JP5011734B2 - Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method - Google Patents

Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method Download PDF

Info

Publication number
JP5011734B2
JP5011734B2 JP2006014675A JP2006014675A JP5011734B2 JP 5011734 B2 JP5011734 B2 JP 5011734B2 JP 2006014675 A JP2006014675 A JP 2006014675A JP 2006014675 A JP2006014675 A JP 2006014675A JP 5011734 B2 JP5011734 B2 JP 5011734B2
Authority
JP
Japan
Prior art keywords
single crystal
aluminum oxide
raw material
crystal
oxide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006014675A
Other languages
Japanese (ja)
Other versions
JP2007197230A (en
Inventor
彰 寺島
憲治 村下
利行 小見
英章 寒河江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006014675A priority Critical patent/JP5011734B2/en
Publication of JP2007197230A publication Critical patent/JP2007197230A/en
Application granted granted Critical
Publication of JP5011734B2 publication Critical patent/JP5011734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、酸化アルミニウム単結晶の製造方法及びこの方法を用いて得られる酸化アルミニウム単結晶に関し、より詳しくは、ピットとマイクロバブルの発生を抑制して効率的に酸化アルミニウム単結晶を製造する方法、及びこの方法で得られる電子部品材料や光学用部品材料に適した高品質な酸化アルミニウム単結晶に関するものである。   The present invention relates to a method for producing an aluminum oxide single crystal and an aluminum oxide single crystal obtained by using this method. More specifically, the present invention relates to a method for efficiently producing an aluminum oxide single crystal by suppressing generation of pits and microbubbles. And a high-quality aluminum oxide single crystal suitable for electronic component materials and optical component materials obtained by this method.

酸化アルミニウム単結晶は、青色LEDや白色LEDを作製する際のエピ成長基板として多く利用されている。これらのLEDは、省エネルギーの観点で照明分野への普及が拡大することが予想されており多方面から注目されている。   Aluminum oxide single crystals are widely used as an epi growth substrate for producing blue LEDs and white LEDs. These LEDs are expected to spread in the lighting field from the viewpoint of energy saving, and are attracting attention from various fields.

酸化物単結晶の育成方法は様々あるが、LN、LT、YAGや酸化アルミニウムなどの酸化物単結晶材料の大部分は、その結晶特性や大きな結晶径のものが得られることから溶融固化法で育成されている。特に、溶融固化法の一つであるチョクラルスキー法(Cz法)は、汎用性があり技術的完成度が高いことから最も広く用いられている。   There are various methods for growing oxide single crystals, but most of the oxide single crystal materials such as LN, LT, YAG and aluminum oxide are obtained by melt solidification because their crystal characteristics and large crystal diameters are obtained. It is nurtured. In particular, the Czochralski method (Cz method), which is one of the melt solidification methods, is most widely used because of its versatility and high technical perfection.

チョクラルスキー法によって酸化物単結晶を製造するには、まず坩堝に酸化物原料を充填し、高周波誘導加熱法や抵抗加熱法により坩堝を加熱し原料を溶融する。原料が溶融した後、所定の結晶方位に切り出した種結晶を原料融液表面に接触させ、種結晶を所定の回転速度で回転させながら所定の速度で上方に引き上げて単結晶を成長させる。
しかし、酸化アルミニウム単結晶をチョクラルスキー法で成長させると、結晶中に無数の微小な気泡が発生しやすい。この微小な気泡には、エピ成長基板となるウエハーをポリッシュ研磨したときに、ピット(直径数μmの微小な窪み)を発現させる相対的に大きな気泡と光散乱レーザートモグラフ法(非特許文献1参照)に従い、レーザー光を照射したときに雲状に確認できるマイクロバブルといわれるものがある。これらの中でマイクロバブルの影響は、未だ確定されていないものの、ピットと共にLED特性に悪影響を与えると言われている。
In order to produce an oxide single crystal by the Czochralski method, first, an oxide raw material is filled in a crucible, and the raw material is melted by heating the crucible by a high frequency induction heating method or a resistance heating method. After the raw material is melted, the seed crystal cut in a predetermined crystal orientation is brought into contact with the surface of the raw material melt, and the single crystal is grown by pulling upward at a predetermined speed while rotating the seed crystal at a predetermined rotation speed.
However, when an aluminum oxide single crystal is grown by the Czochralski method, innumerable minute bubbles are likely to be generated in the crystal. The microbubbles include a relatively large bubble that causes pits (small pits with a diameter of several μm) and a light scattering laser tomography method (see Non-Patent Document 1). ), There is a so-called microbubble that can be confirmed like a cloud when irradiated with laser light. Among these, although the influence of microbubbles has not been determined yet, it is said that the LED characteristics are adversely affected together with the pits.

これまで酸化アルミニウム単結晶を育成する際には、高温で原料が分解して生成した酸素原子(O)や酸素分子(O)が融液中に過飽和に存在し、これが育成した単結晶に取り込まれ、単結晶中の気泡となることが知られている。そして、これを回避するために、水素ガスや一酸化炭素ガスなどを用いた還元性雰囲気で単結晶を育成することが提案されている(特許文献1参照)。これにより融液中に存在する酸素原子(O)や酸素分子(O)が水素ガスや一酸化炭素ガスと反応して除去されるため、育成した単結晶中への気泡の取り込み量は確かに減少する。しかしながら、育成された単結晶からウエハーを切り出し、ポリッシュ研磨したときに、ウエハー表面には多数のピットが存在しており、前記気泡の取り込み量を十分に抑制することはできていない。 Until now, when growing aluminum oxide single crystals, oxygen atoms (O) and oxygen molecules (O 2 ) generated by decomposition of the raw material at high temperature exist in the supersaturated state in the melt. It is known that it is taken in and becomes a bubble in the single crystal. In order to avoid this, it has been proposed to grow a single crystal in a reducing atmosphere using hydrogen gas or carbon monoxide gas (see Patent Document 1). As a result, oxygen atoms (O) and oxygen molecules (O 2 ) present in the melt are removed by reaction with hydrogen gas or carbon monoxide gas, so the amount of bubbles taken into the grown single crystal is certain. To decrease. However, when a wafer is cut out from the grown single crystal and polished and polished, a large number of pits exist on the surface of the wafer, and the amount of bubbles taken in cannot be sufficiently suppressed.

また、融液に平衡固溶しているガス成分は、結晶化する固液界面で融液より排出される傾向にあり、界面近傍の融液は、ガス成分が過飽和となって気泡が生成されやすい。しかし、融液の対流を強化することによって界面付近で生じるガス成分の過飽和を抑制でき、結晶内へのガス成分の取り込み量を減少させられるとしている(非特許文献2参照)。
したがって、まず、原料に含まれるガス成分を融解前にできるだけ除去して融液中に存在する過飽和のガス成分を減少させ、融解後は対流を強化し攪拌の効果を増加させることで、単結晶育成時に結晶内に取り込まれる微小な気泡の量を少なくすれば、ピツトやマイクロバブルの発生を抑えることができるものと考えられる。
In addition, gas components that are in equilibrium with the melt tend to be discharged from the melt at the solid-liquid interface where crystallization occurs, and in the melt near the interface, gas components become supersaturated and bubbles are generated. Cheap. However, it is said that by enhancing the convection of the melt, it is possible to suppress the supersaturation of the gas component that occurs in the vicinity of the interface and to reduce the amount of gas component taken into the crystal (see Non-Patent Document 2).
Therefore, first, the gas component contained in the raw material is removed as much as possible before melting, the supersaturated gas component present in the melt is reduced, and after melting, the convection is strengthened and the effect of stirring is increased. It is thought that the generation of pits and microbubbles can be suppressed by reducing the amount of minute bubbles taken into the crystal during growth.

