JP2010139335A - Disaster urgent ground fluctuations analysis system and disaster urgent ground fluctuations analysis method - Google Patents

Disaster urgent ground fluctuations analysis system and disaster urgent ground fluctuations analysis method Download PDF

Info

Publication number
JP2010139335A
JP2010139335A JP2008314949A JP2008314949A JP2010139335A JP 2010139335 A JP2010139335 A JP 2010139335A JP 2008314949 A JP2008314949 A JP 2008314949A JP 2008314949 A JP2008314949 A JP 2008314949A JP 2010139335 A JP2010139335 A JP 2010139335A
Authority
JP
Japan
Prior art keywords
satellite positioning
positioning signal
signal receiving
fluctuation
disaster emergency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008314949A
Other languages
Japanese (ja)
Other versions
JP4846779B2 (en
Inventor
Seiichi Shimada
誠一 島田
Harumi Araki
春視 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippo Co Ltd
Original Assignee
Nippo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippo Co Ltd filed Critical Nippo Co Ltd
Priority to JP2008314949A priority Critical patent/JP4846779B2/en
Publication of JP2010139335A publication Critical patent/JP2010139335A/en
Application granted granted Critical
Publication of JP4846779B2 publication Critical patent/JP4846779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disaster urgent ground fluctuations analysis system which can urgently determine the location at which a large disaster is estimated to occur, at the time desired by an observer. <P>SOLUTION: Each of coordinates measuring apparatuses which are connected to each other through a communications network and are fixedly installed in different points receives a satellite positioning signal from a position observation satellite, and satellite positioning signals acquired by each coordinates measuring apparatus for 24 hours at predetermined time intervals are received via communications network located at predetermined intervals. On the basis of the received 24-hour satellite positioning signals, the 24-hour average geocentric Cartesian coordinates of each coordinate-measuring apparatus is calculated, and a geocentric coordinates fluctuations result in which the calculation result of the 24-hour average geocentric Cartesian coordinates is displayed is output at predetermined intervals. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、災害時の緊急の地盤変動を解析することのできる災害緊急地盤変動解析システム及び災害緊急地盤変動解析方法に関する。   The present invention relates to a disaster emergency ground fluctuation analysis system and a disaster emergency ground fluctuation analysis method capable of analyzing an emergency ground fluctuation at the time of a disaster.

従来、全国を網羅する1200点余の国土地理院GPS電子基準点における日々の座標値を入手するには、当該座標値を算出するコンピュータに膨大な処理をさせる必要があることから、現在の時刻から約2〜3週間を要し、防災・減災の視点からの民間レベルでの地盤変動情報の即時の入手は困難であった。また地震観測網と違い、公共機関・大学・民間を含むGPSの地域ネットワークを組み、観測結果を緊急に広く利活用することは不可能であった。このような全国の座標情報の取得の困難さは、GPS受信機の型式の違いも加わってGPSの連続精密解析を困難にしてきた。さらに、これら解析において、精度を担保するのに長い時間と多大の費用が要することも、その一因になっている。ここで、複数の観測基準点の座標を定期的に観測し、各観測基準点の座標の変動量により災害発生地点を推定する技術が特許文献1に開示されている。   Conventionally, in order to obtain the daily coordinate values of the GPS geodetic reference points of over 1,200 points covering the whole country, it is necessary to make the computer that calculates the coordinate values to perform enormous processing, so the current time It took about 2 to 3 weeks, and it was difficult to obtain information on ground deformation at the private level from the viewpoint of disaster prevention and mitigation. Unlike earthquake observation networks, it was impossible to urgently and widely use observation results by building a GPS local network including public institutions, universities, and the private sector. Such difficulty in acquiring coordinate information across the country has made it difficult to perform continuous precise analysis of GPS due to differences in the types of GPS receivers. In addition, in these analyses, it takes a long time and a large amount of money to ensure the accuracy. Here, Patent Document 1 discloses a technique for periodically observing the coordinates of a plurality of observation reference points and estimating a disaster occurrence point based on the amount of change in the coordinates of each observation reference point.

特許第4139229号公報Japanese Patent No. 4139229

ここで、上述の特許文献1の技術は、異常地盤を正確に把握でき、かつ的確に地盤災害の予測を行うことを課題としているが、通常、国土地理院GPS電子基準点における日々の座標値を入手するためには、上述したように2〜3週間の時間を要するため、現在、全国のどの地点においてどのような異常が発生しているかを瞬時に把握することはできず、緊急を要する災害発生箇所の検出などに用いることができなかった。例えば、地震が発生した直後は、災害が継続して発生してはいないが地震発生直後から地盤がずれ始め、数時間後に土砂崩れなどの災害が発生することがあるが、そのような箇所を判定することが難しかった。   Here, although the technique of the above-mentioned patent document 1 makes it a subject to be able to grasp | ascertain an abnormal ground correctly and to predict a ground disaster exactly, it is normal, and the daily coordinate value in the Geographical Survey Institute GPS electronic reference point is normal. As described above, it takes 2 to 3 weeks to obtain the information, so it is not possible to grasp immediately what kind of abnormality is occurring at any point in the country, and it is urgent. It could not be used to detect disaster locations. For example, immediately after an earthquake occurs, the disaster does not continue, but the ground starts to slip immediately after the earthquake, and a disaster such as a landslide may occur several hours later. It was difficult to do.

そこでこの発明は、観察者の所望の任意の時間において、大きな災害が発生する箇所を緊急に判定することのできる災害緊急地盤変動解析システム及び災害緊急地盤変動解析方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a disaster emergency ground fluctuation analysis system and a disaster emergency ground fluctuation analysis method capable of urgently determining a location where a large disaster occurs at an arbitrary time desired by an observer. .

上記目的を達成するために、本発明は、複数の座標計測装置と災害緊急地盤変動解析装置とが通信ネットワークを介して接続された災害緊急地盤変動解析システムであって、前記複数の座標計測装置それぞれが、前記通信ネットワークに接続され複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を、通信ネットワークを介して受信する衛星測位信号受信手段と、前記災害緊急地盤変動解析装置より算出対象に係わる24時間平均の算出に用いる基準時刻を受信する基準時刻受信手段と、前記受信した24時間分の前記衛星測位信号と前記基準時刻とに基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記24時間平均の地心直交座標を算出する地心直交座標算出手段と、を備え、前記災害緊急地盤変動解析装置が、前記複数の座標計測装置それぞれに、前記算出対象に係わる24時間平均の算出に用いる基準時刻を所定の間隔ずらして通知する基準時刻通知手段と、前記所定の間隔毎に、異なる前記座標計測装置から前記24時間平均の前記複数の衛星測位信号受信アンテナそれぞれの地心直交座標を受信して、各衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の24時間平均の地心直交座標を示す地心直交座標変動結果を出力する地心直交座標変動結果出力手段と、を備えることを特徴とする災害緊急地盤変動解析システムである。   In order to achieve the above object, the present invention provides a disaster emergency ground fluctuation analysis system in which a plurality of coordinate measurement devices and a disaster emergency ground fluctuation analysis device are connected via a communication network, the plurality of coordinate measurement devices A satellite positioning signal that receives a satellite positioning signal received from a position observation satellite by each of a plurality of satellite positioning signal receiving antennas connected to the communication network and fixedly installed at a plurality of different points via the communication network. Receiving means; reference time receiving means for receiving a reference time used for calculating an average of 24 hours related to a calculation target from the disaster emergency ground fluctuation analysis apparatus; the received satellite positioning signals for the received 24 hours; and the reference time; Based on the 24-hour average geocentric orthogonality at the fixed position of each of the satellite positioning signal receiving antennas A geocentric Cartesian coordinate calculation means for calculating a target, and the disaster emergency ground fluctuation analysis device sets a reference time used for calculating a 24-hour average related to the calculation target to each of the plurality of coordinate measurement devices. A reference time notifying means for notifying at different intervals, and receiving the geocentric orthogonal coordinates of each of the plurality of satellite positioning signal receiving antennas averaged over 24 hours from the different coordinate measuring devices for each predetermined interval, A geocentric orthogonal coordinate variation result output means for outputting a geocentric orthogonal coordinate variation result indicating a 24-hour average geocentric orthogonal coordinate at each of the predetermined intervals at each fixed position of each positioning signal receiving antenna; This is a disaster emergency ground deformation analysis system.

また本発明は、上述の災害緊急地盤変動解析システムにおいて、前記座標計測装置のそれぞれが、前記算出した前記衛星測位信号受信アンテナそれぞれの地心直交座標と前記基準時刻とに基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高を算出する楕円体高算出手段と、を備え、前記災害緊急地盤変動解析装置が、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高を示す楕円体高変動結果を出力する楕円体高変動結果出力手段と、を備えることを特徴とする請求項1に記載の災害緊急地盤変動解析システムである。   Further, the present invention provides the above-described disaster emergency ground fluctuation analysis system, wherein each of the coordinate measuring devices is configured to perform the satellite positioning based on the calculated geocentric orthogonal coordinates and the reference time of each of the satellite positioning signal receiving antennas. Ellipsoidal height calculating means for calculating the average ellipsoidal height for each of the predetermined intervals at the predetermined positions of the signal receiving antennas, and the disaster emergency ground fluctuation analysis device includes the satellite positioning signal. The ellipsoidal height fluctuation result output means for outputting an ellipsoidal height fluctuation result indicating the ellipsoidal height averaged over the 24-hour period for each predetermined interval at the fixedly installed position of each receiving antenna. 1 is a disaster emergency ground deformation analysis system according to 1.

また本発明は、上述の災害緊急地盤変動解析システムにおいて、前記災害緊急地盤変動解析装置が、前記算出した前記衛星測位信号受信アンテナそれぞれの前記所定の間隔毎の前記24時間平均の地心直交座標に基づいて、当該地心直交座標毎に対応する前記所定の間隔毎の前記24時間平均の水平移動量を算出する水平移動量算出手段と、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の水平移動量の算出結果を表示した水平移動量変動結果を出力する水平移動量変動結果出力手段と、を備えることを特徴とする。   According to the present invention, in the disaster emergency ground fluctuation analysis system described above, the disaster emergency ground fluctuation analysis apparatus is configured to calculate the 24-hour average geocentric orthogonal coordinates for each of the predetermined intervals of the calculated satellite positioning signal receiving antennas. The horizontal movement amount calculating means for calculating the horizontal movement amount of the 24-hour average at the predetermined intervals corresponding to the geocentric orthogonal coordinates, and the satellite positioning signal receiving antennas are fixedly installed. Horizontal movement amount fluctuation result output means for outputting a horizontal movement amount fluctuation result displaying a calculation result of the horizontal movement amount of the 24-hour average at each predetermined interval at a position.

