JP2010150052A - Apparatus for growing sapphire single crystal - Google Patents

Apparatus for growing sapphire single crystal Download PDF

Info

Publication number
JP2010150052A
JP2010150052A JP2008327231A JP2008327231A JP2010150052A JP 2010150052 A JP2010150052 A JP 2010150052A JP 2008327231 A JP2008327231 A JP 2008327231A JP 2008327231 A JP2008327231 A JP 2008327231A JP 2010150052 A JP2010150052 A JP 2010150052A
Authority
JP
Japan
Prior art keywords
heater
carbon
single crystal
crucible
sapphire single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008327231A
Other languages
Japanese (ja)
Inventor
Hideaki Sakae
英章 寒河江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008327231A priority Critical patent/JP2010150052A/en
Publication of JP2010150052A publication Critical patent/JP2010150052A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for growing a sapphire single crystal, wherein bubbles are hardly incorporated into a sapphire single crystal being grown. <P>SOLUTION: The apparatus for growing a sapphire single crystal includes: a crucible 1 in which a sapphire raw material is filled; a carbon heater 30 having a cylindrical heater part 3 and a disk-like heater part 4 for heating the crucible; a heat insulating space chamber 6 for keeping the crucible warm; insulating cylinders 8 provided at the bottom face part 60 of the heat insulating space chamber 6; and heater electrodes 5 each inserted into the insulating cylinder 8 and connected to each carbon heater so as to supply an electric power, and is constituted so that the sapphire single crystal is produced from a sapphire raw material melt 10 by a rotary pulling method, wherein the thickness of a heat insulating material for constituting the bottom face part 60 of the heat insulating space chamber 6 is set to be ≥90 mm and the distance from the surface of the bottom face part 60 of the heat insulating space chamber 6 to the lower end of the disk-like heater part 4 is set to be ≥10 mm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、サファイア原料融液から回転引き上げ法によりサファイア単結晶を製造するサファイア単結晶育成装置に係り、特に、育成されたサファイア単結晶内部に気泡が含まれ難いサファイア単結晶育成装置の改良に関するものである。   The present invention relates to a sapphire single crystal growing apparatus for producing a sapphire single crystal from a sapphire raw material melt by a rotational pulling method, and more particularly to an improvement of a sapphire single crystal growing apparatus in which bubbles are not easily contained inside the grown sapphire single crystal. Is.

光学材料を得るために用いられる基板としてサファイア基板があり、この基板は発光ダイオードの発光層を成長させるための下地として用いられることが多い。また、サファイア基板を得るためのサファイア単結晶を製造する主要な方法としては、サファイア原料を坩堝内で融解し、その原料融液表面に種結晶を接触させて徐々に引き上げることにより単結晶を育成するチョクラルスキー法(Cz法)やカイロポーラス法(Kyropulous法)等が知られている。尚、育成されたサファイア単結晶は基板状に加工され、表面を研磨することによりサファイア基板が製造される。   There is a sapphire substrate as a substrate used for obtaining an optical material, and this substrate is often used as a base for growing a light emitting layer of a light emitting diode. The main method for producing a sapphire single crystal to obtain a sapphire substrate is to grow a single crystal by melting a sapphire raw material in a crucible and bringing the seed crystal into contact with the raw material melt surface and gradually pulling it up. The Czochralski method (Cz method), the Cairo porous method (Kyropulous method), and the like are known. The grown sapphire single crystal is processed into a substrate shape, and the surface is polished to produce a sapphire substrate.

サファイア原料融液から回転引き上げ法によりサファイア単結晶を製造するには、図2に示すようなサファイア単結晶育成装置が用いられる。   In order to manufacture a sapphire single crystal from the sapphire raw material melt by a rotational pulling method, a sapphire single crystal growing apparatus as shown in FIG. 2 is used.

すなわち、このサファイア単結晶育成装置は、図2に示すようにサファイア原料が充填される坩堝1と、坩堝1の外周面を加熱する円筒状ヒータ部3並びに坩堝1の底面を加熱する円盤状ヒータ部4を有するカーボン製ヒータ30と、カーボン製の断熱材料により構成されかつ坩堝1とカーボン製ヒータ30が少なくとも収容されて上記坩堝1が保温される断熱空間室6と、断熱空間室6の底面部60に設けられた開口に嵌入された酸化アルミニウム製の絶縁筒8と、この絶縁筒8内に挿入されかつ先端側が上記カーボン製ヒータ30の円筒状ヒータ部3に接続されて電力を供給するカーボン製の円柱状ヒータ電極5と、同じく断熱空間室6の上記底面部60に設けられた開口に嵌入された絶縁筒8内に挿入されかつ先端側がカーボン製ヒータ30の円盤状ヒータ部4に接続されて電力を供給するカーボン製の円柱状ヒータ電極5と、同じく上記底面部60の開口と上記円盤状ヒータ部4の開口を貫通するように設けられて上記坩堝1を支持する支持軸2と、上記断熱空間室6の上面部61に設けられた開口に挿入されかつ先端に種結晶11が取り付けられる引き上げ軸9を備え、上記断熱空間室6は炉体7の内面に沿って設けられていると共に、坩堝1内の原料融液10から回転引き上げ法によりサファイア単結晶12が育成されるようになっている。   That is, this sapphire single crystal growing apparatus includes a crucible 1 filled with a sapphire raw material, a cylindrical heater portion 3 for heating the outer peripheral surface of the crucible 1 and a discoid heater for heating the bottom surface of the crucible 1 as shown in FIG. A heater 30 made of carbon having a portion 4, a heat insulating space 6 made of a heat insulating material made of carbon and containing at least the crucible 1 and the carbon heater 30 to keep the crucible 1 warm, and a bottom surface of the heat insulating space 6 An insulating cylinder 8 made of aluminum oxide inserted into an opening provided in the section 60, and inserted into the insulating cylinder 8 and the tip side thereof is connected to the cylindrical heater section 3 of the carbon heater 30 to supply electric power. The cylindrical heater electrode 5 made of carbon and the insulating cylinder 8 fitted in the opening provided in the bottom surface portion 60 of the heat insulating space 6 are inserted into the insulating cylinder 8 and the tip side is inserted into the carbon heater. The cylindrical heater electrode 5 made of carbon that is connected to the 30 disk-shaped heater portions 4 and supplies power, and is provided so as to pass through the opening of the bottom surface portion 60 and the opening of the disk-shaped heater portion 4. A support shaft 2 that supports the crucible 1 and a pulling shaft 9 that is inserted into an opening provided in the upper surface portion 61 of the heat insulation space chamber 6 and to which a seed crystal 11 is attached at the tip, the heat insulation space chamber 6 being a furnace body. 7, and a sapphire single crystal 12 is grown from the raw material melt 10 in the crucible 1 by a rotary pulling method.