ところで、チタンが含まれる酸化アルミニウム単結晶の製造方法ではあるが、低酸素濃度雰囲気下で単結晶を育成すると、融液の対流が強化でき攪拌の効果を増加しうるとされている(特許文献2参照)。ここには、酸素分圧が10−2〜10−7気圧というような低酸素濃度雰囲気下でチタンを含む酸化アルミニウム単結晶を育成すると、融液が融液表面において還元され、それに伴い表面張力の変化が生じ、表面張力流が誘起された結果、融液の自然対流と同方向の流れが著しく促進されるとの説明がある。融液の対流が促進されたことによって攪拌の効果が増すと考えることができる。 By the way, although it is a manufacturing method of the aluminum oxide single crystal containing titanium, when the single crystal is grown in a low oxygen concentration atmosphere, it is said that the convection of the melt can be strengthened and the stirring effect can be increased (patent document) 2). Here, when an aluminum oxide single crystal containing titanium is grown in a low oxygen concentration atmosphere where the oxygen partial pressure is 10 −2 to 10 −7 atm, the melt is reduced on the surface of the melt, and accordingly the surface tension is increased. There is an explanation that the flow in the same direction as the natural convection of the melt is remarkably promoted as a result of the occurrence of the surface tension flow and the induction of the surface tension flow. It can be considered that the effect of stirring is increased by the convection of the melt being promoted.

ところが、低酸素濃度雰囲気下で酸化アルミニウム単結晶を育成すると、成長界面は融液側に著しく凸形状となる傾向がある。このような状況の中で結晶育成を行った場合、結晶成長によって坩堝内の融液高さがある程度低下すると、成長界面の先端と坩堝底面とが接触する。このため、それ以上は結晶成長を継続することが不可能となり、坩堝に充填した原料の量に対して得られる結晶をそれほど大きくできないという不具合が生じる。また、融液の自然対流と同方向の流れが著しく促進された結果、融液中の単結晶成長速度が早くなり、得られた結晶に結晶欠陥が発生しやすい。こうした問題を解消するために、特許文献2では、成長結晶の回転数を、例えば、20回転/分以上、特に30〜120回転/分に上昇させることで融液の過剰な対流を抑制することを提案している。しかしながら、このような手段では、結晶収率をあげることはできても、単結晶中への微細な気泡の発生を十分に抑制できない。
特開平04−132695 特開平09−278592 応用物理 第55巻 第6号 1986 P542−569 第28回結晶成長国内会議予稿集,22pA2 1997 P15
However, when an aluminum oxide single crystal is grown in a low oxygen concentration atmosphere, the growth interface tends to be significantly convex on the melt side. When crystal growth is performed in such a situation, the tip of the growth interface comes into contact with the bottom of the crucible when the height of the melt in the crucible decreases to some extent due to crystal growth. For this reason, it is impossible to continue crystal growth beyond that, and there is a problem that the crystal obtained cannot be made so large with respect to the amount of raw material filled in the crucible. In addition, as a result of remarkably promoting the flow in the same direction as the natural convection of the melt, the single crystal growth rate in the melt is increased, and crystal defects are likely to occur in the obtained crystal. In order to solve such problems, in Patent Document 2, excessive convection of the melt is suppressed by increasing the number of rotations of the growth crystal to, for example, 20 rotations / minute or more, particularly 30 to 120 rotations / minute. Has proposed. However, with such means, although the crystal yield can be increased, the generation of fine bubbles in the single crystal cannot be sufficiently suppressed.
JP 04-132695 A JP 09-278592 A Applied Physics Vol.55 No.6 1986 P542-569 Proceedings of the 28th National Conference on Crystal Growth, 22pA2 1997 P15

本発明の目的は、上記従来技術の課題に鑑み、電子部品材料や光学用部品材料に適した高品質な酸化アルミニウム単結晶、及びピットやマイクロバブルの発生を抑制して効率的に酸化アルミニウム単結晶を製造する方法を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to produce high-quality aluminum oxide single crystals suitable for electronic component materials and optical component materials, and to efficiently generate aluminum oxide single crystals while suppressing the generation of pits and microbubbles. The object is to provide a method for producing crystals.

本発明者らは、上記従来の問題点を解決するために鋭意研究を重ね、酸化アルミニウム単結晶中に含まれる気泡の原因となるガス成分の発生メカニズムを詳細に調べた。その結果、ガス成分は酸化アルミニウムが分解する際にも発生するが、それだけでなく、原料として汎用されている酸化アルミニウム粉末には、もともと吸着または内包してガス成分が存在し、これが融液内に残り、結晶に取り込まれてピットやマイクロバブルとなることを突き止めた。そして、吸着又は内包しているガス成分が極めて少ない比表面積の小さな酸化アルミニウム焼結体を原料として用いるとともに、特定の酸素分圧下で加熱溶融し、単結晶を育成すると単結晶へのガス成分の取り込み量が抑えられ、ピットやマイクロバブルの発生量を低減できることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies in order to solve the above conventional problems, and have investigated in detail the generation mechanism of gas components that cause bubbles contained in the aluminum oxide single crystal. As a result, gas components are also generated when aluminum oxide is decomposed. In addition, aluminum oxide powder, which is widely used as a raw material, is originally adsorbed or encapsulated, and gas components are present in the melt. It was found that it was taken into the crystal and became pits or microbubbles. And while using the aluminum oxide sintered compact with a small specific surface area with very little gas component which is adsorbed or encapsulated as a raw material, it is heated and melted under a specific oxygen partial pressure, and when the single crystal is grown, the gas component to the single crystal is It has been found that the amount of incorporation can be suppressed and the amount of pits and microbubbles generated can be reduced, and the present invention has been completed.

すなわち、本発明の第1の発明によれば、炉体内の坩堝に単結晶用原料を入れて加熱溶融し、原料融液から成長結晶を引き上げる溶融固化法により酸化アルミニウム単結晶を製造する方法において、上記単結晶用原料として、比表面積1m/g以下のチタンを含まない酸化アルミニウム焼結体を用い、かつ、該単結晶用原料を加熱溶融し、単結晶を育成する際に、炉体内雰囲気中の酸素濃度を酸素分圧で10〜500Paに設定してマイクロバブルの発生を抑制することを特徴とする酸化アルミニウム単結晶の製造方法が提供される。 That is, according to the first invention of the present invention, in a method for producing an aluminum oxide single crystal by a melt solidification method in which a raw material for a single crystal is put into a crucible in a furnace body and heated and melted, and a grown crystal is pulled up from the raw material melt. When the aluminum oxide sintered body containing no titanium with a specific surface area of 1 m 2 / g or less is used as the single crystal raw material, and the single crystal raw material is heated and melted to grow the single crystal, There is provided a method for producing an aluminum oxide single crystal, wherein the oxygen concentration in the atmosphere is set to 10 to 500 Pa in terms of oxygen partial pressure to suppress the generation of microbubbles .

また、本発明の第2の発明によれば、第1の発明において、前記単結晶用原料が、10時間以上かけて徐々に加熱溶融されることを特徴とする酸化アルミニウム単結晶の製造方法が提供される。
また、本発明の第3の発明によれば、第1又は第2の発明において、坩堝の材料がイリジウムであることを特徴とする酸化アルミニウム単結晶の製造方法が提供される。
According to a second aspect of the present invention, there is provided the method for producing an aluminum oxide single crystal according to the first aspect, wherein the single crystal raw material is gradually heated and melted over 10 hours or more. Provided.
According to a third aspect of the present invention, there is provided the method for producing an aluminum oxide single crystal according to the first or second aspect, wherein the material of the crucible is iridium.

一方、本発明の第4の発明によれば、第1〜3のいずれかの発明の製造方法によって得られる酸化アルミニウム単結晶が提供される。
また、本発明の第5の発明によれば、第4の発明において、散乱光強度(酸化アルミニウム単結晶の側面にレーザー光を照射して、入射するレーザー光に対して90゜の方向に放射される散乱光をCCDカメラに取り込み、画像処理装置で強度を0〜255までの256階調に処理し、画像中の結晶部分40mm四方の強度平均を散乱光強度として算出する)が、140以下であることを特徴とする酸化アルミニウム単結晶が提供される。
On the other hand, according to the fourth invention of the present invention, there is provided an aluminum oxide single crystal obtained by the production method of any one of the first to third inventions.
Further, according to the fifth aspect of the present invention, in the fourth aspect, the scattered light intensity (irradiated with a laser beam on the side surface of the aluminum oxide single crystal and emitted in a direction of 90 ° with respect to the incident laser beam). The scattered light is taken into a CCD camera , the intensity is processed into 256 gradations from 0 to 255 by an image processing apparatus , and the average intensity of the 40 mm square of the crystal portion in the image is calculated as the scattered light intensity ) is 140 or less An aluminum oxide single crystal is provided.

本発明によれば、単結晶用原料として比表面積が1m/g以下の酸化アルミニウム焼結体を用い、炉体内雰囲気を酸素および窒素または不活性ガスの混合雰囲気とし、特定の酸素分圧(低酸素濃度)下で単結晶原料を溶融するので、原料から融液中へのガス成分の取り込みが抑えられ、融液中での微小な気泡の発生を抑制できる。また、単結晶育成中も低酸素濃度を維持しながら、融液中における単結晶の成長速度を制御することによって、単結晶中への微小な気泡の取り込みを抑制できる。
こうして得られた単結晶は、微小な気泡に起因するピット、マイクロバブル、結晶欠陥等が低減しており、さらに坩堝材料からのインクルージョン(内包物)がなくなるために、高品質なものとなり、この単結晶を用いれば優れた特性を有する電子部品材料、光学用部品材料を提供できる。
According to the present invention, an aluminum oxide sintered body having a specific surface area of 1 m 2 / g or less is used as a raw material for single crystal, the furnace atmosphere is a mixed atmosphere of oxygen and nitrogen or an inert gas, and a specific oxygen partial pressure ( Since the single crystal raw material is melted under a low oxygen concentration), the incorporation of gas components from the raw material into the melt can be suppressed, and the generation of minute bubbles in the melt can be suppressed. In addition, by controlling the growth rate of the single crystal in the melt while maintaining a low oxygen concentration during the growth of the single crystal, it is possible to suppress the incorporation of minute bubbles into the single crystal.
The single crystal thus obtained has reduced pits, microbubbles, crystal defects, and the like due to minute bubbles, and further has no inclusion from the crucible material. If a single crystal is used, electronic component materials and optical component materials having excellent characteristics can be provided.

以下、本発明の酸化アルミニウム単結晶及びその製造方法について、図面を用いて詳細に説明する。   Hereinafter, the aluminum oxide single crystal of the present invention and the production method thereof will be described in detail with reference to the drawings.

1.酸化アルミニウム単結晶の製造方法
本発明の酸化アルミニウム単結晶の製造方法は、炉体内の坩堝に単結晶用原料を入れて加熱溶融し、原料融液から成長結晶を引き上げる溶融固化法により酸化アルミニウム単結晶を製造する方法において、上記単結晶用原料として、比表面積1m/g以下のチタンを含まない酸化アルミニウム焼結体を用い、かつ、該単結晶用原料を加熱溶融し、単結晶を育成する際に、炉体内雰囲気中の酸素濃度を酸素分圧で10〜500Paに設定してマイクロバブルの発生を抑制することを特徴とする。
1. Method for Producing Aluminum Oxide Single Crystal The method for producing an aluminum oxide single crystal according to the present invention comprises the steps of putting a single crystal raw material in a crucible in a furnace body, melting it by heating, and pulling the grown crystal from the raw material melt. In the method for producing a crystal, an aluminum oxide sintered body not containing titanium having a specific surface area of 1 m 2 / g or less is used as the single crystal raw material, and the single crystal raw material is heated and melted to grow a single crystal. In this case, the oxygen concentration in the furnace atmosphere is set to 10 to 500 Pa in terms of oxygen partial pressure to suppress the generation of microbubbles .

本発明において、単結晶用原料は、実質的にAlとOの2元素からなり、比表面積が1m/g以下の酸化アルミニウム焼結体である。
また、酸化アルミニウム焼結体の直径や密度は、特に制限されないが、取り扱い上、例えば、直径は、10mm以下、好ましくは5mm以下であるものがよく、密度は、5g/cm以下、好ましくは3g/cm以下であるものがよい。
In the present invention, the raw material for single crystal is an aluminum oxide sintered body substantially composed of two elements of Al and O and having a specific surface area of 1 m 2 / g or less.
The diameter and density of the aluminum oxide sintered body are not particularly limited, but for handling, for example, the diameter is preferably 10 mm or less, preferably 5 mm or less, and the density is 5 g / cm 3 or less, preferably What is 3 g / cm <3> or less is good.

本発明においては、ピットとマイクロバブルの発生を抑制しうる単結晶用原料を選択することが重要である。
本出願人は、原料形態の異なる4種類の原料A〜Dを用意し、炉体内を、酸素および窒素または不活性ガスの混合雰囲気とし、酸素分圧を1、30、100、300、そして500Paと変化させ、原料を加熱溶融して酸化アルミニウム単結晶を育成し、これらの原料から育成した単結晶の散乱光強度を測定することにより、単結晶に含まれるマイクロバブルの量の変化を、まず調査した。
なお、原料Aは直径0.3μmの酸化アルミニウム紛で、比表面積が5〜10m/g程度、原料Bは焼結体の形をした酸化アルミニウム原料で、比表面積が0.8〜0.9m/gである。また、原料C、および原料Dはクラックルとよばれているもので、ベルヌーイ法で製造された酸化アルミニウム単結晶を直径20mm以下に粉砕したものである。このクラックル原料の比表面積は0.1m/g未満である。
In the present invention, it is important to select a single crystal raw material that can suppress the generation of pits and microbubbles.
The present applicant prepares four types of raw materials A to D having different raw material forms, the inside of the furnace is a mixed atmosphere of oxygen and nitrogen or an inert gas, and the oxygen partial pressure is 1, 30, 100, 300, and 500 Pa. And changing the amount of microbubbles contained in the single crystal by measuring the scattered light intensity of the single crystal grown from these raw materials. investigated.
The raw material A is an aluminum oxide powder having a diameter of 0.3 μm and has a specific surface area of about 5 to 10 m 2 / g. The raw material B is an aluminum oxide raw material in the form of a sintered body and has a specific surface area of 0.8 to 0.00. 9 m 2 / g. In addition, the raw material C and the raw material D are called crackle, and are obtained by pulverizing an aluminum oxide single crystal manufactured by the Bernoulli method to a diameter of 20 mm or less. The specific surface area of this crackle raw material is less than 0.1 m 2 / g.

育成した単結晶に取り込まれた微小な気泡の度合いは、前記非特許文献1に示されている光散乱レーザートモグラフ法に従って、レーザー光を結晶に照射し、その散乱光を観察した。図1に光散乱を測定する光学系を示す。円筒状に加工した酸化アルミニウム単結晶1に波長532nm、出力500mWのレーザー光2を照射し、照射したレーザー光2の入射方向に対して90°の方向に放射される散乱光3をCCDカメラ4に取り込み、画像処理装置5で強度を0〜255までの256階調に処理し、画像中の結晶部分40mm四方の強度平均を散乱光強度として算出した。このとき、レーザー光の偏光方向は、CCDカメラの方向に対して90°となる直線偏光とする。
その結果、図2のグラフに示すように、育成時の酸素分圧および原料の違いによって光散乱強度が変化し、育成時の酸素分圧が低いほど、散乱光強度は小さい傾向があり、また、原料の形態によって散乱光強度が大きく異なることがわかった。
The degree of minute bubbles taken into the grown single crystal was determined by irradiating the crystal with laser light and observing the scattered light according to the light scattering laser tomography method described in Non-Patent Document 1. FIG. 1 shows an optical system for measuring light scattering. The aluminum oxide single crystal 1 processed into a cylindrical shape is irradiated with a laser beam 2 having a wavelength of 532 nm and an output of 500 mW, and scattered light 3 emitted in a direction of 90 ° with respect to the incident direction of the irradiated laser beam 2 is emitted from the CCD camera 4. Then, the image processing apparatus 5 processed the intensity to 256 gradations from 0 to 255, and the intensity average of the 40 mm square of the crystal portion in the image was calculated as the scattered light intensity. At this time, the polarization direction of the laser light is linearly polarized light that is 90 ° with respect to the direction of the CCD camera.
As a result, as shown in the graph of FIG. 2, the light scattering intensity varies depending on the oxygen partial pressure during growth and the difference in raw materials, and the lower the oxygen partial pressure during growth, the smaller the scattered light intensity tends to be. It was found that the scattered light intensity varies greatly depending on the form of the raw material.

次に、これらの単結晶より、それぞれ直径3インチのウエハーを得、研磨してピットの発生状況を確認した。その結果、原料Aを用いた単結晶より得られたウエハーでは平均数千個、原料Bを用いた単結晶より得られたウエハーでは平均数十個、原料CやDを用いた単結晶より得られたウエハーでは平均数百個であった。   Next, wafers each having a diameter of 3 inches were obtained from these single crystals and polished to confirm the occurrence of pits. As a result, an average of several thousand wafers obtained from a single crystal using raw material A, an average of several tens of wafers obtained from a single crystal using raw material B, and a single crystal using raw materials C and D were obtained. The average number of wafers obtained was several hundred.

このように単結晶原料として原料Bを用いて得た単結晶が最も散乱光強度が小さく、ピット数も少ないこと、また、比表面積の大きな原料Aを用いて得た単結晶が最も散乱光強度が大きく、かつピット数も多いこと、さらには、原料C、Dを用いて得た単結晶では、散乱強度もピット数も両者の中間に位置することがわかった。散乱光強度は、育成された単結晶に取り込まれるマイクロバブルの量を示していると考えられるが、マイクロバブルの量やピット数が異なることは、育成中の酸素分圧や原料の形態によって結晶中に取り込まれるガス成分の量が異なることを示唆している。比表面積の大きな粉末原料である原料Aでは、原料に吸着するガスが多いばかりでなく、溶解に伴う昇温時の粒成長によって無数の空隙が形成され、その中にガス成分が閉じ込められやすいことを裏付けている。
また、前述したように、クラックル原料は、酸化アルミニウム粉末を溶融して得た融液を用いてベルヌーイ法で製造された酸化アルミニウム単結晶を直径20mm以下に粉砕したものである。従って、このクラックル原料では、比表面積が原料Bより小さくても、原料粒子の中に多数の気泡が含まれている。よって、両者を原料として用いて得られた単結晶の散乱光強度とピット数とが原料Aを用いて得た単結晶のそれらと原料Bを用いて得た単結晶のそれらとの中間に位置する結果も上記解釈を裏付けていると言える。
Thus, the single crystal obtained using the raw material B as the single crystal raw material has the smallest scattered light intensity and the smallest number of pits, and the single crystal obtained using the raw material A having a large specific surface area has the largest scattered light intensity. It was found that the number of pits was large and the single crystal obtained using the raw materials C and D was located between the scattering intensity and the number of pits. The scattered light intensity is considered to indicate the amount of microbubbles taken into the grown single crystal, but the difference in the amount of microbubbles and the number of pits depends on the oxygen partial pressure during growth and the form of the raw material. It suggests that the amount of gas component taken in is different. In the raw material A, which is a powder raw material having a large specific surface area, not only a large amount of gas is adsorbed to the raw material, but also innumerable voids are formed by grain growth at the time of temperature rise accompanying dissolution, and gas components are easily confined therein. Is backed up.
As described above, the crackle raw material is obtained by pulverizing an aluminum oxide single crystal produced by the Bernoulli method to a diameter of 20 mm or less using a melt obtained by melting aluminum oxide powder. Therefore, in this crackle raw material, even if the specific surface area is smaller than that of the raw material B, many bubbles are included in the raw material particles. Therefore, the scattered light intensity and the number of pits of the single crystal obtained using both as raw materials are located between those of the single crystal obtained using raw material A and those of the single crystal obtained using raw material B. This result also supports the above interpretation.

ピットとマイクロバブルを少なくするという観点より、本発明においては、単結晶用原料として、比表面積が1m/g以下の酸化アルミニウム焼結体を用い、かつ、該単結晶用原料を加熱溶融し、単結晶を育成する際に、炉体内雰囲気中の酸素濃度を分圧で10〜500Paに設定することが必要である。 From the viewpoint of reducing pits and microbubbles, in the present invention, an aluminum oxide sintered body having a specific surface area of 1 m 2 / g or less is used as a single crystal raw material, and the single crystal raw material is heated and melted. When growing a single crystal, it is necessary to set the oxygen concentration in the furnace body atmosphere to 10 to 500 Pa in terms of partial pressure.

本発明で用いる酸化アルミニウム焼結体は、半導体製造用の市販品を使用できるが、次に示すような方法によって製造することもできる。
例えば、焼成するとαアルミナに転化するαアルミナ前駆体のゾル又はゲルにαアルミナ粒子を種として添加し、ゾルはゲル化した後、この種晶を添加されたαアルミナ前駆体のゲルを900〜1350℃の温度で焼結し、得られる焼結生成物を粉砕する。
Although the aluminum oxide sintered compact used by this invention can use the commercial item for semiconductor manufacture, it can also manufacture by the method as shown below.
For example, α alumina particles are added as seeds to a sol or gel of an α alumina precursor that is converted to α alumina when baked, and after the sol is gelled, the gel of the α alumina precursor to which the seed crystal is added is 900 to Sinter at a temperature of 1350 ° C. and grind the resulting sintered product.

単結晶用原料として通常の酸化アルミニウム粉末を用いた場合には、比表面積が5〜10m/g程度と大きいので、酸化アルミニウム粉末に多くのガス成分が吸着または内包されており、原料の融解前に完全に除去されず融液内に残り、結晶に取り込まれてピットやマイクロバルブとなるので好ましくない。また、酸化アルミニウム焼結体であっても、比表面積が1m/gを超えるものでは、同様に吸着または内包しているガス成分が多くなるので使用に適さない。 When normal aluminum oxide powder is used as the raw material for single crystal, the specific surface area is as large as about 5 to 10 m 2 / g, so that many gas components are adsorbed or encapsulated in the aluminum oxide powder, and the raw material is melted. This is not preferable because it is not completely removed before and remains in the melt and is taken into the crystal to form pits and microvalves. Moreover, even if it is an aluminum oxide sintered compact, when the specific surface area exceeds 1 m < 2 > / g, since the gas component adsorbed or included similarly increases, it is not suitable for use.

ベルヌーイ法で製造された酸化アルミニウム単結晶を直径20mm以下に粉砕して得たクラックル原料の比表面積は、0.1m/g未満と非常に小さく吸着ガスは少ないが、酸化アルミニウム粉末を溶解し、得られた融液より作成された単結晶を粉砕したものであるため、その内部に無数の泡を内包していることが多い。クラックル原料では、融解した時点で内包しているガス成分を放出しようとするが、酸化アルミニウム融液の粘性が高いことや表面張力が大きいことから、微小な気泡となって融液に溶解してしまい、容易には融液から抜けにくいので単結晶原料としては適さない。 The specific surface area of the crackle raw material obtained by grinding the aluminum oxide single crystal produced by the Bernoulli method to a diameter of 20 mm or less is very small, less than 0.1 m 2 / g, but the adsorbed gas is small, but the aluminum oxide powder is dissolved. Since a single crystal prepared from the obtained melt is pulverized, innumerable bubbles are often included therein. The crackle raw material tries to release the gas component contained at the time of melting, but because the viscosity of the aluminum oxide melt is high and the surface tension is large, it becomes microbubbles and dissolves in the melt. Therefore, it is not suitable as a single crystal raw material because it is difficult to escape from the melt.

本発明において、酸化アルミニウム単結晶を育成するには、従来のチョクラルスキー法による酸化物単結晶育成装置を使用できる。例えば、貴金属で形成された坩堝と、坩堝の周囲に保温材としてアルミナなどで形成された炉材と、炉材の外側に加熱装置としての高周波コイルが配置された装置が挙げられる。単結晶原料であるアルミナの融点が2000℃強であるため、坩堝としてイリジウム製のものを用いることが好ましい。保温材としては、発泡ジルコニア等の断熱材を充填してもよい。坩堝の上方には、材料融液から単結晶を回転させながら引き上げるための引き上げ装置が設けられ、炉材の上方は遮蔽板で遮蔽されている。炉体内は、酸素および窒素または不活性ガスの混合雰囲気とされる。   In the present invention, in order to grow an aluminum oxide single crystal, a conventional oxide single crystal growing apparatus based on the Czochralski method can be used. For example, a crucible formed of a noble metal, a furnace material formed of alumina or the like as a heat insulating material around the crucible, and an apparatus in which a high-frequency coil as a heating device is disposed outside the furnace material. Since the melting point of alumina, which is a single crystal raw material, is slightly over 2000 ° C., it is preferable to use an iridium-made crucible. As the heat insulating material, a heat insulating material such as foamed zirconia may be filled. Above the crucible, a pulling device for pulling up the single crystal from the material melt is provided, and the furnace material is shielded by a shielding plate. The furnace body is a mixed atmosphere of oxygen and nitrogen or an inert gas.

まず、坩堝に酸化物単結晶として前記した特定の単結晶用原料を入れ、次に高周波コイルによって坩堝を加熱し、原料を溶融して融液を得、単結晶を育成する。単結晶原料の溶融時には、炉内雰囲気中の酸素濃度を酸素分圧で10〜500Pa、特には100〜300Paとすることが好ましい。
図2によれば、酸素分圧が低くなるほど散乱光強度が小さく、単結晶育成時に結晶内に析出するマイクロバブルが減少した単結晶が得られている。酸素分圧が10Pa未満では、結晶中にイリジウムがインクルージョンとして取り込まれやすい。また、500Paを超えるとマイクロバブルの発生が増加するので好ましくない。
First, the above-mentioned specific single crystal raw material is put in the crucible as an oxide single crystal, and then the crucible is heated by a high-frequency coil to melt the raw material to obtain a melt and grow a single crystal. When the single crystal raw material is melted, the oxygen concentration in the furnace atmosphere is preferably 10 to 500 Pa, particularly 100 to 300 Pa in terms of oxygen partial pressure.
According to FIG. 2, as the oxygen partial pressure decreases, the scattered light intensity decreases, and a single crystal is obtained in which the number of microbubbles precipitated in the crystal during single crystal growth is reduced. When the oxygen partial pressure is less than 10 Pa, iridium is easily taken up as inclusions in the crystal. Moreover, since generation | occurrence | production of a microbubble will increase when it exceeds 500 Pa, it is not preferable.

原料が融点に達するまでの加熱速度は、特に制限されるわけではないが、急速に加熱せずに長時間かけて徐々に加熱するほうが、単結晶中への気泡の取り込みを抑えることができる。例えば10時間以上、特に12時間かけて徐々に加熱することが望ましい。   The heating rate until the raw material reaches the melting point is not particularly limited, but it is possible to suppress the incorporation of bubbles into the single crystal by heating gradually over a long time without rapidly heating. For example, it is desirable to heat gradually over 10 hours, especially over 12 hours.

次に、単結晶原料の溶融後も加熱を続け、原料の融解から3時間以上、特に5時間以上経過後、得られた融液に種結晶を接触させ、種結晶を引き上げ装置で回転させながら引き上げる。なお、単結晶の育成時も、酸素濃度は引き続き酸素分圧で10〜500Pa、特には100〜300Paとすることが好ましい。
単結晶の育成は、炉内雰囲気を低酸素濃度雰囲気とする以外は常法に従い、回転数や引き上げ速度を調整してネック部および肩部を形成し、引き続き直胴部を形成する。このとき、放射温度計などを用いて単結晶と原料融液との界面近傍における融液表面の温度を測定することが好ましい。結晶形状の調節は、育成中の結晶重量を測定し、直径や育成速度などを計算によって導き出し、回転速度や引き上げ速度を調整して行う。また、結晶重量の変化を高周波誘導コイル投入電力にフィードバックして融液温度をコントロールできる。
Next, heating is continued even after the single crystal raw material is melted, and after 3 hours or more, especially 5 hours or more have elapsed from the melting of the raw material, the seed crystal is brought into contact with the obtained melt, and the seed crystal is rotated with a pulling device. Pull up. Even when the single crystal is grown, the oxygen concentration is preferably 10 to 500 Pa, particularly 100 to 300 Pa in terms of oxygen partial pressure.
Single crystal growth is carried out in accordance with a conventional method except that the furnace atmosphere is changed to a low oxygen concentration atmosphere, and the number of rotations and pulling speed are adjusted to form the neck portion and the shoulder portion, and then the straight body portion is formed. At this time, it is preferable to measure the temperature of the melt surface in the vicinity of the interface between the single crystal and the raw material melt using a radiation thermometer or the like. The crystal shape is adjusted by measuring the crystal weight during growth, deriving the diameter, growth rate, and the like by calculation, and adjusting the rotation speed and pulling speed. Also, the melt temperature can be controlled by feeding back the change in crystal weight to the power applied to the high frequency induction coil.

ところで、前記特許文献2に記載されているように、低酸素濃度雰囲気下で酸化アルミニウム単結晶を育成すると、成長界面は融液側に著しく凸形状となる傾向がある。このような状況の中で単結晶育成を行った場合、結晶成長によって坩堝内の原料融液高さがある程度低下すると、成長界面の先端と坩堝底面とが接触してしまう。このため、それ以上は結晶成長を継続することが不可能となり、坩堝に充填した原料の量に対して得られる結晶がそれほど大きくできないという不具合が生じる。また、融液の自然対流と同方向の流れが著しく促進された結果、融液中の単結晶成長速度が早くなり、得られた結晶に結晶欠陥が発生しやすい。
こうした問題は、特許文献2に記載のように、例えば育成中に結晶の回転数を大きく上げて結晶成長速度を調節することにより解決でき、また、例えば、本出願人による特開2005−231958に開示されている坩堝底部に加熱ヒーターを有する育成炉を用いて融液の対流を調節すれば、回転数を大きく上げることなく解決できる。
By the way, as described in Patent Document 2, when an aluminum oxide single crystal is grown in a low oxygen concentration atmosphere, the growth interface tends to be remarkably convex on the melt side. When single crystal growth is performed in such a situation, if the height of the raw material melt in the crucible is reduced to some extent by crystal growth, the tip of the growth interface and the bottom of the crucible come into contact with each other. For this reason, it is impossible to continue the crystal growth beyond that, and there arises a problem that the crystal obtained cannot be so large with respect to the amount of raw material filled in the crucible. In addition, as a result of remarkably promoting the flow in the same direction as the natural convection of the melt, the single crystal growth rate in the melt is increased, and crystal defects are likely to occur in the obtained crystal.
Such a problem can be solved, for example, by increasing the number of rotations of the crystal during growth and adjusting the crystal growth rate, as described in Patent Document 2, for example, in Japanese Patent Application Laid-Open No. 2005-231958 by the present applicant. If the convection of the melt is adjusted using a growing furnace having a heater at the bottom of the crucible as disclosed, the problem can be solved without greatly increasing the rotational speed.

このようにして、単結晶用原料として比表面積が小さい酸化アルミニウムの焼結体を選択し、しかも特定の酸素分圧条件下で原料を加熱溶融させて単結晶を育成することで、両者の相乗効果によって、原料に吸着または内包しているガスが容易に排除でき、その結果、融液中に含まれる過剰なガスを減少させることができ、単結晶育成時に結晶内に取り込まれる微小な気泡を少なくなくすることができ、得られる単結晶中のピットやマイクロバルブを少なくすることができる。   In this way, by selecting a sintered body of aluminum oxide having a small specific surface area as a raw material for a single crystal, and further growing the single crystal by heating and melting the raw material under specific oxygen partial pressure conditions, Due to the effect, the gas adsorbed or encapsulated in the raw material can be easily eliminated, and as a result, the excess gas contained in the melt can be reduced, and the minute bubbles taken into the crystal during single crystal growth can be reduced. The number of pits and microvalves in the obtained single crystal can be reduced.

2.酸化アルミニウム単結晶
本発明の酸化アルミニウム単結晶は、上記の製造方法により得られるアルミニウム及び酸素の2元素を含む単結晶である。
更には、下記の光散乱レーザートモグラフ法によって求められる散乱光強度が140以下まで減少した単結晶である。散乱光強度は、円筒状に加工された酸化アルミニウム単結晶の側面にレーザー光を照射して、入射するレーザー光に対して90゜の方向に放射される散乱光をCCDカメラに取り込み、画像処理装置で算出する。
2. Aluminum oxide single crystal The aluminum oxide single crystal of the present invention is a single crystal containing two elements of aluminum and oxygen obtained by the above production method.
Furthermore, it is a single crystal whose scattered light intensity calculated | required by the following light-scattering laser tomography method reduced to 140 or less. The scattered light intensity is measured by irradiating the side surface of the aluminum oxide single crystal processed into a cylindrical shape with laser light and capturing the scattered light emitted in the direction of 90 ° with respect to the incident laser light into the CCD camera. Calculate with the device.

この単結晶からウエハーをスライスし、ポリッシュ研磨することで、エピ結晶基板とすることができる。単結晶中には微小な気泡が極めて少ないので、ピット数もマイクロバブルも少なくなり優れた特性を有する電子部品材料、光学用部品材料を提供できる。   By slicing a wafer from this single crystal and polishing it, an epicrystal substrate can be obtained. Since there are very few microbubbles in the single crystal, the number of pits and microbubbles is reduced, and electronic component materials and optical component materials having excellent characteristics can be provided.

以下に、実施例を用いて、本発明をさらに詳細に説明するが、本発明は、これら実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

〔微小な気泡の測定〕
育成した単結晶に取り込まれた微小な気泡は、前記光散乱レーザートモグラフ法に従って観察した。具体的には、図1に示したように、円筒状に加工した酸化アルミニウム単結晶の側面にレーザー光を照射して、酸化アルミニウム単結晶端面より射出される散乱光をCCDカメラに取り込み、画像処理装置で散乱光強度を算出した。この結果、散乱光強度が140以下であれば、育成した単結晶中のマイクロバブル量は少ないと判断される。
[Measurement of minute bubbles]
The minute bubbles taken into the grown single crystal were observed according to the light scattering laser tomography method. Specifically, as shown in FIG. 1, the side surface of the cylindrically processed aluminum oxide single crystal is irradiated with laser light, and the scattered light emitted from the end surface of the aluminum oxide single crystal is taken into the CCD camera, and an image is obtained. The scattered light intensity was calculated by the processing apparatus. As a result, if the scattered light intensity is 140 or less, it is determined that the amount of microbubbles in the grown single crystal is small.

〔ピットの評価〕
育成した単結晶から50枚のウエハーをスライスし、ポリッシュ研磨して、ピットがどの程度あるか測定した。ピット数は少ないほど良好な単結晶が育成されていることを示している。
[Evaluation of pits]
Fifty wafers were sliced from the grown single crystal and polished to measure how many pits there were. The smaller the number of pits, the better the single crystal is grown.

〔実施例1〕
特開2005−231958に開示されている坩堝底部に加熱ヒーターを有する育成炉を用い、このイリジウム製坩堝に出発原料として4N(99.99%)の酸化アルミニウム原料(原料B)を10kg投入した。原料は比表面積0.8〜0.9m/gの焼結体である。酸素分圧100Paでこの原料を融点に達するまで12時間かけて徐々に加熱し、原料の融解後もこの低酸素濃度を維持した。原料の融解から6時間経過後、a軸方向に切り出した酸化アルミニウム単結晶を種結晶として用い、種結晶を融液近くまで降下させた。この種結晶を毎分2回転の速度で回転させながら徐々に降下させ、種結晶の先端を融液に接触させて温度を徐々に降下させながら、引上速度2mm/hrの速度で種結晶を上昇させて結晶成長を行った。
その結果、直径102mm、直胴部の長さ118mmの単結晶が得られた。また、結晶底部の成長界面を測定したところ、32mm凸であった。さらに、この単結晶を円筒状に加工し、波長532nmのレーザーを照射し結晶内部の散乱光を測定したところ、散乱光強度は68であった。ピット数を測定したところ、表1に示したとおり、3インチウエハー内に平均3.2個であった。
[Example 1]
A growth furnace having a heater at the bottom of the crucible disclosed in JP-A-2005-231958 was used, and 10 kg of 4N (99.99%) aluminum oxide raw material (raw material B) was charged as a starting material into the iridium crucible. The raw material is a sintered body having a specific surface area of 0.8 to 0.9 m 2 / g. This raw material was gradually heated over 12 hours at an oxygen partial pressure of 100 Pa until reaching the melting point, and this low oxygen concentration was maintained even after the raw material was melted. After 6 hours from the melting of the raw material, an aluminum oxide single crystal cut in the a-axis direction was used as a seed crystal, and the seed crystal was lowered to near the melt. The seed crystal is gradually lowered while rotating at a speed of 2 revolutions per minute, and the seed crystal is pulled at a pulling speed of 2 mm / hr while gradually lowering the temperature by bringing the tip of the seed crystal into contact with the melt. The crystal was grown by raising.
As a result, a single crystal having a diameter of 102 mm and a straight body portion length of 118 mm was obtained. Further, when the growth interface at the bottom of the crystal was measured, it was 32 mm convex. Furthermore, when this single crystal was processed into a cylindrical shape, a laser beam having a wavelength of 532 nm was irradiated to measure the scattered light inside the crystal, the scattered light intensity was 68. When the number of pits was measured, as shown in Table 1, it was 3.2 on average in a 3-inch wafer.

〔実施例2〕
酸素分圧を300Paとした以外は、上記実施例1と同様にして結晶成長を行った。その結果、直径105mm、直胴部の長さ120mmの単結晶を得た。
また、結晶底部の成長界面を測定したところ、26mm凸であった。さらに、この単結晶を円筒状に加工し、波長532nmのレーザーを照射し結晶内部の散乱光を測定したところ、散乱光強度は103であった。ピット数を測定したところ、表1に示したとおり、3インチウエハー内に平均5.3個であった。
[Example 2]
Crystal growth was performed in the same manner as in Example 1 except that the oxygen partial pressure was 300 Pa. As a result, a single crystal having a diameter of 105 mm and a length of the straight body portion of 120 mm was obtained.
Further, when the growth interface at the bottom of the crystal was measured, it was 26 mm convex. Further, this single crystal was processed into a cylindrical shape, and a laser beam having a wavelength of 532 nm was irradiated to measure the scattered light inside the crystal. As a result, the scattered light intensity was 103. When the number of pits was measured, as shown in Table 1, it was 5.3 on average in a 3-inch wafer.

〔比較例1〕
イリジウム製坩堝に出発原料として4N(99.99%)のAl原料(原料A)を10kg投入した。この原料は、直径0.3μmの酸化アルミニウム紛で、比表面積が5〜10m/gである。
実施例1と同様に酸素分圧100Paで、この原料を融点に達するまで12時間かけて徐々に加熱し、原料の融解から6時間経過後、a軸方向に切り出した酸化アルミニウム単結晶を種結晶として用い、種結晶を融液近くまで降下させた。この種結晶を毎分2回転の速度で回転させながら徐々に降下させ、種結晶の先端を融液に接触させて温度を徐々に降下させながら引上速度2mm/hの速度で種結晶を上昇させて結晶成長を行った。
その結果、直径100mm、直胴部の長さが115mmで目視では気泡が観察されない結晶を得た。また、結晶底部の成長界面を測定したところ、30mm凸であった。さらに、この結晶を円筒状に加工し、波長532nmのレーザーを照射し結晶内部の散乱光を測定したところ、散乱光強度は84であった。ピット数を測定したところ、表1に示したとおり、平均1256個であった。
[Comparative Example 1]
10 kg of 4N (99.99%) Al 2 O 3 material (raw material A) was charged as a starting material into an iridium crucible. This raw material is an aluminum oxide powder having a diameter of 0.3 μm and a specific surface area of 5 to 10 m 2 / g.
As in Example 1, this raw material was gradually heated for 12 hours at an oxygen partial pressure of 100 Pa until reaching the melting point. After 6 hours had elapsed since the melting of the raw material, an aluminum oxide single crystal cut in the a-axis direction was used as a seed crystal. The seed crystal was lowered to near the melt. The seed crystal is gradually lowered while rotating at a speed of 2 revolutions per minute, and the seed crystal is raised at a pulling speed of 2 mm / h while gradually lowering the temperature by bringing the tip of the seed crystal into contact with the melt. Crystal growth was performed.
As a result, a crystal was obtained in which the diameter was 100 mm, the length of the straight body portion was 115 mm, and no bubbles were observed visually. Further, when the growth interface at the bottom of the crystal was measured, it was 30 mm convex. Furthermore, when this crystal was processed into a cylindrical shape and irradiated with a laser having a wavelength of 532 nm to measure scattered light inside the crystal, the scattered light intensity was 84. When the number of pits was measured, as shown in Table 1, it was 1256 on average.

〔比較例2〕
原料として比表面積が小さいクラックル原料(原料C)を用い結晶を育成した。原料Cは、ベルヌーイ法で製造された酸化アルミニウム単結晶を直径20mm以下に粉砕したものであり、比表面積は0.1m/g未満である。結晶内部の散乱光を測定したところ、散乱光強度は91であった。ピット数を測定したところ、表1に示したとおり、平均326個であった。
[Comparative Example 2]
Crystals were grown using a crackle raw material (raw material C) having a small specific surface area as a raw material. The raw material C is obtained by pulverizing an aluminum oxide single crystal produced by the Bernoulli method to a diameter of 20 mm or less, and has a specific surface area of less than 0.1 m 2 / g. When the scattered light inside the crystal was measured, the scattered light intensity was 91. When the number of pits was measured, it was 326 on average as shown in Table 1.

〔比較例3〕
原料として比較例2とは異なる、比表面積が小さいクラックル原料(原料D)を用い結晶を育成した。原料Dは、ベルヌーイ法で製造された酸化アルミニウム単結晶を直径20mm以下に粉砕したもので、比表面積は0.1m/g未満である。結晶内部の散乱光を測定したところ、散乱光強度は81であった。ピット数を測定したところ、表1に示したとおり、平均52個であった。
[Comparative Example 3]
A crystal was grown using a crackle raw material (raw material D) having a small specific surface area, which is different from that of Comparative Example 2. The raw material D is obtained by pulverizing an aluminum oxide single crystal produced by the Bernoulli method to a diameter of 20 mm or less, and has a specific surface area of less than 0.1 m 2 / g. When scattered light inside the crystal was measured, the scattered light intensity was 81. When the number of pits was measured, it was 52 on average as shown in Table 1.

〔比較例4〕
酸素分圧を1Pa以下とした以外は、上記実施例1と同様にして結晶成長を行った。直径103mm、直胴部の長さ95mmの結晶を得たところで坩堝底に結晶底部が接触したので、育成を中止した。結晶底部の成長界面を測定したところ88mm凸と大きかった。結晶内部の散乱光の強度を測定したところ散乱光強度は42と小さかった。ところが、比較的大きな散乱体が観測され、インクルージョン(内包物)が存在する可能性があることがわかった。また、この結晶をウエハー状にスライスしポリッシュ研磨したところ、ピット(直径数μmの微小な窪み)は確認されなかったが、何れのウエハーにも、差し渡し数μmの大きさの突起状異物が数個程度ウエハー上に観測され、これをEPMAで分析したところイリジウムであった。
[Comparative Example 4]
Crystal growth was performed in the same manner as in Example 1 except that the oxygen partial pressure was 1 Pa or less. When a crystal having a diameter of 103 mm and a length of the straight body part of 95 mm was obtained, the crystal bottom part was in contact with the crucible bottom, and the growth was stopped. The growth interface at the bottom of the crystal was measured and found to be as large as 88 mm. When the intensity of scattered light inside the crystal was measured, the scattered light intensity was as small as 42. However, a relatively large scatterer was observed, and it was found that there may be inclusions. In addition, when this crystal was sliced into a wafer and polished and polished, no pits (fine pits with a diameter of several μm) were found, but there were several protruding foreign objects with a size of several μm in each wafer. About one piece was observed on the wafer, and it was iridium when analyzed by EPMA.

〔比較例5〕
酸素分圧を600Pa以下とした以外は、実施例1と同様にして結晶成長を行った。直径103mm、直胴部の長さ121mmの結晶を得た。結晶底部の成長界面を測定したところ30mm凸であった。さらに、この結晶を円筒状に加工し、波長532nmのレーザーを照射し結晶内部の散乱光の強度を測定したところ、散乱光強度は150であり、良好とされる140を越えていた。ピット数を測定したところ、表1に示したとおり、3インチウエハー内に平均18369個であった。
[Comparative Example 5]
Crystal growth was performed in the same manner as in Example 1 except that the oxygen partial pressure was 600 Pa or less. A crystal having a diameter of 103 mm and a length of the straight body part of 121 mm was obtained. When the growth interface at the bottom of the crystal was measured, it was 30 mm convex. Further, this crystal was processed into a cylindrical shape, and the intensity of scattered light inside the crystal was measured by irradiating with a laser having a wavelength of 532 nm. As a result, the scattered light intensity was 150, exceeding 140, which was considered good. When the number of pits was measured, as shown in Table 1, it was 18369 on average in a 3-inch wafer.