また本発明は、上述の災害緊急地盤変動解析システムにおいて、前記災害緊急地盤変動解析装置が、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高に基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の地盤高変動量を算出する地盤高変動量算出手段と、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の地盤高変動量の算出結果を表示した地盤高変動量変動結果を出力する地盤高変動量変動結果出力手段と、を備えることを特徴とする。   Further, the present invention provides the disaster emergency ground fluctuation analysis system, wherein the disaster emergency ground fluctuation analysis apparatus is configured to calculate the average of the 24-hour intervals at the predetermined intervals at the fixed positions of the satellite positioning signal receiving antennas. A ground height fluctuation amount calculating means for calculating an average ground height fluctuation amount for each of the predetermined intervals at the fixed position of each of the satellite positioning signal receiving antennas based on an ellipsoidal height; and the satellite positioning Ground height fluctuation amount fluctuation result output means for outputting a ground height fluctuation amount fluctuation result displaying a calculation result of the 24-hour average ground height fluctuation amount at each predetermined interval at each fixed position of each signal receiving antenna. And.

また本発明は、複数の座標計測装置と災害緊急地盤変動解析装置とが通信ネットワークを介して接続された災害緊急地盤変動解析システムにおける災害緊急地盤変動解析方法であって、前記複数の座標計測装置それぞれの衛星測位信号受信手段が、前記通信ネットワークに接続され複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を、通信ネットワークを介して受信し、前記複数の座標計測装置それぞれの基準時刻受信手段が、前記災害緊急地盤変動解析装置より算出対象に係わる24時間平均の算出に用いる基準時刻を受信し、前記複数の座標計測装置それぞれの地心直交座標算出手段が、前記受信した24時間分の前記衛星測位信号と前記基準時刻とに基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記24時間平均の地心直交座標を算出し、前記災害緊急地盤変動解析装置の基準時刻通知手段が、前記複数の座標計測装置それぞれに、前記算出対象に係わる24時間平均の算出に用いる基準時刻を所定の間隔ずらして通知し、前記災害緊急地盤変動解析装置の地心直交座標変動結果出力手段が、前記所定の間隔毎に、異なる前記座標計測装置から前記24時間平均の前記複数の衛星測位信号受信アンテナそれぞれの地心直交座標を受信して、各衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の24時間平均の地心直交座標を示す地心直交座標変動結果を出力することを特徴とする災害緊急地盤変動解析方法である。   The present invention also relates to a disaster emergency ground fluctuation analysis method in a disaster emergency ground fluctuation analysis system in which a plurality of coordinate measuring apparatuses and a disaster emergency ground fluctuation analysis apparatus are connected via a communication network, the plurality of coordinate measuring apparatuses Each satellite positioning signal receiving means is connected to the communication network, and each of a plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points receives a satellite positioning signal received from a position observation satellite via the communication network. The reference time receiving means of each of the plurality of coordinate measuring devices receives a reference time used for calculating a 24-hour average related to a calculation target from the disaster emergency ground fluctuation analysis device, and each of the plurality of coordinate measuring devices Based on the received satellite positioning signals for 24 hours and the reference time. The 24-hour average geocentric orthogonal coordinates at each of the fixed positions of the satellite positioning signal receiving antennas are calculated, and a reference time notification means of the disaster emergency ground fluctuation analysis device is provided for each of the plurality of coordinate measurement devices. The reference time used for the calculation of the 24-hour average relating to the calculation object is notified by shifting by a predetermined interval, and the geocentric orthogonal coordinate variation result output means of the disaster emergency ground variation analyzer is different for each predetermined interval. The geocentric orthogonal coordinates of each of the plurality of satellite positioning signal receiving antennas averaged over 24 hours are received from the coordinate measuring device, and the satellite positioning signal receiving antennas at each of the predetermined intervals at the fixed positions are received. It is a disaster emergency ground fluctuation analysis method characterized by outputting a geocentric orthogonal coordinate fluctuation result indicating a 24-hour average geocentric Cartesian coordinate.

また本発明は、上述の災害緊急地盤変動解析方法において、前記座標計測装置のそれぞれの楕円体高算出手段が、前記算出した前記衛星測位信号受信アンテナそれぞれの地心直交座標と前記基準時刻とに基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高を算出し、前記災害緊急地盤変動解析装置の楕円体高変動結果出力手段が、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高を示す楕円体高変動結果を出力することを特徴とする。   According to the present invention, in the above-described disaster emergency ground fluctuation analysis method, each ellipsoidal height calculating means of the coordinate measuring device is based on the calculated geocentric orthogonal coordinates and the reference time of each of the satellite positioning signal receiving antennas. Calculating the 24-hour average ellipsoidal height for each of the predetermined intervals at each of the fixed positions of the satellite positioning signal receiving antennas, and the ellipsoidal height fluctuation result output means of the disaster emergency ground fluctuation analysis device, An ellipsoidal height fluctuation result indicating the average ellipsoidal height for 24 hours at each predetermined interval at the fixed position of each of the satellite positioning signal receiving antennas is output.

また本発明は、上述の災害緊急地盤変動解析方法において、前記災害緊急地盤変動解析装置の水平移動量算出手段が、前記算出した前記衛星測位信号受信アンテナそれぞれの前記所定の間隔毎の前記24時間平均の地心直交座標に基づいて、当該地心直交座標毎に対応する前記所定の間隔毎の前記24時間平均の水平移動量を算出し、前記災害緊急地盤変動解析装置の水平移動量変動結果出力手段が、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の水平移動量の算出結果を表示した水平移動量変動結果を出力することを特徴とする。   According to the present invention, in the above-described disaster emergency ground fluctuation analysis method, the horizontal movement amount calculation means of the disaster emergency ground fluctuation analysis apparatus performs the 24 hours for each of the predetermined intervals of the calculated satellite positioning signal receiving antenna. Based on the average geocentric Cartesian coordinates, the horizontal movement amount of the 24-hour average for each of the predetermined intervals corresponding to each geocentric Cartesian coordinate is calculated, and the horizontal movement amount fluctuation result of the disaster emergency ground fluctuation analysis device The output means outputs a horizontal movement amount fluctuation result displaying a calculation result of the 24-hour average horizontal movement amount at each predetermined interval at the fixed position of each of the satellite positioning signal receiving antennas. And

また本発明は、上述の災害緊急地盤変動解析方法において、前記災害緊急地盤変動解析装置の地盤高変動量算出手段が、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高に基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の地盤高変動量を算出し、前記災害緊急地盤変動解析装置の地盤高変動量変動結果出力手段が、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の地盤高変動量の算出結果を表示した地盤高変動量変動結果を出力することを特徴とする。   Further, the present invention provides the above-mentioned disaster emergency ground fluctuation analysis method, wherein the ground height fluctuation amount calculation means of the disaster emergency ground fluctuation analysis apparatus is configured to have the predetermined interval at each of the fixed positions of the satellite positioning signal receiving antennas. Based on the 24-hour average ellipsoidal height for each, the 24-hour average ground height fluctuation amount for each predetermined interval at the fixed position of each of the satellite positioning signal receiving antennas is calculated, and the disaster emergency The ground height fluctuation amount fluctuation result output means of the ground fluctuation analysis device displays the calculation result of the 24-hour average ground height fluctuation amount at the predetermined intervals at the fixed positions of the satellite positioning signal receiving antennas. The ground height fluctuation amount fluctuation result is output.

本発明によれば、通信ネットワークを介して日本全国に固定設置された多くの衛星測位信号受信アンテナ10からの衛星測位信号を座標計測装置2が受信し、そのデータに基づいて、特定の衛星測位信号受信アンテナ10の24時間平均の地心直交座標、楕円体高、水平移動量、地盤高変動量などの地盤変動を、座標計測装置2や災害緊急地盤変動解析装置1が即時に確認することができる。これにより、観察者の所望の時間において、大きな災害が発生する箇所を緊急に判定することのできるようになる。   According to the present invention, the coordinate measuring device 2 receives satellite positioning signals from many satellite positioning signal receiving antennas 10 fixedly installed throughout Japan through a communication network, and based on the data, a specific satellite positioning signal is received. The coordinate measuring device 2 and the emergency disaster ground deformation analysis device 1 may immediately confirm ground fluctuations such as the 24-hour average geocentric orthogonal coordinates, ellipsoidal height, horizontal movement amount, ground height fluctuation amount of the signal receiving antenna 10. it can. This makes it possible to urgently determine a location where a large disaster occurs at the time desired by the observer.

