JP4735334B2 - Method for producing aluminum oxide single crystal - Google Patents

Method for producing aluminum oxide single crystal Download PDF

Info

Publication number
JP4735334B2
JP4735334B2 JP2006056228A JP2006056228A JP4735334B2 JP 4735334 B2 JP4735334 B2 JP 4735334B2 JP 2006056228 A JP2006056228 A JP 2006056228A JP 2006056228 A JP2006056228 A JP 2006056228A JP 4735334 B2 JP4735334 B2 JP 4735334B2
Authority
JP
Japan
Prior art keywords
single crystal
raw material
crystal
aluminum oxide
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006056228A
Other languages
Japanese (ja)
Other versions
JP2007230836A (en
Inventor
彰 寺島
憲治 村下
利行 小見
英章 寒河江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006056228A priority Critical patent/JP4735334B2/en
Publication of JP2007230836A publication Critical patent/JP2007230836A/en
Application granted granted Critical
Publication of JP4735334B2 publication Critical patent/JP4735334B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、酸化アルミニウム単結晶の製造方法に関し、より詳しくは、ピットとマイクロバブルの発生を抑制して効率的に高品質な酸化アルミニウム単結晶を製造する方法に関するものである。   The present invention relates to a method for producing an aluminum oxide single crystal, and more particularly to a method for efficiently producing a high quality aluminum oxide single crystal by suppressing generation of pits and microbubbles.

酸化アルミニウム単結晶は、青色LEDや白色LEDを作製する際のエピ成長基板として多く利用されている。これらのLEDは、省エネルギーの観点で照明分野への普及が拡大することが予想されており多方面から注目されている。   Aluminum oxide single crystals are widely used as an epi growth substrate for producing blue LEDs and white LEDs. These LEDs are expected to spread in the lighting field from the viewpoint of energy saving, and are attracting attention from various fields.

酸化物単結晶の育成方法は様々あるが、LN、LT、YAGや酸化アルミニウムなどの酸化物単結晶材料の大部分は、その結晶特性や大きな結晶径のものが得られることから溶融固化法で育成されている。特に、溶融固化法の一つであるチョクラルスキー法(Cz法)は、汎用性があり技術的完成度が高いことから最も広く用いられている。   There are various methods for growing oxide single crystals, but most of the oxide single crystal materials such as LN, LT, YAG and aluminum oxide are obtained by melt solidification because their crystal characteristics and large crystal diameters are obtained. It is nurtured. In particular, the Czochralski method (Cz method), which is one of the melt solidification methods, is most widely used because of its versatility and high technical perfection.

チョクラルスキー法によって酸化物単結晶を製造するには、まずルツボに酸化物原料を充填し、高周波誘導加熱法や抵抗加熱法によりルツボを加熱し原料を溶融する。原料が溶融した後、所定の結晶方位に切り出した種結晶を原料融液表面に接触させ、種結晶を所定の回転速度で回転させながら所定の速度で上方に引き上げて単結晶を成長させる。
しかし、酸化アルミニウム単結晶をチョクラルスキー法で成長させると、結晶中に無数の微小な気泡が発生しやすい。この微小な気泡には、エピ成長基板となるウエハーをポリッシュ研磨したときに、ピット(直径数μmの微小な窪み)を発現させる相対的に大きな気泡と光散乱レーザートモグラフ法(非特許文献1参照)に従い、レーザー光を照射したときに雲状に確認できるマイクロバブルといわれるものがある。これらの中でマイクロバブルの影響は、未だ確定されていないものの、ピットと共にLED特性に悪影響を与えると言われている。
In order to produce an oxide single crystal by the Czochralski method, first, an oxide raw material is filled in a crucible, and the raw material is melted by heating the crucible by a high frequency induction heating method or a resistance heating method. After the raw material is melted, the seed crystal cut in a predetermined crystal orientation is brought into contact with the surface of the raw material melt, and the single crystal is grown by pulling upward at a predetermined speed while rotating the seed crystal at a predetermined rotation speed.
However, when an aluminum oxide single crystal is grown by the Czochralski method, innumerable minute bubbles are likely to be generated in the crystal. The microbubbles include a relatively large bubble that causes pits (small pits with a diameter of several μm) and a light scattering laser tomography method (see Non-Patent Document 1). ), There is a so-called microbubble that can be confirmed like a cloud when irradiated with laser light. Among these, although the influence of microbubbles has not been determined yet, it is said that the LED characteristics are adversely affected together with the pits.

これまで酸化アルミニウム単結晶を育成する際には、高温で原料が分解して生成した酸素原子(O)や酸素分子(O)が融液中に過飽和に存在し、これが育成した単結晶に取り込まれ、単結晶中の気泡となることが知られている。そして、これを回避するために、水素ガスや一酸化炭素ガスなどを用いた還元性雰囲気で単結晶を育成することが提案されている(特許文献1参照)。
これにより融液中に存在する酸素原子(O)や酸素分子(O)が水素ガスや一酸化炭素ガスと反応して除去されるため、育成した単結晶中への気泡の取り込み量は確かに減少する。しかしながら、育成された単結晶からウエハーを切り出し、ポリッシュ研磨したときに、ウエハー表面には多数のピットが存在しており、前記気泡の取り込み量を十分に抑制することはできていない。
Until now, when growing aluminum oxide single crystals, oxygen atoms (O) and oxygen molecules (O 2 ) generated by decomposition of the raw material at high temperature exist in the supersaturated state in the melt. It is known that it is taken in and becomes a bubble in the single crystal. In order to avoid this, it has been proposed to grow a single crystal in a reducing atmosphere using hydrogen gas or carbon monoxide gas (see Patent Document 1).
As a result, oxygen atoms (O) and oxygen molecules (O 2 ) present in the melt are removed by reaction with hydrogen gas or carbon monoxide gas, so the amount of bubbles taken into the grown single crystal is certain. To decrease. However, when a wafer is cut out from the grown single crystal and polished and polished, a large number of pits exist on the surface of the wafer, and the amount of bubbles taken in cannot be sufficiently suppressed.

また、融液に平衡固溶しているガス成分は、結晶化する固液界面で融液より排出される傾向にあり、界面近傍の融液は、ガス成分が過飽和となって気泡が生成されやすい。しかし、融液の対流を強化することによって界面付近で生じるガス成分の過飽和を抑制でき、結晶内へのガス成分の取り込み量を減少させられるとしている(非特許文献2参照)。
したがって、まず、原料に含まれるガス成分を融解前にできるだけ除去して融液中に存在する過飽和のガス成分を減少させ、融解後は対流を強化し攪拌の効果を増加させることで、単結晶育成時に結晶内に取り込まれる微小な気泡の量を少なくすれば、ピツトやマイクロバブルの発生を抑えることができるものと考えられる。
In addition, gas components that are in equilibrium with the melt tend to be discharged from the melt at the solid-liquid interface where crystallization occurs, and in the melt near the interface, gas components become supersaturated and bubbles are generated. Cheap. However, it is said that by enhancing the convection of the melt, it is possible to suppress the supersaturation of the gas component that occurs in the vicinity of the interface and to reduce the amount of gas component taken into the crystal (see Non-Patent Document 2).
Therefore, first, the gas component contained in the raw material is removed as much as possible before melting, the supersaturated gas component present in the melt is reduced, and after melting, the convection is strengthened and the effect of stirring is increased. It is thought that the generation of pits and microbubbles can be suppressed by reducing the amount of minute bubbles taken into the crystal during growth.

ところで、チタンが含まれる酸化アルミニウム単結晶の製造方法ではあるが、低酸素濃度雰囲気下で単結晶を育成すると、融液の対流が強化でき攪拌の効果を増加しうるとされている(特許文献2参照)。ここには、酸素分圧が10−2〜10−7気圧というような低酸素濃度雰囲気下でチタンを含む酸化アルミニウム単結晶を育成すると、融液が融液表面において還元され、それに伴い表面張力の変化が生じ、表面張力流が誘起された結果、融液の自然対流と同方向の流れが著しく促進されるとの説明がある。融液の対流が促進されたことによって攪拌の効果が増すと考えることができる。 By the way, although it is a manufacturing method of the aluminum oxide single crystal containing titanium, when the single crystal is grown in a low oxygen concentration atmosphere, it is said that the convection of the melt can be strengthened and the stirring effect can be increased (patent document) 2). Here, when an aluminum oxide single crystal containing titanium is grown in a low oxygen concentration atmosphere where the oxygen partial pressure is 10 −2 to 10 −7 atm, the melt is reduced on the surface of the melt, and accordingly the surface tension is increased. There is an explanation that the flow in the same direction as the natural convection of the melt is remarkably promoted as a result of the occurrence of the surface tension flow and the surface tension flow. It can be considered that the effect of stirring is increased by the convection of the melt being promoted.

