリ乳酸という。ステレオコンプレックス結晶は、ポリL−乳酸(A−α―1成分)とポリD−乳酸(A−α―2成分)を混合することにより形成される。この場合、ポリL−乳酸(A−α―1成分)とポリD−乳酸(A−α―2成分)との重量比は、好ましくは90:10〜10:90、より好ましくは75:25〜25:75、さらに好ましくは60:40〜40:60である。
ポリ乳酸(A―α成分)は、主としてL−乳酸単位からなるポリ−L乳酸(A−α―1成分)および主としてD−乳酸単位からなるポリ−D乳酸(A−α―2成分)を含有し、A−α―1成分とA−α−2成分との重量比が10:90〜90:10の範囲にあることが好ましい。この場合、ポリ−L乳酸(A−α―1成分)はL−乳酸単位を90モル%以上含有し、ポリ−D乳酸(A−α−2成分)はD−乳酸単位を90モル%以上含有することが好ましい。
高度にステレオコンプレックス化されたステレオコンプレックスポリ乳酸は、示差走査熱量計(DSC)測定の昇温過程における融解ピークのうち195℃以上の割合が80%以上となる。
ステレオコンプレックスポリ乳酸の融解ピークは、好ましくは200℃以上、より好ましくは205℃以上、さらに好ましくは210℃以上である。ステレオコンプレックスポリ乳酸の融解ピークが195℃より低いと、その結晶性や融点の低さから耐熱性は不十分である。
ステレオコンプレックスポリ乳酸の融解ピークのうち195℃以上の割合は、好ましくは80%以上、より好ましくは90%以上、最も好ましいのは100%である。195℃以上の融解ピークの割合が80%より低いとポリ−L乳酸やポリ−D乳酸に由来するホモ結晶の特徴が表れてしまい、耐熱性が不十分となる。
かかる高度にステレオコンプレックス化されたステレオコンプレックスポリ乳酸は、ポリL−乳酸(A−α−1成分)とポリD‐乳酸(A−α−2成分)とが、かかる量比で存在することにより、13C−NMRで求めたエナンチオマー平均連鎖長を好適に10から40の範囲とすることができ、ホモ相ポリ乳酸の結晶融解ピークが存在しないで、ステレオコンプレックス相ポリ乳酸の結晶融解ピークのみが観測されるようになる。
ここにおいて13C−NMRで求めたエナンチオマー平均連鎖長(Li)は、ポリ乳酸のCH炭素の4連子構造のピークをMakromol.Chem.,191,2287(1990)したがい帰属、その面積比(Iiii,Iisi,Isii,Iiis,Isis,Issi,Iiss,Iss)により式(IV)で定義される値である。iはアイソタクチック(LL、DD)、sはシンジオタクチック(LD、DL)連結を表す。
Li=(3Iiii+2Iisi+2Isii+2Iiis+Isis+Issi+Iiss)/(Iisi+Iiis+Isii+2Isis+2Issi+2Iiss+3Isss)+1
(IV)
本発明においては、エナンチオマー平均連鎖長(Li)が、10から40の範囲にあることが好ましく、かかる条件を満たすことにより、組成物の耐熱性、とりわけ好適な離型性を達成することができる。
エナンチオマー平均連鎖長が10に満たないと、DSC測定において、ステレオコンプレックス相ポリ乳酸が高度に形成されていても、組成物の耐熱性に劣ることがあり、40を超えていると、ステレオコンプレックスポリ乳酸の形成性に劣りさらに耐熱性が劣ることがあるためである。かかる観点に加え、さらに組成物の離型性の観点よりエナンチオマー平均連鎖長は好ましくは15から40、より好ましくは18から39の範囲が好適に選択される。
〈ポリオレフィン樹脂:A−β成分〉
ポリオレフィン樹脂(A−β成分)とは、エチレン、プロピレン、ブテン等のオレフィン類の単重合体もしくは共重合体、あるいはこれらのオレフィン類と共重合可能な単量体成分との共重合体であり、具体的には、ポリエチレン、ポリプロピレンからなる群から選ばれる少なくとも1種である。特にポリプロピレンが、組成物の結晶性の観点から好ましい。ここで言うポリプロピレンとは、構成単位としてプロピレン単位を少なくとも1モル%以上含有するポリオレフィンを意味する。上記ポリプロピレンは、構成単位としてプロピレン単位を少なくとも1モル%以上、好ましくは10モル%以上、特に好ましくは75モル%以上含む。また、他の構成成分としては、エチレンまたは炭素数4〜20のα−オレフィン、具体的には1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン等が挙げられ、これらは1種単独でも2種以上を組み合わせてもよい。
本発明のポリオレフィン樹脂は、メルトボリュームフローレート(MVR、ISO1133、240℃、2.16kg)の値として、1〜80cm/10分のものを用いることができるが、2〜70cm/10分のものを用いると、成形品外観の優れた樹脂組成物となるためより好ましく、3〜60cm/10分のものが特に好ましい。 かかるポリオレフィン樹脂(A−β成分)とポリ乳酸(A−α成分)の重量比(A−β/A−α)は、5/95〜95/5、好ましくは10/90〜50/50、さらに好ましくは15/85〜40/60の範囲が選択される。ポリオレフィン樹脂(A−β成分)とポリ乳酸(A−α成分)の含有比が5/95より小さくなるとポリオレフィン樹脂を配合することによるヒケが無い良好な表面性が付与できず、95/5より大きくなると、地球環境保護の目的の観点から好ましくない。
〈ホスホノ脂肪酸エステル:B成分〉
本発明の組成物は、ポリ乳酸(A−α成分)の金属触媒の失活剤としてホスホノ脂肪酸エステル(B成分)を含有する。ホスホノ脂肪酸エステル(B成分)は、ホスホン酸ジエステル部位とカルボン酸エステル部位が脂肪族炭化水素基を介して結合した化合物で、無色透明で耐熱性に優れるため得られる組成物の色相は良好となる。特に下記一般式(1)で表されるホスホノ脂肪酸エステルが好ましい。
Figure 2010150392
式中R〜Rはそれぞれ独立に、炭素数1〜20のアルキル基または炭素数6〜12のアリール基である。炭素数1〜20のアルキル基として、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。炭素数6〜12のアリール基として、フェニル基、ナフタレン−イル基が挙げられる。R〜Rは、これらが全て同一であっても、異なるものがあっても構わない。またnは1〜3の整数である。
式(1)で表される化合物として、ジエチルホスホノ酢酸エチル、ジ−n−プロピルホスホノ酢酸エチル、ジ−n−ブチルホスホノ酢酸エチル、ジ−n−ヘキシルホスホノ酢酸エチル、ジ−n−オクチルホスホノ酢酸エチル、ジ−n−デシルホスホノ酢酸エチル、ジ−n−ドデシルホスホノ酢酸エチル、ジ−n−オクタデシルホスホノ酢酸エチル、ジフェニルホスホノ酢酸エチル、ジエチルホスホノ酢酸デシル、ジエチルホスホノ酢酸ドデシル、ジエチルホスホノ酢酸オクタデシル、ジエチルホスホノプロピオン酸エチル、ジ−n−プロピルホスホノプロピオン酸エチル、ジ−n−ブチルホスホノプロピオン酸エチル、ジ−n−ヘキシルホスホノプロピオン酸エチル、ジ−n−オクチルホスホノプロピオン酸エチル、ジ−n−デシルホスホノプロピオン酸エチル、ジ−n−ドデシルホスホノプロピオン酸エチル、ジ−n−オクタデシルホスホノプロピオン酸エチル、ジフェニルホスホノプロピオン酸エチル、ジエチルホスホノプロピオン酸デシル、ジエチルホスホノプロピオン酸ドデシル、ジエチルホスホノプロピオン酸オクタデシル、ジエチルホスホノ酪酸エチル、ジ−n−プロピルホスホノ酪酸エチル、ジ−n−ブチルホスホノ酪酸エチル、ジ−n−ヘキシルホスホノ酪酸エチル、ジ−n−オクチルホスホノ酪酸エチル、ジ−n−デシルホスホノ酪酸エチル、ジ−n−ドデシルホスホノ酪酸エチル、ジ−n−オクタデシルホスホノ酪酸エチル、ジフェニルホスホノ酪酸エチル、ジエチルホスホノ酪酸デシル、ジエチルホスホノ酪酸ドデシル、ジエチルホスホノ酪酸オクタデシルが挙げられる。効能や取扱いの容易さを考慮すると、ジエチルホスホノ酢酸エチル、ジ−n−プロピルホスホノ酢酸エチル、ジ−n−ブチルホスホノ酢酸エチル、ジ−n−ヘキシルホスホノ酢酸エチル、ジエチルホスホノ酢酸デシル、ジエチルホスホノ酢酸オクタデシル等が挙げられる。
式(1)において、R〜Rの炭素数が20以下であると、その融点がポリ乳酸や組成物の製造温度よりも低くなるため十分に融解混合し、効率的に金属触媒を補足することができる。またホスホノ脂肪酸エステル(B成分)は、ホスホン酸ジエステル部位とカルボン酸エステル部位の間に脂肪族炭化水素基を有する。ポリ乳酸中の金属触媒を効率的に捕捉するためには式(1)において、nが1〜3の整数であることが好ましい。
ホスホノ脂肪酸エステル(B成分)の含有量は、樹脂成分(A成分)100重量部に対して0.001〜5重量部、好ましくは0.005〜2重量部である。ホスホノ脂肪酸エステルの含有量が、少なすぎると残留する金属触媒の失活効率が極めて悪く、十分な効果が得られない。また、多すぎると成形加工時に使用する金型の汚染が著しくなる。
ホスホノ脂肪酸エステル(B成分)は、重合終了時に添加するのが通例であるが、B成分は、リン酸エステル金属塩(C成分)に対しても失活作用があり、B成分によるC成分の熱安定性の悪化が顕著な場合には、重合終了時における所定量のB成分を全て添加するよりは、重合終了時と、その後、押出、成形の各プロセスにおいて、他の成分と混練する際に分けて添加することが好ましい。
押出、成形の各プロセスにおけるホスホノ脂肪酸エステル(B成分)の添加量は、L−乳酸(A−α−1成分)とD−乳酸(A−α−2成分)の各々100重量部に対して0.001〜2重量部、好ましくは0.005〜1重量部である。B成分の添加量が少なすぎると、金属触媒を失活する効果が得られない。また、多すぎるB成分による金型の汚染が著しくなる。
〈リン酸エステル金属塩:C成分〉
リン酸エステル金属塩(C成分)としては、下記一般式(2)または(3)で示される化合物が挙げられる。
Figure 2010150392
式中Rは、水素原子または炭素数1〜4のアルキル基である。炭素数1〜4のアルキル基として、メチル基、プロピル基、ブチル基等が挙げられる。RおよびRはそれぞれ独立に、水素原子または炭素数1〜12のアルキル基である。炭素数1〜12のアルキル基として、メチル基、プロピル基、ブチル基、へキシル基、デシル基等が挙げられる。Mはアルカリ金属原子、アルカリ土類金属原子、亜鉛原子またはアルミニウム原子である。アルカリ金属原子として、ナトリウム、カリウム等が挙げられる。アルカリ土類金属原子として、マグネシウム、カルシウム、リチウム等が挙げられる。pは1または2である。qはMがアルカリ金属原子、アルカリ土類金属原子または亜鉛原子のときは0、アルミニウム原子のときは1または2である。
Figure 2010150392
式中R、Rはそれぞれ独立に、水素原子または炭素数1〜12のアルキル基である。炭素数1〜12のアルキル基として、メチル基、プロピル基、ブチル基、へキシル基、デシル基等が挙げられる。Mはアルカリ金属原子、アルカリ土類金属原子、亜鉛原子またはアルミニウム原子である。アルカリ金属原子として、ナトリウム、カリウム等が挙げられる。アルカリ土類金属原子として、マグネシウム、カルシウム、リチウム等が挙げられる。pは1または2である。qはMがアルカリ金属原子、アルカリ土類金属原子または亜鉛原子のときは0を、アルミニウム原子のときは1または2である。
リン酸エステル金属塩(C成分)としては、ナトリウム−2,2’−メチレンビス(4,6−ジ−t−ブチルフェニル)ホスフェート、アルミニウムビス(2,2’−メチレンビス−4,6−ジ−t−ブチルフェニルホスフェート)等が挙げられる。
式(2)または(3)で表されるリン酸エステル金属塩のM、Mは、Na、K、Al、Mg、Ca、Liが好ましく、特に、K、Na、Al、LiなかでもLi、Alが最も好適に用いることができる。なかでもADEKA(株)製の商品名、アデカスタブNA−10、NA−11、NA−21、NA−30、NA−35、NA−71等が好適な剤として例示される。
リン酸エステル金属塩(C成分)の含有量は、樹脂成分(A成分)100重量部に対し、0.01〜5重量部、好ましくは0.01〜1重量部、より好ましくは0.01〜0.5重量部、さらに好ましくは0.02〜0.3重量部である。少なすぎる場合には、ステレオ化度を向上する効果が小さく、多すぎるとコンプレックス相結晶融点を低下させるので好ましくない。
〈酸化防止剤:D成分〉
酸化防止剤(D成分)は、ホスファイト系化合物、ホスホナイト系化合物、ヒンダートフェノール系化合物およびチオエーテル系化合物からなる群より選ばれる少なくとも一種である。酸化防止剤(D成分)は、ホスファイト系化合物およびヒンダードフェノール系化合物の二種からなることが、末端封鎖剤由来の悪臭や悪臭原因物質と思われる由来の金型汚染を低減させる観点で特に好ましい。
(ホスファイト系化合物)
ホスファイト系化合物として、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイト等が挙げられる。
さらに他のホスファイト系化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等が挙げられる。
好適なホスファイト系化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。
(ホスホナイト系化合物)
ホスホナイト化合物として、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられる。テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。
(ヒンダードフェノール系化合物)
ヒンダードフェノール化合物としては、通常樹脂に配合される各種の化合物が使用できる。かかるヒンダードフェノール化合物としては、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセテート、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセチルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、1,3,5−トリメチル−2,4,6−トリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)ベンゼン、およびトリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)イソシアヌレート等が例示される。
上記化合物の中でも、本発明においてはテトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、および3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましく利用される。特に3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましい。上記ヒンダードフェノール系化合物は、単独でまたは2種以上を組合せて使用することができる。
(チオエーテル系化合物)
チオエーテル系化合物の具体例として、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ドデシルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)等が挙げられる。
酸化防止剤(D成分)の含有量は、樹脂成分(A成分)100重量部に対し、0.001〜2重量部であり、好ましくは0.005〜1重量部、より好ましくは0.01〜0.5重量部である。かかる配合量が0.001重量部より少ない場合は酸化防止効果が不足するため滞留熱安定性が低下し、2重量部を超えると、かえって酸化防止効果が低下するばかりか、酸化防止剤由来の揮発分による金型汚染が目立ち、好ましくない。
また、前記リン系安定剤とヒンダードフェノール系安定剤を組み合わせて使用することが好ましい。リン系安定剤とヒンダードフェノール系安定剤を組み合わせて使用することで、安定剤としての相乗効果が発揮され、より成形時の色相悪化を抑制できる。
〈末端封鎖剤:E成分〉
本発明の組成物は末端封鎖剤(E成分)を含有する。末端封鎖剤(E成分)は、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物およびオキサジン化合物からなる群より選ばれる少なくとも一種であることが好ましい。
(カルボジイミド化合物)
カルボジイミド化合物としては以下の化合物が例示される。例えば、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジイソブイチルカルボジイミド、ジオクチルカルボジイミド、オクチルデシルカルボジイミド、ジ−t−ブチルカルボジイミド、ジベンジルカルボジイミド、ジフェニルカルボジイミド、N−オクタデシル−N’−フェニルカルボジイミド、N−ベンジル−N’−フェニルカルボジイミド、N−ベンジル−N’−トリルカルボジイミド、ジ−o−トルイルカルボジイミド、ジ−p−トルイルカルボジイミド、ビス(p−アミノフェニル)カルボジイミド、ビス(p−クロロフェニル)カルボジイミド、ビス(o−クロロフェニル)カルボジイミド、ビス(o−エチルフェニル)カルボジイミド、ビス(p−エチルフェニル)カルボジイミドビス(o−イソプロピルフェニル)カルボジイミド、ビス(p−イソプロピルフェニル)カルボジイミド、ビス(o−イソブチルフェニル)カルボジイミド、ビス(p−イソブチルフェニル)カルボジイミド、ビス(2,5−ジクロロフェニル)カルボジイミド、ビス(2,6−ジメチルフェニル)カルボジイミド、ビス(2,6−ジエチルフェニル)カルボジイミド、ビス(2−エチル−6−イソプロピルフェニル)カルボジイミド、ビス(2−ブチル−6−イソプロピルフェニル)カルボジイミド、ビス(2,6−ジイソプロピルフェニル)カルボジイミド、ビス(2,6−ジ−t−ブチルフェニル)カルボジイミド、ビス(2,4,6−トリメチルフェニル)カルボジイミド、ビス(2,4,6−トリイソプロピルフェニル)カルボジイミド、ビス(2,4,6−トリブチルフェニル)カルボジイミド、ジβナフチルカルボシイミド、N−トリル−N’−シクロヘキシルカルボシイミド、N−トリル−N’−フェニルカルボシイミド、p−フェニレンビス(o−トルイルカルボジイミド)、p−フェニレンビス(シクロヘキシルカルボジイミド、p−フェニレンンビス(p−クロロフェニルカルボジイミド)、2,6,2’,6’−テトライソプロピルジフェニルカルボジイミド、ヘキサメチレンビス(シクロヘキシルカルボジイミド)、エチレンビス(フェニルカルボジイミド)、エチレンビス(シクロヘキシルカルボジイミド)、などのモノまたはポリカルボジイミド化合物が例示される。
なかでも反応性、安定性の観点からビス(2,6−ジイソプロピルフェニル)カルボジイミド、2,6,2’,6’−テトライソプロピルジフェニルカルボジイミドが好ましい。
