JP2009242150A - Method for producing oxide single crystal - Google Patents

Method for producing oxide single crystal Download PDF

Info

Publication number
JP2009242150A
JP2009242150A JP2008089242A JP2008089242A JP2009242150A JP 2009242150 A JP2009242150 A JP 2009242150A JP 2008089242 A JP2008089242 A JP 2008089242A JP 2008089242 A JP2008089242 A JP 2008089242A JP 2009242150 A JP2009242150 A JP 2009242150A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
oxide single
crucible
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008089242A
Other languages
Japanese (ja)
Other versions
JP4957619B2 (en
Inventor
Toshiyuki Omi
利行 小見
Kenji Murashita
憲治 村下
Toshio Kochiya
敏男 東風谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008089242A priority Critical patent/JP4957619B2/en
Publication of JP2009242150A publication Critical patent/JP2009242150A/en
Application granted granted Critical
Publication of JP4957619B2 publication Critical patent/JP4957619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high quality oxide single crystal by suppressing generation of cracks and residual stress in the single crystal when a grown single crystal is separated from a raw material melt. <P>SOLUTION: In the method for producing the oxide single crystal by a melting/solidifying method, a raw material for the single crystal is charged in a crucible 1 in a furnace body 6 to be heated and melted by a heater 3 provided on the side surface of the crucible 1, and then the crystal grown by bringing a seed crystal into contact with the raw material melt is pulled up. When crystal growth is finished, the oxide single crystal is separated by descending the crucible 1 containing the raw material melt while lowering the temperature in the furnace, and holding the grown oxide single crystal so that the straight body part of the single crystal is positioned lower than the upper end of the heater 3. Thereby, the stress accumulated inside the crystal is removed, crack generated after separating the crystal is suppressed, and the residual stress inside the crystal is mitigated, resulting in reduction of crack and deformation of a wafer, occurring during processing of the wafer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸化物単結晶の製造方法に関し、より詳しくは、育成された単結晶を原料融液から切り離す際にクラックの発生および単結晶内の残留応力を抑制して高品質な酸化物単結晶を製造する方法に関するものである。   The present invention relates to a method for producing an oxide single crystal. More specifically, the present invention relates to a method for producing a high-quality oxide single crystal by suppressing generation of cracks and residual stress in the single crystal when the grown single crystal is separated from a raw material melt. The present invention relates to a method for producing a crystal.

酸化アルミニウム単結晶等の酸化物単結晶は、青色LEDや白色LEDを作製する際のエピタキシャル成長用結晶基板として多く利用されている。これらのLEDは、省エネルギーの観点で照明分野への普及が拡大することが予想されており多方面から注目されている。
上記の酸化物単結晶として良質で大型の単結晶を製造する方法には、チョクラルスキー法(Czochralski−Method)、キロプロス法(Kyropoulus−Method)などの溶融固化法があり工業的に用いられている。特にチョクラルスキー法は汎用性があり、技術的完成度が高いことから最も広く用いられている。
An oxide single crystal such as an aluminum oxide single crystal is widely used as a crystal substrate for epitaxial growth when producing a blue LED or a white LED. These LEDs are expected to spread in the lighting field from the viewpoint of energy saving, and are attracting attention from various fields.
As a method for producing a large single crystal of good quality as the above oxide single crystal, there are melt solidification methods such as the Czochralski method (Czochralski-Method) and the Kiloporus method (Kyroporus-Method), which are industrially used. Yes. In particular, the Czochralski method is most widely used because of its versatility and high technical perfection.

チョクラルスキー法によって酸化物単結晶を製造するには、まずルツボに酸化物原料を充填し、高周波誘導加熱法や抵抗加熱法によりルツボを加熱し原料を溶融する(例えば、特許文献1)。原料が溶融した後、所定の結晶方位に切り出した種結晶を原料融液表面に接触させ、種結晶を所定の回転速度で回転させながら所定の速度で上方に引き上げて単結晶を成長させる。
しかし、酸化物単結晶をチョクラルスキー法で代表される溶融固化法で結晶成長させると、結晶中に小傾角粒界(以下、単に粒界という)が発生しやすい。エピタキシャル成長用結晶基板となるウエハーに粒界が形成されていると、LED特性に悪影響を与えるため、融液固化法により得られた単結晶インゴットから所望のエピタキシャル成長用結晶基板を歩留まり良く得ることが難しいとされていた。
In order to produce an oxide single crystal by the Czochralski method, first, an oxide raw material is filled in a crucible, and the crucible is heated by a high frequency induction heating method or a resistance heating method to melt the raw material (for example, Patent Document 1). After the raw material is melted, the seed crystal cut in a predetermined crystal orientation is brought into contact with the surface of the raw material melt, and the single crystal is grown by pulling upward at a predetermined speed while rotating the seed crystal at a predetermined rotation speed.
However, when an oxide single crystal is crystal-grown by a melt solidification method typified by the Czochralski method, a small-angle grain boundary (hereinafter simply referred to as a grain boundary) is likely to occur in the crystal. If a grain boundary is formed on a wafer serving as a crystal substrate for epitaxial growth, the LED characteristics are adversely affected. Therefore, it is difficult to obtain a desired crystal substrate for epitaxial growth from a single crystal ingot obtained by the melt solidification method with a high yield. It was said.