ところが、低酸素濃度雰囲気下で酸化アルミニウム単結晶を育成すると、成長界面は融液側に著しく凸形状となる傾向がある。このような状況の中で結晶育成を行った場合、結晶成長によってルツボ内の融液高さがある程度低下すると、成長界面の先端とルツボ底面とが接触する。このため、それ以上は結晶成長を継続することが不可能となり、ルツボに充填した原料の量に対して得られる結晶をそれほど大きくできないという不具合が生じる。また、融液の自然対流と同方向の流れが著しく促進された結果、融液中の単結晶成長速度が早くなり、得られた結晶に結晶欠陥が発生しやすい。   However, when an aluminum oxide single crystal is grown in a low oxygen concentration atmosphere, the growth interface tends to be significantly convex on the melt side. When crystal growth is performed in such a situation, the tip of the growth interface and the bottom of the crucible come into contact with each other when the melt height in the crucible is reduced to some extent by crystal growth. For this reason, it is impossible to continue the crystal growth beyond that, and there arises a problem that the crystal obtained cannot be made so large with respect to the amount of the raw material filled in the crucible. In addition, as a result of remarkably promoting the flow in the same direction as the natural convection of the melt, the single crystal growth rate in the melt is increased, and crystal defects are likely to occur in the obtained crystal.

こうした問題を解消するために、特許文献2では、成長結晶の回転数を、例えば、20回転/分以上、特に30〜120回転/分に上昇させることで融液の過剰な対流を抑制することを提案している。しかしながら、このような手段では、結晶収率をあげることはできても、単結晶中への微細な気泡の発生を十分に抑制できない。
特開平04−132695 特開平09−278592 応用物理 第55巻 第6号 1986 P542−569 第28回結晶成長国内会議予稿集,22Pa2 1997 P15
In order to solve such problems, in Patent Document 2, excessive convection of the melt is suppressed by increasing the number of rotations of the growth crystal to, for example, 20 rotations / minute or more, particularly 30 to 120 rotations / minute. Has proposed. However, with such means, although the crystal yield can be increased, the generation of fine bubbles in the single crystal cannot be sufficiently suppressed.
JP 04-132695 A JP 09-278592 A Applied Physics Vol.55 No.6 1986 P542-569 Proceedings of the 28th National Conference on Crystal Growth, 22Pa2 1997 P15

本発明の目的は、上記従来技術の課題に鑑み、ピットやマイクロバブルの発生を抑制して効率的に高品質な酸化アルミニウム単結晶を製造する方法を提供することにある。   An object of the present invention is to provide a method for efficiently producing a high-quality aluminum oxide single crystal by suppressing the generation of pits and microbubbles in view of the above-mentioned problems of the prior art.

本発明者らは、上記従来の問題点を解決するために鋭意研究を重ね、酸化アルミニウム単結晶中に含まれる気泡の原因となるガス成分の発生メカニズムを詳細に調べた結果、ガス成分は酸化アルミニウムが分解する際にも発生するが、それだけでなく、原料として汎用されている酸化アルミニウム粉末には、もともと吸着または内包してガス成分が存在し、これが融液内に残り、結晶に取り込まれてピットやマイクロバブルとなることを突き止めた。そして、単結晶原料(以下、単に原料ともいう)をルツボ内で加熱中および溶融中に炉体内を減圧し、原料に吸着または内包しているガスを強制的に排除すると単結晶へのガス成分の取り込み量が抑えられ、ピットやマイクロバブルの発生量を低減できること、さらには、融液中における単結晶の成長速度を制御することによって成長界面が融液側に著しく凸となる現象を抑制して結晶欠陥を低減させ、原料からの固化率を向上させ効率的に単結晶を製造できることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies in order to solve the above-mentioned conventional problems, and as a result of examining in detail the generation mechanism of the gas component that causes bubbles contained in the aluminum oxide single crystal, the gas component is oxidized. It also occurs when aluminum is decomposed, but not only that, but the aluminum oxide powder, which is widely used as a raw material, originally has an adsorbed or encapsulated gas component, which remains in the melt and is taken into the crystals. And found out that it would become a pit or microbubble. Then, when a single crystal raw material (hereinafter also simply referred to as a raw material) is heated and melted in a crucible, the pressure inside the furnace is reduced, and the gas adsorbed or contained in the raw material is forcibly removed to give a gas component to the single crystal. In addition, the amount of pits and microbubbles generated can be reduced, and the growth rate of single crystals in the melt can be controlled to suppress the phenomenon that the growth interface becomes significantly convex toward the melt side. Thus, the inventors have found that single crystals can be efficiently produced by reducing crystal defects, improving the solidification rate from the raw materials, and have completed the present invention.

すなわち、本発明の第1の発明によれば、炉体内のルツボに単結晶用原料を入れて加熱溶融し、原料融液から成長結晶を引き上げる溶融固化法により酸化アルミニウム単結晶を製造する方法において、単結晶用原料を加熱溶融する際に、炉体内を0.01MPa以下に維持しつつ、加熱によって単結晶用原料から発生するガスを除去しながら溶融し、引き続き、原料融液を0.01〜0.1MPaの減圧に維持し、かつ、混合雰囲気の酸素濃度が、0.01〜0.5%であるようにして成長結晶を引き上げることを特徴とする酸化アルミニウム単結晶の製造方法が提供される。 That is, according to the first invention of the present invention, in a method for producing an aluminum oxide single crystal by a melt solidification method in which a raw material for a single crystal is placed in a crucible in a furnace body and heated and melted, and a grown crystal is pulled up from the raw material melt When the single crystal raw material is heated and melted, it is melted while removing the gas generated from the single crystal raw material by heating while maintaining the furnace body at 0.01 MPa or less. Provided is a method for producing an aluminum oxide single crystal characterized by maintaining a reduced pressure of ˜0.1 MPa and pulling the grown crystal so that the oxygen concentration in the mixed atmosphere is 0.01 to 0.5%. Is done.

また、本発明の第2の発明によれば、第1の発明において、単結晶用原料が、10時間以上かけて徐々に加熱溶融されることを特徴とする酸化アルミニウム単結晶の製造方法が提供される。
さらに、本発明の第3の発明によれば、第1又は第2の発明において、単結晶用原料を加熱後、温度が1000℃に達してから減圧を始めることを特徴とする酸化アルミニウム単結晶の製造方法が提供される。
According to a second aspect of the present invention, there is provided a method for producing an aluminum oxide single crystal according to the first aspect, wherein the single crystal raw material is gradually heated and melted over 10 hours or more. Is done.
Furthermore, according to the third invention of the present invention, the aluminum oxide single crystal according to the first or second invention is characterized in that after the raw material for single crystal is heated, pressure reduction is started after the temperature reaches 1000 ° C. A manufacturing method is provided.

また、本発明の第4の発明によれば、第1の発明において、原料融液が、酸素および窒素または不活性ガスの混合雰囲気に維持されることを特徴とする単結晶製造方法が提供される。
さらに、本発明の第の発明によれば、第1の発明において、前記ルツボの材料がイリジウムであることを特徴とする単結晶製造方法が提供される。
According to a fourth aspect of the present invention, there is provided the method for producing a single crystal according to the first aspect, wherein the raw material melt is maintained in a mixed atmosphere of oxygen and nitrogen or an inert gas. The
Furthermore, according to a fifth aspect of the present invention, there is provided the method for producing a single crystal according to the first aspect, wherein the material of the crucible is iridium.