またこれらのうち工業的に入手可能なジシクロヘキシルカルボジイミド、ビス(2,6−ジイソプロピルフェニル)カルボジイミドが好適に使用できるである。さらに上記ポリカルボジイミド化合物として市販のポリカルボジイミド化合物は、合成する必要もなく好適に使用することができる。かかる市販のポリカルボジイミド化合物としては例えば日清紡(株)より市販されているカルボジライトの商品名で販売されているカルボジライトLA−1、あるいはHMV−8CAなどを例示することができる。本発明の組成物の色調、熱分解性、耐加水分解性などに与える影響より、カルボジイミド化合物が好ましい。
(エポキシ化合物)
エポキシ化合物としては、グリシジルエーテル化合物、グリシジルエステル化合物、グリジジルアミン化合物、グリシジルイミド化合物、グリシジルアミド化合物、脂環式エポキシ化合物を好ましく使用することができる。かかる剤を配合することで、機械的特性、成形性、耐熱性、耐久性に優れたポリ乳酸樹脂組成物および成形品を得ることができる。
グリシジルエーテル化合物の例としては例えば、ステアリルグリシジルエーテル、フェニルグリシジルエーテル、エチレンオキシドラウリルアルコールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングルコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、その他ビス(4−ヒドロキシフェニル)メタンなどのビスフェノール類とエピクロルヒドリンとの縮合反応で得られるビスフェノールAジグリシジルエーテル型エポキシ樹脂などを挙げることができる。なかでもビスフェノールAジグリシジルエーテル型エポキシ樹脂が好ましい。
グリシジルエステル化合物の例としては例えば安息香酸グリシジルエステル、ステアリン酸グリシジルエステル、パーサティック酸グリシジルエステル、テレフタル酸ジグリシジルエステル、フタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、コハク酸ジグリシジルエステル、ドデカンジオン酸ジグリシジルエステル、ピロメリット酸テトラグリシジルエステルなどが挙げられる。なかでも安息香酸グリシジルエステル、バーサティック酸グリシジルエステルが好ましい。
グリシジルアミン化合物の例としては例えば、テトラグリシジルアミンジフェニルメタン、トリグリシジル−p−アミノフェノール、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジルメタキシレンジアミン、トリグリシジルイソシアヌレート、などが挙げられる。
グリシジルイミド、グリシジルアミド化合物の例としては例えば、N−グリシジルフタルイミド、N−グリシジル−4,5−ジメチルフタルイミド、N−グリシジル−3,6−ジメチルフタルイミド、N−グリシジルサクシンイミド、N−グリシジル−1,2,3,4−テトラヒドロフタルイミド、N−グリシジルマレインイミド、N−グリシジルベンズアミド、N−グリシジルステアリルアミドなどが挙げられる。
なかでもN−グリシジルフタルイミドが好ましい。
脂環式エポキシ化合物の例としては、3,4−エポキシシクロヘキシル−3,4−シクロヘキシルカルボキシレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジエポキシド、N−メチル−4,5−エポキシシクロヘキサン−1,2−ジカルボン酸イミド、N−フェニル−4,5−エポキシシクロヘキサン−1,2−ジカルボン酸イミド、などが挙げられる。
その他のエポキシ化合物としてエポキシ化大豆油、エポキシ化アマニ油、エポキシ化鯨油などのエポキシ変性脂肪酸グリセリド、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、などを用いることができる。
(オキサゾリン化合物)
オキサゾリン化合物としては、2−メトキシ−2−オキサゾリン、2−ブトキシ−2−オキサゾリン、2−ステアリルオキシ−2−オキサゾリン、2−シクロヘキシルオキシ−2−オキサゾリン、2−アリルオキシ−2−オキサゾリン、2−ベンジルオキシ−2−オキサゾリン、2−p−フェニルフェノキシ−2−オキサゾリン、2−メチル−2−オキサゾリン、2−シクロヘキシル−2−オキサゾリン、2−メタアリル−2−オキサゾリン、2−クロチルー2−オキサゾリン、2−フェニル−2−オキサゾリン、2−o−エチルフェニル−2−オキサゾリン、2−o−プロピルフェニル−2−オキサゾリン、2−p−フェニルフェニル−2−オキサゾリン、2,2’−ビス(2−オキサゾリン)、2,2’−ビス(4−メチル−2−オキサゾリン)、2,2’−ビス(4−ブチル−2−オキサゾリン)、2,2’−m−フェニレンビス(2−オキサゾリン)、2,2’−p−フェニレンビス(4−メチル−2−オキサゾリン)、2,2’−p−フェニレンビス(4,4’−メチル−2−オキサゾリン)、2,2’−エチレンビス(2−オキサゾリン)、2,2’−テトラメチレンビス(2−オキサゾリン)、2,2’−ヘキサメチレンビス(2−オキサゾリン)、2,2’−エチレンビス(4−メチル−2−オキサゾリン)、2,2’−テトラメチレンビス(4,4’−ジメチル−2−オキサゾリン)、2,2’−シクロヘキシレンビス(2−オキサゾリン)、2,2’−ジフェニレンビス(4−メチル−2−オキサゾリン)などが挙げられる。さらに上記化合物をモノマー単位として含むポリオキサゾリン化合物なども挙げられる。
(オキサジン化合物)
オキサジン化合物としては、2−メトキシ−5,6−ジヒドロ−4H−1,3−オキサジン、2−ヘキシルオキシ−5,6−ジヒドロ−4H−1,3−オキサジン、2−デシルオキシ−5,6−ジヒドロ−4H−1,3−オキサジン、2−シクロヘキシルオキシ−5,6−ジヒドロ−4H−1,3−オキサジン、2−アリルオキシ−5,6−ジヒドロ−4H−1,3−オキサジン、2−クロチルオキシ−5,6−ジヒドロ−4H−1,3−オキサジンなどが挙げられる。
さらに2,2’−ビス(5,6−ジヒドロ−4H−1,3−オキサジン)、2,2’−メチレンビス(5,6−ジヒドロ−4H−1,3−オキサジン)、2,2’−エチレンビス(5,6−ジヒドロ−4H−1,3−オキサジン)、2,2’−ヘキサメチレンビス(5,6−ジヒドロ−4H−1,3−オキサジン)、2,2’−p−フェニレンビス(5,6−ジヒドロ−4H−1,3−オキサジン)、2,2’−P,P’−ジフェニレンビス(5,6−ジヒドロ−4H−1,3−オキサジン)などが挙げられる。さらに上記した化合物をモノマー単位として含むポリオキサジン化合物などが挙げられる。
上記オキサゾリン化合物やオキサジン化合物のなかでは2,2’−m−フェニレンビス(2−オキサゾリン)や2,2’−p−フェニレンビス(2−オキサゾリン)が好ましいものとして選択される。
末端封鎖剤(E成分)の含有量は、樹脂成分(A成分)100重量部に対して、好ましくは0.001〜10重量部、より好ましくは0.05〜5重量部、さらに好ましくは0.1〜3重量部である。含有量が0.001部未満ではカルボキシル末端に対する末端封鎖剤の添加量が少なすぎ、十分な耐加水分解性が得られず、10重量部を超えるとゲル化などを起し、流動性が著しく低下するばかりか、末端封鎖剤由来の悪臭や、悪臭原因物質由来と思われる金型汚染が激しくなり、好ましくない。
〈衝撃改質剤:F成分〉
本発明の組成物は衝撃改質剤(F成分)を含有してもよい。衝撃改質剤(F成分)としては、(i)その内部に少なくとも1種以上のゴム層を有し、その成分がアクリル系成分、シリコン系成分、スチレン系成分、ニトリル系成分、共役ジエン系成分、ウレタン系成分、エチレンプロピレン系成分から選ばれる1種以上であり、ゴム層以外の成分がビニル単量体である衝撃改質剤(F−α成分)および(ii)実質的にゴム成分を含まない衝撃改質剤(F−β成分)が挙げられる。これら2種は、単独でも使用してもよく、併用しても良く、各々の種類の中で単数以上の化合物を使用しても構わないことは言うまでもない。その使用は目的に応じて使い分けることが好ましい。
(F−α成分)
内部に少なくとも1種以上のゴム層を有し、その成分がアクリル系成分、シリコン系成分、スチレン系成分、ニトリル系成分、共役ジエン系成分、ウレタン系成分、エチレンプロピレン系成分から選ばれる1種以上であり、ゴム層以外の成分がビニル単量体である衝撃改質剤(F−α成分)としては、ゴム成分含有量40重量%未満のスチレン単位含有樹脂(F−α−1成分)、ゴム成分含有量40重量%以上のスチレン単位含有樹脂(F−α−2成分)からなる群より選ばれる少なくとも一種の樹脂が好ましい。
(F−α−1成分)
ゴム成分含有量が40重量%未満のスチレン単位含有樹脂(F−α−1成分)とは、スチレン系単量体と必要に応じてこれらと共重合可能な他のビニル単量体およびゴム成分よりなる群より選ばれる1種以上を重合して得られる樹脂である。
スチレン系単量体としては、スチレン、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p−tert−ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレン等のスチレン誘導体が挙げられる。特にスチレンが好ましい。さらにこれらは単独または2種以上用いることができる。
前記スチレン系単量体と共重合可能な他のビニル単量体としては、アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物、フェニルアクリレート、ベンジルアクリレート等のアクリル酸アリールエステル、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、2−エチルヘキシルアクリレート、オクチルアクリレート、シクロヘキシルアクリレート、ドデシルアクリレート等のアクリル酸アルキルエステル、フェニルメタクリレート、ベンジルメタクリレート等のメタクリル酸アリールエステル、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、2−エチルヘキシルメタクリレート、オクチルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート等のメタクリル酸アルキルエステル、グリシジルメタクリレート等のエポキシ基含有メタクリル酸エステル、マレイミド、N−メチルマレイミド、N−フェニルマレイミド等のマレイミド系単量体、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フタル酸、イタコン酸等のα,β−不飽和カルボン酸およびその無水物が挙げられる。
前記スチレン系単量体と共重合可能なゴム成分としては、ポリブタジエン、ポリイソプレン、スチレン・ブタジエンのランダム共重合体およびブロック共重合体、アクリロニトリル・ブタジエン共重合体、アクリル酸アルキルエステルまたは/およびメタクリル酸アルキルエステルとブタジエンの共重合体、ブタジエン・イソプレン共重合体等のジエン系共重合体、エチレン・プロピレンランダム共重合体およびブロック共重合体、エチレン・ブテンのランダム共重合体およびブロック共重合体等のエチレンとα−オレフィンとの共重合体、エチレン・メタクリレート共重合体、エチレン・ブチルアクリレート共重合体等のエチレンと不飽和カルボン酸エステルとの共重合体、エチレン・酢酸ビニル共重合体等のエチレンと脂肪族ビニルとの共重合体、エチレン・プロピレン・ヘキサジエン共重合体等のエチレンとプロピレンと非共役ジエンターポリマー、ポリアクリル酸ブチル等のアクリル系ゴム、およびポリオルガノシロキサンゴム成分とポリアルキル(メタ)アクリレートゴム成分とが分離できないように相互に絡み合った構造を有している複合ゴム(以下IPN型ゴム)等が挙げられる。
かかるスチレン単位成分含有樹脂(F−α−1成分)としては、例えばポリスチレン、スチレン・ブタジエン・スチレン共重合体(SBS樹脂)、水添スチレン・ブタジエン・スチレン共重合体(水添SBS樹脂)、水添スチレン・イソプレン・スチレン共重合体(水添SIS樹脂)、高衝撃ポリスチレン(HIPS樹脂)、アクリロニトリル・スチレン共重合体(AS樹脂)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂)、メチルメタクリレート・ブタジエン・スチレン共重合体(MBS樹脂)、メチルメタクリレート・アクリロニトリル・ブタジエン・スチレン共重合体(MABS樹脂)、アクリロニトリル・スチレン・アクリルゴム共重合体(ASA樹脂)、アクリロニトリル・エチレンプロピレン系ゴム・スチレン共重合体(AES樹脂)、スチレン・メチルメタクリレート共重合体(MS樹脂)、メチルメタクリレート・アクリロニトリル・スチレン共重合体(MAS樹脂)、スチレン・無水マレイン酸共重合体(SMA樹脂)およびスチレン・IPN型ゴム共重合体等の樹脂、またはこれらの混合物が挙げられる。なおかかるスチレン系熱可塑性樹脂はその製造時にメタロセン触媒等の触媒使用により、シンジオタクチックポリスチレン等の高い立体規則性を有するものであってもよい。さらに場合によっては、アニオンリビング重合、ラジカルリビング重合等の方法により得られる、分子量分布の狭い重合体および共重合体、ブロック共重合体、および立体規則性の高い重合体、共重合体を使用することも可能である。これらは1種または2種以上を混合して使用することも可能である。
これらの中でもポリスチレン(PS樹脂)、高衝撃ポリスチレン(HIPS樹脂)、アクリロニトリル・スチレン共重合体(AS樹脂)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂)、アクリロニトリル・スチレン・アクリルゴム共重合体(ASA樹脂)、アクリロニトリル・エチレンプロピレン系ゴム・スチレン共重合体(AES樹脂)メチルメタクリレート・ブタジエン・スチレン共重合体(MBS樹脂)からなる群より選択される1種または2種以上を混合して使用することが好ましく、中でもABS樹脂、ASA樹脂、AES樹脂が最も好ましい。
本発明で使用するABS樹脂とは、ジエン系ゴム成分にシアン化ビニル化合物と芳香族ビニル化合物をグラフト重合した熱可塑性グラフト共重合体(ABS共重合体)とシアン化ビニル化合物と芳香族ビニル化合物の共重合体(AS共重合体)の混合物である。なお、このシアン化ビニル化合物と芳香族ビニル化合物との共重合体はジエン系ゴム成分にシアン化ビニル化合物と芳香族ビニル化合物とをグラフト共重合した熱可塑性グラフト共重合体からなる樹脂の製造の際に副生される共重合体でもよく、芳香族ビニル化合物とシアン化ビニル化合物とを別途共重合して得られる共重合体でもよい。かかるシアン化ビニル化合物および芳香族ビニル化合物からなる共重合体の分子量は、好ましくは還元粘度で0.2〜1.0、より好ましくは0.25〜0.5であるものである。尚、かかるAS共重合体の割合は、アセトンなどのかかるAS共重合体の良溶媒にABS樹脂を溶解し、その可溶分を遠心分離するなどの手法により採取することが可能である。一方その不溶分(ゲル)が正味のABS共重合体となる。
またグラフトされたシアン化ビニル化合物および芳香族ビニル化合物のジエン系ゴム成分に対する重量割合(グラフト率)は20〜200重量%が好ましく、より好ましくは20〜70重量%のグラフト率のものである。
ABS樹脂を形成するジエン系ゴム成分としては、例えばポリブタジエン、ポリイソプレンおよびスチレン−ブタジエン共重合体等のガラス転移点が10℃以下のゴムが用いられ、その割合はABS樹脂成分100重量%中5〜39.9重量%であるのが好ましく、より好ましくは10〜35重量%、さらに好ましくは10〜25重量%である。
ジエン系ゴム成分にグラフトされるシアン化ビニル化合物としては、前記のものを挙げることができ、特にアクリロニトリルが好ましく使用できる。またジエン系ゴム成分にグラフトされる芳香族ビニル化合物としては、同様に前記のものを使用できるが、特にスチレンおよびα−メチルスチレンが好ましく使用できる。かかるジエン系ゴム成分にグラフトされる成分の割合は、ABS樹脂成分100重量%中60.1〜95重量%が好ましく、より好ましくは65〜90重量%、さらに好ましくは75〜90重量%である。さらにかかるシアン化ビニル化合物および芳香族ビニル化合物の合計量100重量%に対して、シアン化ビニル化合物が5〜50重量%およびより好ましくは10〜30重量%、並びに芳香族ビニル化合物が95〜50重量%およびより好ましくは90〜70重量%であることが好ましい。さらに上記のジエン系ゴム成分にグラフトされる成分の一部についてメチル(メタ)アクリレート、エチルアクリレート、無水マレイン酸、N置換マレイミド等を混合使用することもでき、これらの含有割合はABS樹脂成分中15重量%以下であるものが好ましい。さらに反応で使用する開始剤、連鎖移動剤、乳化剤等は必要に応じて、従来公知の各種のものが使用可能である。
ABS樹脂においては、ゴム粒子径は0.1〜5.0μmが好ましく、より好ましくは0.3〜3.0μm、さらに好ましくは0.4〜1.5μm、特に好ましくは0.4〜0.9μmである。かかるゴム粒子径の分布は単一の分布であるものおよび2山以上の複数の山を有するもののいずれもが使用可能であり、さらにそのモルフォロジーにおいてもゴム粒子が単一の相をなすものであっても、ゴム粒子の周りにオクルード相を含有することによりサラミ構造を有するものであってもよい。
このABS樹脂は塊状重合、懸濁重合、乳化重合のいずれの方法で製造されたものでもよく、また共重合の方法も一段で共重合しても、多段で共重合してもよい。さらに重合法としては一般的な乳化重合法の他、過硫酸カリウム等の開始剤を使用するソープフリー重合法、シード重合法、二段階膨潤重合法等を挙げることができる。また懸濁重合法において、水相とモノマー相とを個別に保持して両者を正確に連続式の分散機に供給し、粒子径を分散機の回転数で制御する方法や、連続式の製造方法において分散能を有する水性液体中にモノマー相を数〜数十μm径の細径オリフィスまたは多孔質フィルターを通すことにより供給し粒径を制御する方法などを行ってもよい。
本発明で使用するASA樹脂とは、アクリルゴム成分にシアン化ビニル化合物と芳香族ビニル化合物をグラフト重合した熱可塑性グラフト共重合体、または該熱可塑性グラフト共重合体と、シアン化ビニル化合物と芳香族ビニル化合物の共重合体との混合物をいう。本発明でいうアクリルゴムとは、炭素数が2〜10のアルキルアクリレート単位を含有するものであり、さらに必要に応じてその他の共重合可能な成分として、スチレン、メチルメタクリレート、ブタジエンを含有してもよい。炭素数が2〜10のアルキルアクリレートとして好ましくは2−エチルヘキシルアクリレート、n−ブチルアクリレートが挙げられ、かかるアルキルアクリレートはアクリレートゴム100重量%中50重量%以上含まれるものが好ましい。さらにかかるアクリレートゴムは少なくとも部分的に架橋されており、かかる架橋剤としては、エチレングリコールジアクリレート、ブチレングリコールジアクリレート、エチレングリコールジメタクリレート、アリルメタクリレート、ポリプロピレングリコールジアクリレート等を挙げることができ、かかる架橋剤はアクリレートゴムに対して0.01〜3重量%使用されることが好ましい。アクリルゴム成分の割合は、ASA樹脂100重量%中、5〜39.9重量%が好ましく、より好ましくは10〜35重量%、さらに好ましくは10〜25重量%である。