以下、本発明の一実施形態による災害緊急地盤変動解析装置を図面を参照して説明する。
図1は同実施形態による災害緊急地盤変動解析システムの構成を示すブロック図である。この図において、符号1は災害緊急地盤変動解析装置である。また2は座標計測装置である。また10は衛星測位信号受信アンテナである。また20は衛星測位信号受信装置である。
そして災害緊急地盤変動解析システムにおいては、衛星測位信号受信アンテナ10が例えば日本全国の1200点余りの多数の地点に分散して固定設置されており、その衛星測位信号受信アンテナがGPS衛星から受信した衛星測位信号を衛星測位信号受信装置20が通信ネットワークを介して受信する。また、複数の座標計測装置2は通信ネットワークを介して衛星測位信号受信装置20と災害緊急地盤変動解析装置1に接続されているものとする。座標計測装置2は、衛星測位信号受信装置20より、各衛星測位信号受信アンテナ10がGPS衛星から受信した衛星測位信号(GPSが発信する信号)を受信し、各衛星測位信号受信アンテナ10の固定設置された位置を検出する。そして、その算出された各衛星測位信号受信アンテナ10の位置に基づいて、特定の衛星測位信号受信アンテナ10の24時間平均の地心直交座標、24時間平均の楕円体高、24時間平均の水平移動量、24時間平均の地盤高変動量などの地盤変動を、座標計測装置2や災害緊急地盤変動解析装置1が算出する。
Hereinafter, a disaster emergency ground fluctuation analysis apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a disaster emergency ground fluctuation analysis system according to the embodiment. In this figure, reference numeral 1 denotes a disaster emergency ground fluctuation analysis device. Reference numeral 2 denotes a coordinate measuring device. Reference numeral 10 denotes a satellite positioning signal receiving antenna. Reference numeral 20 denotes a satellite positioning signal receiver.
In the disaster emergency ground fluctuation analysis system, the satellite positioning signal receiving antennas 10 are dispersed and fixedly installed at a large number of points, for example, about 1200 points throughout Japan, and the satellite positioning signal receiving antennas are received from GPS satellites. The satellite positioning signal receiving device 20 receives the satellite positioning signal via the communication network. The plurality of coordinate measuring devices 2 are connected to the satellite positioning signal receiving device 20 and the disaster emergency ground fluctuation analyzing device 1 through a communication network. The coordinate measuring device 2 receives from the satellite positioning signal receiving device 20 each satellite positioning signal receiving antenna 10 a satellite positioning signal (a signal transmitted by GPS) received from a GPS satellite, and fixes each satellite positioning signal receiving antenna 10. Detect the installed position. Based on the calculated position of each satellite positioning signal receiving antenna 10, the 24-hour average geocentric Cartesian coordinates, the 24-hour average ellipsoidal height, and the 24-hour average horizontal movement of the specific satellite positioning signal receiving antenna 10 are calculated. The coordinate measurement device 2 and the disaster emergency ground fluctuation analysis device 1 calculate the ground fluctuation such as the amount and the average amount of ground height fluctuation for 24 hours.

図2は座標計測装置および災害緊急地盤変動解析装置の機能ブロック図である。
この図が示すように、災害緊急地盤変動解析装置1は、通信処理部11、制御部12、アンテナ位置算出結果受信部13、地盤変動解析部14、地盤変動結果出力部15、データベース16、基準時刻通知部17を少なくとも備えている。ここで通信処理部11は、通信ネットワークを介して情報を送受信する処理部である。また制御部12は、災害緊急地盤変動解析装置1の各処理部を制御する処理部である。またアンテナ位置算出結果受信部13は、座標計測装置2よりアンテナ位置の算出結果の情報を受信する処理部である。また地盤変動解析部14は、座標計測装置2より受信したアンテナ位置の算出結果の情報に基づいて、衛星測位信号受信アンテナ10の固定設置された位置に対応する地球重心を原点とした測地座標などにおける、当該固定設置された位置の地盤変動量を判定できる情報を算出する処理部である。また地盤変動結果出力部15は、地盤変動解析部14の算出した情報に基づいて所定の間隔毎の24時間平均の地盤変動の情報を出力する処理部である。またデータベース16はアンテナ位置算出結果受信部13が受信したアンテナ位置の算出結果の情報や地盤変動解析部14が算出した情報等を記憶する。また基準時刻通知部17は座標計測装置2が各衛星測位信号受信アンテナの固定設置された位置の地盤変動の24時間平均の情報を算出するための基準時刻を座標計測装置2へ通知する処理部である。
FIG. 2 is a functional block diagram of the coordinate measurement device and the disaster emergency ground fluctuation analysis device.
As shown in this figure, the disaster emergency ground fluctuation analysis device 1 includes a communication processing unit 11, a control unit 12, an antenna position calculation result receiving unit 13, a ground fluctuation analysis unit 14, a ground fluctuation result output unit 15, a database 16, and a reference. At least a time notification unit 17 is provided. Here, the communication processing unit 11 is a processing unit that transmits and receives information via a communication network. The control unit 12 is a processing unit that controls each processing unit of the disaster emergency ground fluctuation analysis apparatus 1. The antenna position calculation result receiving unit 13 is a processing unit that receives information on the antenna position calculation result from the coordinate measuring device 2. Further, the ground fluctuation analysis unit 14 is based on the information of the antenna position calculation result received from the coordinate measuring device 2 and the geodetic coordinates with the earth center of gravity corresponding to the position where the satellite positioning signal receiving antenna 10 is fixedly installed as the origin. Is a processing unit that calculates information that can determine the ground fluctuation amount of the fixedly installed position. The ground change result output unit 15 is a processing unit that outputs information on the average ground change for 24 hours at predetermined intervals based on the information calculated by the ground change analysis unit 14. The database 16 stores information on the antenna position calculation result received by the antenna position calculation result receiving unit 13, information calculated by the ground fluctuation analysis unit 14, and the like. The reference time notifying unit 17 is a processing unit that notifies the coordinate measuring device 2 of a reference time for the coordinate measuring device 2 to calculate the 24-hour average information of the ground fluctuation at the position where each satellite positioning signal receiving antenna is fixedly installed. It is.

また図2で示すように、座標計測装置2は、通信処理部21、制御部22、衛星測位信号受信部23、アンテナ位置算出部24、アンテナ位置算出結果出力部25、データベース26を備えている。ここで、通信処理部21は衛星測位信号受信装置20や災害緊急地盤変動解析装置1と通信を行う処理部である。また制御部22は座標計測装置2の各処理部を制御する処理部である。また衛星測位信号受信部23は衛星測位信号受信アンテナ10がGPS衛星から受信した衛星測位信号を、当該衛星測位信号受信アンテナ10から取りまとめて取得した衛星測位信号受信装置20を経由して受信する処理部である。またアンテナ位置算出部24は衛星測位信号に基づいて、衛星測位信号受信アンテナ10それぞれの固定設置された位置を示す地心直交座標や楕円体高を算出する処理部である。またアンテナ位置算出結果出力部25は、アンテナ位置算出部24の算出した情報を災害緊急地盤変動解析装置1へ出力するする処理部である。またデータベース16は、衛星測位信号受信アンテナ10の受信した衛星測位信号のデータや、衛星測位信号受信アンテナ10それぞれの固定設置された位置を示す地心直交座標や楕円体高等の情報を対応付けて記憶する記憶部である。   As shown in FIG. 2, the coordinate measuring apparatus 2 includes a communication processing unit 21, a control unit 22, a satellite positioning signal receiving unit 23, an antenna position calculation unit 24, an antenna position calculation result output unit 25, and a database 26. . Here, the communication processing unit 21 is a processing unit that communicates with the satellite positioning signal receiving device 20 and the disaster emergency ground fluctuation analysis device 1. The control unit 22 is a processing unit that controls each processing unit of the coordinate measuring apparatus 2. Further, the satellite positioning signal receiving unit 23 receives the satellite positioning signals received from the GPS satellites by the satellite positioning signal receiving antenna 10 via the satellite positioning signal receiving device 20 obtained collectively from the satellite positioning signal receiving antenna 10. Part. The antenna position calculation unit 24 is a processing unit that calculates geocentric orthogonal coordinates and ellipsoidal heights indicating the fixed positions of the satellite positioning signal receiving antennas 10 based on the satellite positioning signals. The antenna position calculation result output unit 25 is a processing unit that outputs the information calculated by the antenna position calculation unit 24 to the disaster emergency ground fluctuation analysis apparatus 1. Further, the database 16 associates data such as satellite positioning signal data received by the satellite positioning signal receiving antenna 10 and information such as geocentric orthogonal coordinates and ellipsoidal heights indicating the fixed positions of the satellite positioning signal receiving antennas 10. It is a memory | storage part to memorize | store.

そして、本実施形態による災害緊急地盤変動解析システムは、複数の座標計測装置2と災害緊急地盤変動解析装置1とが通信ネットワークを介して接続されており、複数の座標計測装置2のそれぞれが、通信ネットワークに接続され複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナ10のそれぞれが位置観測用衛星(GPS衛星)から受信した衛星測位信号を、通信ネットワークを介して受信し、災害緊急地盤変動解析装置1より算出対象に係わる24時間平均の算出に用いる基準時刻を受信し、受信した24時間分の衛星測位信号と基準時刻とに基づいて、衛星測位信号受信アンテナ10それぞれの固定設置された位置における24時間平均の地心直交座標を算出する。そして、災害緊急地盤変動解析装置1が、複数の座標計測装置2それぞれに、算出対象に係わる24時間平均の算出に用いる基準時刻を所定の間隔ずらして通知し、所定の間隔毎に、異なる座標計測装置2から24時間平均の複数の衛星測位信号受信アンテナ10それぞれの地心直交座標を受信して、各衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の地心直交座標を示す地心直交座標変動結果を出力する処理を行う。   In the disaster emergency ground fluctuation analysis system according to the present embodiment, the plurality of coordinate measurement devices 2 and the disaster emergency ground fluctuation analysis device 1 are connected via a communication network, and each of the plurality of coordinate measurement devices 2 is A plurality of satellite positioning signal receiving antennas 10 connected to the communication network and fixedly installed at different points receive satellite positioning signals received from the position observation satellites (GPS satellites) via the communication network, The reference time used for calculating the 24-hour average related to the calculation target is received from the emergency ground fluctuation analysis apparatus 1, and each satellite positioning signal receiving antenna 10 is fixed based on the received satellite positioning signals for 24 hours and the reference time. The 24-hour average geocentric Cartesian coordinates at the installed position are calculated. Then, the disaster emergency ground fluctuation analysis device 1 notifies each of the plurality of coordinate measuring devices 2 of the reference time used for calculating the 24-hour average related to the calculation target with a predetermined interval shifted, and a different coordinate for each predetermined interval. The geocentric orthogonal coordinates of each of the plurality of satellite positioning signal receiving antennas 10 averaged for 24 hours are received from the measuring device 2, and the 24-hour average for each predetermined interval at the fixedly installed position of each satellite positioning signal receiving antenna 10. The process of outputting the geocentric orthogonal coordinate variation result indicating the geocentric orthogonal coordinates of the center is performed.

また本実施形態による災害緊急地盤変動解析システムでは、座標計測装置2のそれぞれが、算出した衛星測位信号受信アンテナ10それぞれの地心直交座標と基準時刻とに基づいて、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の楕円体高を算出する。そして、災害緊急地盤変動解析装置1が、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の楕円体高を示す楕円体高変動結果を出力する処理を行う。   Further, in the disaster emergency ground fluctuation analysis system according to the present embodiment, each of the coordinate measurement devices 2 is configured so that each of the satellite positioning signal receiving antennas 10 is based on the calculated geocentric coordinates of each of the satellite positioning signal receiving antennas 10 and the reference time. The average ellipsoidal height for 24 hours at predetermined intervals at the fixedly installed position is calculated. Then, the disaster emergency ground fluctuation analysis apparatus 1 performs a process of outputting an ellipsoidal height fluctuation result indicating an average ellipsoidal height for 24 hours at predetermined intervals at each fixed position of the satellite positioning signal receiving antenna 10.