本発明によれば、原料をルツボ内で加熱中および溶融中に炉体を減圧し、原料に吸着または内包しているガスを強制的に排除するので、原料から融液中へのガス成分の取り込みが抑えられ、融液中での微小な気泡の発生を抑制できる。また、融液中における単結晶の成長速度を制御することによって成長界面が融液側に著しく凸となる現象を抑制して結晶欠陥を低減させ、さらに凸度を低減させた結果、原料からの固化率を向上させ効率的に単結晶を製造することができる。
こうして得られた単結晶は、微小な気泡に起因するピット、マイクロバブル、結晶欠陥等が低減しており、さらにルツボ材料からのインクルージョン(内包物)がなくなるために、高品質なものとなり、この単結晶を用いれば優れた特性を有する電子部品材料、光学用部品材料を提供できる。
According to the present invention, the furnace body is depressurized while the raw material is heated and melted in the crucible, and the gas adsorbed or contained in the raw material is forcibly excluded. Uptake is suppressed, and generation of minute bubbles in the melt can be suppressed. In addition, by controlling the growth rate of the single crystal in the melt, the phenomenon that the growth interface becomes significantly convex toward the melt side is suppressed, crystal defects are reduced, and the degree of convexity is further reduced. A solid crystal can be improved and a single crystal can be produced efficiently.
The single crystal thus obtained has reduced pits, microbubbles, crystal defects, and the like due to minute bubbles, and further has no inclusion (inclusion) from the crucible material. If a single crystal is used, electronic component materials and optical component materials having excellent characteristics can be provided.

以下、本発明の酸化アルミニウム単結晶の製造方法について、図面を用いて詳細に説明する。   Hereinafter, the manufacturing method of the aluminum oxide single crystal of this invention is demonstrated in detail using drawing.

本発明の酸化アルミニウム単結晶の製造方法は、炉体内のルツボに単結晶用原料を入れて加熱溶融し、原料融液から成長結晶を引き上げる溶融固化法により酸化アルミニウム単結晶を製造する方法において、単結晶用原料を加熱溶融する際に、炉体内を0.01MPa以下に維持しつつ、加熱によって単結晶用原料から発生するガスを除去しながら溶融し、引き続き、原料融液を0.01〜0.1MPaの減圧に維持し、かつ、混合雰囲気の酸素濃度が、0.01〜0.5%であるようにして成長結晶を引き上げることを特徴とする。 The method for producing an aluminum oxide single crystal of the present invention is a method for producing an aluminum oxide single crystal by a melt solidification method in which a raw material for a single crystal is put into a crucible in a furnace body and heated and melted, and a grown crystal is pulled up from the raw material melt When the single crystal raw material is heated and melted, it is melted while removing the gas generated from the single crystal raw material by heating while maintaining the furnace body at 0.01 MPa or less. The growth crystal is pulled up so that the pressure is reduced to 0.1 MPa and the oxygen concentration in the mixed atmosphere is 0.01 to 0.5% .

すなわち、溶融固化法により、炉体内のルツボに単結晶用原料を入れて加熱溶融し、原料融液から成長結晶を引き上げて酸化アルミニウム単結晶を製造するにあたり、装置に該単結晶を育成するための炉体内を減圧する手段および減圧の度合いをモニターする手段を設け、該単結晶を育成に用いる原料を室温のみならず、融点までの加熱中において、炉体内を0.01MPa以下に減圧する作業を行う。   That is, in order to grow an aluminum oxide single crystal in an apparatus when a single crystal raw material is put into a crucible in a furnace body and melted by heating and melted by pulling the growth crystal from the raw material melt. A means for reducing the pressure inside the furnace and a means for monitoring the degree of pressure reduction, and reducing the pressure inside the furnace to 0.01 MPa or less while heating the raw material used for growing the single crystal to the melting point as well as at room temperature I do.

本発明において、酸化アルミニウム単結晶を育成するには、従来のチョクラルスキー法による酸化物単結晶育成装置を使用できる。例えば、貴金属で形成されたルツボと、ルツボの周囲に保温材としてアルミナなどで形成された炉材と、炉材の外側に加熱装置としての高周波コイルが配置された装置が挙げられる。装置には、炉体内を減圧する手段と、減圧度をモニターする手段と、炉体内に酸素および窒素または不活性ガスの混合ガスを供給する手段が設けられる。   In the present invention, in order to grow an aluminum oxide single crystal, a conventional oxide single crystal growing apparatus based on the Czochralski method can be used. For example, a crucible formed of a noble metal, a furnace material formed of alumina or the like as a heat insulating material around the crucible, and an apparatus in which a high-frequency coil as a heating device is disposed outside the furnace material. The apparatus is provided with means for decompressing the furnace body, means for monitoring the degree of decompression, and means for supplying a mixed gas of oxygen and nitrogen or an inert gas into the furnace body.

単結晶原料であるアルミナの融点が2000℃強であるため、ルツボとしてイリジウム製のものを用いることが好ましい。保温材としては、発泡ジルコニア等の断熱材を充填してもよい。ルツボの上方には、材料融液から単結晶を回転させながら引き上げるための引き上げ装置が設けられ、炉材の上方は遮蔽板で遮蔽されている。   Since the melting point of alumina, which is a single crystal raw material, is slightly over 2000 ° C., it is preferable to use an iridium-made crucible. As the heat insulating material, a heat insulating material such as foamed zirconia may be filled. Above the crucible, a pulling device for pulling up the single crystal from the material melt is provided, and the furnace material is shielded by a shielding plate.

まず、ルツボに前記した単結晶用原料を入れ、次に高周波コイルによってルツボを加熱し、原料を溶融して原料融液を得る。
炉体内の酸化アルミニウム単結晶原料を常圧状態で加熱溶融し、チョクラルスキー法で成長させると、結晶中に無数の微小な気泡が発生しやすい。酸化アルミニウム気泡の原因となるガスは、酸化アルミニウムの分解によっても発生するが、原料に吸着または内包しているガス成分が原料の融解前に完全に除去されず融液内に残り、これが結晶に取り込まれて気泡となっているものが多い。そこで、単結晶用原料をルツボ内で加熱中および溶融中に炉体を減圧し、原料に吸着または内包しているガスを強制的に排除する。この工程では、原料が融解する前に減圧作業を終了してしまうと、ガス成分の除去が不十分となるので原料が実質的に融解し終わるまで行う。
First, the single crystal raw material described above is put into a crucible, and then the crucible is heated by a high frequency coil to melt the raw material to obtain a raw material melt.
When the aluminum oxide single crystal raw material in the furnace body is heated and melted at normal pressure and grown by the Czochralski method, innumerable microbubbles are likely to be generated in the crystal. The gas that causes aluminum oxide bubbles is also generated by the decomposition of aluminum oxide, but the gas component adsorbed or contained in the raw material is not completely removed before the raw material is melted, and remains in the melt, which becomes crystals. Many are taken into bubbles. Therefore, the furnace body is depressurized while the single crystal raw material is heated and melted in the crucible, and the gas adsorbed or contained in the raw material is forcibly removed. In this step, if the decompression operation is completed before the raw material is melted, the removal of gas components becomes insufficient, and therefore, the process is performed until the raw material is substantially melted.

本発明においては、単結晶用原料として通常の酸化アルミニウム粉末を用いる。酸化アルミニウム粉末は、実質的にAlとOの2元素からなる酸化アルミニウムである。また、目的とする酸化アルミニウム単結晶の種類に合わせて、AlとOのほかに、Ti、Cr、Si、Ca、Mgなどを含んでいてもよい。このうちSi、Ca、Mgなどは、焼結助剤の成分として不可避的に含まれうるが、その含有量は極力少ないことが望ましい。また、酸化アルミニウムの直径や密度は、特に制限されないが、取り扱い上、例えば、直径は、10mm以下、好ましくは5mm以下であるものがよく、密度は、5g/cm以下、好ましくは3g/cm以下であるものがよい。 In the present invention, an ordinary aluminum oxide powder is used as a raw material for a single crystal. The aluminum oxide powder is aluminum oxide substantially composed of two elements of Al and O. In addition to Al and O, Ti, Cr, Si, Ca, Mg, and the like may be included in accordance with the type of target aluminum oxide single crystal. Among these, Si, Ca, Mg and the like can be inevitably contained as components of the sintering aid, but the content is desirably as small as possible. The diameter and density of aluminum oxide are not particularly limited, but for handling, for example, the diameter is preferably 10 mm or less, preferably 5 mm or less, and the density is 5 g / cm 3 or less, preferably 3 g / cm. What is 3 or less is good.