またシアン化ビニル化合物および芳香族ビニル化合物の割合はかかる合計量100重量%に対して、シアン化ビニル化合物が5〜50重量%、芳香族ビニル化合物が95〜50重量%であり、特にシアン化ビニル化合物が15〜35重量%、芳香族ビニル化合物が85〜65重量%のものが好ましい。製造法としては上記ABS樹脂と同様のものを使用することが可能である。
本発明で使用するAES樹脂とは、エチレン−プロピレンゴム成分またはエチレン−プロピレン−ジエンゴム成分にシアン化ビニル化合物と芳香族ビニル化合物をグラフト重合した熱可塑性グラフト共重合体、又は該熱可塑性グラフト共重合体と、シアン化ビニル化合物と芳香族ビニル化合物の共重合体との混合物である。製造法としては上記ABS樹脂と同様のものを使用することが可能である。
(F−α−2成分)
ゴム成分含有量40重量%以上のスチレン単位含有樹脂としては、ガラス転移温度が10℃以下のゴム成分に、芳香族ビニル、シアン化ビニル、アクリル酸エステル、メタクリル酸エステル、およびこれらと共重合可能なビニル単量体の1種または2種以上が共重合されたグラフト共重合体を挙げることができる。
またかかるゴム成分と上記モノマーのブロック共重合体も挙げられる。かかるブロック共重合体としては具体的にはスチレン・エチレンプロピレン・スチレンエラストマー(水添スチレン・イソプレン・スチレンエラストマー)、および水添スチレン・ブタジエン・スチレンエラストマーなどの熱可塑性エラストマーを挙げることができる。
さらに他の熱可塑性エラストマーして知られている各種の弾性重合体、例えばポリウレタンエラストマー、ポリエステルエラストマー、ポリエーテルアミドエラストマー等を使用することも可能である。
なお、かかるゴム成分含有量40重量%以上のスチレン単位成分含有樹脂は、ゴム成分を40%以上含有するものであり、この点で本発明の40重量%未満のスチレン単位成分含有樹脂とは明確に区別されるものである。
ここでいうガラス転移温度が10℃以下のゴム成分としては、ブタジエンゴム、ブタジエン−アクリル複合ゴム、アクリルゴム、アクリル−シリコン複合ゴム、イソブチレン−シリコン複合ゴム、イソプレンゴム、スチレン−ブタジエンゴム、クロロプレンゴム、エチレン−プロピレンゴム、ニトリルゴム、エチレン−アクリルゴム、シリコンゴム、エピクロロヒドリンゴム、フッ素ゴムおよびこれらの不飽和結合部分に水素が添加されたものを挙げることができる。
中でもガラス転移温度が−10℃以下、より好ましくは−30℃以下のゴム成分を含有する衝撃改質材が好ましく、特にブタジエンゴム、ブタジエン−アクリル複合ゴム、アクリルゴム、アクリル−シリコン複合ゴムを使用した衝撃改質材が好ましい。複合ゴムとは、2種のゴム成分を共重合したゴムまたは分離できないよう相互に絡み合ったIPN構造をとるように重合したゴムをいう。
芳香族ビニルとしては、スチレン、α−メチルスチレン、p−メチルスチレン、アルコキシスチレン、ハロゲン化スチレン等を挙げることができ、特にスチレンが好ましい。またアクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸オクチル等を挙げることができ、メタアクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸オクチル等を挙げることができ、メタクリル酸メチルが特に好ましい。
ガラス転移温度が10℃以下のゴム成分を含有する衝撃改質材は、塊状重合、溶液重合、懸濁重合、乳化重合のいずれの重合法で製造したものであってもよく、共重合の方式は一段グラフトであっても多段グラフトであっても差し支えない。また製造の際に副生するグラフト成分のみのコポリマーとの混合物であってもよい。さらに重合法としては一般的な乳化重合法の他、過硫酸カリウム等の開始剤を使用するソープフリー重合法、シード重合法、二段階膨潤重合法等を挙げることができる。また懸濁重合法において、水相とモノマー相とを個別に保持して両者を正確に連続式の分散機に供給し、粒子径を分散機の回転数で制御する方法、および連続式の製造方法において分散能を有する水性液体中にモノマー相を数〜数十μm径の細径オリフィスまたは多孔質フィルターを通すことにより供給し粒径を制御する方法などを行ってもよい。
かかる衝撃改質材は市販されており容易に入手することが可能である。例えばガラス転移温度が10℃以下のゴム成分として、ブタジエンゴム、アクリルゴムまたはブタジエン−アクリル複合ゴムを主体とするものとしては、鐘淵化学工業(株)のカネエースBシリーズ、三菱レイヨン(株)のメタブレンCシリーズ、呉羽化学工業(株)のEXLシリーズ、HIAシリーズ、BTAシリーズ、KCAシリーズ、宇部サイコン(株)のUCLモディファイヤーレジンシリーズが挙げられ、ガラス転移温度が10℃以下のゴム成分としてアクリル−シリコン複合ゴムを主体とするものとしては三菱レイヨン(株)よりメタブレンS−2001あるいはSRK−200という商品名で市販されているものが挙げられる。
かかるゴム成分含有量40重量%未満のスチレン単位成分含有樹脂と、スチレン単位成分含有樹脂とゴム成分含有量40重量%以上のスチレン単位成分含有樹脂との併用は、耐衝撃性を更に高め、その好ましい態様として、ゴム成分含有量40重量%未満のスチレン単位成分含有樹脂100重量に対し、ゴム成分含有量40重量%以上のスチレン単位成分含有樹脂を0.5〜50重量部含有する態様が挙げられる。
(F−β成分)
本発明の実質的にゴム成分を含まない衝撃改質剤(F−β成分)として、共重合ポリエステル、共重合ポリエチレンからなる群より選ばれる少なくとも一種の樹脂が好ましい。
共重合ポリエステルとしては、ポリ乳酸成分を含む共重合ポリエステル、ポリブチレンアジペートテレフタレート成分を含む星型構造を有する共重合ポリエステルなどが例示される。具体的には例えば大日本インキ化学工業(株)よりプラメートの商品名で販売されているプラメート PD−150、PD−350などが例示される。またBASFジャパン(株)よりエコフレックス(Ecoflex)の商品名で販売されているEcoflex SBX7025が例示される。
共重合ポリエチレンとしては例えば住友化学(株)よりボンドファストの商品名で市販されているエチレン、グリシジルメタクリレートよりなるボンドファストE、さらにアクリル酸メチルユニットを含む同7M、DuPont社製Biomax Strong100などが例示される。
ポリエステルエラストマーは、ポリブチレンテレフタレート骨格を主たる骨格とし、ポリアルキレングリコールが共重合されたエラストマーであり、例えば帝人(株)製TR−EL−1などが例示される。
ポリアミドエラストマーは、ポリアミドオリゴマーをハードセグメントとし、ポリエステルまたはポリエーテルエステルをソフトセグメントとするエラストマーであり、例えば富士化成工業(株)社製TPAE31、TPAE32、TPAE38などが例示される。
衝撃改質剤(F成分)の含有量は、樹脂成分(A成分)100重量部に対して、2〜100重量部、より好ましくは3〜90重量部、さらに好ましくは5〜80重量部である。含有量が2重量部未満では衝撃改質剤の添加量が少なすぎ、十分な耐加水分解性が得られず、100重量部を超えると耐熱性が悪化して離型性が低下し、寸法安定性が悪化するため、好ましくない。
〈難燃剤:G成分〉
本発明の組成物は難燃剤(G成分)を含有してもよい。難燃剤(G成分)としては、リン系難燃剤(G−1成分)、窒素系難燃剤(G−2成分)、水酸化金属化合物系難燃剤(G−3成分)が挙げられる。これら3種の使用は単独でも2種以上でも良く、各々の種類の中で単数以上の化合物を使用しても構わない。その使用は目的に応じて使い分けることが好ましい。
(リン系難燃剤:G−1成分)
リン系難燃剤(G−1成分)としては、(1)リン酸エステル系難燃剤、(2)ホスホニトリル系難燃剤、(3)ホスホネート系難燃剤、(4)ポリリン酸塩系難燃剤、(5)ホスフィン酸塩系が挙げられる。
(1)リン酸エステル系難燃剤
リン酸エステル系難燃剤の具体例としては、特に下記式(5)で表される1種または2種以上のリン酸エステル化合物を挙げることができる。
Figure 2010150392
式中Xは、ハイドロキノン、レゾルシノール、ビス(4−ヒドロキシジフェニル)メタン、ビスフェノールA、ジヒドロキシジフェニル、ジヒドロキシナフタレン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)サルファイドから誘導される基である。nは0〜5の整数であり、またはn数の異なるリン酸エステルの混合物の場合は0〜5の平均値である。R11、R12、R13、およびR14はそれぞれ独立して1個以上のハロゲン原子を置換したもしくは置換していないフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール、p−クミルフェノールから誘導される基である。
さらに好ましいものとしては、式中のXが、ハイドロキノン、レゾルシノール、ビスフェノールA、およびジヒドロキシジフェニルから誘導される基であり、nは1〜3の整数であり、またはn数の異なるリン酸エステルのブレンドの場合はその平均値であり、R11、R12、R13、およびR14はそれぞれ独立して1個以上のハロゲン原子を置換したもしくはより好適には置換していないフェノール、クレゾール、キシレノールから誘導される基であるものが挙げられる。
かかる有機リン酸エステル系難燃剤の中でも、ホスフェート化合物としてはトリフェニルホスフェート、ホスフェートオリゴマーとしてはレゾルシノールビス(ジキシレニルホスフェート)およびビスフェノールAビス(ジフェニルホスフェート)が耐加水分解性などにも優れるため好ましく使用できる。さらに好ましいのは、耐熱性などの点からレゾルシノールビス(ジキシレニルホスフェート)およびビスフェノールAビス(ジフェニルホスフェート)である。これらは耐熱性も良好であるためそれらが熱劣化したり揮発するなどの弊害がないためである。
(2)ホスホニトリル系難燃剤
本発明で用いられるホスホニトリル系難燃剤は、ホスホニトリル線状ポリマーおよび/または環状ポリマーであり、下記式 (6)で表される繰り返し単位を有するオリゴマーないしポリマーであり、その数平均重合度が3以上のものである。直鎖状、環状のいずれであってもかまわないが、特に環状3量体が好ましく用いられる。また、直鎖状物、環状物を任意の割合で混合した混合物であってもかまわない。
Figure 2010150392
式中A、Bは各々独立に、O、N、S原子を表わす。R、Rは各々独立に、炭素数6〜15のアリール基、炭素数6〜15のアルキル基、炭素数6〜15のアラルキル基、または炭素数6〜15のシクロアルキル基である。RとRが連結した環状構造でも良い。x、yは、0または1である。nは数平均重合度を意味し、3または3より大きい数値を表わす。
かかるホスホニトリル線状ポリマーおよび/または環状ポリマーは、ヘキサクロロシクロトリホスファゼン、オクタクロロシクロテトラホスファゼン、あるいはこれら環状オリゴマーを開環重合して得られるポリ(ジクロロホスファゼン)とアルコール、フェノール、アミン、チオール、グリニャール試薬等の求核試薬とを公知の方法で反応させることにより合成することができる。
(3)ホスホネート系難燃剤
ホスホネート系難燃剤は、下記一般式(7)で表されるものが好ましい。
Figure 2010150392
式中RおよびRは各々独立に、炭素数1〜24の分岐もしくは分岐していないアルキレン基、炭素数6〜20の置換もしくは非置換のアリーレン基、炭素数6〜30の置換もしくは非置換のアラルキレン(aralkylene)基、または炭素数6〜30の置換もしくは非置換のアルカリーレン(alkarylene)基である。
は、水素原子、炭素数1〜24の分岐若しくは分岐していないアルキル基、炭素数6〜20の置換もしくは非置換のアリール基、炭素数6〜30の置換もしくは非置換のアラルキル基、または炭素数6〜30の置換もしくは非置換のアルカリール(alkaryl)基である。xおよびyはそれぞれ独立して1〜50の数である。
(4)ポリリン酸塩系難燃剤
本発明で用いられるポリリン酸塩系難燃剤として、ポリリン酸アンモニウム、ポリリン酸メラミン等が挙げられる。
(5)ホスフィン酸塩系難燃剤
本発明で用いられるホスフィン酸塩系難燃剤として、下記式(8)または下記式(9)で表される塩が挙げられる。
Figure 2010150392
Figure 2010150392
式中R11、R12は各々独立に、炭素数1〜20の直鎖もしくは分岐のアルキル基、炭素数6〜20のシクロアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基である。R13は、炭素数1〜20の直鎖または分岐のアルキレン基、炭素数6〜20のシクロアルキレン基、炭素数6〜20のアリーレン基、炭素数7〜20のアルキレンアリーレン基またはシクロアルキレンアリーレン基である。Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Zn、Fe、Zn、Ce、Bi、Sr、Mn、Li、Na、Kまたはプロトン化した窒素塩基である。xは1または2である。mは2または3であり、nは1または3である。
12、R13はB成分中のリン含有量を適正に保持し、難燃性を好適に発現すると同時に、組成物の結晶性を好適に発現するため、炭素数の平均値が1〜10の範囲にある直鎖または分岐のアルキル基、シクロアルキル基、アリール基またはアラルキル基が好適に選択される。なかでもアルキル基、アリール基が好適に選択される。具体的には、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基、n−ペンチル基あるいはフェニル基が好適に例示される。
13はB成分中のリン含有量を適正に保持し、難燃性を好適に発現すると同時に、組成物の結晶性を好適に発現するため、炭素数が1〜10の範囲にある直鎖または分岐のアルキレン基、シクロアルキレン基、アリーレン基、アルキレンアリーレン基またはシクロアルキレンアリーレン基が好適に選択される。
具体的には例えばメチレン基、エチレン基、メチルエタン−1,3−ジイル基、プロパン−1,3−ジイル基、2,2−ジメチルプロパン−1,3−ジイル基、ブタン−1,4−ジイル基、オクタン−1,8−ジイル基、フェニレン基、ナフチレン基、エチルフェニレン基、tert−ブチルフェニレン基、メチルナフチレン基、エチルナフチレン基、フェニレンメチレン基、フェニレンエチレン基、フェニレンプロピレン基、フェニレンブチレン基等が例示される。
Mは、Mg、Ca、Al、Zn、Fe、Zr、Ce、Bi、Sr、Mn、Li、Na、Kまたはプロトン化した窒素塩基を表す。Mが複数ある場合には、各々独立にこれらから選ばれる。プロトン化した窒素塩基としては、アミド基、アンモニウム基、アルキルアンモニウム基あるいはメラミン由来の基が挙げられる。本発明の組成物の難燃性、結晶性、成形性等を向上させるため、MはMg、Ca、Al、Znおよびアミド基、アンモニウム基、アルキルアンモニウム基あるいはメラミン由来の基の群より選択される。中でもAlがもっとも好適に選択される。
式(8)および(9)で表されるホスフィン酸塩を併用する場合、(8)/(9)の重量比は10/90〜30/70の範囲が好適に選択される。
(窒素系難燃剤:G−2成分)
本発明で用いられる窒素系難燃剤(G−2成分)は、トリアジン骨格を含む窒素系難燃剤であり、リン系難燃剤の難燃性を相乗的に増大させる剤であり、下記式(10)および(11)からなる群より選ばれる少なくとも一種が適用される。
Figure 2010150392
Figure 2010150392
式中、R14〜R16は各々独立に、水素原子、炭素数1〜8のアルキル基、炭素数5〜16のシクロアルキル基、(これらは置換されていないか、水酸基または炭素数1〜4のヒドロキシアルキル基によって置換されている。)、炭素数2〜8のアルケニル基、炭素数1〜8のアルコキシ基、アシル基、アシルオキシ基、炭素数6〜12のアリール基、−O−RA、−N(RA)(RB)またはN−脂環式もしくはN−芳香族の−N(RA)RBで表される基である。ここにおいて、RAおよびRBは、水素原子、炭素数1〜8のアルキル基、炭素数5〜16の−シクロアルキル基(これらは置換されていないか、ヒドロキシル基または炭素数1〜4のヒドロキシアルキル官能基によって置換されている。)、炭素数2〜8のアルケニル基、炭素数1〜8のアルコキシ基、アシル基、アシルオキシ基または炭素数6〜12のアリール基である。
但し、R14〜R16の全てが同時に水素原子であることはなくかつ式(10)においてR14〜R16の全てが同時に−NHであることはない。Xは、メラミンまたはトリアジン化合物(10)と付加物を形成することができる酸であり、s、tは各々独立に1または2である。
式(10)において、R14〜R16の少なくとも一つが炭素数6〜12のアリール基であるとき、リン系難燃剤中でもホスフィン酸塩と配合したとき、より有効に難燃性を高めることができるとともに、本発明組成物の難燃性、結晶性および成形性をより好適に向上させることができる。
また式(11)において、R14〜R16が全て−N(RA)(RB)であるとき、より有効に難燃性を高めることができるとともに、本発明の組成物の難燃性、結晶性および成形性をより好適に向上させることができる。
かかる(10)、(11)としては、例えばジメラミンピロホスフェート、メラミンポリホスフェート、メレムポリホスフェート、メラムポリホスフェート、メロンポリホスフェートなどが好適に例示される。
本発明においては、トリアジン骨格を有する窒素系難燃剤に付加的に下記式(12)〜(15)で表される化合物の少なくとも一種を併用することにより本発明の組成物の難燃性を向上させることができる。
Figure 2010150392
Figure 2010150392
Figure 2010150392
Figure 2010150392
式中、R〜R10、R17〜R20は各々独立にR14〜R16で記載した官能基が好適に例示される。例えばトリス(ヒドロキシエチル)イソシアヌレート、アランイン、グリコールウリル、尿素.シアヌレートなどが好適に例示される。かかる剤はトリアジン骨格を含む窒素系難燃剤を基準にして10〜50重量%の範囲で適用される。
(水酸化金属化合物系難燃剤:G−3成分)