また本実施形態による災害緊急地盤変動解析システムでは、災害緊急地盤変動解析装置1が、算出された衛星測位信号受信アンテナ10それぞれの所定の間隔毎の24時間平均の地心直交座標に基づいて、当該地心直交座標毎に対応する所定の間隔毎の24時間平均の水平移動量を算出する。そして、災害緊急地盤変動解析装置1は、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の前記24時間平均の水平移動量の算出結果を表示した水平移動量変動結果を出力する処理を行う。   In the disaster emergency ground fluctuation analysis system according to the present embodiment, the disaster emergency ground fluctuation analysis apparatus 1 is based on the calculated 24-hour average geocentric orthogonal coordinates for each predetermined interval of the satellite positioning signal receiving antenna 10. A 24-hour average horizontal movement amount at a predetermined interval corresponding to each geocentric orthogonal coordinate is calculated. Then, the disaster emergency ground fluctuation analysis apparatus 1 displays the horizontal movement amount fluctuation result indicating the calculation result of the horizontal movement amount of the 24-hour average for each predetermined interval at the position where each of the satellite positioning signal receiving antennas 10 is fixedly installed. Process to output.

また本実施形態による災害緊急地盤変動解析システムでは、災害緊急地盤変動解析装置1が、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の楕円体高に基づいて、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の地盤高変動量を算出し、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の地盤高変動量の算出結果を表示した地盤高変動量変動結果を出力する処理を行う。
そして災害緊急地盤変動解析装置1は、このような処理により、観察者の所望の時間において、大きな災害が発生する箇所を緊急に判定するための出力結果を出力する処理を行う。
In the disaster emergency ground fluctuation analysis system according to the present embodiment, the disaster emergency ground fluctuation analysis apparatus 1 is based on the average ellipsoidal height for 24 hours at predetermined intervals at the fixed positions of the satellite positioning signal receiving antennas 10. Then, a 24-hour average ground height fluctuation amount for each predetermined interval at each fixed position of the satellite positioning signal receiving antenna 10 is calculated, and every predetermined interval at the fixed position of each of the satellite positioning signal receiving antennas 10 is calculated. The process of outputting the ground height fluctuation amount fluctuation result displaying the calculation result of the average ground height fluctuation amount of 24 hours is performed.
And the disaster emergency ground fluctuation | variation analysis apparatus 1 performs the process which outputs the output result for urgently determining the location where a big disaster generate | occur | produces in an observer's desired time by such a process.

図3は災害緊急地盤変動解析装置の処理フローを示す図である。
図4は測地座標と楕円体高の算出概要を示す図である。
図5は楕円体高の説明図である。
図6は算出結果テーブルの例を示す図である。
次に図3〜図6を用いて災害緊急地盤変動解析装置の処理の詳細について説明する。
まず、衛星測位信号受信装置20は、通信ネットワークを介して日本全国の衛星測位信号受信アンテナ10から、当該衛星測位信号受信アンテナ10がGPS衛星から受信した衛星測位信号(地心直交座標を特定するための信号)を通信ネットワークを介して受信する。例えば、衛星測位信号受信アンテナ10は日本全国の1200地点に固定設置されており、衛星測位信号受信装置20は、30秒間隔で衛星測位信号受信アンテナ10から衛星測位信号を受信している。その衛星測位信号受信装置20が受信した衛星測位信号を、所定の時間毎(例えば10分毎)に座標計測装置2の衛星測位信号受信部23が受信する(ステップS101)。
FIG. 3 is a diagram showing a processing flow of the disaster emergency ground fluctuation analysis apparatus.
FIG. 4 is a diagram showing an outline of calculation of geodetic coordinates and ellipsoidal height.
FIG. 5 is an explanatory diagram of the height of the ellipsoid.
FIG. 6 is a diagram illustrating an example of a calculation result table.
Next, details of the processing of the disaster emergency ground fluctuation analysis apparatus will be described with reference to FIGS.
First, the satellite positioning signal receiving device 20 specifies the satellite positioning signal (the geocentric orthogonal coordinates) received from the GPS satellite by the satellite positioning signal receiving antenna 10 from the satellite positioning signal receiving antenna 10 throughout Japan via the communication network. Signal) is received via a communication network. For example, the satellite positioning signal receiving antenna 10 is fixedly installed at 1200 points throughout Japan, and the satellite positioning signal receiving device 20 receives satellite positioning signals from the satellite positioning signal receiving antenna 10 at intervals of 30 seconds. The satellite positioning signal receiving unit 23 of the coordinate measuring device 2 receives the satellite positioning signal received by the satellite positioning signal receiving device 20 every predetermined time (for example, every 10 minutes) (step S101).

次に、座標計測装置2のアンテナ位置算出部24は、受信した衛星測位信号のうち複数地点の衛星測位信号受信アンテナ10で受信された30秒間隔の24時間分の衛星測位信号を用いて、三角網による網平均計算を行う(ステップS102)。ここで三角網とは、衛星測位信号受信アンテナ10の設置された複数の位置におけるある3点の三角形の頂点として互いに直線で結ぶことによって構成される三角形の集合体である。また、網平均計算とは、この三角形の頂点の位置を角条件や辺条件といった制約条件の下で最小二乗法を行うことによって位置データを確定する計算方法である。このような網平均計算については、例えば「最小二乗法の理論とその応用」(田島稔他著、東洋書店)等に詳述されている。   Next, the antenna position calculation unit 24 of the coordinate measuring apparatus 2 uses the satellite positioning signals for 24 hours at 30-second intervals received by the satellite positioning signal receiving antennas 10 at a plurality of points among the received satellite positioning signals. Network average calculation using a triangular network is performed (step S102). Here, the triangular network is an aggregate of triangles formed by connecting straight lines as vertices of three triangular points at a plurality of positions where the satellite positioning signal receiving antennas 10 are installed. The network average calculation is a calculation method for determining position data by performing a least-squares method on the positions of the vertices of the triangles under constraint conditions such as corner conditions and edge conditions. Such network average calculation is described in detail in, for example, “Theory of Least Squares Method and Its Application” (Tajima Kei et al., Toyo Shoten).

このような計算をアンテナ位置算出部24で行うことによって、特定した複数地点の三角網を用いて、それら複数地点における衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)を衛星測位信号の受信時刻毎に算出する(ステップS103)。またアンテナ位置算出部24は、他の各衛星測位信号受信アンテナ10の固定設置された位置についても同様にその地心直交座標(X,Y,Z)を衛星測位信号の受信時刻毎に順次算出する。なお、この地心直交座標の算出処理は、衛星測位信号受信アンテナ10が日本全国に配置された1200地点を39グループに分け、それぞれのグループ毎の各衛星測位信号受信アンテナ10で受信された衛星測位信号を用いてグループ内の衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)を算出する処理を、グループ毎に順次を行うようにする。またこのとき、日本周辺の国際測地基準点(IGS点;つくばTSKB、臼田USUD、北京BJFS、上海SHAO、台湾桃園TWTF、グアムGUAM)を用いて、IGS点を含む三角網により網平均計算を行って地心直交座標(X,Y,Z)を算出するようにする。そして、アンテナ位置算出部24は各衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)を、対応する衛星測位信号受信アンテナ10のIDと、その衛星測位信号受信アンテナ10から衛星測位信号を受信した時刻と、に対応付けてデータベースへ登録する(ステップS104)。   By performing such calculation by the antenna position calculation unit 24, the geocentric orthogonal coordinates (X, Y, Z) of the satellite positioning signal receiving antenna 10 at the plurality of points are determined using the triangular network of the specified points. The positioning signal is calculated for each reception time (step S103). Similarly, the antenna position calculation unit 24 sequentially calculates the geocentric orthogonal coordinates (X, Y, Z) for each position where the satellite positioning signal receiving antenna 10 is fixedly installed for each reception time of the satellite positioning signal. To do. In addition, the calculation process of the geocentric orthogonal coordinates is performed by dividing the 1200 points where the satellite positioning signal receiving antennas 10 are arranged throughout Japan into 39 groups, and satellites received by the satellite positioning signal receiving antennas 10 for each group. The process of calculating the geocentric orthogonal coordinates (X, Y, Z) of the satellite positioning signal receiving antennas 10 in the group using the positioning signal is sequentially performed for each group. Also, at this time, using the international geodetic reference points (IGS points; Tsukuba TSKB, Usuda USUD, Beijing BJFS, Shanghai SHAO, Taiwan Taoyuan TWTF, Guam GUAM) around Japan, the network average calculation is performed with the triangular network including the IGS points. Thus, the geocentric orthogonal coordinates (X, Y, Z) are calculated. Then, the antenna position calculation unit 24 uses the geocentric orthogonal coordinates (X, Y, Z) of each satellite positioning signal receiving antenna 10, the ID of the corresponding satellite positioning signal receiving antenna 10, and the satellite positioning signal receiving antenna 10 to the satellite. It is registered in the database in association with the time when the positioning signal is received (step S104).