通常の酸化アルミニウム粉末は、比表面積が5〜10m/g程度と大きいので、多くのガス成分が吸着または内包されているが、原料の融解前に完全に除去されて融液内に残ることはなく、結晶に取り込まれないのでピットやマイクロバルブを形成することもない。これは、比表面積が0.1〜10m/gの酸化アルミニウム焼結体でも同様である。 Since normal aluminum oxide powder has a large specific surface area of about 5 to 10 m 2 / g, many gas components are adsorbed or encapsulated, but it is completely removed before melting of the raw material and remains in the melt. No pits or microvalves are formed because they are not taken into the crystal. The same applies to an aluminum oxide sintered body having a specific surface area of 0.1 to 10 m 2 / g.

酸化アルミニウム焼結体であれば、半導体製造用の市販品を使用できるが、次に示すような方法によって製造することもできる。例えば、焼成するとαアルミナに転化するαアルミナ前駆体のゾル又はゲルにαアルミナ粒子を種として添加し、ゾルはゲル化した後、この種晶を添加されたαアルミナ前駆体のゲルを900〜1350℃の温度で焼結し、得られる焼結生成物を粉砕する。   If it is an aluminum oxide sintered compact, the commercial item for semiconductor manufacture can be used, However, It can also manufacture by the method as shown next. For example, α alumina particles are added as seeds to a sol or gel of an α alumina precursor that is converted to α alumina when baked, and after the sol is gelled, the gel of the α alumina precursor to which the seed crystal is added is 900 to Sinter at a temperature of 1350 ° C. and grind the resulting sintered product.

クラックル原料は、ベルヌーイ法で製造された酸化アルミニウム単結晶原料を直径20mm以下に粉砕して得ているが、比表面積が0.1m/g未満と非常に小さく吸着ガスは少ない。しかし、酸化アルミニウム粉末を溶解し、得られた融液より作製された単結晶を粉砕しているため、その内部に無数の泡を内包することが多い。クラックル原料では、酸化アルミニウム融液の粘性が高く表面張力が大きいにも拘らず、加熱溶融時に減圧することで、微小な気泡となって融液に溶解することなく、容易に融液から抜けてゆく。クラックル原料は、密度が高いので、酸化アルミニウム粉末など他の原料形態と比べると育成前の原料投入回数が少なくてすむ利点がある。 The crackle raw material is obtained by pulverizing an aluminum oxide single crystal raw material produced by the Bernoulli method to a diameter of 20 mm or less. However, the specific surface area is as small as less than 0.1 m 2 / g and the adsorbed gas is small. However, since the aluminum oxide powder is dissolved and the single crystal produced from the obtained melt is pulverized, innumerable bubbles are often included therein. With crackle raw materials, despite the high viscosity and high surface tension of the aluminum oxide melt, it is easy to escape from the melt without melting into the melt by forming a reduced pressure during heating and melting. go. Since the crackle raw material has a high density, there is an advantage that the number of raw material inputs before the growth can be reduced as compared with other raw material forms such as aluminum oxide powder.

次に、本発明において好ましい減圧工程の態様を示す。減圧工程は、原料の加熱溶融段階と、融液の単結晶育成段階からなる。原料の加熱溶融段階では、原料を融点に達するまで10時間以上、好ましくは12時間以上かけて徐々に加熱することが望ましい。原料が融点に達するまでの加熱速度は、特に制限されるわけではないが、急速に加熱せずに長時間かけて徐々に加熱するほうが、単結晶中への気泡の取り込みを抑えることができる。   Next, a preferred embodiment of the decompression step in the present invention will be shown. The depressurization step includes a raw material heating and melting stage and a melt single crystal growing stage. In the heating and melting stage of the raw material, it is desirable that the raw material is gradually heated over 10 hours or more, preferably 12 hours or more until the melting point is reached. The heating rate until the raw material reaches the melting point is not particularly limited, but it is possible to suppress the incorporation of bubbles into the single crystal by heating gradually over a long time without rapidly heating.

ルツボに入れられた原料が常温であるうちに真空引きを行ってもよいが、加熱後、原料が1000℃以上になってから真空引きを開始することが好ましい。原料が1000℃未満ではガスの発生が極めて少ないからである。真空引きは、炉内の圧力が0.01MPa以下になるまで継続して行わなければならない。   Vacuuming may be performed while the raw material placed in the crucible is at room temperature, but it is preferable to start evacuation after the raw material reaches 1000 ° C. or higher after heating. This is because when the raw material is less than 1000 ° C., the generation of gas is extremely small. The evacuation must be continued until the pressure in the furnace becomes 0.01 MPa or less.

炉体内の原料温度が1000℃以上になると、原料に吸着しているガス成分が排出されるため炉内の真空度は徐々に低下してゆく。真空度が低下してゆき0.02MPaを越えると、マイクロバブルへの悪影響が懸念される。そこで、炉内の圧力が0.01MPa以下、好ましくは0.005MPa以下になるまで再度真空引きを行わなければならない。炉内の圧力が一時的に0.01MPaを超えても差し支えないが、それが60minを超えるようになると気泡の発生を十分には抑えることができない。
このような減圧度をモニターするために、10〜60min間隔、好ましくは20〜50min間隔で圧力を測定することが望ましい。この減圧作業を原料が融解するまで繰り返す。真空引き停止による炉内の真空度劣化は、原料が融解するまでは通常0.001〜0.002MPaとわずかであるが、原料融解時になると劣化の度合いが0.005〜0.01MPaまで増加することがある。
When the temperature of the raw material in the furnace becomes 1000 ° C. or higher, the gas component adsorbed on the raw material is discharged, and the degree of vacuum in the furnace gradually decreases. If the degree of vacuum decreases and exceeds 0.02 MPa, there is a concern about adverse effects on microbubbles. Therefore, evacuation must be performed again until the pressure in the furnace becomes 0.01 MPa or less, preferably 0.005 MPa or less. The pressure in the furnace may temporarily exceed 0.01 MPa, but if it exceeds 60 min, the generation of bubbles cannot be sufficiently suppressed.
In order to monitor the degree of decompression, it is desirable to measure the pressure at intervals of 10 to 60 min, preferably at intervals of 20 to 50 min. This decompression operation is repeated until the raw material is melted. Deterioration of the degree of vacuum in the furnace due to the evacuation stop is usually 0.001 to 0.002 MPa until the raw material is melted, but the degree of deterioration increases to 0.005 to 0.01 MPa when the raw material is melted. Sometimes.

その後、原料融液の単結晶育成段階では、引き続き10〜60min毎に上記減圧作業を行う。減圧作業を1〜5時間継続すると、ほぼ真空度の劣化は融解前と同程度となり、真空度は0.005〜0.007MPaとなる。   Thereafter, in the single crystal growth stage of the raw material melt, the above depressurization operation is continuously performed every 10 to 60 minutes. When the decompression operation is continued for 1 to 5 hours, the degree of vacuum is almost the same as that before melting, and the degree of vacuum is 0.005 to 0.007 MPa.

原料が十分溶融したところで、種子結晶を融液表面に接触させて結晶成長を開始させる。この際、炉体内に酸素および窒素または不活性ガスを供給し、それらの混合ガス雰囲気とする。酸素および窒素などの混合ガスは、0.01〜0.1MPaになるまで導入する。これ以上に減圧を維持したまま育成を行うと、原料が分解して良質な結晶が得られない。
ここで、酸素濃度は0.01〜0.5%、好ましくは0.1〜0.3%となるよう調整する。酸素濃度が0.01%未満では、後述する理由により得られた結晶に結晶欠陥が発生しやすく、0.5%を超えるとマイクロバブルが発生しやすくなるため好ましくない。また、ルツボ材料の酸化が進行することによってルツボの劣化が促進されるばかりではなく、ルツボ材の酸化金属が炉内に飛散し融液に混入しやすくなる。この結果、結晶中にルツボ材が取り込まれインクルージョンとなる。単結晶育成中もこの酸素濃度を維持する。原料の融解から3時間以上、特に5時間以上経過後、得られた融液に種結晶を接触させ、種結晶を引き上げ装置で回転させながら引き上げる。
When the raw material is sufficiently melted, the seed crystal is brought into contact with the melt surface to start crystal growth. At this time, oxygen and nitrogen or an inert gas are supplied into the furnace body to form a mixed gas atmosphere thereof. A mixed gas such as oxygen and nitrogen is introduced until the pressure reaches 0.01 to 0.1 MPa. If the growth is carried out while maintaining a reduced pressure, the raw material is decomposed and high quality crystals cannot be obtained.
Here, the oxygen concentration is adjusted to be 0.01 to 0.5%, preferably 0.1 to 0.3%. If the oxygen concentration is less than 0.01%, crystal defects are likely to occur in the crystal obtained for the reasons described later, and if it exceeds 0.5%, microbubbles are likely to be generated. Further, the progress of the oxidation of the crucible material not only promotes the deterioration of the crucible, but also the metal oxide of the crucible material is scattered in the furnace and easily mixed into the melt. As a result, the crucible material is taken into the crystal and becomes inclusion. This oxygen concentration is maintained even during single crystal growth. After elapse of 3 hours or more, especially 5 hours or more from the melting of the raw material, the seed crystal is brought into contact with the obtained melt, and the seed crystal is pulled up while being rotated by a pulling device.