本発明の水酸化金属化合物系難燃剤(G−3成分)は、水酸化アルミニウム、水酸化マグネシウムおよび水酸化カルシウムであり、組成物の熱安定性が向上のため、純度が高いものが好ましく、特に純度が99.5%以上であるものが好ましい。水酸化金属化合物系難燃剤の純度は公知の方法で測定することができる。例えば、水酸化金属化合物系難燃剤に含まれている不純物の含有量を公知の方法で測定し、全体量から前記不純物の含有量を減じれば、水酸化金属化合物系難燃剤の純度を得ることができる。より具体的には、より具体的には、例えば水酸化アルミニウムの場合、不純物としてはFe、SiO、T−NaO、S−NaO等が挙げられる。Feの含有量は炭酸ナトリウム−ホウ酸液に融解後、O−フェナントロリン吸光光度法(JIS H 1901)により求められる。SiOの含有量は炭酸ナトリウム−ホウ酸液に融解後、モリブテン青吸光光度法(JIS H 1901)により求められる。T−NaOの含有量は硫酸に融解後、フレーム光度測定法で、S−Na2Oは温水抽出後、フレーム光度測定法で求められる。上記により求められた含有量を水酸化アルミニウムの重量より減じることにより水酸化物の純度を得ることができる。もちろん異なる複数種の水酸化金属化合物系難燃剤を組み合わせて用いることができることは言うまでもない。
本発明で用いる水酸化金属化合物系難燃剤の形状は特に限定されないが、粒状であることが好ましい。その粒子径は、レーザー回折法により求められる平均粒子径が約100μm以下であることが好ましい。なお、この場合において粒度分布は問わない。成形プロセスにおける射出成形性や混練時の分散性の観点から、平均粒子径は上記範囲が好ましく、上記範囲の中でもより小さい方がより好ましい。なお、もちろん組成物への充填率を高めるために平均粒子径の異なる複数種の水酸化金属化合物系難燃剤を組み合わせて用いることができる。
さらに、窒素ガス吸着法により求められるBET比表面積が約5.0m/g以下の粒子を用いることが好ましい。もちろん組成物への充填率を高めるためにBET比表面積の異なる複数種の水酸化金属化合物系難燃剤を組み合わせて用いることができる。成形性の観点から、BET比表面積は上記範囲が好ましく、上記範囲の中でもより小さい方がより好ましい。
リン系難燃剤(G−1成分)、窒素系難燃剤(G−2成分)、水酸化金属化合物系難燃剤(G−3成分)から選ばれる1種以上の難燃剤(G成分)の含有量は、樹脂成分(A成分)100重量部に対して、1〜100重量部、より好ましくは3〜90重量部、さらに好ましくは5〜80重量部である。含有量が1重量部未満では難燃剤の添加量が少なすぎ、難燃性が得られず、100重量部を超えると耐熱性が悪化して離型性が低下し、寸法安定性が悪化するため、好ましくない。
〈無機充填剤:H成分〉
本発明の組成物は、無機充填剤(H成分)を含有してもよい。無機充填剤合により、機械特性、耐熱性、成形性の優れた組成物を得ることができる。本発明で使用する無機充填剤としては、通常の熱可塑性樹脂の強化に用いられる繊維状、板状、粉末状のものを用いることができる。
具体的には例えば、カーボンナノチューブ、ガラス繊維、アスベスト繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラストナイト、イモゴライト、セピオライト、アスベスト、スラグ繊維、ゾノライト、石膏繊維、シリカ繊維、シリカ.アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化珪素繊維およびホウ素繊維等の繊維状無機充填剤、層状珪酸塩、有機オニウムイオンで交換された層状珪酸塩、ガラスフレーク、非膨潤性雲母、グラファイト、金属箔、セラミックビーズ、タルク、クレイ、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、粉末珪酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシクム、酸化アルミニウム、酸化チタン、珪酸アルミニウム、酸化ケイ素、石膏、ノバキュライト、ドーソナイトおよび白土フラーレンなどのカーボンナノ粒子等の板状や粒子状の無機充填剤が挙げられる。
層状珪酸塩の具体例としては、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト等のスメクタイト系粘土鉱物、バーミキュライト、ハロサイト、カネマイト、ケニヤイト等の各種粘土鉱物、Li型フッ素テニオライト、Na型フッ素テニオライト、LI型四珪素フッ素雲母、Na型四珪素フッ素雲母等の膨潤性雲母等が挙げられる。これらは天然のものであっても合成のものであって良い。これらのなかでモンモリロナイト、ヘクトライト等のスメクタイト系粘土鉱物やLi型フッ素テニオライト、Na型四珪素フッ素雲母等の膨潤性合成雲母が好ましい。
これらの無機充填剤のなかでは繊維状もしくは板状の無機充填剤が好ましく、特にガラス繊維、ワラステナイト、ホウ酸アルミニウムウイスカー、チタン酸カリウムウイスカー、マイカ、およびカオリン、陽イオン交換された層状珪酸塩が好ましい。また繊維状充填剤のアスペクト比は5以上であることが好ましく、10以上でありことがさらに好ましく、20以上であることがさらに好ましい。
かかる充填剤はエチレン/酢酸ビニル共重合体等の熱可塑性樹脂やエポキシ樹脂等の熱硬化性樹脂で被覆または収束処理されていてもよく、またアミノシランやエポキシシラン等のカップリング剤で処理されていても良い。
無機充填剤(H成分)の含有量は、樹脂成分(A成分)100重量部に対し、好ましくは0.05〜100重量部、より好ましくは0.5〜100重量部、さらに好ましくは1〜50重量部、特に好ましくは1〜30重量部、最も好ましくは1〜20重量部である。かかる配合量が0.05重量部より小さい場合には、補強効果が十分でなく、また100重量部を超えると、成形品外観の悪化や押出性時のストランド切れなどを起こすため好ましくない。
〈光安定剤〉
本発明の組成物は光安定剤を含有していてもよい。光安定剤としては、具体的には例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、芳香族ベンゾエート系化合物、蓚酸アニリド系化合物、シアノアクリレート系化合物およびヒンダードアミン系化合物等を挙げることができる。
ベンゾフェノン系化合物としては、ベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ドデシロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、5−クロロ−2−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−(2−ヒドロキシ−3−メチル−アクリロキシイソプロポキシ)ベンゾフェノン等が挙げられる。
ベンゾトリアゾール系化合物としては、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3’,5’−ジ−t−ブチル−4’−メチル−2’−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(5−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル]ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(4’−オクトキシ−2’−ヒドロキシフェニル)ベンゾトリアゾール等が挙げられる。
芳香族ベンゾエート系化合物としては、p−t−ブチルフェニルサリシレート、p−オクチルフェニルサリシレート等のアルキルフェニルサリシレート類が挙げられる。
蓚酸アニリド系化合物としては、2−エトキシ−2’−エチルオキザリックアシッドビスアニリド、2−エトキシ−5−t−ブチル−2’−エチルオキザリックアシッドビスアニリド、2−エトキシ−3’−ドデシルオキザリックアシッドビスアニリド等が挙げられる。
シアノアクリレート系化合物としては、エチル−2−シアノ−3,3’−ジフェニルアクリレート、2−エチルヘキシル−シアノ−3,3’−ジフェニルアクリレート等が挙げられる。
ヒンダードアミン系化合物としては、4−アセトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(フェニルアセトキシ)−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メトキシ−2,2,6,6−テトラメチルピペリジン、4−オクタデシルオキシ−2,2,6,6−テトラメチルピペリジン、4−シクロヘキシルオキシ−2,2,6,6−テトラメチルピペリジン、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジン、4−フェノキシ−2,2,6,6−テトラメチルピペリジン、4−(エチルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(シクロヘキシルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(フェニルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)カーボネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)オギザレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)マロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(2,2,6,6−テトラメチルピ−4−ペリジル)アジペート、ビス(2,2,6,6−テトラメチルピ−4−ペリジル)テレフタレート、1,2−ビス(2,2,6,6−テトラメチルピ−4−ペリジルオキシ)−エタン、α,α’−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−p−キシレン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−トリレン−2,4−ジカルバメート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−ヘキサメチレン−1,6−ジカルバメート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,5−トリカルボキシレート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,4−トリカルボキシレート、1−「2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}−2,2,6,6−テトラメチルピペリジン、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールとβ,β,β’,β’−テトラメチル−3,9−[2,4,8,10−テトラオキサスピロ(5,5)ウンデカンン]ジメタノルとの縮合物等を挙げることができる。
安定剤の含有量は、樹脂成分(A成分)100重量部当たり、好ましくは0.01〜3重量部、より好ましくは0.03〜2重量部である。
〈結晶化促進剤〉
本発明の組成物は結晶化促進剤を含有していてもよい。結晶化促進剤を含有することで、リン酸エステル金属塩(C成分)の作用を一層増強することができ、機械的特性、耐熱性、および成形性に優れた成形品を得ることができる。
即ち結晶化促進剤の適用により、樹脂成分(A成分)の成形性、結晶性が向上し、通常の射出成形においても十分に結晶化し耐熱性、耐湿熱安定性に優れた成形品を得ることができる。加えて、成形品を製造する製造時間を大幅に短縮でき、その経済的効果は大きい。
結晶化促進剤として、無機系の結晶化核剤および有機系の結晶化核剤のいずれをも使用することができる。
無機系の結晶化核剤として、タルク、カオリン、シリカ、合成マイカ、クレイ、ゼオライト、グラファイト、カーボンブラック、酸化亜鉛、酸化マグネシウム、酸化チタン、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、硫化カルシウム、窒化ホウ素、モンモリロナイト、酸化ネオジム、酸化アルミニウム、フェニルフォスフォネート金属塩等が挙げられる。これらの無機系の結晶化核剤は組成物中での分散性およびその効果を高めるために、各種分散助剤で処理され、一次粒子径が0.01〜0.5μm程度の高度に分散状態にあるものが好ましい。
有機系の結晶化核剤としては、安息香酸カルシウム、安息香酸ナトリウム、安息香酸リチウム、安息香酸カリウム、安息香酸マグネシウム、安息香酸バリウム、蓚酸カルシウム、テレフタル酸ジナトリウム、テレフタル酸ジリチウム、テレフタル酸ジカリウム、ラウリン酸ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、ミリスチン酸バリウム、オクタコ酸ナトリウム、オクタコ酸カルシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン酸カルシウム、トルイル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチル酸亜鉛、アルミニウムジベンゾエート、β−ナフトエ酸ナトリウム、β−ナフトエ酸カリウム、シクロヘキサンカルボン酸ナトリウム等の有機カルボン酸金属塩、p−トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウム等の有機スルホン酸金属塩が挙げられる。
また、ステアリン酸アミド、エチレンビスラウリン酸アミド、パルミチン酸アミド、ヒドロキシステアリン酸アミド、エルカ酸アミド、トリメシン酸トリス(t−ブチルアミド)等の有機カルボン酸アミド、低密度ポリエチレン、高密度ポリエチレン、ポリイソプロピレン、ポリブテン、ポリ−4−メチルペンテン、ポリ−3−メチルブテン−1、ポリビニルシクロアルカン、ポリビニルトリアルキルシラン、高融点ポリ乳酸、エチレン−アクリル酸コポマーのナトリウム塩、スチレン−無水マレイン酸コポリマーのナトリウム塩(いわゆるアイオノマー)、ベンジリデンソルビトールおよびその誘導体、例えばジベンジリデンソルビトール等が挙げられる。
これらのなかでタルク、および有機カルボン酸金属塩から選択された少なくとも1種が好ましく使用される。本発明で使用する結晶化核剤は1種のみでもよく、2種以上を併用しても良い。
結晶化促進剤の含有量は、樹脂成分(A成分)100重量部当たり、好ましくは0.01〜30重量部、より好ましくは0.05〜20重量部である。
〈有機充填剤〉
本発明の組成物は、有機充填剤を含有することができる。有機充填剤を含有することで、機械的特性、耐熱性および成形性に優れた組成物を得ることができる。
有機充填剤として、籾殻、木材チップ、おから、古紙粉砕材、衣料粉砕材等のチップ状のもの、綿繊維、麻繊維、竹繊維、木材繊維、ケナフ繊維、ジュート繊維、バナナ繊維、ココナツ繊維等の植物繊維もしくはこれらの植物繊維から加工されたパルプやセルロース繊維および絹、羊毛、アンゴラ、カシミヤ、ラクダ等の動物繊維等の繊維状のもの、ポリエステル繊維、ナイロン繊維、アクリル繊維等の合成繊維、紙粉、木粉、セルロース粉末、籾殻粉末、果実殻粉末、キチン粉末、キトサン粉末、タンパク質、澱粉等の粉末状のものが挙げられる。成形性の観点から紙粉、木粉、竹粉、セルロース粉末、ケナフ粉末、籾殻粉末、果実殻粉末、キチン粉末、キトサン粉末、タンパク質粉末、澱粉等の粉末状のものが好ましく、紙粉、木粉、竹粉、セルロース粉末、ケナフ粉末が好ましい。紙粉、木粉がより好ましい。特に紙粉が好ましい。
これら有機充填剤は天然物から直接採取したものを使用してもよいが、古紙、廃材木および古衣等の廃材をリサイクルしたものを使用してもよい。また木材として、松、杉、檜、もみ等の針葉樹材、ブナ、シイ、ユーカリ等の広葉樹材等が好ましい。
紙粉は成形性の観点から接着剤、取り分け紙を加工する際に通常使用される酢酸ビニル樹脂系エマルジョンやアクリル樹脂系エマルジョン等のエマルジョン系接着剤、ポリビニルアルコール系接着剤、ポリアミド系接着剤等のホットメルト接着剤等を含むものが好ましく例示される。
本発明において有機充填剤の含有量は、成形性および耐熱性の観点から、樹脂成分(A成分)100重量部当たり、好ましくは1〜300重量部、より好ましくは5〜200重量部、さらに好ましくは10〜150重量部、特に好ましくは15〜100重量部である。
〈離型剤〉
本発明の組成物は離型剤を含有していてもよい。離型剤として具体的には、脂肪酸、脂肪酸金属塩、オキシ脂肪酸、パラフィン、低分子量のポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸部分鹸化エステル、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変性シリコーン等を挙げることができる。これらを配合することで機械特性、成形性、耐熱性に優れたポリ乳酸成形品を得ることができる。
脂肪酸としては炭素数6〜40のものが好ましく、具体的には、オレイン酸、ステアリン酸、ラウリン酸、ヒドロキシステアリン酸、ベヘン酸、アラキドン酸、リノール酸、リノレン酸、リシノール酸、パルミチン酸、モンタン酸およびこれらの混合物等が挙げられる。脂肪酸金属塩としては炭素数6〜40の脂肪酸のアルカリ(土類)金属塩が好ましく、具体的にはステアリン酸カルシウム、モンタン酸ナトリウム、モンタン酸カルシウム、等が挙げられる。
オキシ脂肪酸としては1,2−オキシステリン酸、等が挙げられる。パラフィンとしては炭素数18以上のものが好ましく、流動パラフィン、天然パラフィン、マイクロクリスタリンワックス、ペトロラクタム等が挙げられる。
低分子量のポリオレフィンとしては例えば分子量5000以下のものが好ましく、具体的にはポリエチレンワックス、マレイン酸変性ポリエチレンワックス、酸化タイプポリエチレンワックス、塩素化ポリエチレンワックス、ポリプロピレンワックス等が挙げられる。脂肪酸アミドとしては炭素数6以上のものが好ましく、具体的にはオレイン酸アミド、エルカ酸アミド、ベヘン酸アミド等が挙げられる。
アルキレンビス脂肪酸アミドとしては炭素数6以上のものが好ましく、具体的にはメチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、N,N−ビス(2−ヒドロキシエチル)ステアリン酸アミド等が挙げられる。脂肪族ケトンとしては炭素数6以上のものが好ましく、高級脂肪族ケトン等が挙げられる。
脂肪酸部分鹸化エステルとしてはモンタン酸部分鹸化エステル等が挙げられる。脂肪酸低級アルコールエステルとしてはステアリン酸エステル、オレイン酸エステル、リノール酸エステル、リノレン酸エステル、アジピン酸エステル、ベヘン酸エステル、アラキドン酸エステル、モンタン酸エステル、イソステアリン酸エステル等が挙げられる。
脂肪酸多価アルコールエステルとしては、グリセロールトリステアレート、グリセロールジステアレート、グリセロールモノステアレート、ペンタエリスルトールテトラステアレート、ペンタエリスルトールトリステアレート、ペンタエリスルトールジミリステート、ペンタエリスルトールものステアレート、ペンタエリスルトールアジペートステアレート、ソルビタンモノベヘネート等が挙げられる。脂肪酸ポリグリコールエステルとしてはポリエチレングリコール脂肪酸エステルやポリプロピレングリコール脂肪酸エステル等が挙げられる。