結晶中に発生する粒界を低減するため、溶融固化法で酸化物単結晶を育成する際、ルツボ周囲の断熱材の構成及びルツボとヒーターの位置関係を調節し、単結晶引き上げ軸方向に対する固液界面近傍の温度勾配を大きくすることで、粒界の発生が抑制され良質な結晶が得られることが知られている。しかし、固液界面近傍の温度勾配が大きな状態では、成長した結晶内の応力が大きくなり、内部応力が除去されないまま結晶を冷却した場合、結晶にクラックが発生することがある。また、クラックの無い結晶が得られた場合でもエピタキシャル成長用基板に加工する工程において結晶内の残留応力による基板の変形やクラックが発生し、歩留まりを大きく下げる原因となる。   In order to reduce the grain boundaries generated in the crystal, when the oxide single crystal is grown by the melt solidification method, the composition of the heat insulating material around the crucible and the positional relationship between the crucible and the heater are adjusted so that the solid crystal with respect to the single crystal pulling axis direction is adjusted. It is known that by increasing the temperature gradient in the vicinity of the liquid interface, the generation of grain boundaries is suppressed, and high-quality crystals can be obtained. However, when the temperature gradient near the solid-liquid interface is large, the stress in the grown crystal becomes large, and if the crystal is cooled without removing the internal stress, cracks may occur in the crystal. Even when a crystal free of cracks is obtained, the substrate is deformed or cracked due to residual stress in the crystal during the process of processing into an epitaxial growth substrate, which causes a significant decrease in yield.

そのために、結晶内の残留応力の除去方法として、後加熱ゾーンを設けた成長装置中で、成長終了後に低温度勾配領域に育成結晶を移動させて熱処理を行うことが提案されている(特許文献2)。しかしながら、熱処理のためだけの加熱ゾーン成長装置内に設けようとすると装置が複雑で高コストになり、また、熱処理工程による処理時間が長くなるためエピタキシャル成長用基板のコストアップにつながるなどの問題がある。   Therefore, as a method for removing the residual stress in the crystal, it has been proposed to perform a heat treatment by moving the grown crystal to a low temperature gradient region after the growth in a growth apparatus provided with a post-heating zone (Patent Document). 2). However, if it is intended to be provided in a heating zone growth apparatus only for heat treatment, the apparatus becomes complicated and expensive, and the processing time for the heat treatment process becomes longer, leading to an increase in the cost of the epitaxial growth substrate. .

このため、簡易で安価な装置構成でありながら、熱処理工程による処理時間が短くて済み、低コストでエピタキシャル成長用基板を得ることができる酸化物単結晶の製造方法が望まれている。
特開2007−246320 特開2004−256388
For this reason, there is a demand for a method for producing an oxide single crystal that can provide a substrate for epitaxial growth at a low cost because the processing time in the heat treatment process is short while the apparatus configuration is simple and inexpensive.
JP2007-246320 JP2004-256388

本発明の目的は、育成された単結晶を原料融液から切り離す際にクラックの発生および単結晶内の残留応力を抑制して高品質な酸化物単結晶を製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a high-quality oxide single crystal by suppressing generation of cracks and residual stress in the single crystal when the grown single crystal is separated from the raw material melt. .

本発明者らは、上記従来の問題点を解決するために鋭意研究を重ね、成長済みの単結晶を原料融液から切り離す際に、成長済み単結晶を加熱体よりも上方に移動させることによって切り離しを行うと、その際に、側面の加熱体上端よりも成長済み単結晶の直胴部上端が高い位置になるため温度勾配のついた領域での冷却となり、結晶内の残留応力を除去することが出来ない事を確認した。そして、成長済み単結晶と側面の加熱体の位置関係を詳細に調べた結果、成長終了時にルツボを下降させながら炉内温度を低下することにより、比較的安価で簡易な装置を用いても結晶内の残留応力を除去することが出来ることを見出して、本発明を完成するに至った。   The inventors of the present invention have made extensive studies to solve the above-described conventional problems, and when the grown single crystal is separated from the raw material melt, the grown single crystal is moved above the heating body. When the separation is performed, the upper end of the straight body of the grown single crystal is positioned higher than the upper end of the heating body on the side surface, so that cooling is performed in a region with a temperature gradient and the residual stress in the crystal is removed. I confirmed that I could not do it. As a result of examining the positional relationship between the grown single crystal and the heating element on the side surface in detail, the temperature inside the furnace is lowered while lowering the crucible at the end of the growth, so that the crystal can be obtained even with a relatively inexpensive and simple apparatus. The present inventors have found that the residual stress can be removed, and have completed the present invention.

すなわち、本発明の第1の発明によれば、炉体内のルツボに単結晶用原料を入れて該ルツボ側面に設けられた加熱体により単結晶用原料を加熱溶融した後、原料融液に種結晶を接触させて成長した結晶を引き上げる溶融固化法により酸化物単結晶を製造する方法において、成長終了時に、炉内温度を低下しながら原料融液が入ったルツボを下降させるとともに、成長済み酸化物単結晶の直胴部が前記加熱体の上端より下方となるように保持して、酸化物単結晶の切り離しを行うことを特徴とする酸化物単結晶の製造方法が提供される。   That is, according to the first invention of the present invention, after the single crystal raw material is put in the crucible in the furnace body and the single crystal raw material is heated and melted by the heating body provided on the side surface of the crucible, the seed melt is seeded. In the method of manufacturing an oxide single crystal by the melt solidification method that pulls up the grown crystal by bringing the crystal into contact, at the end of the growth, the crucible containing the raw material melt is lowered while the furnace temperature is lowered, and the grown oxidation There is provided a method for producing an oxide single crystal, characterized in that the oxide single crystal is separated by holding the straight body portion of the object single crystal below the upper end of the heating body.

また、本発明の第2の発明によれば、第1の発明において、単結晶用原料は、ルツボ上端位置が側面ヒーター上端の2cm下から3cm上の範囲で溶融させることを特徴とする酸化物単結晶の製造方法が提供される。
また、本発明の第3の発明によれば、第1又は2の発明において、ルツボの下降距離は、1〜8cmであることを特徴とする酸化物単結晶の製造方法が提供される。
また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、炉内温度は、ルツボ上端部から酸化物単結晶の直胴部が1cm露出する毎に、2〜10℃低下させることを特徴とする酸化物単結晶の製造方法が提供される。
さらに、本発明の第5の発明によれば、第1〜4のいずれかの発明において、酸化物単結晶は、酸化アルミニウム単結晶であることを特徴とする酸化物単結晶の製造方法が提供される。
According to the second invention of the present invention, in the first invention, the single crystal raw material is melted in such a manner that the crucible upper end position is melted in a range of 2 cm below and 3 cm above the side heater upper end. A method for producing a single crystal is provided.
According to the third aspect of the present invention, there is provided the method for producing an oxide single crystal according to the first or second aspect, wherein the crucible descending distance is 1 to 8 cm.
According to the fourth invention of the present invention, in any one of the first to third inventions, the furnace temperature is 2 to 2 cm every time the straight body portion of the oxide single crystal is exposed from the upper end of the crucible. There is provided a method for producing an oxide single crystal characterized by being lowered by 10 ° C.
Furthermore, according to a fifth invention of the present invention, there is provided the method for producing an oxide single crystal according to any one of the first to fourth inventions, wherein the oxide single crystal is an aluminum oxide single crystal. Is done.