しかし、図2に示すサファイア単結晶育成装置を用いてサファイア単結晶を育成すると、得られる結晶は無色透明であるが、しばしば結晶内部に気泡の塊を含むものが存在する。このような結晶から基板を製造すると、基板内あるいは基板表面に気泡を含む恐れがある。そして、サファイア基板上には、上述したように発光ダイオードの発光層を成長させるため、サファイア基板表面上には欠陥がなるべく少ないことが望ましい。   However, when a sapphire single crystal is grown using the sapphire single crystal growth apparatus shown in FIG. 2, the resulting crystal is colorless and transparent, but there are often those containing a lump of bubbles inside the crystal. When a substrate is manufactured from such a crystal, there is a possibility that bubbles are included in the substrate or on the substrate surface. Since the light emitting layer of the light emitting diode is grown on the sapphire substrate as described above, it is desirable that the surface of the sapphire substrate has as few defects as possible.

ところで、上記気泡の原因は、原料融液中に存在するガス成分の結晶成長界面における取り込みである。そして、成長界面上に存在するガス成分を単結晶中に取り込ませないため、本発明者は、過去において融液内の対流を強化することで結晶中へのガス成分の取り込みが抑えられることを経験的に知見として得ている。この方法として、特許文献1には低酸素濃度雰囲気下で結晶育成を行うことで融液の対流を強化するという方法が開示されている。   By the way, the cause of the bubbles is the uptake of gas components present in the raw material melt at the crystal growth interface. And since the gas component existing on the growth interface is not taken into the single crystal, the present inventor has confirmed that the gas component can be prevented from being taken into the crystal by strengthening the convection in the melt in the past. This is empirically obtained as knowledge. As this method, Patent Document 1 discloses a method of enhancing the convection of the melt by performing crystal growth in a low oxygen concentration atmosphere.

そして、特許文献1に記載された方法で結晶育成を行った場合、対流が強化される結果、結晶中に取り込まれる気泡は確かに減少するが、サファイア単結晶を引き上げ方法で育成する際の特徴である坩堝下方への凸形状部の結晶成長が助長されるという別の弊害が生ずる。そして、上記凸形状部が坩堝底部と固着すると、サファイア種結晶に大きな力がかかるため、最終的に破断して結晶が坩堝内に落下し、結晶育成の継続が困難になる問題があった。
特開平09−278592号公報
And when crystal growth is performed by the method described in Patent Document 1, as a result of enhancing the convection, the bubbles taken into the crystal are surely reduced, but the characteristics of growing the sapphire single crystal by the pulling method Another problem is that the crystal growth of the convex portion below the crucible is promoted. And when the said convex-shaped part adheres to a crucible bottom part, since a big force will be applied to a sapphire seed crystal, there existed a problem which it will fracture | rupture finally and a crystal will fall in a crucible and it will become difficult to continue crystal growth.
JP 09-278592 A

そこで、本発明者は結晶内部の気泡が原料融液中に存在するガス成分であるという前提のもと、原料融液中に存在するガス成分を減少させる新たな方法を検討するため、結晶中に取り込まれた気泡の構成成分を調べたところ、そのほとんどが一酸化炭素ガスであることが分かった。そして、原料融液中に一酸化炭素ガスが取り込まれるメカニズムについて、本発明者は以下のように推定した。
(1)高温、低酸素分圧下において、酸化アルミニウム原料融液が分解する。
Therefore, the present inventor considered a new method for reducing the gas component existing in the raw material melt on the premise that the bubbles in the crystal are gas components existing in the raw material melt. When the constituent components of the bubbles taken in were investigated, most of them were found to be carbon monoxide gas. And this inventor estimated as follows about the mechanism in which carbon monoxide gas is taken in in raw material melt.
(1) The aluminum oxide raw material melt decomposes at high temperature and low oxygen partial pressure.

Al(m)→AlO(g)+O(g)
(2)炉内で飛散したカーボンが原料融液中の分解アルミナと接触し、このアルミナと反応することで一酸化炭素ガスを生成する。
Al 2 O 3 (m) → Al 2 O (g) + O 2 (g)
(2) Carbon scattered in the furnace comes into contact with decomposed alumina in the raw material melt, and reacts with the alumina to generate carbon monoxide gas.

AlO(g)+C(s)→CO(g)+2Al(g)
(3)一酸化炭素ガスは融液の対流によって結晶成長界面付近に運ばれ、結晶化の際に結晶中に取り込まれる。
Al 2 O (g) + C (s) → CO (g) + 2Al (g)
(3) The carbon monoxide gas is carried to the vicinity of the crystal growth interface by the convection of the melt, and is taken into the crystal at the time of crystallization.