またアンテナ位置算出部24は、各衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)を算出すると、各衛星測位信号受信アンテナ10の楕円体高を衛星測位信号の受信時刻毎に算出する(ステップS105)。図4、図5で示すように楕円体高は、地心直交座標(X,Y,Z)と地球重心とを結ぶ直線の距離から、当該直線が地球楕円体に交わる点と地球重心とを結ぶ直線の距離を減じた値により算出できる。なお、地球重心や、地心直交座標(X,Y,Z)と地球重心とを結ぶ直線が地球楕円体に交わる点と地球重心とを結ぶ直線の距離は既知の値であるとする。そして、アンテナ位置算出部24は、各衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)における楕円体高を、対応する衛星測位信号受信アンテナ10のID、その衛星測位信号受信アンテナ10から衛星測位信号を受信した時刻と、に対応付けてデータベースへ登録する(ステップS106)。そしてアンテナ位置算出部24は、所定の間隔毎に受信した衛星測位信号に基づいて、各衛星測位信号受信アンテナ10の固定設置された位置における、所定の間隔毎の地心直交座標(X,Y,Z)と楕円体高の値を衛星測位信号の受信時刻毎に算出し続ける。   Further, when the antenna position calculation unit 24 calculates the geocentric orthogonal coordinates (X, Y, Z) of each satellite positioning signal receiving antenna 10, the ellipsoidal height of each satellite positioning signal receiving antenna 10 is calculated for each reception time of the satellite positioning signal. Calculate (step S105). As shown in FIG. 4 and FIG. 5, the ellipsoidal height connects the point where the straight line intersects the earth ellipsoid and the center of gravity of the earth from the distance of the straight line connecting the geocentric orthogonal coordinates (X, Y, Z) and the center of gravity of the earth. It can be calculated from a value obtained by subtracting the distance of the straight line. It is assumed that the distance between the earth's center of gravity and the straight line connecting the point where the straight line connecting the geocentric orthogonal coordinates (X, Y, Z) and the earth's center of gravity intersects the earth ellipsoid and the earth's center of gravity is a known value. Then, the antenna position calculation unit 24 calculates the ellipsoidal height in the geocentric orthogonal coordinates (X, Y, Z) of each satellite positioning signal receiving antenna 10, the ID of the corresponding satellite positioning signal receiving antenna 10, and the satellite positioning signal receiving antenna. 10 is registered in the database in association with the time at which the satellite positioning signal is received from 10 (step S106). Then, the antenna position calculation unit 24, based on the satellite positioning signal received at every predetermined interval, has geocentric orthogonal coordinates (X, Y) at every predetermined interval at the position where each satellite positioning signal receiving antenna 10 is fixedly installed. , Z) and the ellipsoidal height values are continuously calculated for each satellite positioning signal reception time.

ここで、各座標計測装置2は、予め災害緊急地盤変動解析装置1の基準時刻通知部17より、地心直交座標の24時間平均と、楕円体高の24時間平均を算出するための基準時刻の通知を受けている。例えば図1で示す各座標計測装置2が2A,2B,2C,…,2Hの8つの座標計測装置であるとすると、座標計測装置2Aに対しては基準時刻は9時、座標計測装置2Bに対しては基準時刻は12時、座標計測装置2Cに対しては基準時刻は15時、座標計測装置2Dに対しては基準時刻は18時、・・・、座標計測装置2Hに対しては基準時刻は6時、と3時間ずつずらした基準時刻を座標計測装置2A〜2Hのそれぞれへ通知する。すると、各座標計測装置2のアンテナ位置算出部24は、通知を受けた基準時刻に時刻計測処理部のタイマが達したことを検出し、上述の処理により算出した地心直交座標および楕円体高のうち、前日の基準時刻から当日の基準時刻の前に算出された所定の時間毎(10分毎)の情報をデータベース26から読み取り、それら読み取った地心直交座標および楕円体高の24時間平均を算出し、データベース26に算出対象の衛星測位信号受信アンテナ10のアンテナIDと地心直交座標および楕円体高の24時間平均を対応付けて登録する。そして、各座標計測装置2のアンテナ位置算出結果出力部15は、災害緊急地盤変動解析装置1からの要求に基づいて、所定の間隔毎の各衛星測位信号受信アンテナ10における地心直交座標と楕円体高の24時間平均を送信することとなる。   Here, each coordinate measuring device 2 has a reference time for calculating a 24-hour average of geocentric orthogonal coordinates and a 24-hour average of ellipsoidal height from the reference time notification unit 17 of the disaster emergency ground fluctuation analysis device 1 in advance. I have been notified. For example, if each coordinate measuring device 2 shown in FIG. 1 is eight coordinate measuring devices 2A, 2B, 2C,..., 2H, the reference time for the coordinate measuring device 2A is 9:00, and the coordinate measuring device 2B For the coordinate measuring device 2C, the reference time is 12:00, for the coordinate measuring device 2C, the reference time is 15:00, for the coordinate measuring device 2D, the reference time is 18:00, and so on, for the coordinate measuring device 2H. The reference time shifted by 3 hours and 6 o'clock is notified to each of the coordinate measuring devices 2A to 2H. Then, the antenna position calculation unit 24 of each coordinate measurement device 2 detects that the timer of the time measurement processing unit has reached the notified reference time, and calculates the geocentric orthogonal coordinates and the ellipsoidal height calculated by the above processing. Among them, the information for every predetermined time (every 10 minutes) calculated from the reference time of the previous day to the reference time of the current day is read from the database 26, and the 24-hour average of the read geocentric orthogonal coordinates and ellipsoidal height is calculated. Then, the antenna ID of the satellite positioning signal receiving antenna 10 to be calculated, the geocentric orthogonal coordinates, and the 24-hour average of the ellipsoidal height are registered in the database 26 in association with each other. And the antenna position calculation result output part 15 of each coordinate measuring device 2 is based on the request | requirement from the disaster emergency ground fluctuation analysis apparatus 1, and the geocentric orthogonal coordinate and ellipse in each satellite positioning signal receiving antenna 10 for every predetermined space | interval. A 24-hour average of height will be transmitted.

次に、災害緊急地盤変動解析装置1においては、ある地域における地盤変動を解析するために、管理者の入力などにより受け付けた情報等に基づいて、解析対象となる地域に位置する衛星測位信号受信アンテナ10のアンテナIDとを格納したアンテナ位置要求情報を各座標計測装置2へ送信する。すると、各座標計測装置2はアンテナIDに対応付けられてデータベース26に登録されている地心直交座標と楕円体高の24時間平均を災害緊急地盤変動解析装置1へ送信する。なお、災害緊急地盤変動解析装置1は、アンテナ位置要求情報において、時間範囲指定の情報を格納することにより、当該時間範囲指定した時間帯に算出された24時間平均の地心直交座標と楕円体高を受信するようにしてもよい。そして、これにより、災害緊急地盤変動解析装置1は、例えば時間範囲指定の情報が9時00分〜8時59分までの24時間平均の地心直交座標と楕円体高のデータを座標計測装置2Aから受信し、12時00分〜11時59分までの24時間平均の地心直交座標と楕円体高のデータを座標計測装置2Bから受信し、15時00分〜14時59分までの24時間平均の地心直交座標と楕円体高のデータを座標計測装置2Cから受信し、同様に基準時刻を基準とした24時間平均の地心直交座標と楕円体高のデータを座標計測装置2D〜2Hから受信する。   Next, the disaster emergency ground fluctuation analysis apparatus 1 receives a satellite positioning signal located in an analysis target area based on information received by an administrator's input in order to analyze the ground fluctuation in a certain area. The antenna position request information storing the antenna ID of the antenna 10 is transmitted to each coordinate measuring device 2. Then, each coordinate measuring device 2 transmits the 24-hour average of the geocentric orthogonal coordinates and the ellipsoidal height registered in the database 26 in association with the antenna ID to the disaster emergency ground fluctuation analysis device 1. In addition, the disaster emergency ground fluctuation analysis apparatus 1 stores the time range designation information in the antenna position request information, so that the 24-hour average geocentric orthogonal coordinates calculated in the time zone designated in the time range and the ellipsoidal height are stored. May be received. Accordingly, the disaster emergency ground fluctuation analysis device 1 uses the coordinate measuring device 2A to obtain the data on the center-centered orthogonal coordinates and the ellipsoidal height, for example, when the time range designation information is 9:00 to 8:59. 24 hours from 12:00 to 11:59 The average geocentric Cartesian coordinates and ellipsoidal height data from 12:00 to 11:59 are received from the coordinate measuring device 2B, and 24 hours from 15:00 to 14:59 Average geocentric orthogonal coordinates and ellipsoidal height data are received from the coordinate measuring device 2C, and similarly, 24-hour average geocentric orthogonal coordinates and ellipsoidal height data are received from the coordinate measuring devices 2D to 2H based on the reference time. To do.

次に、災害緊急地盤変動解析装置1においては、地盤変動解析部14が、各座標計測装置2からそれぞれ別々に受信した所定の間隔(基準時刻のずれである3時間)毎の24時間平均の地心直交座標(X,Y,Z)の受信に基づいて、その所定の間隔毎(3時間毎)の地心直交座標(X,Y,Z)のずれによる各衛星測位信号受信アンテナ10の水平移動量の24時間平均を算出する(ステップS107)。そしてその所定の間隔毎の水平移動量の24時間平均と、その水平移動量の算出対象である衛星測位信号受信アンテナ10のIDと、その水平移動量の24時間平均の算出に用いた地心直交座標の24時間平均と、その地心直交座標を受信した時刻と、を対応付けてデータベース16へ登録する(ステップS108)。24時間平均の水平移動量は、衛星測位信号受信アンテナ10の地心直交座標の24時間平均を(X,Y,Z)、その時刻より所定の間隔の時間後の同じ衛星測位信号受信アンテナ10の地心直交座標の24時間平均を(X,Y,Z)とすると、(X−X,Y−Y)である。 Next, in the disaster emergency ground fluctuation analysis apparatus 1, the ground fluctuation analysis unit 14 obtains an average of 24 hours for each predetermined interval (three hours that is a deviation of the reference time) received separately from each coordinate measurement apparatus 2. Based on the reception of the geocentric Cartesian coordinates (X, Y, Z), each satellite positioning signal receiving antenna 10 is caused by the deviation of the geocentric Cartesian coordinates (X, Y, Z) at every predetermined interval (every 3 hours). The 24-hour average of the horizontal movement amount is calculated (step S107). Then, the 24-hour average of the horizontal movement amount for each predetermined interval, the ID of the satellite positioning signal receiving antenna 10 that is the calculation target of the horizontal movement amount, and the geocentricity used for calculating the 24-hour average of the horizontal movement amount. The 24-hour average of the orthogonal coordinates and the time when the geocentric orthogonal coordinates are received are associated with each other and registered in the database 16 (step S108). The 24-hour average horizontal movement amount is the same as the satellite positioning signal after a predetermined interval from the time (X 1 , Y 1 , Z 1 ) of the 24-hour average of the geocentric orthogonal coordinates of the satellite positioning signal receiving antenna 10. When the 24-hour average of the geocentric orthogonal coordinates of the receiving antenna 10 is (X 2 , Y 2 , Z 2 ), it is (X 2 −X 1 , Y 2 −Y 1 ).