本発明によれば、ルツボを下降させることによって、成長済み酸化物単結晶の直胴部の上端がルツボ側面に設けられた加熱体の上端より下方に位置するようにして酸化物単結晶と原料融液とを切り離すために、結晶内の温度が均一となり、さらにこの状態を維持したまま冷却することによって、成長時に蓄積された結晶内部の応力を除去することができる。また、結晶切り離し後に発生するクラックが抑制され、内部応力が緩和されているのでウエハーの変形や加工時に発生するクラックが減少し、高品質な単結晶を安価で製造することができる。
したがって、こうして得られた単結晶を用いれば、優れた特性を有する電子部品材料、光学用部品材料を提供できる。
According to the present invention, by lowering the crucible, the oxide single crystal and the raw material are arranged such that the upper end of the straight body portion of the grown oxide single crystal is located below the upper end of the heating body provided on the side surface of the crucible. In order to separate the melt from the melt, the temperature in the crystal becomes uniform, and further cooling is performed while maintaining this state, whereby the stress inside the crystal accumulated during the growth can be removed. Further, since cracks generated after crystal separation are suppressed and internal stress is alleviated, cracks generated during wafer deformation and processing are reduced, and high-quality single crystals can be manufactured at low cost.
Therefore, by using the single crystal thus obtained, it is possible to provide electronic component materials and optical component materials having excellent characteristics.

以下、本発明の酸化物単結晶の製造方法について、図1、2を用いて詳細に説明する。
本発明の酸化物単結晶の製造方法は、炉体内のルツボに単結晶用原料を入れて該ルツボ側面に設けられた加熱体により単結晶用原料を加熱溶融した後、原料融液に種結晶を接触させて成長した結晶を引き上げる溶融固化法により酸化物単結晶を製造する方法において、成長終了時に炉内温度を低下しながら原料融液が入ったルツボを下降させるとともに、成長済み酸化物単結晶の直胴部が前記加熱体の上端より下方となるように保持して、酸化物単結晶の切り離しを行うことを特徴とする。
Hereinafter, the manufacturing method of the oxide single crystal of this invention is demonstrated in detail using FIG.
In the method for producing an oxide single crystal of the present invention, a raw material for a single crystal is put in a crucible in a furnace body, and the raw material for a single crystal is heated and melted by a heating body provided on the side of the crucible, and then seed crystal In the method of producing an oxide single crystal by a melt solidification method in which the grown crystal is brought into contact with each other, the crucible containing the raw material melt is lowered while the furnace temperature is lowered at the end of the growth, and the grown oxide single crystal is The oxide single crystal is separated by holding the straight body portion of the crystal below the upper end of the heating body.

1.酸化物単結晶育成装置
本発明の酸化物単結晶の製造方法において、使用される酸化物単結晶育成装置の一例を図1に示す。
1. Oxide Single Crystal Growth Device FIG. 1 shows an example of an oxide single crystal growth device used in the method for producing an oxide single crystal of the present invention.

酸化物単結晶育成装置内には酸化物単結晶用原料を入れるためのルツボ1が備えられており、上下動が可能なルツボ軸2の上に載置されている。酸化物単結晶用原料を融解するためのルツボは、酸化物単結晶用原料の種類によって異なり、一概に規定できないが、酸化アルミニウム単結晶用であれば、その融点以上の耐熱性を有するイリジウム製、モリブデン製などのものが好ましく、所望のサイズのものを用いることができる。ルツボ側面には、酸化物単結晶用原料を融解するために、加熱体(側面ヒーター)3が配置されている。また、ルツボの下方には、円盤状のボトムヒーター4をルツボ軸2が貫通する形で配置している。側面ヒーターの周囲、ボトムヒーターの下方には、断熱材5が酸化物単結晶育成装置の内面6に沿って設けられている。また、ルツボ上方には上下動可能な引き上げ軸7が設置され、この引き上げ軸7には種結晶が取り付けられるとともに、引き上げ軸が貫通する形で断熱材5が設けられている。
種結晶は、純度が高い酸化物結晶であり、例えば、酸化アルミニウム結晶であれば、チョクラルスキー法、キロプロス、HEMなどの製造方法によって得られたものが好ましく、単結晶製品の用途によって適宜選択することができる。
In the oxide single crystal growing apparatus, a crucible 1 for containing a raw material for oxide single crystal is provided, and is placed on a crucible shaft 2 that can move up and down. The crucible for melting the raw material for oxide single crystal differs depending on the type of raw material for oxide single crystal and cannot be specified in general, but if it is for aluminum oxide single crystal, it is made of iridium having a heat resistance higher than its melting point. And those made of molybdenum are preferred, and those of a desired size can be used. A heating body (side heater) 3 is disposed on the side surface of the crucible in order to melt the raw material for oxide single crystal. Further, a disc-shaped bottom heater 4 is disposed below the crucible so that the crucible shaft 2 penetrates. A heat insulating material 5 is provided along the inner surface 6 of the oxide single crystal growing apparatus around the side heater and below the bottom heater. A lifting shaft 7 that can move up and down is installed above the crucible. A seed crystal is attached to the lifting shaft 7 and a heat insulating material 5 is provided so that the lifting shaft passes therethrough.
The seed crystal is an oxide crystal with high purity. For example, if it is an aluminum oxide crystal, it is preferably obtained by a production method such as the Czochralski method, Kilopros, or HEM, and is appropriately selected depending on the use of the single crystal product. can do.