変性シリコーンとしてはポリエーテル変性シリコーン、高級脂肪酸アルコキシ変性シリコーン、高級脂肪酸含有シリコーン、高級脂肪酸エステル変性シリコーン、メタクリル変性シリコーン、フッ素変性シリコーン等が挙げられる。
そのうち脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪酸部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、が好ましく、脂肪酸部分鹸化エステル、アルキレンビス脂肪酸アミドがより好ましい。なかでもモンタン酸エステル、モンタン酸部分鹸化エステル、ポリエチレンワックッス、酸価ポリエチレンワックス、ソルビタン脂肪酸エステル、エルカ酸アミド、エチレンビスステアリン酸アミドが好ましく、特にモンタン酸部分鹸化エステル、エチレンビスステアリン酸アミドが好ましい。
離型剤は、1種類で用いても良いし2種以上を組み合わせて用いても良い。離型剤の含有量は、樹脂成分(A成分)100重量部に対し、好ましくは0.01〜3重量部、より好ましくは0.03〜2重量部である。
〈帯電防止剤〉
本発明の組成物は帯電防止剤を含有していてもよい。帯電防止剤として、(β−ラウラミドプロピオニル)トリメチルアンモニウムスルフェート、ドデシルベンゼンスルホン酸ナトリウムなどの第4級アンモニウム塩系、スルホン酸塩系化合物、アルキルホスフェート系化合物等が挙げられる。
帯電防止剤は1種類で用いても良いし2種以上を組み合わせて用いても良い。帯電防止剤の含有量は、樹脂成分(A成分)100重量部に対し、好ましくは0.05〜5重量部、より好ましくは0.1〜5重量部である。
〈可塑剤〉
本発明の組成物は可塑剤を含有していてもよい。可塑剤として、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、リン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤、およびエポキシ系可塑剤等が挙げられる。
ポリエステル系可塑剤として、アジピン酸、セバシン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸等の酸成分とエチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール等のジオール成分からなるポリエステルやポリカプロラクトン等のヒドロキシカルボン酸からなるポリエステル等が挙げられる。これらのポリエステルは単官能カルボン酸または単官能アルコールで末端封止されていても良い。
グルセリン系可塑剤として、グリセリンモノステアレート、グリセリンジステアレート、グリセリンモノアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート、グリセリンモノアセトモノモンタネート等が挙げられる。
多価カルボン酸系可塑剤として、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジル等のフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシル等のトリメリット酸エステル、アジピン酸イソデシル、アジピン酸−n−デシル−n−オクチル等のアジピン酸エステル、アセチルクエン酸トリブチル等のクエン酸エステル、アゼライン酸ビス(2−エチルヘキシル)等のアゼライン酸エステル、セバシン酸ジブチル、セバシン酸ビス(2−エチルヘキシル)等のセバシン酸エステルが挙げられる。
リン酸エステル系可塑剤として、リン酸トリブチル、リン酸トリス(2−エチルヘキシル)、リン酸トリオクチル、リン酸トリフェニル、リン酸トリクレジル、リン酸ジフェニル−2−エチルヘキシル等が挙げられる。
ポリアルキレングリコール系可塑剤として、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(エチレンオキシド.プロピレンオキシド)ブロックおよびまたはランダム共重合体、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体等のポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物および末端エーテル変性化合物等の末端封止剤化合物等が挙げられる。
エポキシ系可塑剤として、エポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリド、およびビスフェノールAとエピクロルヒドリンを原料とするエポキシ樹脂が挙げられる。
その他の可塑剤の具体的な例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコール−ビス(2−エチルブチレート)等の脂肪族ポリオールの安息香酸エステル、ステアリン酸アミド等の脂肪酸アミド、オレイン酸ブチル等の脂肪酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチル等のオキシ酸エステル、ペンタエリスリトール、各種ソルビトール、ポリアクリル酸エステル、シリコーンオイル、およびパラフィン類等が挙げられる。
可塑剤として、特にポリエステル系可塑剤およびポリアルキレン系可塑剤から選択された少なくとも1種よりなるものが好ましく使用でき、1種のみでも良くまた2種以上を併用することもできる。
可塑剤の含有量は、樹脂成分(A成分)100重量部当たり、好ましくは0.01〜30重量部、より好ましくは0.05〜20重量部、さらに好ましくは0.1〜10重量部である。本発明においては結晶化核剤と可塑剤を各々単独で使用してもよいし、両者を併用して使用することがさらに好ましい。
〈滴下防止剤〉
本発明の組成物には、J成分として滴下防止剤を含むことができる。滴下防止剤としては、フィブリル形成能を有する含フッ素ポリマーとポリフェニレンエーテルから選ばれる少なくとも1種である。
(フィブリル形成能を有する含フッ素ポリマー)
フィブリル形成能を有する含フッ素ポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることかできるが、好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
フィブリル形成能を有するポリテトラフルオロエチレン(フィブリル化PTFE)は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万〜数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、特開平6−145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、フィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が107〜1013poiseの範囲であり、好ましくは108〜1012poiseの範囲である。
かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6−145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。
フィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F−201Lなどを挙げることができる。フィブリル化PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD−1、AD−936、ダイキン工業(株)製のフルオンD−1、D−2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。
混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号などに記載された方法)により得られたものが使用できる。これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3800」(商品名)、GEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)およびPacific Interchem Corporation社製「POLY TS AD001」(商品名)などが例示される。混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが10〜80重量%が好ましく、より好ましくは15〜75重量%である。フィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。
フィブリル形成能を有する含フッ素ポリマーの含有量は、樹脂成分(A成分)100重量部を基準として、0.01〜3重量部が好ましく、より好ましくは0.01〜2重量部、さらに好ましくは0.05〜1.5重量部である。
(ポリフェニレンエーテル)
ポリフェニレンエーテルとは、フェニレンエーテル構造を有するフェノールの重合体または共重合体(以下単にPPE重合体と略称する場合がある)である。
PPE重合体の具体例としては、ポリ(オキシ−1,4−フェニレン)、ポリ(オキシ−2,6−ジメチルフェニレン−1,4−ジイル)、ポリ(オキシ−2−メチル−6−エチルフェニレン−1,4−ジイル)、ポリ(オキシ−2,6−ジエチルフェニレン−1,4−ジイル)、ポリ(オキシ−2−エチル−6−n−プロピルフェニレン−1,4−ジイル)、ポリ(オキシ−2,6−ジ(n−プロピル)フェニレン−1,4−ジイル)、ポリ(オキシ−2−メチル−6−n−ブチルフェニレン−1,4−ジイル)、ポリ(オキシ−2−エチル−6−イソプロピルフェニレン−1,4−ジイル)、ポリ(オキシ−2−メチル−6−ヒドロキシエチルフェニレン−1,4−ジイル)、ポリ(オキシ−2−メチル−6−クロロエチルフェニレン−1,4−ジイル)等が挙げられる。この中で、ポリ(オキシ−2,6−ジメチルフェニレン−1,4−ジイル)が特に好ましい。
フェニレンエーテル構造を有する共重合体としては、2,6−ジメチルフェノールと2,3,6−トリメチルフェノールとの共重合体、2,6−ジメチルフェノールとo−クレゾールとの共重合体あるいは2,6−ジメチルフェノールと2,3,6−トリメチルフェノールおよびo−クレゾールとの共重合体等が例示される。
上記のPPE重合体の製造方法は特に限定されるものではなく、例えば米国特許4788277号明細書に記載されている方法等に従って、酸化カップリング重合により製造することができる。
また、ポリフェニレンエーテルの分子量は、例えば分子量パラメーターとして、(0.5g/dlクロロホルム溶液、30℃)還元粘度が0.05〜0.70dl/gの範囲が好ましく、0.10〜0.55dl/gの範囲がより好ましい。
また、ポリフェニレンエーテル中には、本発明の主旨に反しない限り、種々のフェニレンエーテルユニットを部分構造として含んでいても構わない。
かかる構造としては、例えば特開昭63−12698号公報、特開昭63−301222号公報などに記載されている、オキシ−2−(N、N−ジアルキルアミノメチル)−6−メチルフェニレン−1,4−ジイルユニットやオキシ−2−(N−アルキル−N−フェニルアミノメチル)−6−メチルフェニレン−1,4−ジイルユニット等が挙げられる。また、ポリフェニレンエーテルの主鎖中にジフェノキノン等が少量結合したものも含まれる。
PPE重合体には、下記のα,β−不飽和カルボン酸またはその無水物等のエチレン性不飽和化合物により変性されたポリフェニレンエーテルも含むことができる。かかる変性ポリフェニレンエーテルを用いた場合には、ビニル化合物重合体との混合性に優れ、相剥離等のない成形体を提供できる。
α,β−不飽和カルボン酸またはその無水物の例として、特公昭49−2343号公報、特公平3−52486号公報等に記載される無水マレイン酸、フタル酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、無水ハイミツク酸、5−ノルボルネン−2−メチル−2−カルボン酸、あるいはマレイン酸、フマル酸等が挙げられ、これらに限定されるものではないが、無水マレイン酸が特に好ましい。
PPEは上記エチレン性不飽和化合物により、有機過酸化物の存在下、または非存在下、PPEのガラス転移温度以上の温度まで加熱することによって変性することができる。
本発明において、あらかじめ上記エチレン性不飽和化合物により変成されたPPE樹脂を用いてもよい。また、本発明組成物を製造する際に同時に、上記エチレン性不飽和化合物を添加することによりポリフェニレンエーテル重合体と反応させることもできる。
ポリフェニレンエーテルの含有量は、樹脂成分(A成分)100重量部当り、好ましくは0.1〜30重量部、より好ましくは0.5〜25重量部、さらに好ましくは1〜20重量部である。
なお、使用、目的に応じて、前記フィブリル形成能を有する含フッ素ポリマーとポリフェニレンエーテルを組み合わせて使用してもよい。
〈その他〉
また本発明においては、本発明の趣旨に反しない範囲において、フェノール樹脂、メラミン樹脂、熱硬化性ポリエステル樹脂、シリコーン樹脂、エポキシ樹脂等の熱硬化性樹脂を含有させても良い。また有機、無機系の染料、顔料を含む着色剤、例えば、二酸化チタン等の酸化物、アルミナホワイト等の水酸化物、硫化亜鉛等の硫化物、紺青等のフェロシアン化物、ジンククロメート等のクロム酸塩、硫酸バリウム等の硫酸塩、炭酸カルシウム等の炭酸塩、群青等の珪酸塩、マンガンバイオレット等のリン酸塩、カーボンブラック等の炭素、ブロンズ粉やアルミニウム粉等の金属着色剤等を含有させても良い。また、ナフトールグリーンB等のニトロソ系、ナフトールイエローS等のニトロ系、ナフトールレッド、クロモフタルイエローどのアゾ系、フタロシアニンブルーやファストスカイブルー等のフタロシアニン系、インダントロンブルー等の縮合多環系着色剤等、グラファイト、フッソ樹脂等の摺動性改良剤等の添加剤を含有させても良い。これらの添加剤は単独であるいは2種以上を併用することもできる。
〈組成物の製造方法〉
本発明の組成物は、(i) 100重量部のポリ−L乳酸(A−1成分)に対して、0.001〜3重量部のホスホノ脂肪酸エステル(B成分)を含有する組成物−1および100重量部のポリ−D乳酸(A−2成分)に対して、0.001〜3重量部のホスホノ脂肪酸エステル(B成分)を含有する組成物−2を、組成物−1および組成物−2の合計100重量部に対して、0.01〜5重量部のリン酸エステル金属塩(C成分)の存在下、溶融混練してステレオコンプレックスポリ乳酸を調製する工程、並びに
(ii) 得られたステレオコンプレックスポリ乳酸5〜95wt%と芳香族ポリカーボネート(A−β成分)95〜5wt%からなる樹脂成分100重量部に対し、0.001〜2重量部のホスホノ脂肪酸エステル(B成分)、0.001〜2重量部の、ホスファイト系化合物、ホスホナイト系化合物、ヒンダートフェノール系化合物、チオエーテル系化合物からなる群より選ばれる少なくとも一種の酸化防止剤(D成分)、並びに0.001〜10重量部の末端封鎖剤(E成分)を溶融混練する工程、
により製造することができる。
本発明の製造方法の特徴は、ポリ−L乳酸(A−1成分)、ポリ−D乳酸(A−2成分)の重合終了時に、ポリ乳酸の金属重合触媒の失活剤としてホスホノ脂肪酸エステル(B成分)を添加し、その後、酸化防止剤(D成分)と溶融混練する際にもホスホノ脂肪酸エステル(B成分)を添加することにある。組成物を調製する最終段階にもホスホノ脂肪酸エステル(B成分)を添加することにより、揮発し易いホスホノ脂肪酸エステル(B成分)を、残留する金属重合触媒と常に共存させることが出来、触媒の失活効果を維持することが出来る。その結果、熱安定性に優れたポリ乳酸組成物を得ることができる。
工程(i)において、組成物−1は、100重量部のポリ−L乳酸(A−1成分)に対して、好ましくは0.005〜2重量部、より好ましくは0.01〜1重量部のホスホノ脂肪酸エステル(B成分)を含有する。組成物−2は、100重量部のポリ−L乳酸(A−1成分)に対して、好ましくは0.05〜2重量部、より好ましくは0.01〜1重量部のホスホノ脂肪酸エステル(B成分)を含有する。
工程(ii)において、ホスホノ脂肪酸エステル(B成分)の添加量は、ステレオコンプレックスポリ乳酸5〜95wt%と芳香族ポリエステル樹脂(A−β成分)95〜5wt%からなる樹脂成分100重量部に対して、好ましくは0.005〜2重量部、より好ましくは0.01〜1重量部である。また酸化防止剤(D成分)の添加量は、100重量部のステレオコンプレックスポリ乳酸に対して、好ましくは0.005〜1.5重量部、より好ましくは0.01〜1重量部である。
ステレオコンプレックスポリ乳酸を製造する工程の溶融混練として、溶融温度は好ましくは250〜300℃、より好ましくは250〜290℃である。300℃を超えると、分解反応を抑制するのが難しくなるので好ましくなく、240℃未満の温度では熱処理による均一混合が進まず、ステレオコンプレックスが効率的に生成し難くなるので好ましくない。溶融時間は特に限定されるものではないが、0.2〜60分、好ましくは1〜20分である。溶融時の雰囲気は、常圧の不活性雰囲気下、または減圧のいずれも適用可能である。
溶融混練には、タンブラー、V型ブレンダー、スーパーミキサー、ナウターミキサー、バンバリーミキサー、混練ロール、1軸または2軸の押出機等を用いることができる。得られる組成物は、そのままで、または溶融押出機で一旦ペレット状にしてから、成形することができる。
本発明のポリ乳酸組成物は、ペレット状であることが好ましい。ペレットはストランド、あるいは板状におしだされたポリ乳酸組成物を、樹脂が完全に固化した後、あるいは完全には固化されないで、いまだ溶融状態にあるとき、空気中、あるいは水中でカッティングする等の手法が従来公知であるが、本発明においてはいずれも好適に適用できる。
ペレットの形状は、たとえば、眞球状、ダイス状、直線状、曲線状、断面面の形状は、丸、楕円、扁平、三角、四角以上の多角形および星形などいずれの形状であっても良いが、ペレットをさらに各種成形方法で成形するに好適な形状を有するのが好ましい。具体的にはペレット長は1〜7mm、長径3〜5mm、短径1〜4mmのものが好ましい。またかかる形状はばらつきのないものが好ましい。
〈組成物の物性〉
本発明の組成物の引張強度保持率(T)は、60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%〜100%である。引張強度保持率(T)は、下記式
T(%)=t/t×100(%)
で表される。
但し、tは初期引張強度、tは80℃、95%RH雰囲気下、100時間後の引張強度である。引張強度測定用試験片は特に限定するものではないが、ISO527に準拠した長さ150mm×幅20mm×厚み4mmの試験片が好適に例示できる。引張強度試験条件は特に限定するものではないが、5mm/minの試験速度が好適に例示できる。また、引張強度としては降伏強度と破断強度が挙げられるが、本発明の引張強度とはそのいずれかの高強度の方を指し、所謂、引張試験中で測定された最大の引張強度を言う。