単結晶の育成は、炉内雰囲気を減圧し、酸素および窒素または不活性ガスの混合雰囲気とする以外は常法に従い、回転数や引き上げ速度を調整してネック部および肩部を形成し、引き続き直胴部を形成する。このとき、放射温度計などを用いて単結晶と原料融液との界面近傍における融液表面の温度を測定することが好ましい。結晶形状の調節は、育成中の結晶重量を測定し、直径や育成速度などを計算によって導き出し、回転速度や引き上げ速度を調整して行う。また、結晶重量の変化を高周波誘導コイル投入電力にフィードバックして融液温度をコントロールできる。   Single crystal growth is carried out by adjusting the rotation speed and pulling speed to form the neck and shoulder, except for reducing the furnace atmosphere and mixing with oxygen and nitrogen or inert gas. A straight body part is formed. At this time, it is preferable to measure the temperature of the melt surface in the vicinity of the interface between the single crystal and the raw material melt using a radiation thermometer or the like. The crystal shape is adjusted by measuring the crystal weight during growth, deriving the diameter, growth rate, and the like by calculation, and adjusting the rotation speed and pulling speed. Also, the melt temperature can be controlled by feeding back the change in crystal weight to the power applied to the high frequency induction coil.

融液中に含まれる過剰なガスが減少した結果、単結晶育成時に結晶内に析出する気泡がなくなる。なお、単結晶の育成時も、酸素濃度を0.01〜0.5%、好ましくは0.1〜0.3%の範囲に調整することで、融液中における単結晶の成長速度を制御し結晶欠陥を低減させ、また、成長界面が融液側に著しく凸とならず、原料に対して得られる結晶がそれほど大きくできないという不具合は解消される。   As a result of the reduction of excess gas contained in the melt, there are no bubbles that precipitate in the crystal during single crystal growth. During the growth of the single crystal, the growth rate of the single crystal in the melt is controlled by adjusting the oxygen concentration to a range of 0.01 to 0.5%, preferably 0.1 to 0.3%. This eliminates the problem that crystal defects are reduced, the growth interface is not significantly convex on the melt side, and crystals obtained with respect to the raw material cannot be made so large.

ところで、前記特許文献2に記載されているように、低酸素濃度雰囲気下で酸化アルミニウム単結晶を育成すると、成長界面は融液側に著しく凸形状となる傾向がある。このような状況の中で単結晶育成を行った場合、結晶成長によってルツボ内の原料融液高さがある程度低下すると、成長界面の先端とルツボ底面とが接触してしまう。このため、それ以上は結晶成長を継続することが不可能となり、ルツボに充填した原料の量に対して得られる結晶がそれほど大きくできないという不具合が生じる。また、融液の自然対流と同方向の流れが著しく促進された結果、融液中の単結晶成長速度が早くなり、得られた結晶に結晶欠陥が発生しやすい。
こうした問題は、特許文献2に記載のように、例えば育成中に結晶の回転数を大きく上げて結晶成長速度を調節してもよいが、例えば、本出願人による特開2005−231958に開示されているルツボ底部に加熱ヒーターを有する育成炉を用いて融液の対流を調節すれば、回転数を大きく上げることなく解決できる。
By the way, as described in Patent Document 2, when an aluminum oxide single crystal is grown in a low oxygen concentration atmosphere, the growth interface tends to be remarkably convex on the melt side. When single crystal growth is performed in such a situation, if the height of the raw material melt in the crucible is reduced to some extent by crystal growth, the tip of the growth interface and the bottom of the crucible come into contact with each other. For this reason, it is impossible to continue the crystal growth beyond that, and there arises a problem that the crystal obtained cannot be so large with respect to the amount of the raw material filled in the crucible. In addition, as a result of remarkably promoting the flow in the same direction as the natural convection of the melt, the single crystal growth rate in the melt is increased, and crystal defects are likely to occur in the obtained crystal.
As described in Patent Document 2, for example, such a problem may be achieved by adjusting the crystal growth rate by increasing the number of rotations of the crystal during the growth, but is disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-231958 by the present applicant. If the convection of the melt is adjusted using a growth furnace having a heater at the bottom of the crucible, the problem can be solved without greatly increasing the rotational speed.

このようにして、特定の減圧条件下で原料を加熱溶融させて単結晶を育成することで、原料の形態を問わず、その表面に吸着あるいは内包しているガスが容易に排除でき、その結果、融液中に含まれる過剰なガスを減少させることができ、単結晶育成時に結晶内に取り込まれる微小な気泡を少なくなくすることができ、得られる単結晶中のピットやマイクロバルブを少なくすることができる。   In this way, by growing the single crystal by heating and melting the raw material under specific decompression conditions, the gas adsorbed or encapsulated on the surface can be easily excluded regardless of the form of the raw material. The excess gas contained in the melt can be reduced, the number of minute bubbles taken into the crystal during single crystal growth can be reduced, and the number of pits and microvalves in the resulting single crystal can be reduced. be able to.

育成した単結晶に取り込まれた微小な気泡の度合いは、前記非特許文献1に示されている光散乱レーザートモグラフ法に従って、レーザー光を結晶に照射し、その散乱光を観察できる。図1に光散乱を測定する光学系を示す。円筒状に加工した酸化アルミニウム単結晶1に波長532nm、出力500mWのレーザー光2を照射し、照射したレーザー光2の入射方向に対して90°の方向に放射される散乱光3をCCDカメラ4に取り込み、画像処理装置5で強度を0〜255までの256階調に処理し、画像中の結晶部分40mm四方の強度平均を散乱光強度として算出する。このとき、レーザー光の偏光方向は、CCDカメラの方向に対して90°となる直線偏光とする。   The degree of minute bubbles taken into the grown single crystal can be observed by irradiating the crystal with laser light and observing the scattered light according to the light scattering laser tomography method disclosed in Non-Patent Document 1. FIG. 1 shows an optical system for measuring light scattering. The aluminum oxide single crystal 1 processed into a cylindrical shape is irradiated with a laser beam 2 having a wavelength of 532 nm and an output of 500 mW, and scattered light 3 emitted in a direction of 90 ° with respect to the incident direction of the irradiated laser beam 2 is emitted from the CCD camera 4. The image processing apparatus 5 processes the intensity to 256 gradations from 0 to 255, and calculates the average intensity of the 40 mm square of the crystal portion in the image as the scattered light intensity. At this time, the polarization direction of the laser light is linearly polarized light that is 90 ° with respect to the direction of the CCD camera.

次に、育成された単結晶を切断し、例えば直径3インチ程度のウエハーを得、研磨してピットの発生状況を確認する。前記非表面積が異なるいずれの原料を用いた場合でも、ピットの発生状況は平均数十個、あるいはそれ以下となる。   Next, the grown single crystal is cut to obtain a wafer having a diameter of about 3 inches, for example, and polished to check the occurrence of pits. When any raw material having a different non-surface area is used, the average number of pits generated is tens or less.

散乱光強度は、育成された単結晶に取り込まれるマイクロバブルの量を示していると考えられるが、本発明によれば、マイクロバブルの量やピット数がほとんど変わらない。これは、育成中の原料形態によって結晶中に取り込まれるガス成分の量に大差がないことを意味している。比表面積の大きな粉末原料である酸化アルミニウム粉末では、原料に吸着するガスが多いのであるが、溶融時に炉体内を減圧にすることで、溶解に伴う昇温時の粒成長によって無数の空隙が形成されることなく、その中にガス成分が閉じ込められることもない。   Although the scattered light intensity is considered to indicate the amount of microbubbles taken into the grown single crystal, according to the present invention, the amount of microbubbles and the number of pits hardly change. This means that there is no great difference in the amount of the gas component taken into the crystal depending on the raw material form being grown. Aluminum oxide powder, which is a powder material with a large specific surface area, has a large amount of gas adsorbed to the material, but by reducing the pressure inside the furnace during melting, innumerable voids are formed due to grain growth during heating due to melting. Neither is it confined to the gas component.