上記の酸化物単結晶育成装置は、上記構成に限定されず、ボトムヒーターの代わりにL字型又はカップ型の側面ヒーターを用いてもよく、ボトムヒーターが無く、円筒状の側面ヒーターのみでも良い。この装置には、必要により、炉体内を減圧する手段と、減圧度をモニターする手段と、炉体内に窒素または不活性ガスを供給する手段を設けることができる。   The oxide single crystal growing apparatus is not limited to the above configuration, and an L-shaped or cup-shaped side heater may be used instead of the bottom heater, and there is no bottom heater, and only a cylindrical side heater may be used. . If necessary, this apparatus can be provided with means for depressurizing the furnace body, means for monitoring the degree of decompression, and means for supplying nitrogen or an inert gas into the furnace body.

2.酸化物単結晶用原料の溶融
本発明の酸化物単結晶の製造方法は、上記酸化物単結晶育成装置を用い、ルツボに酸化物単結晶用原料を入れた後、側面ヒーターおよびボトムヒーターによりルツボを加熱して原料を溶融させる。
2. Melting of raw material for oxide single crystal The method for producing an oxide single crystal of the present invention uses the above-mentioned oxide single crystal growth apparatus, and after putting the raw material for oxide single crystal into a crucible, the crucible is heated by a side heater and a bottom heater. Is heated to melt the raw material.

酸化物単結晶用原料としては、酸化アルミニウム粉末やタンタル酸リチウム粉末、あるいは酸化ニオブ粉末をはじめ各種酸化物粉末を用いることができる。本発明において好ましく用いられる酸化アルミニウム粉末は、実質的にAlとOの2元素からなる酸化アルミニウムである。また、目的とする酸化アルミニウム単結晶の種類に合わせて、AlとOのほかに、Ti、Cr、Si、Ca、Mgなどを含んでいてもよい。このうちSi、Ca、Mgなどは、焼結助剤の成分として不可避的に含まれうるが、その含有量は極力少ないことが望ましい。特に、Siは10重量ppm以下であることが望ましい。また、酸化アルミニウムの直径や密度は、特に制限されないが、取り扱い上、例えば、直径は、10mm以下、好ましくは5mm以下であるものがよく、密度は、5g/cm以下、好ましくは3g/cm以下であるものがよい。 As the raw material for oxide single crystal, various oxide powders such as aluminum oxide powder, lithium tantalate powder, or niobium oxide powder can be used. The aluminum oxide powder preferably used in the present invention is aluminum oxide substantially composed of two elements of Al and O. In addition to Al and O, Ti, Cr, Si, Ca, Mg, and the like may be included in accordance with the type of target aluminum oxide single crystal. Among these, Si, Ca, Mg and the like can be inevitably contained as components of the sintering aid, but the content is desirably as small as possible. In particular, Si is desirably 10 ppm by weight or less. The diameter and density of aluminum oxide are not particularly limited, but for handling, for example, the diameter is preferably 10 mm or less, preferably 5 mm or less, and the density is 5 g / cm 3 or less, preferably 3 g / cm. What is 3 or less is good.

ルツボに酸化物単結晶用原料を入れて、側面ヒーターおよびボトムヒーターによりルツボを加熱して原料を溶融させる。酸化物単結晶用原料が融点に達するまでの加熱速度は、特に制限されるわけではないが、単結晶中へ気泡が取り込まないためには急速に加熱せずに長時間かけて徐々に加熱するほうがよい。そのため、例えば10時間以上、特に12時間かけて徐々に加熱することが望ましい。次に、酸化物単結晶用原料の融解後も、炉内温度を10〜20℃高くなるように3時間以上、特に5時間以上、得られた融液を加熱する。このときの温度測定はヒーター外周にある断熱材に差し込まれた熱電対を用いて行う。   A raw material for oxide single crystal is put in a crucible, and the crucible is heated by a side heater and a bottom heater to melt the raw material. The heating rate until the oxide single crystal raw material reaches the melting point is not particularly limited, but in order not to introduce bubbles into the single crystal, it is gradually heated over a long period of time without being rapidly heated. Better. Therefore, it is desirable to heat gradually, for example over 10 hours, especially over 12 hours. Next, even after melting the raw material for oxide single crystal, the obtained melt is heated for 3 hours or more, particularly 5 hours or more so that the temperature in the furnace becomes 10 to 20 ° C. The temperature at this time is measured using a thermocouple inserted into a heat insulating material on the outer periphery of the heater.

この際、炉内は不活性ガス雰囲気とするが、必要により減圧してもよい。ただし、酸素を導入するとヒーターが酸化して急速に劣化するため、酸素がほとんど含まれない低酸素濃度雰囲気下で単結晶用原料を溶解することが望ましい。   At this time, the inside of the furnace is an inert gas atmosphere, but the pressure may be reduced if necessary. However, when oxygen is introduced, the heater is oxidized and rapidly deteriorates. Therefore, it is desirable to dissolve the raw material for single crystal in a low oxygen concentration atmosphere containing almost no oxygen.

3.単結晶の育成と引き上げ
本発明においては、側面ヒーター上端に対してルツボ上端の位置を2cm下から3cm上の範囲とし、特に一致する位置から2cm上の位置に合わせて原料を溶融させるようにすることが望ましい。これにより、後述する成長終了後、ルツボ軸を下降させて、成長済の酸化物結晶と原料融液の切り離しを行いやすくなる。
酸化物単結晶に生ずる粒界の発生を抑制するためには、固液界面近傍における引き上げ軸方向の温度勾配を大きくする必要があり、そのためには、ルツボは固液界面近傍における側面ヒーターからの輻射を遮る形で上方に配置したうえで結晶育成を開始する。
3. Growth and pulling of single crystal In the present invention, the position of the upper end of the crucible is set to a range of 3 cm above 2 cm with respect to the upper end of the side heater, and the raw material is melted in accordance with the position 2 cm above the particularly matched position. It is desirable. This makes it easier to separate the grown oxide crystal from the raw material melt by lowering the crucible shaft after the growth described later.
In order to suppress the generation of grain boundaries in the oxide single crystal, it is necessary to increase the temperature gradient in the pulling axis direction in the vicinity of the solid-liquid interface. Crystal growth is started after placing it in a shape that blocks radiation.