また地盤変動解析部14は、各座標計測装置2から受信した所定の間隔毎の24時間平均の楕円体高の受信に基づいて、その所定の間隔毎(本実施形態においては3時間毎)の楕円体高のずれによる各衛星測位信号受信アンテナ10の地盤高変動量の24時間平均を算出する(ステップS109)。そしてその所定の間隔毎の地盤高変動量の24時間平均と、その地盤高変動量の算出対象である衛星測位信号受信アンテナ10のIDと、その地盤高変動量の24時間平均の算出に用いた楕円体高の24時間平均と、その楕円体高を受信した時刻と、を対応付けてデータベース16へ登録する(ステップS110)。24時間平均の地盤高変動量は、ある時刻における衛星測位信号受信アンテナ10の楕円体高の24時間平均を(D)、その時刻より所定の間隔の時間後の同じ衛星測位信号受信アンテナ10の楕円体高の24時間平均を(D)とすると、(D−D)である。 In addition, the ground fluctuation analysis unit 14 receives the ellipsoidal height of the average ellipsoidal height for each predetermined interval received from each coordinate measuring device 2, and the ellipse for each predetermined interval (every 3 hours in the present embodiment). The 24-hour average of the ground height fluctuation amount of each satellite positioning signal receiving antenna 10 due to the difference in body height is calculated (step S109). Then, it is used for calculating the 24-hour average of the ground height fluctuation amount at each predetermined interval, the ID of the satellite positioning signal receiving antenna 10 that is the calculation target of the ground height fluctuation amount, and the 24-hour average of the ground height fluctuation amount. The average of the ellipsoidal height for 24 hours and the time when the ellipsoidal height was received are associated with each other and registered in the database 16 (step S110). The 24-hour average ground height fluctuation amount is the 24-hour average of the ellipsoidal height of the satellite positioning signal receiving antenna 10 at a certain time (D 1 ), and the same satellite positioning signal receiving antenna 10 after a predetermined interval from that time. When the average of the ellipsoidal height for 24 hours is (D 2 ), it is (D 2 -D 1 ).

図6で示す算出結果テーブルは、衛星測位信号受信アンテナ10それぞれについて、所定の間隔である3時間毎に上述の処理により算出された地心直交座標、楕円体高、水平移動量、地盤高変動量を記憶するデータテーブルである。図6においては、アンテナID「00001」となる衛星測位信号受信アンテナ10の固定設置された位置の2008年1月1日12時00分(200801011200)において、地心直交座標の24時間平均は(X,Y,Z)、楕円体高の24時間平均は(D)、水平移動量の24時間平均は(値無し)、地盤高変動量の24時間平均は(値無し)であり、またその衛星測位信号受信アンテナ10の固定設置された位置の2008年1月1日15時00分(200801011500)において、地心直交座標の24時間平均は(X,Y,Z)、楕円体高の24時間平均は(D)、水平移動量の24時間平均は(X−X,Y−Y)、地盤高変動量の24時間平均は(D−D)であり、またその衛星測位信号受信アンテナ10の固定設置された位置の2008年1月1日18時00分(200801011800)において、地心直交座標の24時間平均は(X,Y,Z)、楕円体高の24時間平均は(D)、水平移動量の24時間平均は(X−X,Y−Y)、地盤高変動量の24時間平均は(D−D)であることを示している。 The calculation result table shown in FIG. 6 shows the geocentric orthogonal coordinates, the ellipsoidal height, the horizontal movement amount, and the ground height fluctuation amount calculated by the above-described processing every three hours, which is a predetermined interval, for each satellite positioning signal receiving antenna 10. Is a data table for storing In FIG. 6, at 12:00 on January 1, 2008 (20080101011200) at the position where the satellite positioning signal receiving antenna 10 having the antenna ID “00001” is fixedly installed, the 24-hour average of the geocentric orthogonal coordinates is ( X 1 , Y 1 , Z 1 ), the 24-hour average of the ellipsoidal height is (D 1 ), the 24-hour average of the horizontal displacement is (no value), and the 24-hour average of the ground height variation is (no value) In addition, at 15:00 on January 1, 2008 (200801101500) at the position where the satellite positioning signal receiving antenna 10 is fixedly installed, the 24-hour average of the geocentric orthogonal coordinates is (X 2 , Y 2 , Z 2 ). The 24-hour average of the ellipsoidal height is (D 2 ), the 24-hour average of the horizontal movement amount is (X 2 -X 1 , Y 2 -Y 1 ), and the 24-hour average of the ground height fluctuation amount is (D 2 -D 1). ) And Further, at 18:00 (200801011800) on January 1, 2008 at the position where the satellite positioning signal receiving antenna 10 is fixedly installed, the 24-hour average of the geocentric orthogonal coordinates is (X 3 , Y 3 , Z 3 ), The 24-hour average of the ellipsoidal height is (D 3 ), the 24-hour average of the horizontal movement amount is (X 3 -X 2 , Y 3 -Y 2 ), and the 24-hour average of the ground height fluctuation amount is (D 3 -D 2 ). It is shown that.

そして、上述の地盤変動解析部14の処理により各衛星測位信号受信アンテナ10についての所定の間隔毎の地心直交座標の24時間平均、楕円体高の24時間平均、水平移動量の24時間平均、地盤高変動量の24時間平均の算出結果が算出結果テーブルに蓄積された後、例えば、地盤変動結果出力部15は、それら地心直交座標の24時間平均、楕円体高の24時間平均、水平移動量の24時間平均、地盤高変動量の24時間平均の、所定の間隔毎(本実施形態においては3時間毎)の結果をモニタに出力、またはプリント印刷する(ステップS111)。   Then, by the processing of the ground fluctuation analysis unit 14 described above, a 24-hour average of the geocentric orthogonal coordinates for each predetermined interval for each satellite positioning signal receiving antenna 10, a 24-hour average of the ellipsoidal height, a 24-hour average of the horizontal movement amount, After the calculation result of the 24-hour average of the ground height fluctuation amount is accumulated in the calculation result table, for example, the ground fluctuation result output unit 15 performs the 24-hour average of the geocentric orthogonal coordinates, the 24-hour average of the ellipsoidal height, and the horizontal movement. The result of the 24-hour average of the amount and the 24-hour average of the ground height fluctuation amount at predetermined intervals (in this embodiment, every 3 hours) is output to the monitor or printed (step S111).

図7は楕円体高の地盤変動解析結果の出力例を示す図である。
この図が示すように地盤変動結果出力部15は、上述の処理により算出した24時間平均の衛星測位信号受信アンテナ10(ID=00001)の楕円体高を、所定の間隔毎に算出し、それらをグラフに表した出力結果をモニタ等に出力する。図7で示すような24時間平均の楕円体高等の地盤変動を表示することにより、地震後などに地盤変動の周期的な変化が収まらないような場合にも正確な地盤変動量を出力することが可能となり、その所定の間隔における変動量の大きさにより、災害が発生するか否かの判定に用いることができる。
FIG. 7 is a diagram illustrating an output example of the ground deformation analysis result of the height of the ellipsoid.
As shown in this figure, the ground fluctuation result output unit 15 calculates the ellipsoidal height of the satellite positioning signal receiving antenna 10 (ID = 00001) averaged for 24 hours calculated by the above-described processing at predetermined intervals, and outputs them. The output result shown in the graph is output to a monitor or the like. By displaying the ground deformation such as the ellipsoidal height averaged over 24 hours as shown in Fig. 7, even if the periodic change of ground deformation does not fit after an earthquake etc., output accurate ground deformation amount And can be used for determining whether or not a disaster occurs depending on the magnitude of the fluctuation amount at the predetermined interval.

また、同様に、地盤変動の出力の指示入力、またはプログラムによる地盤変動の出力処理の開始時刻の検出に基づいて、地盤変動結果出力部15は、特定の衛星測位信号受信アンテナ10の24時間平均の地心直交座標、水平移動量、地盤高変動量などの出力結果を出力する。   Similarly, based on the detection input of the ground fluctuation output instruction or the start time of the ground fluctuation output process by the program, the ground fluctuation result output unit 15 averages the 24-hour average of the specific satellite positioning signal receiving antenna 10. The output results such as the geocentric Cartesian coordinates, horizontal movement amount, ground height fluctuation amount, etc. are output.

以上、本発明の実施形態について説明したが、上述の処理によれば、通信ネットワークを介して日本全国に固定設置された多くの衛星測位信号受信アンテナ10からの衛星測位信号を座標計測装置2が受信し、そのデータに基づいて、特定の衛星測位信号受信アンテナ10の24時間平均の地心直交座標、楕円体高、水平移動量、地盤高変動量などの地盤変動を、座標計測装置2や災害緊急地盤変動解析装置1が即時に確認することができる。これにより、観察者の所望の時間において、大きな災害が発生する箇所を緊急に判定することのできるようになる。
また、座標計測装置2それぞれが異なる基準時刻で地心直交座標と楕円体高の24時間平均を算出するので、処理負荷が分散されるとともに、1時間以上かかる24時間平均の算出処理を、24時間より短い所定の時間毎(本実施形態では3時間毎)に災害緊急地盤変動解析装置1で受信することができ、緊急性を要する地域の地盤変動を解析することができる。
As mentioned above, although embodiment of this invention was described, according to the above-mentioned process, the coordinate measuring apparatus 2 receives the satellite positioning signal from many satellite positioning signal receiving antennas 10 fixedly installed throughout Japan through the communication network. Based on the received data, ground coordinates such as the 24-hour average geocentric Cartesian coordinates, ellipsoidal height, horizontal movement amount, ground height fluctuation amount of the specific satellite positioning signal receiving antenna 10 are converted into the coordinate measuring device 2 and the disaster. The emergency ground fluctuation analysis apparatus 1 can confirm immediately. This makes it possible to urgently determine a location where a large disaster occurs at the time desired by the observer.
In addition, since each coordinate measuring device 2 calculates the 24-hour average of the geocentric orthogonal coordinates and the ellipsoidal height at different reference times, the processing load is dispersed and the 24-hour average calculation process that takes 1 hour or more is performed for 24 hours. It can be received by the disaster emergency ground fluctuation analysis device 1 every shorter predetermined time (every 3 hours in the present embodiment), and the ground fluctuation in an area requiring urgency can be analyzed.