上記メカニズムによると、炉内において飛散するカーボンと原料融液との接触を抑えることが結晶中への気泡の取り込みを低減させることにつながると考えられる。   According to the mechanism described above, it is considered that suppressing the contact between the carbon scattered in the furnace and the raw material melt leads to a reduction in the incorporation of bubbles into the crystal.

ここで、カーボンの飛散源としては、高温に晒されるカーボン製ヒータ自身やカーボン製ヒータ電極、あるいは坩堝を取り囲むカーボン製保温材等が考えられる。   Here, as a carbon scattering source, a carbon heater itself, a carbon heater electrode exposed to a high temperature, a carbon heat insulating material surrounding the crucible, or the like can be considered.

そして、結晶育成後の各部材の外観を観察したところ、カーボン製ヒータ電極からカーボンが微粉末となって飛散し明らかにやせ細っていることが確認された。これは、カーボン製ヒータへの投入電力が大きいことから、上記ヒータからカーボン製ヒータ電極へ伝わる熱量も大きいためカーボン製ヒータ電極の温度が高温に達し、カーボン製ヒータ電極とこのヒータ電極が挿入される酸化アルミニウム製の絶縁筒との間で放電現象を発生させたためと思われる。尚、上記放電現象は、カーボン製ヒータへの投入電力を下げることで発生を抑えることができるが、結晶育成に適した電力を下回った状態で育成を行うと、結晶の急激な成長、または結晶と坩堝底部との固着等の現象が起きる問題があった。   And when the external appearance of each member after crystal growth was observed, it was confirmed that carbon was scattered as fine powder from the carbon heater electrode and was clearly thin. This is because the power input to the carbon heater is large, so the amount of heat transferred from the heater to the carbon heater electrode is large, so the temperature of the carbon heater electrode reaches a high temperature, and the carbon heater electrode and this heater electrode are inserted. This is probably because a discharge phenomenon occurred between the aluminum oxide insulating cylinder. The above discharge phenomenon can be suppressed by lowering the input power to the carbon heater. However, if the growth is carried out below the power suitable for crystal growth, rapid growth of the crystal or crystal There has been a problem in that a phenomenon such as sticking between the crucible and the bottom of the crucible occurs.

そこで、発明者は、坩堝周囲の保温性を損なうことなくカーボン製ヒータへの投入電力を低減できる方法について鋭意検討を行った結果、カーボン製ヒータ電極を介して上記カーボン製ヒータからの熱量の逃げが多いと予想される断熱空間室における上記底面部の厚さを大きくすることで、結晶育成に必要とされるカーボン製ヒータへの投入電力を低減でき、かつ、これによりカーボン微粉末の発生を抑制できることを見出すに至った。   In view of this, the inventor has intensively studied a method for reducing the input power to the carbon heater without impairing the heat retaining property around the crucible, and as a result, escaped heat from the carbon heater through the carbon heater electrode. By increasing the thickness of the bottom surface in the heat-insulated space chamber, which is expected to be large, it is possible to reduce the input power to the carbon heater required for crystal growth and to generate carbon fine powder. It came to discover that it can suppress.

本発明はこのような技術的検討を経て完成されたもので、その課題とするところは、上述した問題点を解消して、育成歩留まりが高くかつ育成したサファイア単結晶中に気泡が含まれないサファイア単結晶育成装置を提供することにある。   The present invention has been completed through such technical studies, and the problem is that the above-mentioned problems are solved, the growth yield is high, and no bubbles are contained in the grown sapphire single crystal. The object is to provide a sapphire single crystal growth apparatus.

すなわち、請求項1に係る発明は、
サファイア原料が充填される坩堝と、坩堝外周面を加熱する円筒状ヒータ部並びに坩堝底面を加熱する円盤状ヒータ部を有するカーボン製ヒータと、カーボン製の断熱材料により構成されかつ坩堝とカーボン製ヒータが収容されて上記坩堝が保温される断熱空間室と、断熱空間室の底面部に設けられた開口に嵌入された絶縁筒と、この絶縁筒内に挿入されかつ先端側が上記カーボン製ヒータに接続されたカーボン製ヒータ電極とを備え、上記サファイア原料の融液から回転引き上げ法によりサファイア単結晶を製造するサファイア単結晶育成装置において、
上記断熱空間室の底面部を構成する断熱材料の厚さが90mm以上、上記断熱空間室の底面部表面から上記円盤状ヒータ部下端までの距離が10mm以上に設定されていることを特徴とするものである。
That is, the invention according to claim 1
A crucible filled with a sapphire raw material, a carbon heater having a cylindrical heater portion for heating the outer peripheral surface of the crucible and a disk-like heater portion for heating the bottom surface of the crucible, and a crucible and a carbon heater composed of a heat insulating material made of carbon A heat-insulating space chamber in which the crucible is kept warm, an insulating cylinder fitted into an opening provided in the bottom surface of the heat-insulating space chamber, and a distal end side connected to the carbon heater inserted into the insulating cylinder In a sapphire single crystal growing apparatus for producing a sapphire single crystal from a melt of the sapphire raw material by a rotational pulling method,
The thickness of the heat insulating material constituting the bottom surface portion of the heat insulation space chamber is set to 90 mm or more, and the distance from the surface of the bottom surface portion of the heat insulation space chamber to the lower end of the disk-shaped heater portion is set to 10 mm or more. Is.