上記の製造方法により得られる酸化アルミニウム単結晶は、アルミニウム及び酸素の2元素を含む単結晶であり、光散乱レーザートモグラフ法によって求められる散乱光強度が140以下まで減少している。
この単結晶からウエハーをスライスし、ポリッシュ研磨することで、エピ結晶基板とすることができる。単結晶中には微小な気泡が極めて少ないので、ピット数もマイクロバブルも少なくなり優れた特性を有する電子部品材料、光学用部品材料を提供できる。
The aluminum oxide single crystal obtained by the above production method is a single crystal containing two elements of aluminum and oxygen, and the scattered light intensity obtained by the light scattering laser tomography method is reduced to 140 or less.
By slicing a wafer from this single crystal and polishing it, an epicrystal substrate can be obtained. Since there are very few microbubbles in the single crystal, the number of pits and microbubbles is reduced, and electronic component materials and optical component materials having excellent characteristics can be provided.

以下に、実施例を用いて、本発明をさらに詳細に説明するが、本発明は、これら実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

〔微小な気泡の測定〕
育成した単結晶に取り込まれた微小な気泡は、前記光散乱レーザートモグラフ法に従って観察した。具体的には、図1に示したように、円筒状に加工した酸化アルミニウム単結晶の側面にレーザー光を照射して、酸化アルミニウム単結晶端面より射出される散乱光をCCDカメラに取り込み、画像処理装置で散乱光強度を算出した。この結果、散乱光強度が140以下であれば、育成した単結晶中のマイクロバブル量は少ないと判断される。
[Measurement of minute bubbles]
The minute bubbles taken into the grown single crystal were observed according to the light scattering laser tomography method. Specifically, as shown in FIG. 1, the side surface of the cylindrically processed aluminum oxide single crystal is irradiated with laser light, and the scattered light emitted from the end surface of the aluminum oxide single crystal is taken into the CCD camera, and an image is obtained. The scattered light intensity was calculated by the processing apparatus. As a result, if the scattered light intensity is 140 or less, it is determined that the amount of microbubbles in the grown single crystal is small.

〔ピットの評価〕
育成した単結晶から50枚のウエハーをスライスし、ポリッシュ研磨して、ピットがどの程度あるか測定した。ピット数は少ないほど良好な単結晶が育成されていることを示している。
[Evaluation of pits]
Fifty wafers were sliced from the grown single crystal and polished to measure how many pits there were. The smaller the number of pits, the better the single crystal is grown.

〔実施例1〕
特開2005−231958に開示されているルツボ底部に加熱ヒーターを有する育成炉を用い、イリジウム製ルツボに4N(99.99%)のAl原料を10kg投入した。装置には、炉体内を減圧する手段、減圧度をモニターする手段、および酸素および窒素または不活性ガスの混合ガス供給手段を設けている。Al原料はクラックルとよばれるもので、これはベルヌーイ法で育成した酸化アルミニウム単結晶を20mm角程度の大きさに粉砕したものである。
この原料を融点に達するまで12時間かけて徐々に加熱した。原料が1000℃以上で真空引きを開始し、炉内の圧力が0.005MPaまで減圧したところで真空引きを一旦停止した。この温度以上では原料に吸着しているガス成分が排出されるため炉内の真空度は徐々に低下し、30min後に0.006MPaとなった。そこで30min後、炉内の圧力が0.005MPaとなるまで再度真空引きを行った。30minに一度、この減圧作業を原料が融解するまで繰り返した。真空引き停止による炉内の真空度は、原料が融解するまでは停止後30minで0.006MPaへ劣化する程度であったが、原料融解時には0.008MPaまで劣化した。融解後も引き続き30min毎に上記減圧作業を行った結果、劣化の度合いは改善され、3時間後にほぼ真空度の劣化は融解前と同程度となり、30min後での真空度は0.006MPaとなった。
さらに3時間、上記減圧作業を行った後、炉体内に酸素および窒素を0.1MPaになるまで導入した。ここで、酸素濃度は0.3%となるよう調整しながら、毎分3リットルの流量でフローさせた。その後、a軸方向に切り出した酸化アルミニウム単結晶を種結晶として用い、種結晶を融液近くまで降下させた。この種結晶を毎分2回転の速度で回転させながら徐々に降下させ、種結晶の先端を融液に接触させて温度を徐々に降下させながら引上速度2mm/hで種結晶を上昇させて結晶成長を行った。
その結果、直径102mm、直胴部の長さ118mmで目視では気泡が観察されない結晶を得た。また、結晶底部の成長界面を測定したところ、22mm凸であった。さらに、この結晶に波長532nmのレーザーを照射し、結晶内部の散乱光を観察したところ、ほとんど散乱はなく(散乱光強度85)、結晶内部に微小な気泡が少ないことがわかった。また、この結晶をウエハーにし、ポリッシュ研磨したところ微小な窪みは確認できなかった。
[Example 1]
A growth furnace having a heater at the bottom of the crucible disclosed in JP-A-2005-231958 was used, and 10 kg of 4N (99.99%) Al 2 O 3 raw material was charged into the iridium crucible. The apparatus includes means for reducing the pressure inside the furnace, means for monitoring the degree of pressure reduction, and means for supplying a mixed gas of oxygen and nitrogen or an inert gas. The Al 2 O 3 raw material is called crackle, which is obtained by grinding an aluminum oxide single crystal grown by Bernoulli method to a size of about 20 mm square.
This raw material was gradually heated over 12 hours until reaching the melting point. Vacuuming was started when the raw material was 1000 ° C. or higher, and the vacuuming was temporarily stopped when the pressure in the furnace was reduced to 0.005 MPa. Above this temperature, the gas component adsorbed on the raw material was discharged, so the degree of vacuum in the furnace gradually decreased and became 0.006 MPa after 30 minutes. Therefore, after 30 minutes, evacuation was performed again until the pressure in the furnace reached 0.005 MPa. This depressurization operation was repeated once every 30 min until the raw material melted. The degree of vacuum in the furnace due to the evacuation stop was such that it deteriorated to 0.006 MPa in 30 minutes after the stop until the raw material melted, but it deteriorated to 0.008 MPa when the raw material melted. As a result of continuing the decompression operation every 30 minutes after melting, the degree of deterioration was improved, and after 3 hours, the degree of vacuum was almost the same as before melting, and the degree of vacuum after 30 minutes was 0.006 MPa. It was.
After performing the above-described pressure reduction operation for another 3 hours, oxygen and nitrogen were introduced into the furnace until the pressure reached 0.1 MPa. Here, it was made to flow at a flow rate of 3 liters per minute while adjusting the oxygen concentration to be 0.3%. Thereafter, the aluminum oxide single crystal cut in the a-axis direction was used as a seed crystal, and the seed crystal was lowered to near the melt. The seed crystal is gradually lowered while rotating at a speed of 2 revolutions per minute, and the seed crystal is raised at a pulling speed of 2 mm / h while gradually lowering the temperature by bringing the tip of the seed crystal into contact with the melt. Crystal growth was performed.
As a result, a crystal having a diameter of 102 mm and a length of the straight body portion of 118 mm, in which no bubbles were observed visually, was obtained. Further, when the growth interface at the bottom of the crystal was measured, it was 22 mm convex. Furthermore, when this crystal was irradiated with a laser having a wavelength of 532 nm and the scattered light inside the crystal was observed, it was found that there was almost no scattering (scattered light intensity 85), and there were few fine bubbles inside the crystal. Further, when this crystal was made into a wafer and polished, no minute depressions could be confirmed.

〔実施例2〕
結晶原料をルツボに投入後、原料を加熱溶融する前に真空引きを開始した以外は実施例1と同様にして行った。すなわち、原料が常温の状態にあるうちに真空引きを開始した。その結果、直径102mm、直胴部の長さ118mmで目視では気泡が観察されない結晶が得られた。また、結晶底部の成長界面を測定したところ、22mm凸であった。さらに、この結晶に波長532nmのレーザーを照射し結晶内部の散乱光を観察したところ、ほとんど散乱はなく(散乱光強度84)、結晶内部に微小な気泡が少ないことがわかった。また、この結晶をウエハーにしポリッシュ研磨したところ微小な窪みは確認できなかった。
[Example 2]
This was performed in the same manner as in Example 1 except that the evacuation was started after the crystal raw material was charged into the crucible and before the raw material was heated and melted. That is, evacuation was started while the raw material was at room temperature. As a result, a crystal having a diameter of 102 mm and a length of the straight body portion of 118 mm, in which bubbles were not observed visually, was obtained. Further, when the growth interface at the bottom of the crystal was measured, it was 22 mm convex. Furthermore, when this crystal was irradiated with a laser having a wavelength of 532 nm and the scattered light inside the crystal was observed, it was found that there was almost no scattering (scattered light intensity 84) and there were few fine bubbles inside the crystal. Further, when this crystal was polished on a wafer and fine polishing was not confirmed.

〔実施例3〕
減圧作業を行って原料を加熱溶融した後、炉体内に酸素および窒素を導入し、その酸素濃度を0.01%となるよう調整した以外は実施例1と同様にして行った。
その結果、直径102mm、直胴部の長さ118mmで目視では気泡が観察されない結晶が得られた。また、結晶底部の成長界面を測定したところ、48mm凸であった。さらに、この結晶に波長532nmのレーザーを照射し、結晶内部の散乱光を観察したところ、ほとんど散乱はなく(散乱光強度68)、結晶内部に微小な気泡が少ないことがわかった。また、この結晶をウエハーにしポリッシュ研磨したところ微小な窪みは確認できなかった。
Example 3
After performing the decompression operation to heat and melt the raw material, oxygen and nitrogen were introduced into the furnace, and the same procedure as in Example 1 was performed except that the oxygen concentration was adjusted to 0.01%.
As a result, a crystal having a diameter of 102 mm and a length of the straight body portion of 118 mm, in which bubbles were not observed visually, was obtained. The growth interface at the bottom of the crystal was measured and found to be 48 mm convex. Furthermore, when this crystal was irradiated with a laser having a wavelength of 532 nm and the scattered light inside the crystal was observed, it was found that there was almost no scattering (scattered light intensity 68), and there were few fine bubbles inside the crystal. Further, when this crystal was polished on a wafer and fine polishing was not confirmed.

〔比較例1〕
比較のために、原料を加熱溶融する際に減圧操作を行わなかった以外は実施例1と同様にして行った。
その結果、得られた結晶は、直径98mm、直胴部の長さ121mm、結晶底部の成長界面は21mm凸であった。この結晶に波長532nmのレーザーを照射し結晶内部の散乱光を観察したところ、散乱光強度が強く(散乱光強度124)、結晶内部に微小な気泡が多いことがわかった。また、この結晶をウエハーにしポリッシュ研磨したところ微小な窪みが数多く観察された。
[Comparative Example 1]
For comparison, the same procedure as in Example 1 was performed except that no decompression operation was performed when the raw material was heated and melted.
As a result, the obtained crystal had a diameter of 98 mm, a length of the straight body part of 121 mm, and a growth interface of the crystal bottom part having a convexity of 21 mm. When this crystal was irradiated with a laser having a wavelength of 532 nm and the scattered light inside the crystal was observed, it was found that the intensity of the scattered light was strong (scattered light intensity 124) and that there were many fine bubbles inside the crystal. Further, when this crystal was polished on a wafer, many fine dents were observed.

〔比較例2〕
比較のために、原料を加熱溶融する際に減圧操作を行わなかった以外は実施例1と同様にして行った。また、原料の溶融後は酸素および不活性ガスを導入せず、低酸素分圧で結晶を育成した。
出発原料としてイリジウム製ルツボに4N(99.99%)のAl原料を10kg投入し、炉体内に窒素を毎分3リットルの流量でフローさせ、原料を12時間かけて徐々に融点まで加熱し、融点よりやや高い温度で6時間放置後、a軸方向に切り出した酸化アルミニウム単結晶を種結晶として用い、種結晶を融液近くまで降下させた。この種結晶を毎分2回転の速度で回転させながら徐々に降下させ、種結晶の先端を融液に接触させて温度を徐々に降下させながら、引上速度2mm/hの速度で種結晶を上昇させて結晶成長を行った。
その結果、直径100mm、直胴部の長さ115mmの結晶を得たところで、ルツボ底に結晶底部が接触したので育成を中止した。結晶底部の成長界面を測定したところ、88mm凸と大きかった。この結晶に波長532nmのレーザーを照射し、結晶内部の散乱光を観察した。微小な散乱はほとんど観察されなかったが(散乱光強度45)、比較的大きな散乱体が観測され、結晶内部に微小な気泡が少ないがインクルージョン(内包物)が存在する可能性があることがわかった。
また、この結晶をウエハーにしポリッシュ研磨したところ、微小な窪みは確認できなかったが、どのウエハーにも差し渡し数μmの大きさの突起状異物が数個程度ウエハー上に観測された。これをEPMAで分析したところイリジウムであった。低酸素分圧下で育成すると、アレキサンドライトやGGGではイリジウムのインクルージョンが発生することが報告されているが、酸化アルミニウムでも同様に観測されることがわかった。
[Comparative Example 2]
For comparison, the same procedure as in Example 1 was performed except that no decompression operation was performed when the raw material was heated and melted. Further, after melting the raw material, oxygen and inert gas were not introduced, and crystals were grown at a low oxygen partial pressure.
10 kg of 4N (99.99%) Al 2 O 3 raw material is introduced into an iridium crucible as a starting material, and nitrogen is flowed into the furnace at a flow rate of 3 liters per minute. After heating for 6 hours at a temperature slightly higher than the melting point, an aluminum oxide single crystal cut in the a-axis direction was used as a seed crystal, and the seed crystal was lowered to near the melt. The seed crystal is gradually lowered while rotating at a speed of 2 revolutions per minute, and the seed crystal is lowered at a pulling speed of 2 mm / h while gradually lowering the temperature by bringing the tip of the seed crystal into contact with the melt. The crystal was grown by raising.
As a result, when a crystal having a diameter of 100 mm and a length of the straight body portion of 115 mm was obtained, the growth was stopped because the crystal bottom contacted the crucible bottom. The growth interface at the bottom of the crystal was measured and found to be as large as 88 mm. The crystal was irradiated with a laser having a wavelength of 532 nm, and the scattered light inside the crystal was observed. Although very little scattering was observed (scattered light intensity 45), a relatively large scatterer was observed, and it was found that there might be inclusions (inclusions) although there are few fine bubbles inside the crystal. It was.
Further, when this crystal was polished and polished on a wafer, minute dents could not be confirmed, but several protruding foreign matters having a size of several μm were observed on the wafer. When this was analyzed by EPMA, it was iridium. It has been reported that when grown under a low oxygen partial pressure, iridium and GGG generate iridium inclusions, but aluminum oxide is also observed in the same manner.

以上説明したように、実施例では、原料をルツボ内で加熱中および溶融中に、炉体を減圧し原料に吸着または内包しているガスを強制的に排除し、結晶成長を開始させる際は、必要により酸素濃度を0.01〜0.5%となるような酸素および窒素または不活性ガスの混合雰囲気とし、結晶育成中もこの酸素濃度としているため、融液に含まれる過剰なガスが減少した結果、単結晶へのガスの取り込みを抑えることができ、また、低酸素分圧での育成ではないためインクルージョンの偏析を抑制することができた。さらには成長界面が融液側に著しく凸となる現象を抑制して結晶欠陥を低減させ、また、凸度を低減させたことで原料からの固化率を増加でき、効率的に単結晶を製造することができた。
これに対して、比較例では、原料をルツボ内で加熱中および溶融中に、炉体を減圧していないので、原料に吸着または内包しているガスを強制的に排除できなかった。また、また、低酸素分圧で結晶を育成したためインクルージョンの偏析を抑制することができなかった。
As described above, in the embodiment, when the raw material is heated and melted in the crucible, the furnace body is depressurized to forcibly exclude the gas adsorbed or contained in the raw material and start crystal growth. If necessary, a mixed atmosphere of oxygen and nitrogen or an inert gas with an oxygen concentration of 0.01 to 0.5% is used, and this oxygen concentration is also used during crystal growth. As a result, the gas uptake into the single crystal could be suppressed, and inclusion segregation could be suppressed because the growth was not performed at a low oxygen partial pressure. Furthermore, the phenomenon that the growth interface becomes extremely convex toward the melt side is suppressed to reduce crystal defects, and the degree of solidification from the raw material can be increased by reducing the degree of convexity, thereby efficiently producing a single crystal. We were able to.
On the other hand, in the comparative example, the furnace body was not depressurized while the raw material was heated and melted in the crucible, so that the gas adsorbed or contained in the raw material could not be forcibly excluded. Moreover, since the crystal was grown at a low oxygen partial pressure, segregation of inclusions could not be suppressed.