原料が溶融した後、原料融液に種結晶を接触させて成長結晶を引き上げる。常法に従い回転数や引き上げ速度を調整してネック部および肩部を形成し、引き続き直胴部を形成する。この際、放射温度計などを用いて単結晶と原料融液との界面近傍における融液表面の温度を測定することが好ましい。結晶形状の調節は、育成中の結晶重量を測定し、直径や育成速度などを計算によって導き出し、回転速度や引き上げ速度を調整して行うことができる。種結晶は、0.2〜20rpmで回転させるとよい。また、回転速度は、1〜10rpmが好ましい。また、結晶重量の変化をフィードバックして融液温度をコントロールできる。   After the raw material is melted, the seed crystal is brought into contact with the raw material melt to pull up the grown crystal. According to a conventional method, the number of rotations and the pulling speed are adjusted to form a neck portion and a shoulder portion, and then a straight body portion is formed. At this time, it is preferable to measure the temperature of the melt surface near the interface between the single crystal and the raw material melt using a radiation thermometer or the like. The crystal shape can be adjusted by measuring the crystal weight during growth, deriving the diameter, growth speed, and the like by calculation, and adjusting the rotation speed and pulling speed. The seed crystal is preferably rotated at 0.2 to 20 rpm. The rotation speed is preferably 1 to 10 rpm. In addition, the melt temperature can be controlled by feeding back the change in crystal weight.

4.酸化物結晶の切り離し
その後、充分に酸化物結晶が育成した時点で原料融液との切り離しを行う。このとき、固液界面付近の温度勾配が大きな状態では、成長結晶内に応力が生じ、成長中、内部応力が結晶内に蓄積される。そのために成長終了時にルツボ軸を下降させて、成長済の酸化物結晶と原料融液の切り離しを行う。
4). After that, when the oxide crystal is sufficiently grown, it is separated from the raw material melt. At this time, in a state where the temperature gradient near the solid-liquid interface is large, stress is generated in the grown crystal, and internal stress is accumulated in the crystal during growth. For this purpose, the crucible shaft is lowered at the end of growth to separate the grown oxide crystal from the raw material melt.

その際、図1に示すように、成長済結晶の直胴部上端が側面ヒーター3の上端より下に位置するように保持するようにする。本発明においては、引き上げ軸7を上方へ移動することだけで単結晶を切り離すものではないが、成長済結晶の直胴部上端が、側面ヒーター3上端より下に位置する範囲であれば、ルツボ軸2を下げると共に引き上げ軸7を上方へ移動することで単結晶を引き上げ、切り離し速度を速めるようにしても差し支えない。   At that time, as shown in FIG. 1, the upper end of the straight body of the grown crystal is held below the upper end of the side heater 3. In the present invention, the single crystal is not separated only by moving the pulling shaft 7 upward. However, if the straight body upper end of the grown crystal is located below the upper end of the side heater 3, the crucible The single crystal may be pulled up by lowering the shaft 2 and moving the pulling shaft 7 upward to increase the cutting speed.

酸化物単結晶の切り離しにおいて、ルツボ上端からの酸化物単結晶直胴部の露出量と炉内温度との関係は、酸化アルミニウム単結晶の場合、図2に示すようであり、この条件で切り離しを行うと育成された結晶にクラックが入ることはない。すなわち、ルツボ上端からの酸化物単結晶直胴部の露出量が小さいうちは炉内温度側面ヒーターから酸化物単結晶が受ける輻射熱の量も少ないために、炉内温度をあまり下げる必要はないが、ルツボ上端からの酸化物単結晶直胴部の露出量が大きくなると炉内温度側面ヒーターから酸化物単結晶が受ける輻射熱の量も大きくなるために、炉内温度の下げ巾を大きくする必要がある。具体的には、酸化物単結晶の直胴部の露出量が1cmであれば、炉内の温度を2℃降下させ、酸化物単結晶の直胴部の露出量が8cmであれば、炉内の温度を41℃降下させる。これは、炉内の温度を前記酸化物単結晶の直胴部の露出量1cm当たり、2℃〜5℃の範囲で降下させることになる。   In the separation of the oxide single crystal, the relationship between the exposure amount of the straight body of the oxide single crystal from the upper end of the crucible and the furnace temperature is as shown in FIG. 2 in the case of the aluminum oxide single crystal. When this is done, cracks do not occur in the grown crystal. In other words, the amount of radiant heat received by the oxide single crystal from the furnace temperature side heater is small while the exposed amount of the oxide single crystal straight body from the upper end of the crucible is small. If the exposed amount of the straight body of the oxide single crystal from the upper end of the crucible increases, the amount of radiant heat received by the oxide single crystal from the furnace temperature side surface heater also increases. is there. Specifically, if the exposure amount of the straight body portion of the oxide single crystal is 1 cm, the temperature in the furnace is lowered by 2 ° C., and if the exposure amount of the straight body portion of the oxide single crystal is 8 cm, the furnace The temperature inside is lowered by 41 ° C. This lowers the temperature in the furnace in the range of 2 ° C. to 5 ° C. per 1 cm of the exposed amount of the straight body of the oxide single crystal.