請求項1に係る本発明のサファイア単結晶育成装置によれば、
坩堝とカーボン製ヒータが収容される断熱空間室における底面部を構成する断熱材料の厚さが90mm以上と厚く設定されているため、上記底面部における断熱性が向上して、カーボン製ヒータからカーボン製ヒータ電極を介し断熱空間室外へ放出される熱量を低減させることができ、その分、上記カーボン製ヒータへの投入電力の低減が図れる。
According to the sapphire single crystal growing apparatus of the present invention according to claim 1,
Since the thickness of the heat insulating material constituting the bottom surface portion in the heat insulating space chamber in which the crucible and the carbon heater are accommodated is set to be 90 mm or more, the heat insulating property in the bottom surface portion is improved, and the carbon heater is changed to carbon. The amount of heat released to the outside of the heat insulating space through the heater electrode can be reduced, and the input power to the carbon heater can be reduced accordingly.

そして、投入電力の低減によりカーボン製ヒータ電極とこのヒータ電極が挿入される絶縁筒間の上述した放電現象を抑制でき、更に、断熱空間室の底面部表面から円盤状ヒータ部下端までの距離が10mm以上に設定されていることから上記底面部と円盤状ヒータ部間の放電現象も抑制できるため、結晶育成中におけるカーボンの飛散に起因した原料融液中への一酸化炭素の取り込みが防止され、これにより気泡を含まない高品質なサファイア単結晶を得ることが可能となる。   And, by reducing the input power, the above-described discharge phenomenon between the carbon heater electrode and the insulating cylinder into which the heater electrode is inserted can be suppressed, and further, the distance from the bottom surface of the heat insulating space chamber to the lower end of the disk-shaped heater is reduced. Since it is set to 10 mm or more, the discharge phenomenon between the bottom surface portion and the disk-shaped heater portion can also be suppressed, so that carbon monoxide can be prevented from being taken into the raw material melt due to carbon scattering during crystal growth. This makes it possible to obtain a high-quality sapphire single crystal that does not contain bubbles.

従って、製品の歩留まりが向上して大きな経済効果を得ることができ、また、放電現象が抑制されることによりヒータ電極および絶縁筒等の損傷を低減できるため、サファイア単結晶の製造コストを大きく改善することが可能となる。   Therefore, the yield of the product can be improved and a great economic effect can be obtained, and the damage to the heater electrode and the insulating cylinder can be reduced by suppressing the discharge phenomenon, so that the manufacturing cost of the sapphire single crystal is greatly improved. It becomes possible to do.

以下、図面を用いて本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本発明に係るサファイア単結晶育成装置は、図1に示すようにサファイア原料が充填される坩堝1と、坩堝1の外周面を加熱する円筒状ヒータ部3並びに坩堝1の底面を加熱する円盤状ヒータ部4を有するカーボン製ヒータ30と、カーボン製の断熱材料により構成されかつ坩堝1とカーボン製ヒータ30が少なくとも収容されて上記坩堝1が保温される断熱空間室6と、断熱空間室6の底面部60に設けられた開口に嵌入された酸化アルミニウム製の絶縁筒8と、この絶縁筒8内に挿入されかつ先端側が上記カーボン製ヒータ30の円筒状ヒータ部3に接続されて電力を供給するカーボン製の円柱状ヒータ電極5と、同じく断熱空間室6の上記底面部60に設けられた開口に嵌入された絶縁筒8内に挿入されかつ先端側がカーボン製ヒータ30の円盤状ヒータ部4に接続されて電力を供給するカーボン製の円柱状ヒータ電極5と、同じく上記底面部60の開口と上記円盤状ヒータ部4の開口を貫通するように設けられて上記坩堝1を支持する支持軸2と、上記断熱空間室6の上面部61に設けられた開口に挿入されかつ先端に種結晶11が取り付けられる引き上げ軸9を備え、上記断熱空間室6は炉体7の内面に沿って設けられていると共に、坩堝1内の原料融液10から回転引き上げ法によりサファイア単結晶12が育成されるようになっている。   First, the sapphire single crystal growing apparatus according to the present invention heats a crucible 1 filled with a sapphire raw material, a cylindrical heater portion 3 for heating the outer peripheral surface of the crucible 1 and the bottom surface of the crucible 1 as shown in FIG. A carbon heater 30 having a disk-shaped heater portion 4, a heat insulating space chamber 6 made of carbon heat insulating material and containing at least the crucible 1 and the carbon heater 30 to keep the crucible 1 warm; and a heat insulating space chamber An insulating cylinder 8 made of aluminum oxide that is fitted into an opening provided in the bottom surface portion 6 of the battery 6, and a distal end side of the insulating cylinder 8 that is inserted into the insulating cylinder 8 and connected to the cylindrical heater portion 3 of the carbon heater 30 is connected to the electric power. The cylindrical heater electrode 5 made of carbon and the insulating cylinder 8 inserted in the opening provided in the bottom surface portion 60 of the heat insulating space 6 are inserted into the insulating cylinder 8 and the tip side is made of carbon. The cylindrical heater electrode 5 made of carbon that is connected to the disk-shaped heater portion 4 of the heater 30 and supplies power, and is also provided so as to penetrate the opening of the bottom surface portion 60 and the opening of the disk-shaped heater portion 4. A support shaft 2 that supports the crucible 1 and a pulling shaft 9 that is inserted into an opening provided in the upper surface portion 61 of the heat insulation space chamber 6 and to which a seed crystal 11 is attached at the tip. Along with the inner surface of the furnace body 7, a sapphire single crystal 12 is grown from the raw material melt 10 in the crucible 1 by a rotary pulling method.