本発明の組成物の13C−NMRで求めたエナンチオマー平均連鎖長は、好ましくは10〜40、より好ましくは15〜40、更に好ましくは18〜39である。
〈成形品〉
本発明の組成物よりなる成形品は、射出成形、押出成形、熱成形、ブロー成形または発泡成形により成形したものが好ましい。
射出成形品は、従来公知の成形法が何ら限定なく適用できるが、射出成形時、成形品の結晶化、成形サイクルを上げる観点から、金型温度は好ましくは30℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上である。しかし、成形品の変形を防ぐ意味において、金型温度は、好ましくは140℃以下、より好ましくは120℃以下、さらに好ましくは110℃以下である。またこれらの成形品として、自動車部品、電気・電子部品、電気機器外装部品、OA外装部品等を挙げることができる。
以下、実施例により本発明を詳述する。ただし、本発明はこれらに限定されるものではない。
1.ポリ乳酸の製造
下記の製造例に示す方法により、ポリ乳酸の製造を行った。また製造例中における各値は下記の方法で求めた。
(1)ポリマーの重量平均分子量(Mw)および数平均分子量(Mn):
ゲルパーミエーションクロマトグラフィー(GPC)により測定、標準ポリスチレンに換算した。GPC測定機器は、検出器として、示差屈折計島津RID−6Aを用い、カラムとして東ソ−TSKgelG3000HXLを使用した。測定は、クロロホルムを溶離液とし温度40℃、流速1.0ml/minにて、濃度1mg/ml(1%ヘキサフルオロイソプロパノールを含むクロロホルム)の試料を10μl注入することにより行った。
(2)カルボキシル基濃度
試料を精製o−クレゾールに窒素気流下で溶解した後、ブロモクレゾールブルーを指示薬とし、0.05規定水酸化カリウムのエタノール溶液で滴定した。
(3)示差走査熱量計(DSC)の測定
DSC(TAインストルメント社製 TA−2920)を用いて試料の一回目の昇温過程において、190℃以上の融解ピークをステレオ結晶由来の融解ピークとし、その融解温度をTms、融解エンタルピーをHmsとした。また、190℃以下の融解ピークをホモ結晶由来の融解ピークとし、その融解温度をTmh、融解エンタルピーをHmhとして、下記式より、ステレオコンプレックス形成度のパラメーターを評価した。
ステレオ化度=△Hms/(△Hms+△Hmh)×100
(4)エナンチオマー平均連鎖長
試料をHFIP/クロロホルム=1/1混合溶媒に溶解した後、メタノールで再沈させた。この再沈ポリマー成分をメタノールで超音波洗浄し、遠心分離を10回繰り返して不純物や溶媒成分を除去した後、真空乾燥機で1日乾燥し、測定サンプルとなり得るポリ乳酸成分を抽出した。
このようにして抽出した試料を用い、エナンチオマー平均連鎖長を以下のように測定した。
13−CNMR装置:日本ブルカー製 BURKER ARX−500
サンプル:50mg/0.7ml
測定溶媒:10% HFIP含有重水素化クロロホルム
内部標準:テトラメチルシラン(TMS)1%(v/v)
測定温度:27℃(300K)
測定周波数:125MHz
13C−NMR測定により、カルボニル炭素(C=O)に帰属される炭素のピークのうち、ピーク(a)(170.1−170.3MHz辺り)はホモ配列(LLLLLLまたはDDDDDD)に、ピーク(b)(170.0−169.8MHz辺り)はラセミ鎖(LLLDDD…)に帰属し、これらのピークの積分値から、下記の式により平均連鎖長を算出した。
v=ピーク(a)の積分値/ピーク(b)の積分値
本発明の実施例、比較例においては、以下の材料を使用した。
[参考例:ジ−n−ヘキシルホスホノ酢酸エチル(DHPA)の合成]
亜リン酸トリヘキシル100重量部とブロモ酢酸エチル100重量部とを反応容器に入れ、内部を窒素置換した。つづいて反応容器を170℃に昇温して、加熱還流させながら3時間反応を実施した。反応混合物を80℃で過剰のブロモ酢酸エチルを減圧留去した後、190℃で減圧蒸留を行い、無色透明な液体を得た(収率84%、沸点146℃/0.5mmHg)。
[A−α−1成分:ポリL−乳酸の製造(PLLA)]
[製造例1]
冷却留出管を備えた重合反応容器の原料仕込み口から、窒素気流下でL−ラクチド(株式会社武蔵野化学研究所製、光学純度100%)100重量部およびステアリルアルコール0.15重量部を仕込んだ。続いて反応容器内を5回窒素置換し、L−ラクチドを190℃にて融解させた。L−ラクチドが完全に融解した時点で、オクチル酸スズを0.005重量部のトルエン500μL溶液を添加し、190℃で1時間重合した。重合終了後、ジ−n−ヘキシルホスホノ酢酸エチル0.082重量部を原料仕込み口から添加し、15分間混練した。最後に余剰のL−ラクチドを脱揮して、反応容器内から重合物を吐出し、チップ化し、ポリ−L乳酸(PLLA)を得た。
得られたポリL−乳酸樹脂の重量平均分子量は15.1万、ガラス転移点(Tg)55℃、融解ピーク温度(Tmh)は177℃、カルボキシル基含有量は15eq/ton、エナンチオマー平均連鎖長はシンジオタクチック連結部が測定できず、算出不可であった。
[A−α−2成分:ポリD−乳酸の製造(PDLA)]
[製造例2]
製造例1のL−ラクチドのかわりにD−ラクチド(株式会社武蔵野化学研究所製、光学純度100%)を使用する以外は製造例1と同様の操作を行い、ポリD−乳酸(PDLA)を得た。得られたポリD−乳酸樹脂の重量平均分子量は15.2万、ガラス転移点(Tg)55℃、融解ピーク温度(Tmh)は177℃、カルボキシル基含有量は14eq/ton、エナンチオマー平均連鎖長はシンジオタクチック連結部が測定できず、算出不可であった。であった。
[A−α−3−1成分:ステレオコンプレックスポリ乳酸−1の製造(scPLA−1)]
[製造例3−1]
製造例1および2で得られたPLLA,PDLAの各50重量部よりなるポリ乳酸樹脂計100重量部並びに燐酸−2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウム(アデカスタブNA−11:(株)ADEKA製)0.1重量部をブレンダーで混合後、110℃で5時間乾燥し、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度250℃、スクリュー回転数250rpm、吐出量9kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ステレオコンプレックスポリ乳酸−1を得た。得られたステレオコンプレックスポリ乳酸−1の重量平均分子量は13万、ガラス転移点(Tg)58℃、コンプレックス相ポリ乳酸結晶融解ピーク温度(Tms)は220℃、カルボキシル基含有量は17eq/ton、エナンチオマー平均連鎖長は28、示差走査熱量計(DSC)測定の昇温過程における融解ピークのうち195℃以上の融解ピークの割合が100%であった。なおNA−11の添加量はPLLA1,PDLA1の合計100重量部あたりの重量部である。
[A−α−3−2成分:ステレオコンプレックスポリ乳酸−2の製造(scPLA−2)]
[製造例3−2]
製造例1および2で使用したジ−n−ヘキシルホスホノ酢酸エチル0.082重量部を、1重量部に変えた以外は、製造例1および2と同様に方法で得られたPLLAとPDLAを用い、製造例3−1と同様な方法でステレオコンプレックスポリ乳酸−2を製造した。得られたステレオコンプレックスポリ乳酸−2の重量平均分子量は12.5万、ガラス転移点(Tg)58℃、コンプレックス相ポリ乳酸結晶融解ピーク温度(Tms)は222℃、カルボキシル基含有量は45eq/ton、エナンチオマー平均連鎖長は27、示差走査熱量計(DSC)測定の昇温過程における融解ピークのうち195℃以上の融解ピークの割合が100%であった。なおNA−11の添加量はPLLA1,PDLA1の合計100重量部あたりの重量部である。
[A−α−3−3成分:ステレオコンプレックスポリ乳酸−3の製造(scPLA−3)]
[製造例3−3]
製造例1および2で使用したジ−n−ヘキシルホスホノ酢酸エチル0.082重量部を、まったく添加しないとした以外は、製造例1および2と同様に方法で得られたPLLAとPDLAを用い、製造例3−1と同様な方法でステレオコンプレックスポリ乳酸−3を製造した。得られたステレオコンプレックスポリ乳酸−3の重量平均分子量は12.7万、ガラス転移点(Tg)58℃、コンプレックス相ポリ乳酸結晶融解ピーク温度(Tms)は221℃、カルボキシル基含有量は28eq/ton、エナンチオマー平均連鎖長は28、示差走査熱量計(DSC)測定の昇温過程における融解ピークのうち195℃以上の融解ピークの割合が100%であった。なおNA−11の添加量はPLLA1,PDLA1の合計100重量部あたりの重量部である。結果をまとめて表1中に記載する。
Figure 2010150392
2.組成物ペレットの製造および評価
下記の実施例、比較例に示す方法により、組成物ペレットの製造を行った。また実施例中における各値は下記の方法で求めた。
(1)エナンチオマー平均連鎖長
組成物を射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度230℃、金型温度120℃にて、長さ130mm、幅13mm、厚さ1.5mmの成形片を成形した。こうして得られた成形片を、前述の方法でエナンチオマー平均連鎖長を算出した。
(2)表面性
組成物を射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度230℃、金型温度120℃、成形サイクル200秒にて成形した、長さ150mm、幅150mm、厚さ3.0mmの平板成形片の表面性を、目視にて、以下基準に従って判定した。なお、ここで言う成形サイクルTとは、射出時間、保圧時間、冷却時間の合計である。また表面性評価のため、射出ピーク圧は10MPa、保圧圧力は5MPaとした。
○:ヒケの発生が無く、表面性良好。
△:平板成形片の端部に、わずかにヒケが見られる。
×:ヒケが発生し、表面性に劣る。
(3)湿熱処理後の引張強度保持率(ΔTYratio−1)
組成物を射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度230℃、金型温度120℃、成形サイクル100秒にて、厚み4mmのISO規格に準拠した試験片を成形した。該試験片を温度80℃、相対湿度95%の恒温恒湿試験機に100時間放置して処理した後、温度23℃、相対湿度50%の環境下で24時間放置した試験片(湿熱処理後の試験片)を用いて測定した引張強度と、温度23℃、相対湿度50%の環境下で24時間放置した試験片(湿熱処理前の試験片)を用いて測定した引張強度を、下記数式にしたがって計算し、湿熱処理後の引張強度保持率(ΔTYratio−1)を算出した。
ΔTYratio−1=100×(湿熱処理後の試験片の引張強度)/(湿熱処理前の試験片の引張強度)
なお、ここで言う引張強度とは、引張破断強度と引張降伏強度のうち、強度が高い方の強度を指す。
(4)滞留成形後の引張強度保持率(ΔTYratio−2)
組成物を射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度230℃、金型温度120℃、成形サイクル100秒にて成形した、厚み4mmのISO規格に準拠した試験片(通常成形の試験片)と、成形サイクル100秒で成形した後、温度を保持したまま成形機を10分間停止し、再度成形サイクル100秒で成形した、厚み4mmのISO規格に準拠した試験片(滞留成形の試験片)を、温度23℃、相対湿度50%の環境下で24時間放置した後、引張試験に供し、測定した引張強度を下記数式にしたがって計算し、滞留成形後の引張強度保持率(ΔTYratio−2)を算出した。
ΔTYratio−2=100×(滞留成形の試験片の引張強度)/(通常成形の試験片の引張強度)
なお、ここで言う引張強度とは、引張破断強度と引張降伏強度のうち、強度が高い方の強度を指す。
(5)金型汚れ評価
組成物を射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度230℃、金型温度120℃、成形サイクル100秒にて長さ130mm、幅13mm、厚さ1.5mmの成形片を500ショット成形し、その前後の金型表面の状態を目視で観察し、下記のように評価した。
○ : 連続成形試験の前後において変化なし
△ : 連続成形試験後にかなり付着物あり
× : 連続成形試験後に付着物が非常に多い
なお、A成分としては上記記載のA−1、A−2、A−3−1〜3、B成分としては参考例記載のDHPA(B−1成分)と比較用として次亜リン酸アンモニウム[試薬](B−2成分)、C成分としては製造例3−1−1記載のNA−11を用い、その他の原料としては、以下のものを用いた。
(6)難燃性
組成物を射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度230℃、金型温度120℃、成形サイクル100秒にて成形した、長さ130mm、幅13mm、厚さ2.0mmの成形片を成形し、米国アンダーライターラボラトリー社の定める方法(UL94)により、試験片厚さ2.0mmにおける難燃性を評価した。
(7)ノッチ付衝撃値
組成物を射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度230℃、金型温度120℃、成形サイクル100秒にて、厚み4mmのISO規格に準拠した試験片を成形し、温度23℃、相対湿度50%の環境下で24時間放置した後、ISO規格に準拠してノッチ付衝撃値を測定した。
(A−β成分:ポリオレフィン樹脂)
PP:ポリプロピレン(三井化学(株)製ノバテックFA3DA、MVR[240℃、2.16kg]=12(cm/10分)
(D成分:酸化防止剤)
D−1成分:ホスファイト系酸化防止剤((株)ADEKA製アデカスタブPEP24G(商品名))
D−2成分:ヒンダードフェノール系酸化防止剤(チバ・スペシャルティ・ケミカルズ製:Irganox1076(商品名))
(E成分:末端封鎖剤)
E−1:脂肪族系ポリカルボジイミド(日清紡(株)製 カルボジライトLA−1(商品名))
E−2:エポキシ基含有アクリル−スチレン共重合体(BASFジャパン(株)製 ADR−4368CS(商品名))
(F成分:衝撃改質剤)
F−1成分:アクリル系コアシェルゴム(三菱レイヨン(株)製:メタブレンW450A(商品名))
F−2成分:共重合ポリエチレン(住友化学(株)製:ボンドファスト7M(商品名))
(G成分:難燃剤)
G−1成分:リン酸エステル系難燃剤 大八化学工業(株)製 PX−200 [レゾルシノールビス(ジ−2,6−キシリルホスフェート)]
G−2成分:ホスフィン酸塩系難燃剤 クラリアントジャパン(株)製 EXOLIT1240 [ジエチルホスフィン酸アルミニウム]
(H成分:無機系充填剤)
H−1:タルク(日本タルク(株)製 P−3[平均粒径5μm](商品名))
H−2:ガラス繊維(日東紡(株)製 3PE−937S[平均径13μm、カット長3mmのチョップドストランド](商品名))
(J成分:滴下防止剤)
J−1:フィブリル形成能を有する含フッ素ポリマー(ダイキン化学工業(株)のポリフロンMPA FA500(商品名))
<実施例1〜7、比較例1〜9>
ポリ乳酸樹脂として製造例1、2、3−1〜3−3で製造したポリ乳酸樹脂A−α−1、A−α−2、A−α−3−1〜A−α−3−3成分を用いて、表2〜3の組成のうちH−2を除く組成をドライブレンドにて均一に予備混合した後、かかる予備混合物を第1供給口より供給し、F−2成分を第二供給口から供給し、溶融押出してペレット化した。ここで、第一供給口とは根元の供給口、第二供給口とはサイドスクリュウに備え付けた供給口のことである。なお、F−2成分が組成に含まれない場合は、第1供給口からのみの供給となることは言うまでもない。溶融押出は、サイドスクリューを備えた径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]を用い実施した。また、押出温度は、C1/C2〜C5/C6/C7〜C11/D=10℃/240℃/230℃/220℃/220℃とし、メインスクリュー回転数は150rpm、サイドスクリュー回転数は50rpm、吐出量は20kg/h、ベント減圧度は3kPaとした。
得られたペレットを100℃で5時間、熱風循環式乾燥機により乾燥し、射出成形機(東芝機械(株)製:IS−150EN)にて成形し、成形サイクル、成形品の割れ、色むら、曲げ弾性率、荷重たわみ温度、難燃性の評価を実施した。
<実施例1〜6>
本発明記載の範囲でA〜E、H成分を含む組成物は、湿熱処理時や滞留成形時の物性低下が小さく、優れた特性を有する。なお、エナンチオマー連鎖長が10〜40の範囲内である実施例3〜6はヒケが無く、優れた表面性を示した。B成分を工程(ii)で添加した実施例3は、B成分を工程(i)で添加した実施例4や5に比べ、物性保持率が高く、金型汚れも少ない、特に優れた組成物であり、作業時の悪臭も全く無い良好な組成物であった。
<実施例7>
実施例3に、衝撃改質剤(F成分)とG成分(難燃剤)を本発明記載の範囲で更に配合した実施例7は、湿熱処理時や滞留成形時の物性低下が少なく、表面性は良好であり、優れた難燃性と耐衝撃性を有する実用上有益な特性を示した。
<比較例1>
A−β成分が配合されていない比較例1は、実施例3に比べて表面性が悪いため、実用上好ましくない。
<比較例2、3>
B成分の添加量が請求範囲外である比較例2、3は、実施例3に比べ、湿熱処理時や滞留成形時の物性低下が大きく、好ましくない。特に比較例3はB−1成分が請求の範囲を超えて含まれているため、金型汚染が激しく、作業環境時の悪臭も目立った。
<比較例4>
特定化合物以外のB成分を用いた比較例4は、実施例3に比べて湿熱処理時や滞留成形時の物性低下が大きく、ポリ乳酸中の残留触媒を効果的に失活していないと言える。
<比較例5>
C成分の添加量が請求範囲外である比較例5は、実施例3に比べて表面性の悪化や湿熱処理時や滞留成形時の物性低下が見られ、好ましくない。
<比較例6>
C成分が含まれていない比較例6は実施例3に比べて湿熱処理時や滞留成形時の物性低下にやや劣り、表面性が悪いため、実用上好ましくない。
<比較例7、8>
D成分の添加量が請求範囲外である比較例7、8は、実施例3に比べ、湿熱処理時や滞留成形時の物性低下が大きく、好ましくない。特に比較例8はD成分が請求の範囲を超えて含まれているため、金型汚染が激しく、作業環境時の悪臭も目立った。
<比較例9、10>
E成分の添加量が請求範囲外である比較例9、10は、実施例3に比べ、湿熱処理時や滞留成形時の物性低下が大きく、好ましくない。特に比較例10はE成分が請求の範囲を超えて含まれているため、金型汚染が激しく、作業環境時の悪臭も目立った。
Figure 2010150392
Figure 2010150392
本発明のポリ乳酸組成物は、自動車部品、電気・電子部品、電気機器外装部品、OA外装部品等の材料として有用である。