なお、上述の処理においては、災害緊急地盤変動解析装置1が、座標計測装置2から衛星測位信号を直接受信する場合について説明したが、何らかの衛星測位信号の蓄積サーバを経由して、当該衛星測位信号を受信するようにしてもよい。   In the above-described processing, the case where the disaster emergency ground fluctuation analysis apparatus 1 directly receives a satellite positioning signal from the coordinate measurement apparatus 2 has been described. However, the satellite positioning signal is transmitted via a satellite positioning signal storage server. A signal may be received.

上述の災害緊急地盤変動解析装置1は、内部にコンピュータシステムを有している。そして、上述した各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。   The above-mentioned disaster emergency ground fluctuation analysis apparatus 1 has a computer system inside. Each process described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing the program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。   The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

災害緊急地盤変動解析システムの構成を示すブロック図である。It is a block diagram which shows the structure of a disaster emergency ground fluctuation analysis system. 災害緊急地盤変動解析装置の機能ブロック図である。It is a functional block diagram of a disaster emergency ground fluctuation analysis apparatus. 災害緊急地盤変動解析装置の処理フローを示す図である。It is a figure which shows the processing flow of a disaster emergency ground fluctuation analysis apparatus. 測地座標と楕円体高の算出概要を示す図である。It is a figure which shows the calculation outline | summary of a geodetic coordinate and an ellipsoidal height. 楕円体高の説明図である。It is explanatory drawing of ellipsoidal height. 算出結果テーブルの例を示す図である。It is a figure which shows the example of a calculation result table. 楕円体高の地盤変動解析結果の出力例を示す図である。It is a figure which shows the example of an output of the ground deformation | transformation analysis result of an ellipsoidal height.

符号の説明Explanation of symbols

1・・・災害緊急地盤変動解析装置
2・・・座標計測装置
10・・・衛星測位信号受信アンテナ
20・・・衛星測位信号受信装置
11,21・・・通信処理部
12,22・・・制御部
13・・・アンテナ位置算出結果受信部
14・・・地盤変動解析部
15・・・地盤変動結果出力部
16,26・・・データベース
23・・・衛星測位信号受信部
24・・・アンテナ位置算出部
25・・・アンテナ位置算出結果出力部
DESCRIPTION OF SYMBOLS 1 ... Disaster emergency ground fluctuation analyzer 2 ... Coordinate measuring device 10 ... Satellite positioning signal receiving antenna 20 ... Satellite positioning signal receiving device 11, 21 ... Communication processing part 12, 22 ... Control unit 13 ... Antenna position calculation result receiving unit 14 ... Ground fluctuation analysis unit 15 ... Ground fluctuation result output unit 16, 26 ... Database 23 ... Satellite positioning signal receiving unit 24 ... Antenna Position calculation unit 25 ... Antenna position calculation result output unit

Claims (8)

複数の座標計測装置と災害緊急地盤変動解析装置とが通信ネットワークを介して接続された災害緊急地盤変動解析システムであって、
前記複数の座標計測装置それぞれが、
前記通信ネットワークに接続され複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を、通信ネットワークを介して受信する衛星測位信号受信手段と、
前記災害緊急地盤変動解析装置より算出対象に係わる24時間平均の算出に用いる基準時刻を受信する基準時刻受信手段と、
前記受信した24時間分の前記衛星測位信号と前記基準時刻とに基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記24時間平均の地心直交座標を算出する地心直交座標算出手段と、を備え、
前記災害緊急地盤変動解析装置が、
前記複数の座標計測装置それぞれに、前記算出対象に係わる24時間平均の算出に用いる基準時刻を所定の間隔ずらして通知する基準時刻通知手段と、
前記所定の間隔毎に、異なる前記座標計測装置から前記24時間平均の前記複数の衛星測位信号受信アンテナそれぞれの地心直交座標を受信して、各衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の24時間平均の地心直交座標を示す地心直交座標変動結果を出力する地心直交座標変動結果出力手段と、
を備えることを特徴とする災害緊急地盤変動解析システム。
A disaster emergency ground fluctuation analysis system in which a plurality of coordinate measuring devices and a disaster emergency ground fluctuation analysis apparatus are connected via a communication network,
Each of the plurality of coordinate measuring devices is
Satellite positioning signal receiving means for receiving, via the communication network, satellite positioning signals received from the position observation satellites by a plurality of satellite positioning signal receiving antennas connected to the communication network and fixedly installed at a plurality of different points. ,
A reference time receiving means for receiving a reference time used for calculating a 24-hour average related to a calculation target from the disaster emergency ground fluctuation analysis device;
Based on the received satellite positioning signals for 24 hours and the reference time, geocentric orthogonality for calculating the 24-hour average geocentric orthogonal coordinates at the fixed positions of the satellite positioning signal receiving antennas. Coordinate calculation means,
The disaster emergency ground fluctuation analysis device,
A reference time notification means for notifying each of the plurality of coordinate measuring devices of a reference time used for calculating a 24-hour average related to the calculation object with a predetermined interval shifted;
The geocentric orthogonal coordinates of each of the plurality of satellite positioning signal receiving antennas averaged over 24 hours are received from the different coordinate measuring devices at each predetermined interval, and each of the satellite positioning signal receiving antennas is fixedly installed. A geocentric orthogonal coordinate variation result output means for outputting a geocentric orthogonal coordinate variation result indicating a 24-hour average geocentric orthogonal coordinate at each predetermined interval at a position;
A disaster emergency ground deformation analysis system characterized by comprising:
前記座標計測装置のそれぞれが、
前記算出した前記衛星測位信号受信アンテナそれぞれの地心直交座標と前記基準時刻とに基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高を算出する楕円体高算出手段と、を備え、
前記災害緊急地盤変動解析装置が、
前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高を示す楕円体高変動結果を出力する楕円体高変動結果出力手段と、
を備えることを特徴とする請求項1に記載の災害緊急地盤変動解析システム。
Each of the coordinate measuring devices
Based on the calculated geocentric Cartesian coordinates of each of the satellite positioning signal receiving antennas and the reference time, the 24-hour average of the satellite positioning signal receiving antennas at the fixed intervals at the fixed positions of the satellite positioning signal receiving antennas. An ellipsoidal height calculating means for calculating an ellipsoidal height,
The disaster emergency ground fluctuation analysis device,
An ellipsoidal height variation result output means for outputting an ellipsoidal height variation result indicating the average ellipsoidal height for 24 hours at the predetermined interval at each of the fixed positions of the satellite positioning signal receiving antennas;
The disaster emergency ground fluctuation analysis system according to claim 1, comprising:
前記災害緊急地盤変動解析装置が、
前記算出した前記衛星測位信号受信アンテナそれぞれの前記所定の間隔毎の前記24時間平均の地心直交座標に基づいて、当該地心直交座標毎に対応する前記所定の間隔毎の前記24時間平均の水平移動量を算出する水平移動量算出手段と、
前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の水平移動量の算出結果を表示した水平移動量変動結果を出力する水平移動量変動結果出力手段と、
を備えることを特徴とする請求項2に記載の災害緊急地盤変動解析システム。
The disaster emergency ground fluctuation analysis device,
Based on the 24-hour average geocentric orthogonal coordinates for each predetermined interval of each of the satellite positioning signal receiving antennas calculated, the 24-hour average for each predetermined interval corresponding to each geocentric orthogonal coordinate. A horizontal movement amount calculating means for calculating a horizontal movement amount;
Horizontal movement amount fluctuation result output means for outputting a horizontal movement amount fluctuation result displaying a calculation result of the 24-hour average horizontal movement amount at each predetermined interval at the fixed position of each of the satellite positioning signal receiving antennas. When,
The disaster emergency ground fluctuation analysis system according to claim 2, further comprising:
前記災害緊急地盤変動解析装置が、
前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高に基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の地盤高変動量を算出する地盤高変動量算出手段と、
前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の地盤高変動量の算出結果を表示した地盤高変動量変動結果を出力する地盤高変動量変動結果出力手段と、
を備えることを特徴とする請求項2または請求項3に記載の災害緊急地盤変動解析システム。
The disaster emergency ground fluctuation analysis device,
Based on the ellipsoidal height of the 24-hour average ellipsoidal height at each of the predetermined intervals at the fixed positions of the satellite positioning signal receiving antennas, the predetermined positions at the fixed positions of the satellite positioning signal receiving antennas. A ground height fluctuation amount calculating means for calculating the average ground height fluctuation amount for each 24-hour interval;
Ground height fluctuation fluctuations for outputting ground height fluctuation fluctuation results indicating the calculation results of the 24-hour average ground height fluctuations at the predetermined intervals at the fixed positions of the satellite positioning signal receiving antennas. A result output means;
The disaster emergency ground fluctuation analysis system according to claim 2 or 3, characterized by comprising:
複数の座標計測装置と災害緊急地盤変動解析装置とが通信ネットワークを介して接続された災害緊急地盤変動解析システムにおける災害緊急地盤変動解析方法であって、
前記複数の座標計測装置それぞれの衛星測位信号受信手段が、前記通信ネットワークに接続され複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を、通信ネットワークを介して受信し、
前記複数の座標計測装置それぞれの基準時刻受信手段が、前記災害緊急地盤変動解析装置より算出対象に係わる24時間平均の算出に用いる基準時刻を受信し、
前記複数の座標計測装置それぞれの地心直交座標算出手段が、前記受信した24時間分の前記衛星測位信号と前記基準時刻とに基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記24時間平均の地心直交座標を算出し、
前記災害緊急地盤変動解析装置の基準時刻通知手段が、前記複数の座標計測装置それぞれに、前記算出対象に係わる24時間平均の算出に用いる基準時刻を所定の間隔ずらして通知し、
前記災害緊急地盤変動解析装置の地心直交座標変動結果出力手段が、前記所定の間隔毎に、異なる前記座標計測装置から前記24時間平均の前記複数の衛星測位信号受信アンテナそれぞれの地心直交座標を受信して、各衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の24時間平均の地心直交座標を示す地心直交座標変動結果を出力する
ことを特徴とする災害緊急地盤変動解析方法。
A disaster emergency ground fluctuation analysis method in a disaster emergency ground fluctuation analysis system in which a plurality of coordinate measuring devices and a disaster emergency ground fluctuation analysis apparatus are connected via a communication network,
The satellite positioning signal received by each of the plurality of coordinate measuring devices is received from the position observation satellite by each of the plurality of satellite positioning signal receiving antennas connected to the communication network and fixedly installed at a plurality of different points. Is received via a communication network,
The reference time receiving means of each of the plurality of coordinate measuring devices receives a reference time used for calculating a 24-hour average related to a calculation target from the disaster emergency ground fluctuation analysis device,
The geocentric orthogonal coordinate calculation means of each of the plurality of coordinate measuring devices is configured to fix the position of each of the satellite positioning signal receiving antennas based on the received satellite positioning signals for 24 hours and the reference time. Calculating the 24-hour average geocentric Cartesian coordinates at
The reference time notifying means of the disaster emergency ground fluctuation analysis device notifies each of the plurality of coordinate measuring devices of a reference time used for calculating a 24-hour average related to the calculation object with a predetermined interval shifted,
Geocentric orthogonal coordinate fluctuation result output means of the disaster emergency ground fluctuation analysis device is configured to output the geocentric orthogonal coordinates of each of the plurality of satellite positioning signal receiving antennas averaged over 24 hours from the different coordinate measuring devices at the predetermined intervals. And a geocentric orthogonal coordinate variation result indicating a 24-hour average geocentric orthogonal coordinate at each predetermined interval at each fixed position of each satellite positioning signal receiving antenna is output. Disaster emergency ground deformation analysis method.
前記座標計測装置のそれぞれの楕円体高算出手段が、前記算出した前記衛星測位信号受信アンテナそれぞれの地心直交座標と前記基準時刻とに基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高を算出し、
前記災害緊急地盤変動解析装置の楕円体高変動結果出力手段が、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高を示す楕円体高変動結果を出力する
ことを特徴とする請求項5に記載の災害緊急地盤変動解析方法。
Each ellipsoidal height calculating means of the coordinate measuring device is fixedly installed for each of the satellite positioning signal receiving antennas based on the calculated geocentric coordinates of each of the satellite positioning signal receiving antennas and the reference time. Calculating the 24-hour average ellipsoidal height at each predetermined interval in position;
The ellipsoidal height fluctuation result output means of the disaster emergency ground fluctuation analysis device shows the ellipsoidal height fluctuation result indicating the average ellipsoidal height for 24 hours at the predetermined intervals at the fixed positions of the satellite positioning signal receiving antennas. The disaster emergency ground fluctuation analysis method according to claim 5, wherein:
前記災害緊急地盤変動解析装置の水平移動量算出手段が、前記算出した前記衛星測位信号受信アンテナそれぞれの前記所定の間隔毎の前記24時間平均の地心直交座標に基づいて、当該地心直交座標毎に対応する前記所定の間隔毎の前記24時間平均の水平移動量を算出し、
前記災害緊急地盤変動解析装置の水平移動量変動結果出力手段が、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の水平移動量の算出結果を表示した水平移動量変動結果を出力する
ことを特徴とする請求項6に記載の災害緊急地盤変動解析方法。
The horizontal movement amount calculation means of the disaster emergency ground fluctuation analysis device is configured to calculate the geocentric orthogonal coordinates based on the calculated 24-hour average geocentric orthogonal coordinates for each predetermined interval of the satellite positioning signal receiving antennas. Calculating the horizontal movement amount of the 24-hour average for each predetermined interval corresponding to each;
The horizontal movement amount fluctuation result output means of the disaster emergency ground fluctuation analysis device calculates the calculation result of the 24-hour average horizontal movement amount at each predetermined interval at the fixed position of each of the satellite positioning signal receiving antennas. The displayed horizontal movement amount fluctuation result is output. The disaster emergency ground fluctuation analysis method according to claim 6.
前記災害緊急地盤変動解析装置の地盤高変動量算出手段が、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の楕円体高に基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の地盤高変動量を算出し、
前記災害緊急地盤変動解析装置の地盤高変動量変動結果出力手段が、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記所定の間隔毎の前記24時間平均の地盤高変動量の算出結果を表示した地盤高変動量変動結果を出力する
ことを特徴とする請求項6または請求項7に記載の災害緊急地盤変動解析方法。
The ground height fluctuation amount calculation means of the disaster emergency ground fluctuation analysis device is configured to calculate the satellite height based on the average ellipsoidal height for each of the predetermined intervals at the fixed positions of the satellite positioning signal receiving antennas. Calculating the 24-hour average ground height fluctuation amount for each of the predetermined intervals at the fixedly installed positions of the respective positioning signal receiving antennas;
The ground height fluctuation amount fluctuation result output means of the disaster emergency ground fluctuation analysis device calculates the 24-hour average ground height fluctuation amount at the predetermined intervals at the fixed positions of the satellite positioning signal receiving antennas. 8. The disaster emergency ground fluctuation analysis method according to claim 6 or 7, wherein the ground height fluctuation amount fluctuation result displaying the result is output.
JP2008314949A 2008-12-10 2008-12-10 Disaster emergency ground fluctuation analysis system and disaster emergency ground fluctuation analysis method Active JP4846779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314949A JP4846779B2 (en) 2008-12-10 2008-12-10 Disaster emergency ground fluctuation analysis system and disaster emergency ground fluctuation analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314949A JP4846779B2 (en) 2008-12-10 2008-12-10 Disaster emergency ground fluctuation analysis system and disaster emergency ground fluctuation analysis method