そして、測定誤差、結晶の種類による違いを考慮すると、一般的には、炉内温度の降下量は、酸化物単結晶の直胴部の露出量1cm当たり、2℃〜10℃であることが好ましい。炉内温度の降下量が2℃/cm未満では、ルツボ上端からの酸化物単結晶直胴部の露出量が大きいと切り離しができなくなることがあり、炉内温度の降下量が10℃/cmを超えると、結晶にクラックが入ることがあり好ましくない。より好ましい炉内温度の降下量は、酸化物単結晶の直胴部の露出量1cm当たり、2℃〜5℃である。炉内温度の降下は、ヒーターの設定調整によるほか、炉内への供給ガスの温度によって調整してもよい。   In consideration of the measurement error and the difference depending on the type of crystal, generally, the amount of decrease in the furnace temperature is 2 ° C. to 10 ° C. per 1 cm of the exposed amount of the straight body of the oxide single crystal. preferable. When the amount of decrease in the furnace temperature is less than 2 ° C./cm, separation may not be possible if the exposed amount of the oxide single crystal straight body from the upper end of the crucible is large, and the amount of decrease in the furnace temperature is 10 ° C./cm. If it exceeds 1, the crystal may crack, which is not preferable. A more preferable decrease in the furnace temperature is 2 ° C. to 5 ° C. per 1 cm of the exposed amount of the straight body portion of the oxide single crystal. The temperature drop in the furnace may be adjusted by adjusting the heater setting or by the temperature of the gas supplied to the furnace.

ルツボの移動による結晶の切り離し距離は1〜8cmとし、望ましくは2〜6cmとする。1cm未満では結晶が大きい場合、結晶を融液から完全に切り離すことができず、8cmを超える距離にすると、ルツボの移動スペースを大きく確保しなければならないので好ましくない。
その後、切り離された酸化物単結晶を1℃〜3℃/minの冷却速度で室温近くまで冷却した後に、結晶成長装置より酸化物単結晶を取り出す。
The crystal separation distance due to the movement of the crucible is 1 to 8 cm, preferably 2 to 6 cm. Below 1 cm, if the crystal is large, the crystal cannot be completely separated from the melt. If the distance exceeds 8 cm, it is not preferable because a large space for moving the crucible must be secured.
Thereafter, the separated oxide single crystal is cooled to near room temperature at a cooling rate of 1 ° C. to 3 ° C./min, and then the oxide single crystal is taken out from the crystal growth apparatus.

上記のようにルツボ軸を下降させて結晶の切り離しを行うことで、側面ヒーターの加熱により温度勾配の小さい領域の酸化物単結晶が保持されるため、結晶内の縦方向および横方向で温度差が小さくなり、均一な温度を維持したまま冷却することで、結晶内部に蓄積された応力を取り除くことができ、その結果、結晶切り離し後に発生するクラックを抑制することが出来る。また、結晶内部の残留応力が緩和されることにより、ウエハー加工時に発生するクラックやウエハーの変形が減少し、こうして得られた単結晶を用いれば、優れた特性を有する電子部品材料、光学用部品材料を提供することができる。   By separating the crystal by lowering the crucible shaft as described above, the oxide single crystal in the region where the temperature gradient is small is retained by the heating of the side heater, so the temperature difference in the vertical and horizontal directions within the crystal. Thus, by cooling while maintaining a uniform temperature, the stress accumulated in the crystal can be removed, and as a result, cracks generated after the crystal is separated can be suppressed. In addition, since the residual stress inside the crystal is relaxed, cracks and wafer deformation that occur during wafer processing are reduced, and if single crystals obtained in this way are used, electronic component materials and optical components having excellent characteristics Material can be provided.

なお、本発明は、酸化物単結晶が酸化アルミニウム単結晶である場合に優れた効果を得ることができるが、酸化アルミニウム単結晶に限定されるわけではなく、タンタル酸リチウム(LiTaO)単結晶、PrGaSiO14単結晶、あるいは酸化ニオブ(LiNbO)単結晶などの場合にも広く適用することができる。 Note that the present invention can obtain an excellent effect when the oxide single crystal is an aluminum oxide single crystal, but is not limited to the aluminum oxide single crystal, and is not limited to a lithium tantalate (LiTaO 3 ) single crystal. , Pr 3 Ga 3 SiO 14 single crystal, or niobium oxide (LiNbO 3 ) single crystal can be widely applied.

以下に、実施例を用いて、本発明をさらに詳細に説明するが、本発明は、これら実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

〔結晶の評価〕
育成した単結晶を取り出し、得られた結晶の外観観察を行って、クラックや小傾角粒界、双晶がないかどうか確かめた。また、結晶をウエハーにスライスし、X線トポグラフ像を観察してウエハー小傾角粒界を測定し、あわせて、変形量も測定した。小傾角粒界や双晶が少ないほど良好な単結晶が育成されていることを示し、変形量は小さいほど良好な単結晶が育成されていることを示している。
(Evaluation of crystal)
The grown single crystal was taken out and the appearance of the obtained crystal was observed to confirm whether there were any cracks, low-angle grain boundaries, or twins. Further, the crystal was sliced on a wafer, an X-ray topographic image was observed to measure the wafer small-angle grain boundary, and the deformation was also measured. It shows that the better the single crystal is grown, the smaller the small-angle grain boundaries and twins, and the smaller the amount of deformation, the better the single crystal is grown.

(実施例1)
図1の装置を用いて、モリブデン製ルツボに4N(99.99%)のAl原料を25kg投入した。側面ヒーター上端とルツボ上端が一致する位置に合わせて原料を融解させた。原料融解後、種結晶を毎分2回転の速度で回転させながら融液に接触させ、引き上げ速度2mm/hで引き上げ軸を上昇させて結晶成長を開始させた。結晶重量が20kgとなったところでルツボ軸を6cm下降し、また、ルツボ軸の下降と同時に炉内温度を23℃下げた後、結晶の切り離しを行った。引き続き、酸化物単結晶は、1℃〜3℃/minの冷却速度で室温近くまで冷却を行って装置から取り出した。
その結果、重量20kgのクラックフリーの酸化アルミニウム単結晶が得られた。また、結晶表面の融解も発生しなかった。この結晶を加工したところ、クラックは発生せず、変形量の少ないウエハーを225枚作製することができた。
Example 1
Using the apparatus shown in FIG. 1, 25 kg of 4N (99.99%) Al 2 O 3 raw material was charged into a molybdenum crucible. The raw material was melted in accordance with the position where the upper end of the side heater coincided with the upper end of the crucible. After melting the raw material, the seed crystal was brought into contact with the melt while rotating at a speed of 2 revolutions per minute, and the pulling shaft was raised at a pulling speed of 2 mm / h to start crystal growth. When the weight of the crystal reached 20 kg, the crucible shaft was lowered by 6 cm, and simultaneously with the lowering of the crucible shaft, the furnace temperature was lowered by 23 ° C., and then the crystal was separated. Subsequently, the oxide single crystal was cooled to near room temperature at a cooling rate of 1 ° C. to 3 ° C./min and taken out from the apparatus.
As a result, a crack-free aluminum oxide single crystal weighing 20 kg was obtained. Also, no melting of the crystal surface occurred. When this crystal was processed, cracks did not occur and 225 wafers with a small amount of deformation could be produced.