育成された単結晶にレーザー光を照射し、光散乱を測定する光学系を用いて結晶中の微小気泡(マイクロバルブ)を調べる手段を示す説明図である。It is explanatory drawing which shows the means to investigate the micro bubble (micro valve | bulb) in a crystal | crystallization using the optical system which irradiates a laser beam to the grown single crystal and measures light scattering.

符号の説明Explanation of symbols

1 育成された単結晶
2 レーザー光
3 散乱光
4 CCDカメラ
5 画像処理装置
DESCRIPTION OF SYMBOLS 1 Grown single crystal 2 Laser light 3 Scattered light 4 CCD camera 5 Image processing device

Claims (5)

炉体内のルツボに単結晶用原料を入れて加熱溶融し、原料融液から成長結晶を引き上げる溶融固化法により酸化アルミニウム単結晶を製造する方法において、
単結晶用原料を加熱溶融する際に、炉体内を0.01MPa以下に維持しつつ、加熱によって単結晶用原料から発生するガスを除去しながら溶融し、引き続き、原料融液を0.01〜0.1MPaの減圧に維持し、かつ、混合雰囲気の酸素濃度が、0.01〜0.5%であるようにして成長結晶を引き上げることを特徴とする酸化アルミニウム単結晶の製造方法。
In a method for producing an aluminum oxide single crystal by a melt solidification method in which a raw material for a single crystal is put in a crucible in a furnace and heated and melted, and a growth crystal is pulled up from the raw material melt,
When the single crystal raw material is heated and melted, it is melted while removing the gas generated from the single crystal raw material by heating while maintaining the furnace body at 0.01 MPa or less. A method for producing an aluminum oxide single crystal, wherein the growth crystal is pulled up so as to maintain a reduced pressure of 0.1 MPa and an oxygen concentration in a mixed atmosphere is 0.01 to 0.5% .
単結晶用原料が、10時間以上かけて徐々に加熱溶融されることを特徴とする請求項1に記載の酸化アルミニウム単結晶の製造方法。   The method for producing an aluminum oxide single crystal according to claim 1, wherein the raw material for single crystal is gradually heated and melted over 10 hours or more. 単結晶用原料を加熱後、温度が1000℃に達してから減圧を始めることを特徴とする請求項1又は2に記載の酸化アルミニウム単結晶の製造方法。   3. The method for producing an aluminum oxide single crystal according to claim 1, wherein after the raw material for single crystal is heated, the pressure reduction is started after the temperature reaches 1000 ° C. 3. 原料融液が、酸素および窒素または不活性ガスの混合雰囲気に維持されることを特徴とする請求項1に記載の酸化アルミニウム単結晶の製造方法。   The method for producing an aluminum oxide single crystal according to claim 1, wherein the raw material melt is maintained in a mixed atmosphere of oxygen and nitrogen or an inert gas. 前記ルツボの材料がイリジウムであることを特徴とする請求項1に記載の酸化アルミニウム単結晶の製造方法。   The method for producing an aluminum oxide single crystal according to claim 1, wherein the material of the crucible is iridium.
JP2006056228A 2006-03-02 2006-03-02 Method for producing aluminum oxide single crystal Expired - Fee Related JP4735334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056228A JP4735334B2 (en) 2006-03-02 2006-03-02 Method for producing aluminum oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056228A JP4735334B2 (en) 2006-03-02 2006-03-02 Method for producing aluminum oxide single crystal

Publications (2)

Publication Number Publication Date
JP2007230836A JP2007230836A (en) 2007-09-13
JP4735334B2 true JP4735334B2 (en) 2011-07-27

Family

ID=38551809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056228A Expired - Fee Related JP4735334B2 (en) 2006-03-02 2006-03-02 Method for producing aluminum oxide single crystal

Country Status (1)

Country Link
JP (1) JP4735334B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197230A (en) * 2006-01-24 2007-08-09 Sumitomo Metal Mining Co Ltd Method for manufacturing aluminium oxide single crystal and aluminium oxide single crystal obtained by using the method
JP2008169069A (en) * 2007-01-11 2008-07-24 Sumitomo Metal Mining Co Ltd Method for manufacturing aluminum oxide single crystal
JP2008195575A (en) * 2007-02-14 2008-08-28 Sumitomo Metal Mining Co Ltd Method for manufacturing aluminum oxide single crystal and aluminum oxide single crystal obtained by using the method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904862B2 (en) * 2006-03-15 2012-03-28 住友金属鉱山株式会社 Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JP5195000B2 (en) * 2007-11-07 2013-05-08 日立化成株式会社 Manufacturing method of oxide single crystal.
JP2010059031A (en) * 2008-09-05 2010-03-18 Fukuda Crystal Laboratory Aluminum oxide single crystal and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118999A (en) * 1974-06-28 1976-02-14 Union Carbide Corp Rr mentanketsusho arufua aruminaoseizosuruhoho
JPS5441281A (en) * 1977-07-21 1979-04-02 Pelts Boris B Method and apparatus for manufacturing sapphire pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118999A (en) * 1974-06-28 1976-02-14 Union Carbide Corp Rr mentanketsusho arufua aruminaoseizosuruhoho
JPS5441281A (en) * 1977-07-21 1979-04-02 Pelts Boris B Method and apparatus for manufacturing sapphire pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197230A (en) * 2006-01-24 2007-08-09 Sumitomo Metal Mining Co Ltd Method for manufacturing aluminium oxide single crystal and aluminium oxide single crystal obtained by using the method
JP2008169069A (en) * 2007-01-11 2008-07-24 Sumitomo Metal Mining Co Ltd Method for manufacturing aluminum oxide single crystal
JP2008195575A (en) * 2007-02-14 2008-08-28 Sumitomo Metal Mining Co Ltd Method for manufacturing aluminum oxide single crystal and aluminum oxide single crystal obtained by using the method

Also Published As

Publication number Publication date
JP2007230836A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5011734B2 (en) Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method
JP2008007353A (en) Apparatus for growing sapphire single crystal and growing method using the same
JP4735334B2 (en) Method for producing aluminum oxide single crystal
JP4814207B2 (en) Method and apparatus for manufacturing a silicon semiconductor wafer
JP5459004B2 (en) Method for producing sapphire single crystal
US20120015799A1 (en) Method for producing sapphire single crystal, and sapphire single crystal obtained by the method
JP5897790B2 (en) Group 3B nitride single crystal and process for producing the same
JP2008007354A (en) Method for growing sapphire single crystal
JP4905138B2 (en) Method for producing aluminum oxide single crystal
JP4905171B2 (en) Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method
JP4904862B2 (en) Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JP4668068B2 (en) Metal fluoride single crystal pulling apparatus and method for producing metal fluoride single crystal using the apparatus
JP4835582B2 (en) Method for producing aluminum oxide single crystal
US20100127354A1 (en) Silicon single crystal and method for growing thereof, and silicon wafer and method for manufacturing thereof
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JP2010155726A (en) Method for growing single crystal and single crystal grown by the same
JP4844429B2 (en) Method for producing sapphire single crystal
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP2007045682A (en) Method for growing silicon single crystal, and silicon wafer
JP2010212333A (en) Method of heat-treating silicon wafer
JP4425181B2 (en) Method for producing metal fluoride single crystal
JP6591182B2 (en) Fluoride crystals and optical components
JP4484208B2 (en) Method for producing metal fluoride single crystal
JP2006027976A (en) Method for producing nitride single crystal and producing apparatus therefor
JP2011171414A (en) Heat treatment method of silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees