JP2010149083A - 化学物質汚染の浄化方法 - Google Patents

化学物質汚染の浄化方法 Download PDF

Info

Publication number
JP2010149083A
JP2010149083A JP2008332376A JP2008332376A JP2010149083A JP 2010149083 A JP2010149083 A JP 2010149083A JP 2008332376 A JP2008332376 A JP 2008332376A JP 2008332376 A JP2008332376 A JP 2008332376A JP 2010149083 A JP2010149083 A JP 2010149083A
Authority
JP
Japan
Prior art keywords
persulfate
groundwater
soil
added
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008332376A
Other languages
English (en)
Other versions
JP5612820B2 (ja
Inventor
Takashi Nomoto
岳志 野本
Masahiro Eguchi
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2008332376A priority Critical patent/JP5612820B2/ja
Publication of JP2010149083A publication Critical patent/JP2010149083A/ja
Application granted granted Critical
Publication of JP5612820B2 publication Critical patent/JP5612820B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】本発明は、有機塩素化合物等の化学物質に汚染された汚染物(土壌及び地下水等)を過硫酸塩及びアルカリ剤を用いて確実かつ安全に浄化する方法を提供することを目的とする。
【解決手段】本発明は、化学物質に汚染された土壌及び地下水に原位置で過硫酸塩及びアルカリ剤を添加して土壌及び地下水を浄化する化学物質汚染の浄化方法であって、反応領域における過硫酸塩濃度が5000mg/L以上となるように過硫酸塩を添加するとともに、反応領域の最終的なpHが5以上〜10未満の範囲となるように、アルカリ剤を過硫酸塩に対してモル比0.4以上〜2.0以下の範囲で添加する。
【選択図】図1

Description

本発明は、化学物質、特に有機化合物により汚染された土壌、地下水等を化学的に浄化する方法に関する。
トリクロロエチレン(TCE)、テトラクロロエチレン(PCE)等の有機塩素化合物は、洗浄剤として各種工場やクリーニング店等で広く使用されているが、これら有機塩素化合物は発癌性物質である疑いがあり、近年、上記有機塩素化合物による土壌、地下水等の汚染が大きな社会問題となっている。
従来、有機塩素化合物で汚染された土壌の処理方法としては、汚染土壌の封じ込め処理、汚染土壌の掘削・封じ込め処理等が主に行われている。また、有機塩素化合物で汚染された地下水の処理方法としては、地下水を揚水し、地下水中の汚染化学物質を気相中に移行させて、地下水を浄化し(揚水曝気処理)、その後活性炭により気相を吸着処理する(活性炭処理)ポンプ・アンド・トリート法等が主に行われている。なお、浄化後の水は地表に流される。
しかし、上記封じ込め処理、掘削・封じ込め処理、ポンプ・アンド・トリート法は、汚染化学物質を積極的に分解して無害化する技術ではないこと、また、莫大なコスト、エネルギ及び手間を要すること、浄化期間が10〜20年と長いこと等の問題がある。
これに対し、近年では、酸化剤を直接井戸に注入する原位置化学酸化の開発が行われている。酸化剤としては、過マンガン酸カリウム、過酸化水素、過硫酸塩、次亜塩素酸、過塩素酸、塩素、オゾン等が存在するが、水への溶解性、操作性等の点から、現状では過マンガン酸カリウムや過酸化水素を用いる方法が主に実用化されている。
しかし、過マンガン酸カリウムを用いる方法では、過マンガン酸カリウム自身が紫色を呈しており、地下水等に直接注入するのは好ましくないという問題がある。また、過酸化水素を用いる方法では、地中内での急激な過酸化水素分解に伴い浄化範囲が小さいという問題がある。
これに対し、過硫酸塩を使用した汚染物質の分解研究事例も増えてきている。例えば、特許文献1には、有機化合物の汚染物質に対して、過硫酸塩及びpHを10以上に維持するためのpH調整剤を添加する方法が開示されている。
特表2008−506511号
しかし、本発明者らが、実際に汚染されている地下水或いは実際に汚染されている地下水と土壌とを共存させて浄化する実験を行った結果、特許文献1の浄化方法では、浄化目的としているテトラクロロエチレン等の有機塩素化合物の分解は、必ずしも迅速ではなく、また、該浄化方法では、pHを10以上に維持するため、処理コストが高くなり、特にpH11以上では、重金属の溶出等の問題が生じる可能性があることが確認された。
また、本発明者らが、過硫酸塩を使用した有機塩素化合物の分解実験を行った結果、蒸留水を用いた場合と実際の地下水或いは実際の地下水と土壌とを共存させたものを用いた場合、また、有機塩素化合物が数mg/L以下の低濃度の場合と数十mg/Lの高濃度の場合等では、その有機塩素化合物の分解挙動が大きく異なることが確認された。そして、特許文献1の浄化方法は、蒸留水を使用し、有機塩素化合物が高濃度であるような特殊な環境条件下での浄化方法であるため、当該浄化方法を実際の現場へ適用することは実質的に困難である。
そこで、本発明は、前述した事情に鑑みてなされたものであり、有機塩素化合物等の化学物質に汚染された汚染物(土壌及び地下水等)を過硫酸塩及びアルカリ剤を用いて確実かつ安全に浄化する方法を提供することを目的とする。
本発明は、化学物質に汚染された汚染物に過硫酸塩及びアルカリ剤を添加して前記汚染物を浄化する化学物質汚染の浄化方法であって、反応領域における過硫酸塩濃度が5000mg/L以上となるように過硫酸塩を添加するとともに、反応領域の最終的なpHが5以上〜10未満の範囲となるように、アルカリ剤を過硫酸塩に対してモル比0.4以上〜2.0以下の範囲で添加する。
また、本発明は、化学物質に汚染された土壌及び地下水に原位置で過硫酸塩及びアルカリ剤を添加して土壌及び地下水を浄化する化学物質汚染の浄化方法であって、反応領域における過硫酸塩濃度が5000mg/L以上となるように過硫酸塩を添加するとともに、反応領域の最終的なpHが5以上〜10未満の範囲となるように、アルカリ剤を過硫酸塩に対してモル比0.4以上〜2.0以下の範囲で添加する。
また、前記化学物質汚染の浄化方法において、反応領域のpHをモニタリングして、反応領域の最終的なpHが5以上〜10未満の範囲となるように、前記過硫酸塩及び前記アルカリ剤の添加量を調整することが好ましい。
また、前記化学物質汚染の浄化方法において、前記過硫酸塩が過硫酸カリウム、過硫酸ナトリウム又は過硫酸アンモニウムであることが好ましい。
また、前記化学物質汚染の浄化方法において、前記アルカリ剤が水酸化カリウム、苛性ソーダ又は水酸化アンモニウムであることが好ましい。
また、前記化学物質汚染の浄化方法において、前記化学物質が有機塩素化合物であることが好ましい。
また、本発明の化学物質汚染の浄化装置は、化学物質に汚染された土壌及び地下水に原位置で過硫酸塩を添加する過硫酸塩添加手段と、前記土壌及び地下水に原位置でアルカリ剤を添加するアルカリ剤添加手段と、を備え、前記過硫酸塩添加手段は、反応領域における過硫酸塩濃度が5000mg/L以上となるように過硫酸塩を添加し、前記アルカリ剤添加手段は、反応領域の最終的なpHが5以上〜10未満の範囲となるように、アルカリ剤を過硫酸塩に対してモル比0.4以上〜2.0以下の範囲で添加する。
また、前記化学物質汚染の浄化装置において、反応領域のpHをモニタリングするモニタリング手段を備え、前記過硫酸塩添加手段及び前記アルカリ剤添加手段は、前記モニタリング手段によりモニタリングしたpHに基づいて、反応領域の最終的なpHが5以上〜10未満の範囲となるように、過硫酸塩及びアルカリ剤の添加量を調整することが好ましい。
また、前記化学物質汚染の浄化装置であって、前記過硫酸塩が過硫酸カリウム、過硫酸ナトリウム又は過硫酸アンモニウムであることが好ましい。
また、前記化学物質汚染の浄化装置において、前記アルカリ剤が水酸化カリウム、苛性ソーダ又は水酸化アンモニウムであることが好ましい。
また、前記化学物質汚染の浄化装置において、前記化学物質が有機塩素化合物であることが好ましい。
本発明によれば、有機塩素化合物等の化学物質に汚染された汚染物(土壌及び地下水等)を過硫酸塩及びアルカリ剤を用いて確実かつ安全に浄化することができる。
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
図1は、本発明の実施形態に係る化学物質汚染の浄化装置の構成の一例を示す模式図である。図1に示すように、化学物質汚染の浄化装置1は、過硫酸塩添加手段としての過硫酸塩貯槽10、第1ポンプ12、過硫酸塩注入ライン14及び注入井戸16と、アルカリ剤添加手段としてのアルカリ剤貯槽18、第2ポンプ20及びアルカリ剤注入ライン22(及び注入井戸16)と、揚水手段としての揚水ポンプ24、揚水ライン26及び揚水井戸28と、曝気処理手段としての曝気槽30と曝気処理水ライン32と、を備える。
過硫酸塩添加手段の構成として、図1では過硫酸塩貯槽10、過硫酸塩注入ライン14、第1ポンプ12及び注入井戸16の構成を例示したが、化学物質に汚染された土壌及び地下水に原位置で過硫酸塩を添加することができる構成であれば、上記に制限されるものではない。本実施形態において、過硫酸塩注入ライン14の一端は、過硫酸塩貯槽10に接続されており、過硫酸塩注入ライン14の他端から過硫酸塩を原位置(実質的には注入井戸16内)に放出するために、過硫酸塩注入ライン14の他端が注入井戸16内に配置されている。また、過硫酸塩注入ライン14には、第1ポンプ12が設けられている。
アルカリ剤添加手段の構成として、図1ではアルカリ剤貯槽18、第2ポンプ20、アルカリ剤注入ライン22及び注入井戸16の構成を例示したが、化学物質に汚染された土壌及び地下水に原位置でアルカリ剤を添加することができる構成であれば、上記に制限されるものではない。本実施形態において、アルカリ剤注入ライン22の一端は、アルカリ剤貯槽18に接続されており、アルカリ剤注入ライン22の他端からアルカリ剤を原位置(実質的には注入井戸16内)に放出するために、アルカリ剤注入ライン22の他端が過硫酸塩注入ライン14に接続されている。また、アルカリ剤注入ライン22には、第2ポンプ20が設けられている。なお、本実施形態では、アルカリ剤注入ライン22は過硫酸塩注入ライン14に接続されているが、必ずしもこれに接続する必要はなく、アルカリ剤注入ライン22の他端が、注入井戸16内に配置されていてもよい。
揚水手段の構成として、図1では揚水ポンプ24、揚水ライン26及び揚水井戸28の構成を例示したが、浄化処理後の地下水を地表へ揚水することができる構成であれば、上記に制限されるものではない。本実施形態において、揚水井戸28は、浄化処理後の地下水を揚水するために、少なくとも注入井戸16より地下水の下流側に配置される。また、揚水井戸28内に配置されている揚水ライン26には、揚水ポンプ24が設けられている。また、揚水ライン26の一端は、曝気槽30に接続されている。
曝気処理手段は、図1では曝気槽30及び曝気処理水ライン32の構成を例示したが、揚水した地下水の曝気処理をすることができる構成であれば、上記に制限されるものではない。本実施形態では、曝気処理水ライン32の一端は曝気槽30に接続され、他端は過硫酸塩注入ライン14に接続されている。
以下に、本実施形態に係る化学物質汚染の浄化装置の動作について説明する。
まず、第1ポンプ12を稼働させ、過硫酸塩貯槽10内の過硫酸塩を過硫酸塩注入ライン14から、注入井戸16を介して、化学物質に汚染された土壌及び地下水の原位置に供給する。そうすると、過硫酸塩を添加した地下水が反応領域Xを流れる間に、過硫酸塩が反応領域Xに存在する汚染化学物質を酸化分解(浄化)する。この際、反応領域Xにおける過硫酸塩濃度が5000mg/L以上となるように、過硫酸塩を注入する。特に、反応領域Xにおける過塩素酸濃度が5000mg/L以上〜25000mg/L以下の範囲となるように過硫酸塩を注入することが好ましく、10000mg/L以上〜25000mg/L以下の範囲となるように過硫酸塩を注入することがより好ましい。過硫酸塩濃度が5000mg/L未満では、土壌や地下水中に存在する有機物や無機イオンの影響で過硫酸塩が消費されてしまうため、高濃度の汚染化学物質を十分に分解することが困難となる。また、汚染化学物質の分解速度も低下する。また、過硫酸塩濃度が25000mg/L超では、薬品使用量が増加するため、コストが高くなる。
また、第2ポンプ20を稼働させ、アルカリ剤貯槽18内のアルカリ剤をアルカリ剤注入ライン22から注入井戸16を介して、化学物質に汚染された土壌及び地下水の原位置に供給する。この際、反応領域Xの最終的なpHが5以上〜10未満の範囲となるように、アルカリ剤を過硫酸塩に対してモル比0.4以上〜2.0以下の範囲となるように注入する。特に、アルカリ剤を過硫酸塩に対してモル比0.8以上〜1.6以下の範囲となるように注入することが好ましい。過硫酸塩に対するアルカリ剤のモル比が0.4未満となると、反応領域Xの最終的なpHを5以上とすることが困難となる。反応領域Xの最終的なpHが5未満となると、コンクリート構造物への化学的腐食の懸念が高まり、また、土壌からの重金属の溶出等が生じる場合がある。また、生態系に与える影響も大きくなる。これらのことから、建物の下の汚染を浄化する際や、浄化エリア周辺に湖沼池等が存在する地域での適用が困難となる。また、過硫酸塩に対するアルカリ剤のモル比が2.0超となると、反応領域Xの最終的なpHを10未満とすることが困難となり、化学物質の分解速度が低下する。また、処理コストが増大する。特に、pHが11以上となると、土壌からの重金属の溶出等が生じる場合がある。
ここで、反応領域Xの最終的なpHとは、過硫酸塩の分解後のpHであり、例えば、反応領域Xの下流側のpHである。具体的には、揚水ライン26を流れる地下水のpHを測定することにより、反応領域Xの最終的なpHが得られる。
ここで、アルカリ剤の添加タイミングは、過硫酸塩の添加と同時であってもよいが、pHが中性以下では、汚染化学物質の分解速度が速くなることから、まず、過硫酸塩を土壌及び地下水に注入し、反応領域XのpHを中性以下として、汚染化学物質を分解させた上で、アルカリ剤を注入することが好ましい。また、過硫酸塩に対するアルカリ剤のモル比が0.4以上〜2.0以下の範囲であれば、過硫酸塩の添加、アルカリ剤の添加の順に、原位置への注入を繰り返し行ってもよい。
本実施形態において、過硫酸塩添加手段による過硫酸塩の添加量及びアルカリ剤添加手段によるアルカリ剤の添加量の調整は、上記数値範囲を満たすように添加されれば、特に制限されるものではないが、反応領域XのpHをモニタリングするpH計等のpHモニタリング手段を設け、モニタリングしたpH値に基づいて、過硫酸塩添加手段による過硫酸塩の添加量及びアルカリ剤添加手段によるアルカリ剤の添加量を調整することが好ましい。
反応領域XのpHのモニタリングは、例えば、揚水ライン26又は揚水井戸28内にpH計を設置し、揚水ライン26を通過する(又は揚水井戸28内に溜まる)地下水のpHを測定することによって、反応領域XのpHをモニタリングすることにより、行われる。
次に、揚水ポンプ24を稼働させることにより、過硫酸塩の添加により浄化された地下水を、揚水ライン26から曝気槽30に送液する。曝気槽30では、例えば、地下水を下降流で流して、地下水に空気を曝気し、水中に残留する汚染化学物質を気相中に移行させる。曝気後の処理水を曝気処理水ライン32、過硫酸塩注入ライン14を通して、土壌及び地下水の原位置に供給する。曝気後の処理水中には、過硫酸塩添加手段により添加された過硫酸塩が残存しているため、この残存した過硫酸塩を汚染化学物質の浄化に再利用することができる。その結果、過硫酸塩を効率的に汚染化学物質の浄化に使用することができるため、過硫酸塩の使用量を抑えることが可能となる。
図2は、本発明の他の実施形態に係る化学物質汚染の浄化装置の構成の一例を示す模式図である。図2に示す化学物質汚染の浄化装置2において、図1に示す化学物質汚染の浄化装置1と同様の構成については、同一の符合を付し、その説明を省略する。図1に示す化学物質汚染の浄化装置1は、曝気後の処理水を汚染化学物質の浄化に再利用するものであるのに対し、図2に示す化学物質汚染の浄化装置2は、曝気処理水ライン32を通して、曝気後の処理水を地表に放出するものである。図2に示す化学物質汚染の浄化装置2は、揚水ライン26を通る地下水中の過硫酸塩濃度が低い場合等において好適である。
図1,2に示す化学物質汚染の浄化装置(1,2)では曝気処理手段を設けたが、曝気処理手段は必要に応じて設置すればよい。
図3は、本発明の他の実施形態に係る化学物質汚染の浄化装置の構成の一例を示す模式図である。図3に示す化学物質汚染の浄化装置3において、図1に示す化学物質汚染の浄化装置1と同様の構成については、同一の符合を付し、その説明を省略する。本実施形態では、浄化後の地下水の揚水を行わないため、過硫酸塩及びアルカリ剤を添加した反応領域Yは注入井戸16を中心として、ほぼ円状に広がる。そして、図3に示す化学物質汚染の浄化装置3では、反応領域YのpHの観測を行うための観測井戸34を反応領域Y内に設け、観測井戸34内に溜まる地下水のpHを測定する。但し、観測井戸34は反応領域Yの外部に設けてもよい。
本実施形態に用いられる過硫酸塩としては、汚染化学物質を浄化することができるものであれば特に制限されるものではないが、水への溶解度が高く安価であることから過硫酸カリウム、過硫酸ナトリウム又は過硫酸アンモニウムが好ましい。特に過硫酸ナトリウムは、汚染化学物質の浄化の際に、ナトリウムイオンと硫酸イオンを発生し、それらは共に環境及び健康の点から比較的優しいため、特に好ましい。
本実施形態に用いられるアルカリ剤としては、特に制限されるものではないが、例えば、水酸化カリウム、苛性ソーダ、水酸化アンモニウム、トリポリリン酸ナトリウムのようなリン酸塩化合物、ソーダ灰のような炭酸塩化合物等である。特に、安価である点、取り扱いが容易である点で、水酸化カリウム、苛性ソーダ又は水酸化アンモニウムが好ましい。
本実施形態では、トリクロロエチレン、テトラクロロエチレン、ダイオキシン類、ポリ塩素化ビフェニル類等の有機塩素化合物に汚染された土壌、底質、汚泥、地下水等の浄化に好適に使用されるが、これらに限定されるものではない。すなわち、有機塩素化合物による汚染物の浄化のみならず、他の有機物、例えば、油、ベンゼン、トルエン、キシレン等による汚染物の浄化にも適用可能である。
以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
(実施例1)
実際の汚染現場から採取した土壌50gと汚染された地下水10mLをバイアルビンに入れた。地下水中の汚染化学物質の濃度は、シス1,2−ジクロロエチレン:0.09mg/L、トリクロロエチレン:0.09mg/L、テトラクロロエチレン:0.64mg/Lであった。次に、過硫酸ナトリウム濃度が10000mg/Lになるように過硫酸ナトリウムをバイアルビンに添加すると共に、過硫酸ナトリウムに対する苛性ソーダのモル比が0,0.2,0.4,0.6,0.8,1.0,1.2,1.6,2.0となるように苛性ソーダをバイアルビンに添加した。そして、その際の地下水のpHを測定した。これにより、過硫酸塩が分解しない状態での地下水のpH(すなわち、初期pH)を確認することができる。
次に、汚染された地下水10mLをバイアルビンに入れた。そして、過硫酸ナトリウム濃度が10000mg/Lになるように過硫酸ナトリウムをバイアルビンに添加した。その後、オートクレーブにて120℃、1時間加熱処理を実施し、過硫酸ナトリウムを反応させた(硫酸ナトリウムに分解)。そして、冷却後、実際の汚染現場から採取した土壌50gをバイアルビンに添加し、さらに過硫酸ナトリウムに対する苛性ソーダのモル比が0,0.2,0.4,0.6,0.8,1.0,1.2,1.6,2.0となるように苛性ソーダをバイアルビンに添加した。そして、その際の地下水のpHを測定した。これにより、過硫酸ナトリウムの分解後のpH(すなわち最終的なpH)を確認することができる。
図4は、実施例1における地下水のpHと過硫酸ナトリウムに対する苛性ソーダのモル比との関係を示す図である。図4に示すように、濃度10000mg/Lの過硫酸ナトリウムに対する苛性ソーダのモル比が1.0〜2.0では、初期pHが10以上であるが、最終的なpHは10以下となった。そして、過硫酸ナトリウムに対する苛性ソーダのモル比が0.2以上〜2.0以下の範囲であれば、最終的なpHが5以上〜10未満となることを確認した。最終的なpHが10以下であれば、高アルカリによる重金属の溶出を抑制することができる。特に、過硫酸ナトリウムに対する苛性ソーダのモル比が0.4以上〜2.0以下の範囲であれば、より確実かつ安全で安価な浄化処理を行うことが可能である。
(実施例2)
実際の汚染現場であるサイトA及びサイトBから採取した土壌50gと汚染された地下水10mLをそれぞれ別のバイアルビンに入れた。サイトAでの地下水中の汚染化学物質の濃度は、シス1,2−ジクロロエチレン:1.80mg/L(トリクロロエチレン、テトラクロロエチレンは検出限界値未満)であった。サイトBでの地下水中の汚染化学物質の濃度は、シス1,2−ジクロロエチレン:0.09mg/L、トリクロロエチレン:0.09mg/L、テトラクロロエチレン:0.64mg/Lであった。
次に、過硫酸ナトリウム濃度が5000mg/Lになるように過硫酸ナトリウムをバイアルビンに添加すると共に、過硫酸ナトリウムに対する苛性ソーダのモル比が0,0.2,0.4,0.6,0.8,1.0,1.2,1.6,2.0となるように苛性ソーダをバイアルビンに添加した。そして、その際の地下水の初期pHを測定した。
次に、サイトA及びサイトBから採取した汚染された地下水10mLをそれぞれ別のバイアルビンに入れた。そして、過硫酸ナトリウム濃度が5000mg/Lになるように過硫酸ナトリウムをバイアルビンに添加した。その後、オートクレーブにて120℃、1時間加熱処理を実施し、過硫酸ナトリウムを反応させた(硫酸ナトリウムに分解)。そして、冷却後、サイトA及びサイトBから採取した土壌50gをそれぞれ別のバイアルビンに添加し、さらに過硫酸ナトリウムに対する苛性ソーダのモル比が0,0.2,0.4,0.6,0.8,1.0,1.2,1.6,2.0となるように苛性ソーダをバイアルビンに添加した。そして、過硫酸ナトリウムの分解後の地下水の最終的なpHを測定した。
サイトA及びサイトBにおいて、過硫酸ナトリウムに対する苛性ソーダのモル比と初期pH及び最終的なpHとの関係を表1にまとめた。
Figure 2010149083
表1から判るように、濃度5000mg/Lの過硫酸ナトリウムに対する苛性ソーダのモル比が0.4以上〜2.0以下の範囲であれば、最終的なpHが5以上〜10未満となることを確認した。最終的なpHが10以下であれば、高アルカリによる重金属の溶出を抑制することができる。特に、過硫酸ナトリウムに対する苛性ソーダのモル比が0.8以上〜1.6以下の範囲であれば、より確実かつ安全で安価な浄化処理を行うことが可能である。これらの結果は、各種の土壌においても同等の傾向を示した。
(実施例3)
実際の汚染現場から採取した地下水20mLとトリクロロエチレン(濃度約0.66mg/L)をバイアルビンに入れた。次に、過硫酸ナトリウム濃度が10000mg/Lになるように過硫酸ナトリウムをバイアルビンに添加すると共に、過硫酸ナトリウムに対する苛性ソーダのモル比が0,0.8,1.6,2.4となるように苛性ソーダをバイアルビンに添加した。そして、時間経過によるトリクロロエチレンの濃度を測定した。
図5は、過硫酸ナトリウムに対する苛性ソーダの各モル比におけるトリクロロエチレンの濃度と経過時間との関係を示す図である。図5に示すように、過硫酸ナトリウムに対する苛性ソーダのモル比が小さいほど、トリクロロエチレンの分解に要する時間は短くなった。しかし、上記実施例で示したように、過硫酸ナトリウムに対する苛性ソーダのモル比が小さいと、最終的なpHは、強酸性となり、過硫酸ナトリウムに対する苛性ソーダのモル比が大きいと、最終的なpHは強アルカリ性となる。強酸性又は強アルカリ性となると、土壌等からの重金属の溶出等の懸念がある。したがって、トリクロロエチレンの分解に要する時間が長期化しない範囲で、かつ安全な浄化処理を行うための地下水のpH(5以上〜10未満)を保持するために、過硫酸ナトリウムに対する苛性ソーダのモル比を0.4以上〜2.0以下の適切な範囲にする必要がある。
(実施例4)
実際の汚染現場から採取した土壌20gと汚染された地下水20mLとトリクロロエチレン(濃度約5.6mg/L)をバイアルビンに入れた。次に、過硫酸ナトリウム濃度が5000mg/Lになるように過硫酸ナトリウムをバイアルビンに添加すると共に、過硫酸ナトリウムに対する苛性ソーダのモル比が1.6となるように苛性ソーダをバイアルビンに添加した。そして、時間経過によるトリクロロエチレンの濃度及びpHを測定した。
図6は、実施例4におけるトリクロロエチレンの濃度と経過時間との関係を示す図である。また、経過時間における地下水のpHの結果を表2にまとめた。
Figure 2010149083
図6に示すように、過硫酸ナトリウム濃度が5000mg/Lでも、トリクロロエチレンを確実に分解することを確認した。また、濃度5000mg/Lの過硫酸ナトリウムに対する苛性ソーダのモル比を1.6にすると、最終的なpHは、5以上〜10未満を保持することを確認した。
(実施例5)
純水20mLとトリクロロエチレン(濃度約2.0mg/L)をバイアルビンに入れた。次に、過硫酸ナトリウム濃度が5000mg/Lになるように過硫酸ナトリウムをバイアルビンに添加すると共に、過硫酸ナトリウムに対する苛性ソーダのモル比が0.2,0.4,0.8,1.2,1.6,2.0,2.4となるように苛性ソーダをバイアルビンに添加した。そして、時間経過によるトリクロロエチレンの濃度を測定した。
図7は、過硫酸ナトリウムに対する苛性ソーダの各モル比におけるトリクロロエチレンの濃度と経過時間との関係を示す図である。図7に示すように、濃度5000mg/Lの過硫酸ナトリウムに対する苛性ソーダのモル比が小さいほど、トリクロロエチレンの分解に要する時間は短くなった。しかし、上記実施例で示したように、過硫酸ナトリウムに対する苛性ソーダのモル比が小さいと、最終的なpHは強酸性となり、過硫酸ナトリウムに対する苛性ソーダのモル比が大きいと、最終的なpHは強アルカリ性となる。強酸性又は強アルカリ性となると、土壌からの重金属の溶出等の懸念がある。したがって、トリクロロエチレンの分解に要する時間が長期化しない範囲で、かつ安全な浄化処理を行うためのpH(5以上〜10未満)を保持するためには、過硫酸ナトリウムに対する苛性ソーダのモル比を0.4以上〜2.0以下の適切な範囲にする必要がある。
以上のように、反応領域における過硫酸塩濃度が5000mg/L以上となるように過硫酸塩を添加するとともに、反応領域の最終的なpHを5以上〜10以下となるように、アルカリ剤を過硫酸塩に対してモル比0.4以上〜2.0以下の範囲で添加することにより、有機塩素化合物等の化学物質に汚染された土壌、地下水等をより確実かつ安全に、またより低コストで浄化することが可能であり、その有用性はきわめて大きい。従来では、反応領域の最終的なpHが強酸性又は強アルカリ性を示すため、重金属の溶出等の懸念が生じ、また、反応領域の最終的なpHが強酸性では、コンクリート構造物近傍の浄化への適用が困難であった。しかし、本発明によりその適用可能な浄化範囲を拡大させることができる。
本発明の実施形態に係る化学物質汚染の浄化装置の構成の一例を示す模式図である。 本発明の他の実施形態に係る化学物質汚染の浄化装置の構成の一例を示す模式図である。 本発明の他の実施形態に係る化学物質汚染の浄化装置の構成の一例を示す模式図である。 実施例1における地下水のpHと過硫酸ナトリウムに対する苛性ソーダのモル比との関係を示す図である。 過硫酸ナトリウムに対する苛性ソーダの各モル比におけるトリクロロエチレンの濃度と経過時間との関係を示す図である。 実施例4におけるトリクロロエチレンの濃度と経過時間との関係を示す図である。 過硫酸ナトリウムに対する苛性ソーダの各モル比におけるトリクロロエチレンの濃度と経過時間との関係を示す図である。
符号の説明
1〜3 浄化装置、10 過硫酸塩貯槽、12 第1ポンプ、14 過硫酸塩注入ライン、16 注入井戸、18 アルカリ剤貯槽、20 第2ポンプ、22 アルカリ剤注入ライン、24 揚水ポンプ、26 揚水ライン、28 揚水井戸、30 曝気槽、32 曝気処理水ライン、34 観測井戸。

Claims (3)

  1. 化学物質に汚染された土壌及び地下水に原位置で過硫酸塩及びアルカリ剤を添加して土壌及び地下水を浄化する化学物質汚染の浄化方法であって、
    反応領域における過硫酸塩濃度が5000mg/L以上となるように過硫酸塩を添加するとともに、反応領域の最終的なpHが5以上〜10未満の範囲となるように、アルカリ剤を過硫酸塩に対してモル比0.4以上〜2.0以下の範囲で添加することを特徴とする化学物質汚染の浄化方法。
  2. 請求項1記載の化学物質汚染の浄化方法であって、反応領域のpHをモニタリングして、反応領域の最終的なpHが5以上〜10未満の範囲となるように、前記過硫酸塩及び前記アルカリ剤の添加量を調整することを特徴とする化学物質汚染の浄化方法。
  3. 請求項1又は2記載の化学物質汚染の浄化方法であって、前記過硫酸塩が過硫酸カリウム、過硫酸ナトリウム又は過硫酸アンモニウムであることを特徴とする化学物質汚染の浄化方法。
JP2008332376A 2008-12-26 2008-12-26 有機塩素化学物汚染の浄化方法 Active JP5612820B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332376A JP5612820B2 (ja) 2008-12-26 2008-12-26 有機塩素化学物汚染の浄化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332376A JP5612820B2 (ja) 2008-12-26 2008-12-26 有機塩素化学物汚染の浄化方法

Publications (2)

Publication Number Publication Date
JP2010149083A true JP2010149083A (ja) 2010-07-08
JP5612820B2 JP5612820B2 (ja) 2014-10-22

Family

ID=42568783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332376A Active JP5612820B2 (ja) 2008-12-26 2008-12-26 有機塩素化学物汚染の浄化方法

Country Status (1)

Country Link
JP (1) JP5612820B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159271A (zh) * 2013-04-03 2013-06-19 济南瑞东实业有限公司 一种工业污水处理剂及其制备方法
WO2017110288A1 (ja) * 2015-12-22 2017-06-29 住友電気工業株式会社 水処理方法及び水処理システム
JP2017529995A (ja) * 2014-09-24 2017-10-12 テックウィン カンパニー リミテッドTECHWIN Co., LTD 廃水を用いて生産された酸化剤を使用する資源再利用方式産業廃水処理方法及び装置
KR101831387B1 (ko) * 2015-12-04 2018-02-22 재단법인 포항산업과학연구원 유류오염토양의 원위치 정화 방법 및 유류오염토양의 원위치 정화 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202357A (ja) * 2002-12-25 2004-07-22 Japan Organo Co Ltd 有機化合物汚染の浄化方法
JP2004337777A (ja) * 2003-05-16 2004-12-02 Japan Organo Co Ltd 化学物質による汚染の浄化方法
JP2005118626A (ja) * 2003-10-14 2005-05-12 Japan Organo Co Ltd 酸化剤の処理方法および処理装置
JP2008194544A (ja) * 2006-04-28 2008-08-28 Kajima Corp 重金属含有酸性土壌の地下水中和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202357A (ja) * 2002-12-25 2004-07-22 Japan Organo Co Ltd 有機化合物汚染の浄化方法
JP2004337777A (ja) * 2003-05-16 2004-12-02 Japan Organo Co Ltd 化学物質による汚染の浄化方法
JP2005118626A (ja) * 2003-10-14 2005-05-12 Japan Organo Co Ltd 酸化剤の処理方法および処理装置
JP2008194544A (ja) * 2006-04-28 2008-08-28 Kajima Corp 重金属含有酸性土壌の地下水中和方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159271A (zh) * 2013-04-03 2013-06-19 济南瑞东实业有限公司 一种工业污水处理剂及其制备方法
CN103159271B (zh) * 2013-04-03 2014-05-28 济南瑞东实业有限公司 一种工业污水处理剂及其制备方法
JP2017529995A (ja) * 2014-09-24 2017-10-12 テックウィン カンパニー リミテッドTECHWIN Co., LTD 廃水を用いて生産された酸化剤を使用する資源再利用方式産業廃水処理方法及び装置
KR101831387B1 (ko) * 2015-12-04 2018-02-22 재단법인 포항산업과학연구원 유류오염토양의 원위치 정화 방법 및 유류오염토양의 원위치 정화 장치
WO2017110288A1 (ja) * 2015-12-22 2017-06-29 住友電気工業株式会社 水処理方法及び水処理システム
JPWO2017110288A1 (ja) * 2015-12-22 2018-10-11 住友電気工業株式会社 水処理方法及び水処理システム

Also Published As

Publication number Publication date
JP5612820B2 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
JP4542703B2 (ja) 揮発性有機化合物の化学的酸化
US6960330B1 (en) Method for reducing H2S contamination
JP2008506511A (ja) 高pHにおける有機化合物の酸化
JP5368201B2 (ja) 化学物質汚染の処理方法及び処理装置
JP2015511152A (ja) 不揮発性ハロゲン化有機化合物の分解
US20190262877A1 (en) Situ Ferrate Generation
JP2007209824A (ja) 汚染土壌または汚染地下水の浄化方法
JP5612820B2 (ja) 有機塩素化学物汚染の浄化方法
JP4915200B2 (ja) 浄化装置とこの浄化装置を用いた地下水の浄化方法
JP4548782B2 (ja) 有機汚染物質の浄化方法
US10836648B2 (en) Ex situ ferrate generation
JP4405692B2 (ja) 地下汚染領域の浄化方法
JP4167052B2 (ja) 有機化合物汚染の浄化方法
JP2008049305A (ja) 揮発性有機塩素化合物分解システム及び揮発性有機塩素化合物の分解方法
JP2010075887A (ja) 汚染土壌および地下水の浄化方法
JP2002159959A (ja) 地下汚染領域の浄化方法及び浄化装置
JP5528840B2 (ja) 化学物質汚染の処理方法及び処理装置
JP2004337777A (ja) 化学物質による汚染の浄化方法
CA3205137A1 (en) Hydrothermal system for treatment of adsorbent regeneration byproducts
JP3784654B2 (ja) 化学物質汚染物の浄化方法
JP4027209B2 (ja) 化学物質による汚染の浄化方法
JP2004167426A (ja) 化学物質による汚染の浄化方法および浄化システム
JP2004122049A (ja) 土壌および地下水の浄化方法
JP2010075883A (ja) 汚染土壌および地下水の浄化方法
Lee et al. Remediation of Dioxins-Contaminated Soil by Successive Ethanol Washing–Photodegradation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130903

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140905

R150 Certificate of patent or registration of utility model

Ref document number: 5612820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250