Claims (18)

  1. ポリ乳酸(A−α成分)5〜95重量%とポリオレフィン樹脂(A−β成分)95〜5重量%からなる樹脂成分(A成分)100重量部、
    0.001〜5重量部のホスホノ脂肪酸エステル(B成分)、
    0.01〜5重量部のリン酸エステル金属塩(C成分)、
    0.001〜2重量部の、ホスファイト系化合物、ホスホナイト系化合物、ヒンダートフェノール系化合物およびチオエーテル系化合物からなる群より選ばれる少なくとも一種の酸化防止剤(D成分)、並びに
    0.001〜10重量部の末端封鎖剤(E成分)、
    を含有する組成物。
  2. ポリ乳酸(A−α成分)は、主としてL−乳酸単位からなるポリ−L乳酸(A−α−1成分)および主としてD−乳酸単位からなるポリ−D乳酸(A−α−2成分)を含有し、A−α−1成分とA−α−2成分との重量比が10:90〜90:10の範囲にある請求項1記載の組成物。
  3. ポリ−L乳酸(A−α−1成分)はL−乳酸単位を90モル%以上含有し、ポリ−D乳酸(A−β−2成分)はD−乳酸単位を90モル%以上含有する請求項2に記載の組成物。
  4. ポリ乳酸(A−α成分)は、示差走査熱量計(DSC)測定の昇温過程における融解ピークのうち195℃以上の割合が80%以上である請求項2または3に記載の組成物。
  5. ホスホノ脂肪酸エステル(B成分)が、下記一般式(1)で示される請求項1〜4のいずれか一項に記載の組成物。
    Figure 2010150392
    (式中R〜Rは、それぞれ独立に、炭素数1〜20のアルキル基または炭素数6〜12のアリール基である。またnは1〜3の整数である。)
  6. リン酸エステル金属塩(C成分)が、下記式(2)または(3)で示される請求項1〜5のいずれか一項に記載の組成物。
    Figure 2010150392
    (式中Rは水素原子または炭素原子数1〜4のアルキル基である。RおよびRはそれぞれ独立に水素原子または炭素原子数1〜12のアルキル基である。Mはアルカリ金属原子、アルカリ土類金属原子、亜鉛原子またはアルミニウム原子である。pは1または2である。qはMがアルカリ金属原子、アルカリ土類金属原子または亜鉛原子のときは0、アルミニウム原子のときは1または2である。)
    Figure 2010150392
    (式中R、Rはそれぞれ独立に水素原子または炭素原子数1〜12のアルキル基である。Mはアルカリ金属原子、アルカリ土類金属原子、亜鉛原子またはアルミニウム原子である。pは1または2である。qはMがアルカリ金属原子、アルカリ土類金属原子または亜鉛原子のときは0、アルミニウム原子のときは1または2である。)
  7. 酸化防止剤(D成分)が、ホスファイト系化合物およびヒンダードフェノール系化合物からなる請求項1〜6のいずれか一項に記載の組成物。
  8. 末端封鎖剤(E成分)が、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物およびオキサジン化合物からなる群より選ばれる少なくとも一種である請求項1〜7のいずれか一項に記載の組成物。
  9. 樹脂成分(A成分)100重量部に対して、2〜100重量部の衝撃改質剤(F成分)を含む請求項1〜8のいずれか一項に記載の組成物。
  10. 樹脂成分(A成分)100重量部に対して、1〜100重量部の、リン系難燃剤(G−1成分)、窒素系難燃剤(G−2成分)および水酸化金属化合物系難燃剤(G−3成分)からなる群より選ばれる少なくとも一種の難燃剤(G成分)を含む請求項1〜9のいずれか一項に記載の組成物。
  11. 樹脂成分(A成分)100重量部に対して、0.05〜100重量部の無機充填剤(H成分)を含む請求項1〜10のいずれか一項に記載の組成物。
  12. 下記式で表される引張強度保持率(T)が60%以上である請求項1〜11のいずれか一項に記載の組成物。
    T(%)=t/t×100
    (但し、tは初期引張強度、tは80℃、95%RH雰囲気下、100時間後の引張強度)。
  13. 樹脂成分(A成分)の13C−NMRで求めたエナンチオマー平均連鎖長が10〜40である請求項1〜12のいずれか一項に記載の組成物。
  14. 樹脂成分(A成分)100重量部に対して、0.05〜3重量部の滴下防止剤(J成分)を更に含む請求項1〜13のいずれか一項に記載の組成物。
  15. (i) 100重量部のポリ−L乳酸(A−α−1成分)に対して、0.001〜3重量部のホスホノ脂肪酸エステル(B成分)を含有する組成物−1および100重量部のポリ−D乳酸(A−α−2成分)に対して、0.001〜3重量部のホスホノ脂肪酸エステル(B成分)を含有する組成物−2を、組成物−1および組成物−2の合計100重量部に対して、0.01〜5重量部のリン酸エステル金属塩(C成分)の存在下、溶融混練してステレオコンプレックスポリ乳酸を調製する工程、並びに
    (ii) 得られたステレオコンプレックスポリ乳酸5〜95wt%とポリオレフィン樹脂(A−β成分)95〜5wt%からなる樹脂成分100重量部に対し、0.001〜2重量部のホスホノ脂肪酸エステル(B成分)、0.001〜2重量部の、ホスファイト系化合物、ホスホナイト系化合物、ヒンダートフェノール系化合物、チオエーテル系化合物からなる群より選ばれる少なくとも一種の酸化防止剤(D成分)、並びに0.001〜10重量部の末端封鎖剤(E成分)を溶融混練する工程、
    からなる請求項1〜14のいずれか一項に記載の組成物の製造方法。
  16. 請求項1〜14のいずれか一項に記載の組成物からなる成形品。
  17. 射出成形、押出成形、熱成形、ブロー成形または発泡成形により成形した請求項16記載の成形品。
  18. 自動車部品、電気・電子部品、電気機器外装部品、OA外装部品である請求項16記載の成形品。
JP2008330121A 2008-12-25 2008-12-25 ポリ乳酸組成物およびその成形品 Active JP5536330B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330121A JP5536330B2 (ja) 2008-12-25 2008-12-25 ポリ乳酸組成物およびその成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330121A JP5536330B2 (ja) 2008-12-25 2008-12-25 ポリ乳酸組成物およびその成形品