Publications (2)

Publication Number Publication Date
JP2010139335A true JP2010139335A (en) 2010-06-24
JP4846779B2 JP4846779B2 (en) 2011-12-28

Family

ID=42349597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314949A Active JP4846779B2 (en) 2008-12-10 2008-12-10 Disaster emergency ground fluctuation analysis system and disaster emergency ground fluctuation analysis method

Country Status (1)

Country Link
JP (1) JP4846779B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082795B1 (en) * 2015-10-13 2017-02-15 株式会社日豊 Ground information system, ground analysis device, ground information processing method, program
CN109612432A (en) * 2018-12-24 2019-04-12 东南大学 A kind of method of quick obtaining complicated landform contour
JP2020071044A (en) * 2018-10-29 2020-05-07 アイサンテクノロジー株式会社 Correction parameter production device, correction parameter production method, and correction parameter production program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6916491B6 (en) 2018-05-24 2021-09-08 イネーブラー株式会社 Positioning system, base station, and positioning method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133536A (en) * 1999-11-05 2001-05-18 Nec Corp System and method of measuring phase center position of antenna, and method of measuring fluctuation amount of antenna phase center position
JP2004185459A (en) * 2002-12-05 2004-07-02 Furuno Electric Co Ltd Observation data collection system and method for collecting observed data
JP2005098994A (en) * 2003-08-26 2005-04-14 Shimizu Corp National land information providing system, method, and program
JP4139229B2 (en) * 2003-01-07 2008-08-27 清水建設株式会社 Ground disaster prediction method, ground disaster prediction system, and ground disaster prediction program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133536A (en) * 1999-11-05 2001-05-18 Nec Corp System and method of measuring phase center position of antenna, and method of measuring fluctuation amount of antenna phase center position
JP2004185459A (en) * 2002-12-05 2004-07-02 Furuno Electric Co Ltd Observation data collection system and method for collecting observed data
JP4139229B2 (en) * 2003-01-07 2008-08-27 清水建設株式会社 Ground disaster prediction method, ground disaster prediction system, and ground disaster prediction program
JP2005098994A (en) * 2003-08-26 2005-04-14 Shimizu Corp National land information providing system, method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082795B1 (en) * 2015-10-13 2017-02-15 株式会社日豊 Ground information system, ground analysis device, ground information processing method, program
JP2017075810A (en) * 2015-10-13 2017-04-20 株式会社日豊 Ground information system, ground analysis device, ground information processing method, and program
JP2020071044A (en) * 2018-10-29 2020-05-07 アイサンテクノロジー株式会社 Correction parameter production device, correction parameter production method, and correction parameter production program
CN109612432A (en) * 2018-12-24 2019-04-12 东南大学 A kind of method of quick obtaining complicated landform contour

Also Published As

Publication number Publication date
JP4846779B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
KR101237163B1 (en) Location services based on positioned wireless measurement reports
US9443159B2 (en) Target identification system target identification server and target identification terminal
KR101925624B1 (en) Device and method for generating regional ionosphere map
JP2019138911A (en) Method and device of providing integrity information for inspecting atmospheric correction parameters for correcting atmospheric disturbances in vehicle-purpose satellite navigation
JP5408109B2 (en) Threshold determination apparatus, threshold determination method and program
RU2008108041A (en) METHOD AND SYSTEM FOR PREDICTING THE EFFECTIVENESS OF SATELLITE NAVIGATION SYSTEMS
JP6262248B2 (en) Method and associated apparatus for estimating error level in satellite geolocation measurement and monitoring reliability of said estimation
US20120303304A1 (en) Apparatus and method for detecting location of underground facility
JP4846779B2 (en) Disaster emergency ground fluctuation analysis system and disaster emergency ground fluctuation analysis method
CN109085619A (en) Localization method and device, storage medium, the receiver of multimode GNSS system
JP2010112842A (en) Method and apparatus for creating tec map and measuring receiver bias
JP2008014938A (en) System and method for enhancing performance of satellite navigation receiver
JP2010230407A (en) Earthquake motion predicting system
JP7405378B2 (en) Displacement measurement method and displacement measurement system
CN115390095A (en) Method, device and medium for acquiring ionospheric delay
Ordonez et al. Detection of outliers in GPS measurements by using functional-data analysis
JP2010203914A (en) Earthquake prediction method and earthquake prediction system
Lee et al. Advanced RAIM performance sensitivity to deviation of ISM parameter values
Gobron et al. Assessment of tide gauge biases and precision by the combination of multiple collocated time series
JP7162450B2 (en) Displacement measurement method and displacement measurement system
JP2019020260A (en) Parameter distribution system
RU2464594C2 (en) Method of estimating main characteristics of anticipated strong tsunamigenic earthquake and system for realising said method
JP3017154B2 (en) Earthquake damage estimation system
JP2010164380A (en) System and method for monitoring position accuracy of reference black ink
JP6082795B1 (en) Ground information system, ground analysis device, ground information processing method, program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250