尚、本発明に係るサファイア単結晶育成装置は、当然のことながら図1に示された構造のものに限定されるものではない。例えば、図1のサファイア単結晶育成装置において、上記カーボン製ヒータ30が、坩堝1の外周面を加熱する円筒状ヒータ部3と坩堝1の底面を加熱する円盤状ヒータ部4とを別体のヒータで構成しているが、坩堝1の底面を加熱する上記円盤状ヒータ部4に代えて、断面略L字形状若しくはカップ型のカーボン製ヒータ単体でカーボン製ヒータ30を構成してもよい。   Note that the sapphire single crystal growing apparatus according to the present invention is not limited to the structure shown in FIG. For example, in the sapphire single crystal growing apparatus of FIG. 1, the carbon heater 30 includes a cylindrical heater unit 3 that heats the outer peripheral surface of the crucible 1 and a disc-shaped heater unit 4 that heats the bottom surface of the crucible 1. Although the heater is configured, the carbon heater 30 may be configured by a single carbon heater having a substantially L-shaped cross section or a cup type in place of the disk-shaped heater portion 4 that heats the bottom surface of the crucible 1.

図1に示す本発明に係るサファイア単結晶育成装置においては、サファイア単結晶の育成準備段階において、断熱空間室6の底面部60を構成するカーボン製の断熱材料の厚さXの最小値が90mm(図2に示された従来のサファイア単結晶育成装置では断熱材料の厚さが80mmであり、10mm単位で断熱材料の厚さを追加できる)、かつ、カーボン製の断熱材料の厚さXの最大値は、上記底面部60表面から円盤状ヒータ部4下端までの距離が少なくとも10mmとなる範囲で適宜値に調節される。尚、カーボン製の断熱材料の厚さXが必要以上に大きく設定されて、上記底面部60表面から円盤状ヒータ部4下端までの距離が10mm未満になってしまうと、カーボン製の断熱材料で構成される底面部60と円盤状ヒータ部4間において放電現象が生ずる危険性があるため装置制約上使用することはできない。   In the sapphire single crystal growing apparatus according to the present invention shown in FIG. 1, the minimum value of the thickness X of the carbon heat insulating material constituting the bottom surface portion 60 of the heat insulating space 6 is 90 mm in the sapphire single crystal growing preparation stage. (In the conventional sapphire single crystal growing apparatus shown in FIG. 2, the thickness of the heat insulating material is 80 mm, and the thickness of the heat insulating material can be added in units of 10 mm), and the thickness X of the heat insulating material made of carbon The maximum value is appropriately adjusted to a value within a range where the distance from the surface of the bottom surface portion 60 to the lower end of the disk-shaped heater portion 4 is at least 10 mm. If the thickness X of the heat insulating material made of carbon is set larger than necessary, and the distance from the surface of the bottom surface portion 60 to the lower end of the disk-shaped heater portion 4 becomes less than 10 mm, the heat insulating material made of carbon is used. Since there is a risk that a discharge phenomenon occurs between the bottom surface portion 60 and the disc-like heater portion 4, the device cannot be used due to device restrictions.

本発明に係るサファイア単結晶育成装置においては、坩堝1とカーボン製ヒータ30が収容される断熱空間室6における底面部60を構成する断熱材料の厚さが90mm以上と厚く設定されているため、上記底面部60における断熱性が向上してカーボン製ヒータ30からカーボン製ヒータ電極5を介し断熱空間室6外へ放出される熱量を低減させることができ、その分、上記カーボン製ヒータ30への投入電力を低減することができる。   In the sapphire single crystal growing apparatus according to the present invention, the thickness of the heat insulating material constituting the bottom surface portion 60 in the heat insulating space chamber 6 in which the crucible 1 and the carbon heater 30 are accommodated is set to be as thick as 90 mm or more. The heat insulating property in the bottom surface portion 60 is improved, and the amount of heat released from the carbon heater 30 to the outside of the heat insulating space 6 through the carbon heater electrode 5 can be reduced. Input power can be reduced.

そして、投入電力の低減によりカーボン製ヒータ電極5とこのヒータ電極が挿入される絶縁筒8間の放電現象を抑制でき、更に、断熱空間室6の底面部60表面から円盤状ヒータ部4下端までの距離が10mm以上に設定されていることから上記底面部60と円盤状ヒータ部4間の放電現象も抑制されるため、結晶育成中におけるカーボンの飛散に起因した原料融液中への一酸化炭素の取り込みが防止され、これにより気泡を含まない高品質なサファイア単結晶を得ることが可能となる。   Further, by reducing the input power, the discharge phenomenon between the carbon heater electrode 5 and the insulating cylinder 8 into which the heater electrode is inserted can be suppressed, and further, from the surface of the bottom surface portion 60 of the heat insulating space 6 to the lower end of the disk-shaped heater portion 4. Is set to 10 mm or more, so that the discharge phenomenon between the bottom surface portion 60 and the disc-like heater portion 4 is also suppressed, so that the oxidation into the raw material melt caused by the scattering of carbon during crystal growth Incorporation of carbon is prevented, which makes it possible to obtain a high-quality sapphire single crystal that does not contain bubbles.

以下に、本発明の実施例について比較例を挙げて詳細に説明するが、本発明はこれ等の実施例によってなんら限定されるものではない。また、得られた基板の内、気泡を含むものが10%以下であるものを合格としている。   Examples of the present invention will be described in detail below with reference to comparative examples, but the present invention is not limited to these examples. Further, among the obtained substrates, those containing 10% or less of bubbles are regarded as acceptable.

[実施例1]
円筒状ヒータ部3と円盤状ヒータ部4を有するカーボン製ヒータ30が組み込まれた図1のサファイア単結晶育成装置において、底面部60を構成するカーボン製断熱材料の厚さを90mmとして、坩堝1とカーボン製ヒータ30が収容される断熱空間室6を組み立てた。このとき、カーボン製断熱材料で構成される底面部60と円盤状ヒータ部4との距離は30mmであった。
[Example 1]
In the sapphire single crystal growing apparatus of FIG. 1 in which the carbon heater 30 having the cylindrical heater portion 3 and the disc heater portion 4 is incorporated, the thickness of the carbon heat insulating material constituting the bottom surface portion 60 is set to 90 mm, and the crucible 1 And the heat insulating space 6 in which the carbon heater 30 is accommodated. At this time, the distance between the bottom surface portion 60 made of the carbon heat insulating material and the disk-shaped heater portion 4 was 30 mm.

そして、坩堝1内に原料としておよそ23kgの高純度(6N)アルミナを投入し、円筒状ヒータ部3と円盤状ヒータ部4を有する上記カーボン製ヒータ30を作動させて2050℃以上に加熱し、高純度アルミナ融液を生成した。尚、結晶育成時の投入電力は、円筒状ヒータ部3が27.12kW、円盤状ヒータ部4が16.08kW、合計43.20kWであった。   Then, about 23 kg of high-purity (6N) alumina is put in the crucible 1 as a raw material, the carbon heater 30 having the cylindrical heater part 3 and the disk-like heater part 4 is operated and heated to 2050 ° C. or higher, A high purity alumina melt was produced. In addition, the input electric power at the time of crystal growth was 27.12 kW for the cylindrical heater portion 3 and 16.08 kW for the disk-like heater portion 4, for a total of 43.20 kW.

次いで、種結晶11としてサファイア単結晶を用い、原料融液10に接触させて引き上げながら、毎時0.10℃から0.30℃の範囲の速度で温度を降下させ、サファイア単結晶の育成を行った。   Next, using a sapphire single crystal as the seed crystal 11, the sapphire single crystal is grown by lowering the temperature at a rate in the range of 0.10 ° C. to 0.30 ° C./hour while pulling it in contact with the raw material melt 10. It was.

結晶育成終了後、円筒状ヒータ部3と円盤状ヒータ部4を有するカーボン製ヒータ30およびカーボン製の円柱状ヒータ電極5を観察したところ、カーボン微粉末の付着は見られなかった。   When the carbon heater 30 having the cylindrical heater portion 3 and the disc-like heater portion 4 and the carbon columnar heater electrode 5 were observed after the completion of the crystal growth, adhesion of fine carbon powder was not observed.

更に、サファイア単結晶育成装置より取り出したサファイア単結晶を基板状に加工し、外観検査を行ったところ、得られた基板すべてに気泡を含んでいないことが分かった。   Furthermore, when the sapphire single crystal taken out from the sapphire single crystal growing apparatus was processed into a substrate and subjected to appearance inspection, it was found that all the obtained substrates did not contain bubbles.

[実施例2]
断熱空間室6の底面部60を構成するカーボン製断熱材料の厚さを110mmとした以外は実施例1と同様にして、坩堝1とカーボン製ヒータ30が収容される断熱空間室6を組み立てた。このとき、カーボン製断熱材料で構成される底面部60と円盤状ヒータ部4との距離は10mmであった。
[Example 2]
The heat insulating space 6 in which the crucible 1 and the carbon heater 30 are accommodated was assembled in the same manner as in Example 1 except that the thickness of the carbon heat insulating material constituting the bottom surface portion 60 of the heat insulating space 6 was 110 mm. . At this time, the distance between the bottom surface portion 60 made of the carbon heat insulating material and the disk-shaped heater portion 4 was 10 mm.

そして、上記以外は実施例1と同様に行った場合、結晶育成時の投入電力は、円筒状ヒータ部3が26.81kW、円盤状ヒータ部4が15.74kW、合計42.55kWであった。   And when it carried out similarly to Example 1 except the above, the input electric power at the time of crystal growth was 26.81 kW for the cylindrical heater part 3 and 15.74 kW for the disk-shaped heater part 4, and was a total of 42.55 kW. .

結晶育成終了後、円筒状ヒータ部3と円盤状ヒータ部4を有するカーボン製ヒータ30およびカーボン製の円柱状ヒータ電極5を観察したところ、カーボン微粉末の付着は見られなかった。   When the carbon heater 30 having the cylindrical heater portion 3 and the disc-like heater portion 4 and the carbon columnar heater electrode 5 were observed after the completion of the crystal growth, adhesion of fine carbon powder was not observed.

更に、サファイア単結晶育成装置より取り出したサファイア単結晶を基板状に加工し、外観検査を行ったところ、基板の10%に気泡を含んでいることが分かった。   Furthermore, when the sapphire single crystal taken out from the sapphire single crystal growing apparatus was processed into a substrate and subjected to appearance inspection, it was found that 10% of the substrate contained bubbles.

[比較例1]
断熱空間室6の底面部60を構成するカーボン製断熱材料の厚さを従来の80mmとした以外は実施例1と同様にして、坩堝1とカーボン製ヒータ30が収容される断熱空間室6を組み立てた。このとき、カーボン製断熱材料で構成される底面部60と円盤状ヒータ部4との距離は40mmであった。
[Comparative Example 1]
The heat insulating space 6 in which the crucible 1 and the carbon heater 30 are housed is the same as in Example 1 except that the thickness of the carbon heat insulating material constituting the bottom surface portion 60 of the heat insulating space 6 is 80 mm. Assembled. At this time, the distance between the bottom surface portion 60 made of the carbon heat insulating material and the disk-shaped heater portion 4 was 40 mm.

そして、上記以外は実施例1と同様に行った場合、結晶育成時の投入電力は、円筒状ヒータ部3が28.08kW、円盤状ヒータ部4が16.55kW、合計44.63kWであった。   And when it carried out similarly to Example 1 except having mentioned above, the input electric power at the time of crystal growth was 28.08 kW for the cylindrical heater part 3 and 16.55 kW for the disk-shaped heater part 4, and was a total of 44.63 kW. .

結晶育成終了後、円筒状ヒータ部3と円盤状ヒータ部4を有するカーボン製ヒータ30およびカーボン製の円柱状ヒータ電極5を観察したところ、カーボン微粉末の付着が認められた。   After the completion of crystal growth, the carbon heater 30 having the cylindrical heater portion 3 and the disk-like heater portion 4 and the carbon columnar heater electrode 5 were observed, and adhesion of fine carbon powder was observed.

更に、サファイア単結晶育成装置より取り出したサファイア単結晶を基板状に加工し、外観検査を行ったところ、基板の50%に気泡を含んでいることが分かった。   Furthermore, when the sapphire single crystal taken out from the sapphire single crystal growing apparatus was processed into a substrate and subjected to appearance inspection, it was found that 50% of the substrate contained bubbles.

本発明に係るサファイア単結晶育成装置によれば、結晶育成中におけるカーボンの飛散に起因した原料融液中への一酸化炭素の取り込みが防止され、これにより気泡を含まない高品質なサファイア単結晶を得ることが可能となるため、光学材料を得るための基板として利用される産業上の利用可能性を有している。   According to the sapphire single crystal growing apparatus according to the present invention, the incorporation of carbon monoxide into the raw material melt caused by the scattering of carbon during crystal growth is prevented, whereby a high quality sapphire single crystal that does not contain bubbles. Therefore, it has the industrial applicability used as a board | substrate for obtaining an optical material.

本発明に係るサファイア単結晶育成装置の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the sapphire single crystal growth apparatus which concerns on this invention. 従来例に係るサファイア単結晶育成装置の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the sapphire single crystal growth apparatus which concerns on a prior art example.

符号の説明Explanation of symbols

1 坩堝
2 支持軸
3 円筒状ヒータ部
4 円盤状ヒータ部
5 円柱状ヒータ電極
6 断熱空間室
7 炉体
8 絶縁筒
9 引き上げ軸
10 原料融液
11 種結晶
12 サファイア単結晶
30 カーボン製ヒータ
60 断熱空間室6の底面部
61 断熱空間室6の上面部
DESCRIPTION OF SYMBOLS 1 Crucible 2 Support shaft 3 Cylindrical heater part 4 Disc shaped heater part 5 Columnar heater electrode 6 Heat insulation space room 7 Furnace body 8 Insulating cylinder 9 Pulling shaft 10 Raw material melt 11 Seed crystal 12 Sapphire single crystal 30 Carbon heater 60 Heat insulation Bottom portion of space chamber 61 61 Top surface portion of heat insulation space chamber 6

Claims (1)

サファイア原料が充填される坩堝と、坩堝外周面を加熱する円筒状ヒータ部並びに坩堝底面を加熱する円盤状ヒータ部を有するカーボン製ヒータと、カーボン製の断熱材料により構成されかつ坩堝とカーボン製ヒータが収容されて上記坩堝が保温される断熱空間室と、断熱空間室の底面部に設けられた開口に嵌入された絶縁筒と、この絶縁筒内に挿入されかつ先端側が上記カーボン製ヒータに接続されたカーボン製ヒータ電極とを備え、上記サファイア原料の融液から回転引き上げ法によりサファイア単結晶を製造するサファイア単結晶育成装置において、
上記断熱空間室の底面部を構成する断熱材料の厚さが90mm以上、上記断熱空間室の底面部表面から上記円盤状ヒータ部下端までの距離が10mm以上に設定されていることを特徴とするサファイア単結晶育成装置。
A crucible filled with a sapphire raw material, a carbon heater having a cylindrical heater portion for heating the outer peripheral surface of the crucible and a disk-like heater portion for heating the bottom surface of the crucible, and a crucible and a carbon heater composed of a heat insulating material made of carbon A heat-insulating space chamber in which the crucible is kept warm, an insulating cylinder fitted into an opening provided in the bottom surface of the heat-insulating space chamber, and a distal end side connected to the carbon heater inserted into the insulating cylinder In a sapphire single crystal growing apparatus for producing a sapphire single crystal from a melt of the sapphire raw material by a rotational pulling method,
The thickness of the heat insulating material constituting the bottom surface portion of the heat insulation space chamber is set to 90 mm or more, and the distance from the surface of the bottom surface portion of the heat insulation space chamber to the lower end of the disk-shaped heater portion is set to 10 mm or more. Sapphire single crystal growth equipment.
JP2008327231A 2008-12-24 2008-12-24 Apparatus for growing sapphire single crystal Pending JP2010150052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327231A JP2010150052A (en) 2008-12-24 2008-12-24 Apparatus for growing sapphire single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327231A JP2010150052A (en) 2008-12-24 2008-12-24 Apparatus for growing sapphire single crystal

Publications (1)

Publication Number Publication Date
JP2010150052A true JP2010150052A (en) 2010-07-08

Family

ID=42569575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327231A Pending JP2010150052A (en) 2008-12-24 2008-12-24 Apparatus for growing sapphire single crystal

Country Status (1)

Country Link
JP (1) JP2010150052A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286782A (en) * 2011-09-15 2011-12-21 江苏华盛天龙光电设备股份有限公司 Sapphire crystal growth method
WO2012099343A3 (en) * 2011-01-19 2012-11-22 Lg Siltron Inc. Resistance heated sapphire single crystal ingot grower, method of manufacturing resistance heated sapphire sngle crystal ingot, sapphire sngle crystal ingot, and sapphire wafer
JP2013245149A (en) * 2012-05-28 2013-12-09 Sumitomo Chemical Co Ltd Raw material alumina for producing sapphire single crystal and method for producing the sapphire single crystal
JP2013256424A (en) * 2012-06-14 2013-12-26 Sumitomo Metal Mining Co Ltd Apparatus for growing sapphire single crystal
KR20160016375A (en) * 2014-08-05 2016-02-15 주식회사 엘지실트론 Ingot growing apparatus
CN105887186A (en) * 2016-05-30 2016-08-24 上海超硅半导体有限公司 Silicon single-crystal pulling equipment and growing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175889A (en) * 1995-12-26 1997-07-08 Shin Etsu Handotai Co Ltd Single crystal pull-up apparatus
JPH1087393A (en) * 1996-09-06 1998-04-07 Mitsubishi Materials Shilicon Corp Heater electrode structure in single crystal pulling device
JPH10167876A (en) * 1996-11-29 1998-06-23 Super Silicon Kenkyusho:Kk Device for producing crystal by cz method
JP2002326888A (en) * 2001-05-01 2002-11-12 Shin Etsu Handotai Co Ltd Device for manufacturing semiconductor single crystal and method for manufacturing silicon single crystal using the same
JP2007223830A (en) * 2006-02-22 2007-09-06 Sumitomo Metal Mining Co Ltd Method of growing oxide single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175889A (en) * 1995-12-26 1997-07-08 Shin Etsu Handotai Co Ltd Single crystal pull-up apparatus
JPH1087393A (en) * 1996-09-06 1998-04-07 Mitsubishi Materials Shilicon Corp Heater electrode structure in single crystal pulling device
JPH10167876A (en) * 1996-11-29 1998-06-23 Super Silicon Kenkyusho:Kk Device for producing crystal by cz method
JP2002326888A (en) * 2001-05-01 2002-11-12 Shin Etsu Handotai Co Ltd Device for manufacturing semiconductor single crystal and method for manufacturing silicon single crystal using the same
JP2007223830A (en) * 2006-02-22 2007-09-06 Sumitomo Metal Mining Co Ltd Method of growing oxide single crystal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099343A3 (en) * 2011-01-19 2012-11-22 Lg Siltron Inc. Resistance heated sapphire single crystal ingot grower, method of manufacturing resistance heated sapphire sngle crystal ingot, sapphire sngle crystal ingot, and sapphire wafer
KR101285935B1 (en) 2011-01-19 2013-07-12 주식회사 엘지실트론 Resistance Heating Grower of Sapphire Single Crystal Ingot, Manufacturing Method of Sapphire Single Crystal Ingot using Resistance Heating, Sapphire Single Crystal Ingot and Sapphire Wafer
US8597756B2 (en) 2011-01-19 2013-12-03 Lg Siltron Inc. Resistance heated sapphire single crystal ingot grower, method of manufacturing resistance heated sapphire single crystal ingot, sapphire single crystal ingot, and sapphire wafer
CN102286782A (en) * 2011-09-15 2011-12-21 江苏华盛天龙光电设备股份有限公司 Sapphire crystal growth method
JP2013245149A (en) * 2012-05-28 2013-12-09 Sumitomo Chemical Co Ltd Raw material alumina for producing sapphire single crystal and method for producing the sapphire single crystal
JP2013256424A (en) * 2012-06-14 2013-12-26 Sumitomo Metal Mining Co Ltd Apparatus for growing sapphire single crystal
KR20160016375A (en) * 2014-08-05 2016-02-15 주식회사 엘지실트론 Ingot growing apparatus
KR101658284B1 (en) * 2014-08-05 2016-09-20 주식회사 엘지실트론 Ingot growing apparatus
CN105887186A (en) * 2016-05-30 2016-08-24 上海超硅半导体有限公司 Silicon single-crystal pulling equipment and growing method

Similar Documents

Publication Publication Date Title
JP2008007353A (en) Apparatus for growing sapphire single crystal and growing method using the same
JP5459004B2 (en) Method for producing sapphire single crystal
JP2010150052A (en) Apparatus for growing sapphire single crystal
JP4702898B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
KR20120013300A (en) Quartz glass crucible for pulling single-crystal silicon and process for producing single-crystal silicon
JP4844428B2 (en) Method for producing sapphire single crystal
JP4905138B2 (en) Method for producing aluminum oxide single crystal
JP4904862B2 (en) Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JP4735334B2 (en) Method for producing aluminum oxide single crystal
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JP2018104248A (en) Quartz glass crucible for pulling silicon single crystal
JP2006206342A (en) Quartz glass crucible whose inner surface is semi-crystallized, its manufacturing method and application
JP4905171B2 (en) Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method
JP2009120453A (en) Method of manufacturing aluminum oxide single crystal
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP7113478B2 (en) Crucible and Single Crystal Growth Apparatus and Growth Method
JP2007091532A (en) Silica glass crucible
JP5685894B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP2007022865A (en) Method for manufacturing silicon single crystal
JP4983776B2 (en) Sapphire single crystal growth equipment
US7074731B2 (en) Method for producing hydrogen-doped silica powder, hydrogen-doped silica powder obtained from that method for use in a quartz glass crucible
JP2009242150A (en) Method for producing oxide single crystal
JP4788445B2 (en) Pulling method of silicon single crystal
JP2010265150A (en) Method for producing sapphire single crystal and method for producing seed crystal
JP2010280546A (en) Method for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403