Publications (2)

Publication Number Publication Date
JP2010150392A true JP2010150392A (ja) 2010-07-08
JP5536330B2 JP5536330B2 (ja) 2014-07-02

Family

ID=42569828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330121A Active JP5536330B2 (ja) 2008-12-25 2008-12-25 ポリ乳酸組成物およびその成形品

Country Status (1)

Country Link
JP (1) JP5536330B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102231A (ja) * 2010-11-10 2012-05-31 Kohjin Co Ltd ポリオキサゾリンからなる樹脂の相溶化剤
WO2014034474A1 (ja) * 2012-08-29 2014-03-06 東洋紡株式会社 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
EP2746318A1 (en) * 2012-12-18 2014-06-25 Total Research & Technology Feluy Process for preparing PLA stereocomplex

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192883A (ja) * 2001-12-28 2003-07-09 Asahi Denka Kogyo Kk ポリ乳酸系樹脂組成物、成形品及びその製造方法
JP2007191547A (ja) * 2006-01-18 2007-08-02 Teijin Chem Ltd 電気・電子部品
WO2007114459A1 (ja) * 2006-03-31 2007-10-11 Teijin Limited ポリ乳酸組成物
JP2007269960A (ja) * 2006-03-31 2007-10-18 Teijin Ltd ポリ乳酸組成物
JP2008050579A (ja) * 2006-07-28 2008-03-06 Teijin Ltd 樹脂組成物およびそれよりなる成形品
JP2008050583A (ja) * 2006-07-28 2008-03-06 Teijin Ltd 樹脂組成物
WO2008075775A1 (ja) * 2006-12-19 2008-06-26 Kao Corporation ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体の製造方法
JP2008156616A (ja) * 2006-11-28 2008-07-10 Toray Ind Inc 樹脂組成物およびそれからなる成形品
WO2008102919A1 (ja) * 2007-02-23 2008-08-28 Teijin Limited ポリ乳酸組成物
WO2010053167A1 (ja) * 2008-11-05 2010-05-14 帝人化成株式会社 ポリ乳酸組成物およびその成形品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192883A (ja) * 2001-12-28 2003-07-09 Asahi Denka Kogyo Kk ポリ乳酸系樹脂組成物、成形品及びその製造方法
JP2007191547A (ja) * 2006-01-18 2007-08-02 Teijin Chem Ltd 電気・電子部品
WO2007114459A1 (ja) * 2006-03-31 2007-10-11 Teijin Limited ポリ乳酸組成物
JP2007269960A (ja) * 2006-03-31 2007-10-18 Teijin Ltd ポリ乳酸組成物
JP2008050579A (ja) * 2006-07-28 2008-03-06 Teijin Ltd 樹脂組成物およびそれよりなる成形品
JP2008050583A (ja) * 2006-07-28 2008-03-06 Teijin Ltd 樹脂組成物
JP2008156616A (ja) * 2006-11-28 2008-07-10 Toray Ind Inc 樹脂組成物およびそれからなる成形品
WO2008075775A1 (ja) * 2006-12-19 2008-06-26 Kao Corporation ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体の製造方法
WO2008102919A1 (ja) * 2007-02-23 2008-08-28 Teijin Limited ポリ乳酸組成物
WO2010053167A1 (ja) * 2008-11-05 2010-05-14 帝人化成株式会社 ポリ乳酸組成物およびその成形品

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102231A (ja) * 2010-11-10 2012-05-31 Kohjin Co Ltd ポリオキサゾリンからなる樹脂の相溶化剤
WO2014034474A1 (ja) * 2012-08-29 2014-03-06 東洋紡株式会社 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
CN104583313A (zh) * 2012-08-29 2015-04-29 东洋纺株式会社 电气电子部件封装用树脂组合物、电气电子部件封装体的制造方法以及电气电子部件封装体
EP2891681A4 (en) * 2012-08-29 2016-04-06 Toyo Boseki RESIN COMPOSITION FOR SEALING ELECTRICAL AND ELECTRONIC COMPONENTS, METHOD FOR MANUFACTURING SEALING AGENT FOR ELECTRICAL AND ELECTRONIC COMPONENTS, AND SEALING AGENT FOR ELECTRICAL AND ELECTRONIC COMPONENTS
JPWO2014034474A1 (ja) * 2012-08-29 2016-08-08 東洋紡株式会社 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
CN107266886A (zh) * 2012-08-29 2017-10-20 东洋纺株式会社 电气电子部件封装用树脂组合物、电气电子部件封装体的制造方法以及电气电子部件封装体
US10005901B2 (en) 2012-08-29 2018-06-26 Toyobo Co., Ltd. Resin composition for sealing electrical electronic parts, method of producing electrical electronic parts, and sealed electrical electronic parts
CN107266886B (zh) * 2012-08-29 2019-08-09 东洋纺株式会社 电气电子部件封装用树脂组合物、电气电子部件封装体的制造方法以及电气电子部件封装体
EP2746318A1 (en) * 2012-12-18 2014-06-25 Total Research & Technology Feluy Process for preparing PLA stereocomplex

Also Published As

Publication number Publication date
JP5536330B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5560198B2 (ja) ポリ乳酸組成物の製造方法
KR101507193B1 (ko) 방향족 폴리카보네이트 수지 조성물
EP2527400B1 (en) Polylactic acid composition
JP5173747B2 (ja) ポリ乳酸組成物の製造方法
JPWO2009099225A1 (ja) 樹脂組成物および成形品
US20140206807A1 (en) Polylactic acid resin composition, production method thereof and molded product thereof
JP5612329B2 (ja) ポリ乳酸樹脂組成物
JP5243231B2 (ja) ポリ乳酸組成物およびその成形品
JP5536332B2 (ja) ポリ乳酸組成物およびその成形品
JP5612369B2 (ja) ポリ乳酸組成物
JP5364525B2 (ja) ポリ乳酸組成物の製造方法
JP6211957B2 (ja) 複合体用樹脂組成物および複合体
JP5536330B2 (ja) ポリ乳酸組成物およびその成形品
JP5612365B2 (ja) ポリ乳酸樹脂組成物
JP6077262B2 (ja) ポリ乳酸樹脂組成物および射出成形品
JP5536331B2 (ja) ポリ乳酸組成物およびその成形品
JP5173746B2 (ja) ポリ乳酸組成物の製造方法
JP5612366B2 (ja) ポリ乳酸組成物
JP5612317B2 (ja) ポリ乳酸樹脂組成物
JP5173748B2 (ja) ポリ乳酸組成物の製造方法
JP5662245B2 (ja) ポリ乳酸樹脂組成物
JP2009138095A (ja) 芳香族ポリカーボネート樹脂組成物からなるoa機器部品

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140424

R150 Certificate of patent or registration of utility model

Ref document number: 5536330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150