(実施例2)
実施例1と同様にして結晶成長を行い、成長終了後にルツボを8cm下降させ、また、ルツボの下降と同時に炉内温度を41℃下げた後、冷却を行って結晶の切り離しを行った。
その結果、クラックフリーの酸化アルミニウム単結晶が得られた。また、結晶表面の融解も発生しなかった。この結晶を加工したところ、クラックは発生せず、変形量の少ないウエハーを228枚作製することができた。
(Example 2)
Crystal growth was carried out in the same manner as in Example 1. After the growth, the crucible was lowered by 8 cm, and the furnace temperature was lowered by 41 ° C. simultaneously with the lowering of the crucible, followed by cooling to separate the crystals.
As a result, a crack-free aluminum oxide single crystal was obtained. Also, no melting of the crystal surface occurred. When this crystal was processed, cracks did not occur and 228 wafers with a small amount of deformation could be produced.

(比較例1)
実施例1と同様にして結晶成長を行い、成長終了後に引き上げ軸を6cm上昇させて結晶の切り離しを行った。結晶切り離し後、炉内温度の調節は行わずに冷却を行った。
こうして3本の結晶育成を行った結果、3本中2本の結晶でクラックが発生した。クラックの発生しなかった結晶を加工したところ、225枚中75枚のウエハーでクラックが発生した。
(Comparative Example 1)
Crystal growth was carried out in the same manner as in Example 1, and after the completion of the growth, the pulling axis was raised by 6 cm to separate the crystal. After cutting the crystal, cooling was performed without adjusting the furnace temperature.
As a result of growing three crystals in this way, cracks occurred in two of the three crystals. When the crystal without cracks was processed, cracks occurred in 75 of 225 wafers.

(比較例2)
炉内温度を調節せずにルツボ軸を下降させて結晶の切り離しを行った以外は実施例1と同様にして結晶成長を行った。
その結果、クラックフリーの結晶は得られたが、結晶表面の融解が発生し、結晶重量は17kgであった。この結晶を加工したところ、クラックは発生せず、変形量の少ないウエハーを180枚作製することができたが、結晶表面の融解により本来作製できたはずの収量225枚よりも少なくなってしまった。
(Comparative Example 2)
Crystal growth was performed in the same manner as in Example 1 except that the crucible shaft was lowered and the crystal was separated without adjusting the furnace temperature.
As a result, although crack-free crystals were obtained, melting of the crystal surface occurred, and the crystal weight was 17 kg. When this crystal was processed, cracks did not occur and 180 wafers with a small amount of deformation could be produced, but the yield was less than 225 sheets that could have been originally produced by melting the crystal surface. .

(比較例3)
実施例1と同様にして結晶成長を行い、成長終了後にルツボ軸を0.5cm下降させて結晶の切り離しを試みた。そして、ルツボ軸の下降と同時に炉内温度を1℃下げた後、冷却を行った。その結果、結晶はルツボ内融液と十分に切り離されなかった。
(Comparative Example 3)
Crystal growth was carried out in the same manner as in Example 1, and after the completion of growth, the crucible shaft was lowered by 0.5 cm to try to separate the crystals. Then, simultaneously with the lowering of the crucible shaft, the furnace temperature was lowered by 1 ° C., and then cooling was performed. As a result, the crystal was not sufficiently separated from the melt in the crucible.

(比較例4)
実施例1と同様にして結晶成長を行い、成長終了後にルツボ軸を10cm下降させて結晶の切り離しを行った。また、ルツボ軸の下降と同時に炉内温度を60℃下げた後、冷却を行った。その結果、結晶はルツボ内融液と十分に切り離されたが、結晶下部が部分的に融解した。また、結晶上部にクラックが生じた。
(Comparative Example 4)
Crystal growth was carried out in the same manner as in Example 1, and after completion of the growth, the crucible shaft was lowered by 10 cm to separate the crystals. Further, the furnace temperature was lowered by 60 ° C. simultaneously with the lowering of the crucible shaft, and then cooling was performed. As a result, the crystal was sufficiently separated from the melt in the crucible, but the lower part of the crystal was partially melted. In addition, cracks occurred in the upper part of the crystal.

本発明で使用する単結晶育成装置の説明図である。It is explanatory drawing of the single crystal growth apparatus used by this invention. 育成された酸化アルミニウム単結晶を切り離す際、ルツボ軸下降量と炉内温度降温量の関係を示すグラフである。It is a graph which shows the relationship between the crucible axis | shaft fall amount and the furnace temperature fall amount, when cutting the grown aluminum oxide single crystal.

符号の説明Explanation of symbols

1 ルツボ
2 ルツボ軸
3 側面ヒーター
4 ボトムヒーター材
5 断熱材
6 炉体
7 引き上げ軸
1 crucible 2 crucible shaft 3 side heater 4 bottom heater material 5 heat insulating material 6 furnace body 7 lifting shaft

Claims (5)

炉体内のルツボに単結晶用原料を入れて該ルツボ側面に設けられた加熱体により単結晶用原料を加熱溶融した後、原料融液に種結晶を接触させて成長した結晶を引き上げる溶融固化法により酸化物単結晶を製造する方法において、
成長終了時に、炉内温度を低下しながら原料融液が入ったルツボを下降させるとともに、成長済み酸化物単結晶の直胴部が前記加熱体の上端より下方となるように保持して、酸化物単結晶の切り離しを行うことを特徴とする酸化物単結晶の製造方法。
A melting and solidification method in which a raw material for a single crystal is put in a crucible in a furnace body, the raw material for a single crystal is heated and melted by a heating body provided on the side of the crucible, and then a seed crystal is brought into contact with the raw material melt to pull up the grown crystal. In the method for producing an oxide single crystal by:
At the end of growth, the crucible containing the raw material melt is lowered while lowering the furnace temperature, and the straight body of the grown oxide single crystal is held below the upper end of the heating body to oxidize. A method for producing an oxide single crystal, characterized in that a single crystal is separated.
単結晶用原料は、ルツボ上端位置が側面ヒーター上端の2cm下から3cm上の範囲で溶融させることを特徴とする請求項1記載の酸化物単結晶の製造方法。   2. The method for producing an oxide single crystal according to claim 1, wherein the single crystal raw material is melted in a range where the upper end position of the crucible is 2 cm to 3 cm above the upper end of the side heater. ルツボの下降距離は、1〜8cmであることを特徴とする請求項1記載の酸化物単結晶の製造方法。   The method for producing an oxide single crystal according to claim 1, wherein the descending distance of the crucible is 1 to 8 cm. 炉内温度は、ルツボ上端部から酸化物単結晶の直胴部が1cm露出する毎に、2〜10℃低下させることを特徴とする請求項1乃至3記載の酸化物単結晶の製造方法   4. The method for producing an oxide single crystal according to claim 1, wherein the furnace temperature is lowered by 2 to 10 [deg.] C. every time 1 cm of the straight body portion of the oxide single crystal is exposed from the upper end of the crucible. 酸化物単結晶は、酸化アルミニウム単結晶であることを特徴とする請求項1乃至4の酸化物単結晶の製造方法。   5. The method for producing an oxide single crystal according to claim 1, wherein the oxide single crystal is an aluminum oxide single crystal.
JP2008089242A 2008-03-31 2008-03-31 Method for producing oxide single crystal Active JP4957619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089242A JP4957619B2 (en) 2008-03-31 2008-03-31 Method for producing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089242A JP4957619B2 (en) 2008-03-31 2008-03-31 Method for producing oxide single crystal

Publications (2)

Publication Number Publication Date
JP2009242150A true JP2009242150A (en) 2009-10-22
JP4957619B2 JP4957619B2 (en) 2012-06-20

Family

ID=41304521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089242A Active JP4957619B2 (en) 2008-03-31 2008-03-31 Method for producing oxide single crystal

Country Status (1)

Country Link
JP (1) JP4957619B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132135A (en) * 2012-12-13 2013-06-05 苏州工业园区杰士通真空技术有限公司 High-efficient novel sapphire crystal growth system
JP2016199422A (en) * 2015-04-09 2016-12-01 住友金属鉱山株式会社 Single crystal manufacturing method
JP2016204172A (en) * 2015-04-16 2016-12-08 住友金属鉱山株式会社 Cooling method and production method of single crystal, and single crystal growth apparatus
JP2017061391A (en) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 Method for producing SiC single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020197A (en) * 2000-06-30 2002-01-23 Shin Etsu Handotai Co Ltd Method of growing silicon single crystal and silicon single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020197A (en) * 2000-06-30 2002-01-23 Shin Etsu Handotai Co Ltd Method of growing silicon single crystal and silicon single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132135A (en) * 2012-12-13 2013-06-05 苏州工业园区杰士通真空技术有限公司 High-efficient novel sapphire crystal growth system
JP2016199422A (en) * 2015-04-09 2016-12-01 住友金属鉱山株式会社 Single crystal manufacturing method
JP2016204172A (en) * 2015-04-16 2016-12-08 住友金属鉱山株式会社 Cooling method and production method of single crystal, and single crystal growth apparatus
JP2017061391A (en) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 Method for producing SiC single crystal

Also Published As

Publication number Publication date
JP4957619B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5633732B2 (en) Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus
JP5758986B2 (en) SiC single crystal manufacturing method and manufacturing apparatus
JP5459004B2 (en) Method for producing sapphire single crystal
JP4810346B2 (en) Method for producing sapphire single crystal
JP2007223830A (en) Method of growing oxide single crystal
JP4844428B2 (en) Method for producing sapphire single crystal
TWI582277B (en) GaAs single crystal and GaAs single crystal wafer
JP4957619B2 (en) Method for producing oxide single crystal
KR101501036B1 (en) Sapphire single crystal and process for manufacturing the same
JP4835582B2 (en) Method for producing aluminum oxide single crystal
JP2018150198A (en) LARGE-DIAMETER ScAlMgO4 SINGLE CRYSTAL, AND GROWTH METHOD AND GROWTH UNIT THEREFOR
JP7072146B2 (en) Single crystal growth method for iron gallium alloy
WO2021020539A1 (en) Scalmgo4 single crystal, preparation method for same, and free-standing substrate
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JP6413903B2 (en) Single crystal manufacturing method
JP6990383B2 (en) High-performance Fe-Ga-based alloy single crystal manufacturing method
JP4904862B2 (en) Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JP2011079693A (en) Apparatus for producing semiconductor single crystal
JP2018135228A (en) METHOD FOR GROWING LiTaO3 SINGLE CRYSTAL AND METHOD FOR PROCESSING LiTaO3 SINGLE CRYSTAL
JP2010265150A (en) Method for producing sapphire single crystal and method for producing seed crystal
JP2010042968A (en) Method for producing silicon single crystal
JP6323382B2 (en) Method for producing single crystal
JP2004269335A (en) Production method for single crystal
JP6681269B2 (en) Quartz glass crucible

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4957619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150