Figure 0005011734
Figure 0005011734

育成された単結晶にレーザー光を照射し、光散乱を測定する光学系を用いて結晶中の微小気泡(マイクロバルブ)を調べる手段を示す説明図である。It is explanatory drawing which shows the means to investigate the micro bubble (micro valve | bulb) in a crystal | crystallization using the optical system which irradiates a laser beam to the grown single crystal and measures light scattering. 単結晶育成時の酸素分圧が、育成される単結晶の光散乱強度に与える影響を示すグラフである。It is a graph which shows the influence which the oxygen partial pressure at the time of single crystal growth has on the light-scattering intensity | strength of the single crystal to grow.

符号の説明Explanation of symbols

1 育成された単結晶
2 レーザー光
3 散乱光
4 CCDカメラ
5 画像処理装置
DESCRIPTION OF SYMBOLS 1 Grown single crystal 2 Laser light 3 Scattered light 4 CCD camera 5 Image processing device

Claims (5)

炉体内の坩堝に単結晶用原料を入れて加熱溶融し、原料融液から成長結晶を引き上げる溶融固化法により酸化アルミニウム単結晶を製造する方法において、
上記単結晶用原料として、比表面積1m/g以下のチタンを含まない酸化アルミニウム焼結体を用い、かつ、該単結晶用原料を加熱溶融し、単結晶を育成する際に、炉体内雰囲気中の酸素濃度を酸素分圧で10〜500Paに設定してマイクロバブルの発生を抑制することを特徴とする酸化アルミニウム単結晶の製造方法。
In a method for producing an aluminum oxide single crystal by a melt solidification method in which a raw material for a single crystal is put in a crucible in a furnace and heated and melted, and a grown crystal is pulled up from the raw material melt,
When the single crystal raw material is a sintered aluminum oxide containing no titanium having a specific surface area of 1 m 2 / g or less, and the single crystal raw material is heated and melted to grow the single crystal, the furnace atmosphere A method for producing an aluminum oxide single crystal, characterized by suppressing the generation of microbubbles by setting the oxygen concentration therein to 10 to 500 Pa in terms of oxygen partial pressure.
前記結晶用原料が、10時間以上かけて徐々に加熱溶融されることを特徴とする請求項1に記載の酸化アルミニウム単結晶の製造方法。   The method for producing an aluminum oxide single crystal according to claim 1, wherein the crystal raw material is gradually heated and melted over 10 hours or more. 前記坩堝の材料がイリジウムであることを特徴とする請求項1又は2に記載のいずれかの酸化アルミニウム単結晶の製造方法。   The method for producing an aluminum oxide single crystal according to claim 1 or 2, wherein the material of the crucible is iridium. 請求項1〜3のいずれかの製造方法によって得られる酸化アルミニウム単結晶。   The aluminum oxide single crystal obtained by the manufacturing method in any one of Claims 1-3. 散乱光強度(酸化アルミニウム単結晶の側面にレーザー光を照射して、入射するレーザー光に対して90゜の方向に放射される散乱光をCCDカメラに取り込み、画像処理装置で強度を0〜255までの256階調に処理し、画像中の結晶部分40mm四方の強度平均を散乱光強度として算出する)が、140以下であることを特徴とする請求項4に記載の酸化アルミニウム単結晶。 Scattered light intensity (irradiating the side surface of the aluminum oxide single crystal with laser light, capturing the scattered light emitted in the direction of 90 ° with respect to the incident laser light into the CCD camera, and setting the intensity to 0 to 255 with an image processing apparatus. 5. The aluminum oxide single crystal according to claim 4 , wherein the processing is performed up to 256 gradations, and the average intensity of a 40 mm square portion of the crystal in the image is calculated as scattered light intensity ) is 140 or less.
JP2006014675A 2006-01-24 2006-01-24 Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method Expired - Fee Related JP5011734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014675A JP5011734B2 (en) 2006-01-24 2006-01-24 Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014675A JP5011734B2 (en) 2006-01-24 2006-01-24 Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method

Publications (2)

Publication Number Publication Date
JP2007197230A JP2007197230A (en) 2007-08-09
JP5011734B2 true JP5011734B2 (en) 2012-08-29

Family

ID=38452202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014675A Expired - Fee Related JP5011734B2 (en) 2006-01-24 2006-01-24 Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method

Country Status (1)

Country Link
JP (1) JP5011734B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904862B2 (en) * 2006-03-15 2012-03-28 住友金属鉱山株式会社 Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JP4905171B2 (en) * 2007-02-14 2012-03-28 住友金属鉱山株式会社 Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method
JP5195000B2 (en) * 2007-11-07 2013-05-08 日立化成株式会社 Manufacturing method of oxide single crystal.
JP4835582B2 (en) * 2007-11-16 2011-12-14 住友金属鉱山株式会社 Method for producing aluminum oxide single crystal
JP4941405B2 (en) * 2008-02-01 2012-05-30 日立化成工業株式会社 Method for removing aluminum oxide from crucible inner surface and crucible regeneration method
CN102061522B (en) * 2010-11-05 2013-01-16 北京工业大学 Two-step preparation method of large Al2O3-based crystal
CN102233606B (en) * 2011-06-30 2013-07-17 张君芳 Method for manufacturing alumina single crystal blocky raw material
CN104651934B (en) * 2014-10-17 2017-12-01 洛阳西格马炉业股份有限公司 A kind of energy-saving sapphire crystal growing furnace

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2962795B2 (en) * 1990-09-21 1999-10-12 並木精密宝石株式会社 Method for producing alumina-based high melting point oxide single crystal
JPH05186297A (en) * 1992-01-08 1993-07-27 Tosoh Corp Production of high-grade single crystal of titanium sapphire
JPH07277893A (en) * 1994-04-05 1995-10-24 Mitsubishi Heavy Ind Ltd Production of alumina single crystal
JPH09278592A (en) * 1996-04-18 1997-10-28 Mitsubishi Heavy Ind Ltd Production of aluminum oxide single crystal containing titanium
JP4735334B2 (en) * 2006-03-02 2011-07-27 住友金属鉱山株式会社 Method for producing aluminum oxide single crystal
JP4905171B2 (en) * 2007-02-14 2012-03-28 住友金属鉱山株式会社 Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method

Also Published As

Publication number Publication date
JP2007197230A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5011734B2 (en) Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method
JP4814207B2 (en) Method and apparatus for manufacturing a silicon semiconductor wafer
TW546422B (en) Method of producing silicon wafer and silicon wafer
JP2008007353A (en) Apparatus for growing sapphire single crystal and growing method using the same
WO2013005347A1 (en) Sic single crystal and manufacturing process therefor
JP5459004B2 (en) Method for producing sapphire single crystal
JP4735334B2 (en) Method for producing aluminum oxide single crystal
KR20150023031A (en) SiC SINGLE CRYSTAL INGOT AND PRODUCTION METHOD THEREFOR
KR101710814B1 (en) Method for producing sic single crystal
JP2008007354A (en) Method for growing sapphire single crystal
JP2010222241A (en) Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
JP4905138B2 (en) Method for producing aluminum oxide single crystal
JP4905171B2 (en) Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method
JP4844428B2 (en) Method for producing sapphire single crystal
JP2020063163A (en) Apparatus for manufacturing single crystal
JP4904862B2 (en) Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JP4835582B2 (en) Method for producing aluminum oxide single crystal
JP4193610B2 (en) Single crystal manufacturing method
US20100127354A1 (en) Silicon single crystal and method for growing thereof, and silicon wafer and method for manufacturing thereof
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JP2016033102A (en) Sapphire single crystal and method for manufacturing the same
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP4844429B2 (en) Method for producing sapphire single crystal
JP2002145697A (en) Single crystal silicon wafer, ingot and manufacturing method thereof
JP4425181B2 (en) Method for producing metal fluoride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees