JP2017075810A - Ground information system, ground analysis device, ground information processing method, and program - Google Patents

Ground information system, ground analysis device, ground information processing method, and program Download PDF

Info

Publication number
JP2017075810A
JP2017075810A JP2015202409A JP2015202409A JP2017075810A JP 2017075810 A JP2017075810 A JP 2017075810A JP 2015202409 A JP2015202409 A JP 2015202409A JP 2015202409 A JP2015202409 A JP 2015202409A JP 2017075810 A JP2017075810 A JP 2017075810A
Authority
JP
Japan
Prior art keywords
ground
satellite positioning
positioning signal
base line
closed region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015202409A
Other languages
Japanese (ja)
Other versions
JP6082795B1 (en
Inventor
誠一 島田
Seiichi Shimada
誠一 島田
陽平 新出
Yohei Niide
陽平 新出
広和 伊藤
Hirokazu Ito
広和 伊藤
和之 請井
Kazuyuki Ukei
和之 請井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippo Co Ltd
Original Assignee
Nippo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippo Co Ltd filed Critical Nippo Co Ltd
Priority to JP2015202409A priority Critical patent/JP6082795B1/en
Application granted granted Critical
Publication of JP6082795B1 publication Critical patent/JP6082795B1/en
Publication of JP2017075810A publication Critical patent/JP2017075810A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ground information system that can transmit information on ground deformation high in usefulness quickly.SOLUTION: On the basis of a coordinate of a satellite positioning signal reception antenna calculated based on a satellite positioning signal received from a location observation satellite by each of a plurality of satellite positioning signal reception antennas fixedly installed at a plurality of different points in a national land, a ground information system is configured to: specify a closed region that is composed of a side of each base line linking each point of three or more points to be judged adjacent of respective points and deforms equal to or more than a reference threshold for a reference period in a linking base line net on a region plane; and output a ground analysis result that has the specified closed region changed in a display state different from other closed region, and includes display information with the base line net overlapped on the national land.SELECTED DRAWING: Figure 1

Description

本発明は、地盤情報システム、地盤情報処理方法、プログラムに関する。   The present invention relates to a ground information system, a ground information processing method, and a program.

国土の地盤の情報を解析する場合に電子基準点と呼ばれる観測点の位置情報を用いることが知られている。例えば電子基準点の位置情報を用いた情報処理技術が特許文献1,2に開示されている。   It is known to use position information of an observation point called an electronic reference point when analyzing information on the ground of the country. For example, Patent Documents 1 and 2 disclose information processing techniques using position information of electronic reference points.

特開2015−52578号公報Japanese Patent Laying-Open No. 2015-52578 特許第4846779号公報Japanese Patent No. 48467979

上述の特許文献1のような電子基準点の位置を追跡することで地盤の変動を検出することができるが、より有用性の高い装置が求められていた。   Although tracking of the ground can be detected by tracking the position of the electronic reference point as in Patent Document 1 described above, a more useful device has been demanded.

そこでこの発明は、上述の課題を解決する地盤情報システム、地盤情報処理方法、プログラムを提供することを目的としている。   Accordingly, an object of the present invention is to provide a ground information system, a ground information processing method, and a program that solve the above-described problems.

本発明の第1の態様によれば、地盤情報システムは、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信する衛星測位信号受信手段と、前記衛星測位信号に基づいて前記衛星測位信号受信アンテナの座標を算出するアンテナ位置算出部と、前記地点それぞれのうち隣接すると判定される3以上の各地点を結ぶ各基線の辺により構成される閉領域が領域面で連なる基線網において基準期間に基準閾値以上変動する前記閉領域を特定する特定部と、特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力する解析結果出力部と、を備える。   According to the first aspect of the present invention, the ground information system receives a satellite positioning signal received from a position observation satellite by each of a plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area. A satellite positioning signal receiving means, an antenna position calculating unit for calculating coordinates of the satellite positioning signal receiving antenna based on the satellite positioning signal, and each of three or more points determined to be adjacent among the points In the base line network in which the closed areas formed by the sides of the base line are connected in the area plane, the specifying unit for specifying the closed area that fluctuates more than the reference threshold during the reference period, and the display state of the specified closed area with another closed area is changed. And an analysis result output unit for outputting a ground analysis result including display information obtained by superimposing the base line network on the national land area.

また上述の地盤情報システムにおいて、前記特定部は、前記基線網において、前記基線の端点にそれぞれ位置する前記衛星測位信号受信アンテナの各座標が基準期間に基準閾値以上変化した基線を、当該基線を含む閉領域において特定し、前記解析結果出力部は、特定された基線を他の基線と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力してもよい。   Further, in the ground information system described above, the specifying unit may be configured to use a base line in which the coordinates of the satellite positioning signal receiving antennas respectively located at the end points of the base line change more than a reference threshold during a reference period in the base line network. The analysis result output unit outputs a ground analysis result including display information obtained by superimposing the base line network on the national land area by changing the display state of the specified base line with another base line. Also good.

また上述の地盤情報システムにおいて、前記特定部は、前記基線網を構成する前記閉領域のうち基準期間に基準閾値以上の歪を発生する閉領域を特定し、前記解析結果出力部は、特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力してもよい。   Further, in the above ground information system, the specifying unit specifies a closed region that generates a distortion greater than a reference threshold in a reference period among the closed regions constituting the baseline network, and the analysis result output unit specifies A ground analysis result including display information obtained by superimposing the base line network on the national land area by changing the display state of the closed area from another closed area may be output.

また上述の地盤情報システムにおいて、前記特定部は、前記基線網を構成する前記閉領域のうち基準期間に基準閾値以上の面積変動を発生する閉領域を特定し、前記解析結果出力部は、特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力してもよい。   Further, in the above ground information system, the specifying unit specifies a closed region that generates an area variation of a reference threshold or more in a reference period among the closed regions constituting the baseline network, and the analysis result output unit specifies It is also possible to change the display state of the closed area with another closed area and output a ground analysis result including display information in which the base line network is superimposed on the land area.

また上述の地盤情報システムは、前記閉領域が4地点以上を結ぶ基線により構成される閉領域である場合には、当該閉領域を三角形領域に区分けして、当該三角形領域が基準期間に基準閾値以上変動するかを判定し、前記特定部は、基準期間に基準閾値以上変動する三角形領域を含む閉領域を特定してもよい。   Further, in the above ground information system, when the closed region is a closed region formed by a base line connecting four or more points, the closed region is divided into triangular regions, and the triangular region is used as a reference threshold value during a reference period. It may be determined whether or not it has fluctuated, and the specifying unit may specify a closed region including a triangular region that fluctuates more than a reference threshold during a reference period.

また上述の地盤情報システムにおいて、24時間平均の算出に用いる基準時刻を受信する基準時刻受信手段と、24時間分の前記衛星測位信号と前記基準時刻とに基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記24時間平均の地心直交座標を算出する地心直交座標算出手段と、を備えてもよい。   Further, in the above ground information system, each of the satellite positioning signal receiving antennas based on the reference time receiving means for receiving the reference time used for calculating the 24-hour average, and the satellite positioning signal for 24 hours and the reference time. And a center-orthogonal coordinate calculating means for calculating the 24-hour average center-orthogonal coordinate at the fixedly installed position.

本発明の第2の態様によれば、地盤情報処理方法は、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信し、前記衛星測位信号に基づいて前記衛星測位信号受信アンテナの座標を算出し、前記地点それぞれのうち隣接すると判定される3以上の各地点を結ぶ各基線の辺により構成される閉領域が領域面で連なる基線網において基準期間に基準閾値以上変動する前記閉領域を特定し、前記地点それぞれのうち隣接すると判定される3以上の各地点を結ぶ基線を一辺として構成した閉領域が領域面において連なる基線網のうちの前記閉領域が基準期間に基準閾値以上変動する閉領域を特定し、その特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力する。   According to the second aspect of the present invention, in the ground information processing method, the satellite positioning signals received from the position observation satellites by the plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area are obtained. Receiving, calculating coordinates of the satellite positioning signal receiving antenna based on the satellite positioning signal, and a closed region constituted by sides of each base line connecting three or more points determined to be adjacent among the points. The closed area that is defined as one side of the base line that connects the three or more points determined to be adjacent to each other among the points is specified in the base line network that is continuous in the area plane, and the closed area that changes more than the reference threshold value in the reference period. The closed region of the baseline network that is connected in the region is identified as a closed region that fluctuates more than a reference threshold value during a reference period, and the display state of the identified closed region is changed from the other closed regions to the country. And it outputs the soil analysis result including the display information of repeating the baseline network in the region.

本発明の第3の態様によれば、プログラムは、地盤情報システムを構成するコンピュータを、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号に基づいて算出された前記衛星測位信号受信アンテナの座標に基づいて、前記地点それぞれのうち隣接すると判定される3以上の各地点を結ぶ各基線の辺により構成される閉領域が領域面で連なる基線網において基準期間に基準閾値以上変動する前記閉領域を特定する特定手段、特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力する解析結果出力手段、として機能させる。   According to the third aspect of the present invention, the program stores a computer constituting the ground information system, wherein each of a plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area has a position observation satellite. A closed region constituted by the sides of each base line connecting three or more points determined to be adjacent among the points based on the coordinates of the satellite positioning signal receiving antenna calculated based on the received satellite positioning signals A specifying means for specifying the closed region that fluctuates more than a reference threshold value in a reference period in a base line network that is continuous on a region plane; It functions as an analysis result output means for outputting a ground analysis result including the displayed information.

本発明によれば、有用性の高い地盤の変動の情報を迅速に伝えることができる。   ADVANTAGE OF THE INVENTION According to this invention, the information of the fluctuation | variation of the highly useful ground can be conveyed rapidly.

地盤情報システムの構成を示すブロック図である。It is a block diagram which shows the structure of a ground information system. 地盤解析装置の機能ブロック図である。It is a functional block diagram of a ground analysis device. 地盤解析装置の処理フローを示す図である。It is a figure which shows the processing flow of a ground analysis apparatus. 測地座標と楕円体高の算出概要を示す図である。It is a figure which shows the calculation outline | summary of a geodetic coordinate and an ellipsoid height. 楕円体高の説明図である。It is explanatory drawing of ellipsoidal height. 算出結果テーブルの例を示す図である。It is a figure which shows the example of a calculation result table. 閉領域のひずみに算出する算出式に用いるパラメータを説明する図である。It is a figure explaining the parameter used for the calculation type | formula calculated to the distortion of a closed area | region. 基線網を示す図である。It is a figure which shows a baseline network. 表示データの一例を示す第一の図である。It is a 1st figure which shows an example of display data. 表示データの一例を示す第二の図である。It is a 2nd figure which shows an example of display data. 楕円体高の地盤変動解析結果の出力例を示す図である。It is a figure which shows the example of an output of the ground deformation | transformation analysis result of an ellipsoidal height.

以下、本発明の一実施形態による地盤解析装置を図面を参照して説明する。
図1は同実施形態による地盤情報システムの構成を示すブロック図である。この図において、符号1は地盤解析装置である。また2は座標計測装置である。また10は衛星測位信号受信アンテナである。また20は衛星測位信号受信装置である。
そして地盤情報システムにおいては、衛星測位信号受信アンテナ10が例えば日本全国(国土領域)の1200点余りの多数の地点に分散して固定設置されており、その衛星測位信号受信アンテナがGPS衛星から受信した衛星測位信号を衛星測位信号受信装置20が通信ネットワークを介して受信する。また、複数の座標計測装置2は通信ネットワークを介して衛星測位信号受信装置20と地盤解析装置1に接続されているものとする。座標計測装置2は、衛星測位信号受信装置20より、各衛星測位信号受信アンテナ10がGPS衛星から受信した衛星測位信号(GPSが発信する信号)を受信し、各衛星測位信号受信アンテナ10の固定設置された位置を検出する。そして、その算出された各衛星測位信号受信アンテナ10の位置に基づいて、特定の衛星測位信号受信アンテナ10の24時間平均の地心直交座標、24時間平均の楕円体高、24時間平均の水平移動量、24時間平均の地盤高変動量などの地盤変動を、座標計測装置2や地盤解析装置1が算出してよい。地盤解析装置1は、1つ又は複数座標計測装置2の各機能を含むものであってもよい。
Hereinafter, a ground analysis device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a ground information system according to the embodiment. In this figure, reference numeral 1 denotes a ground analysis device. Reference numeral 2 denotes a coordinate measuring device. Reference numeral 10 denotes a satellite positioning signal receiving antenna. Reference numeral 20 denotes a satellite positioning signal receiver.
In the ground information system, the satellite positioning signal receiving antennas 10 are distributed and fixedly installed at a large number of points, for example, over 1200 points in the whole of Japan (national land area), and the satellite positioning signal receiving antennas are received from GPS satellites. The satellite positioning signal receiving device 20 receives the received satellite positioning signal via the communication network. The plurality of coordinate measuring devices 2 are connected to the satellite positioning signal receiving device 20 and the ground analysis device 1 via a communication network. The coordinate measuring device 2 receives from the satellite positioning signal receiving device 20 each satellite positioning signal receiving antenna 10 a satellite positioning signal (a signal transmitted by GPS) received from a GPS satellite, and fixes each satellite positioning signal receiving antenna 10. Detect the installed position. Based on the calculated position of each satellite positioning signal receiving antenna 10, the 24-hour average geocentric Cartesian coordinates, the 24-hour average ellipsoidal height, and the 24-hour average horizontal movement of the specific satellite positioning signal receiving antenna 10 are calculated. The coordinate measurement device 2 or the ground analysis device 1 may calculate the ground fluctuation such as the amount and the ground height fluctuation amount averaged for 24 hours. The ground analysis device 1 may include each function of one or more coordinate measuring devices 2.

図2は座標計測装置および地盤解析装置の機能ブロック図である。
この図が示すように、地盤解析装置1は、通信処理部11、制御部12、アンテナ位置算出結果受信部13、地盤変動解析部14(特定部)、地盤変動結果出力部15(解析結果出力部)、データベース16、基準時刻通知部17を少なくとも備えている。通信処理部11は、通信ネットワークを介して情報を送受信する処理部である。制御部12は、地盤解析装置1の各処理部を制御する処理部である。アンテナ位置算出結果受信部13は、座標計測装置2よりアンテナ位置の算出結果の情報を受信する処理部である。地盤変動解析部14は、座標計測装置2より受信したアンテナ位置の算出結果の情報に基づいて、衛星測位信号受信アンテナ10の固定設置された位置に対応する地球重心を原点とした測地座標などにおける、当該固定設置された位置の地盤変動量を判定できる情報を算出する処理部である。地盤変動結果出力部15は、地盤変動解析部14の算出した情報に基づいて所定の間隔毎の24時間平均の地盤変動の情報を出力する処理部である。データベース16はアンテナ位置算出結果受信部13が受信したアンテナ位置の算出結果の情報や地盤変動解析部14が算出した情報等を記憶する。基準時刻通知部17は座標計測装置2が各衛星測位信号受信アンテナ10の固定設置された位置の地盤変動の24時間平均の情報を算出するための基準時刻を座標計測装置2へ通知する処理部である。
FIG. 2 is a functional block diagram of the coordinate measuring device and the ground analysis device.
As shown in this figure, the ground analysis device 1 includes a communication processing unit 11, a control unit 12, an antenna position calculation result receiving unit 13, a ground fluctuation analysis unit 14 (specific part), and a ground fluctuation result output unit 15 (analysis result output). Section), database 16, and reference time notification section 17. The communication processing unit 11 is a processing unit that transmits and receives information via a communication network. The control unit 12 is a processing unit that controls each processing unit of the ground analysis device 1. The antenna position calculation result receiving unit 13 is a processing unit that receives information on the calculation result of the antenna position from the coordinate measuring device 2. Based on the information on the antenna position calculation result received from the coordinate measuring device 2, the ground fluctuation analysis unit 14 uses geodetic coordinates and the like with the center of gravity of the earth corresponding to the position where the satellite positioning signal receiving antenna 10 is fixedly installed as the origin. The processing unit calculates information that can determine the ground fluctuation amount of the fixedly installed position. The ground change result output unit 15 is a processing unit that outputs information on the average ground change for 24 hours at predetermined intervals based on the information calculated by the ground change analysis unit 14. The database 16 stores information on the calculation result of the antenna position received by the antenna position calculation result receiving unit 13, information calculated by the ground fluctuation analysis unit 14, and the like. The reference time notifying unit 17 is a processing unit for notifying the coordinate measuring device 2 of a reference time for the coordinate measuring device 2 to calculate 24-hour average information of the ground fluctuation at the position where each satellite positioning signal receiving antenna 10 is fixedly installed. It is.

また図2で示すように、座標計測装置2は、通信処理部21、制御部22、衛星測位信号受信部23、アンテナ位置算出部24、アンテナ位置算出結果出力部25、データベース26を備えている。通信処理部21は衛星測位信号受信装置20や地盤解析装置1と通信を行う処理部である。制御部22は座標計測装置2の各処理部を制御する処理部である。衛星測位信号受信部23は衛星測位信号受信アンテナ10がGPS衛星から受信した衛星測位信号を、当該衛星測位信号受信アンテナ10から取りまとめて取得した衛星測位信号受信装置20を経由して受信する処理部である。アンテナ位置算出部24は衛星測位信号に基づいて、衛星測位信号受信アンテナ10それぞれの固定設置された位置を示す地心直交座標や楕円体高を算出する処理部である。アンテナ位置算出結果出力部25は、アンテナ位置算出部24の算出した情報を地盤解析装置1へ出力する処理部である。データベース26は、衛星測位信号受信アンテナ10の受信した衛星測位信号のデータや、衛星測位信号受信アンテナ10それぞれの固定設置された位置を示す地心直交座標や楕円体高等の情報を対応付けて記憶する記憶部である。   As shown in FIG. 2, the coordinate measuring apparatus 2 includes a communication processing unit 21, a control unit 22, a satellite positioning signal receiving unit 23, an antenna position calculation unit 24, an antenna position calculation result output unit 25, and a database 26. . The communication processing unit 21 is a processing unit that communicates with the satellite positioning signal receiving device 20 and the ground analysis device 1. The control unit 22 is a processing unit that controls each processing unit of the coordinate measuring apparatus 2. The satellite positioning signal receiving unit 23 receives a satellite positioning signal received from the GPS satellite by the satellite positioning signal receiving antenna 10 via the satellite positioning signal receiving device 20 obtained by collecting from the satellite positioning signal receiving antenna 10. It is. The antenna position calculation unit 24 is a processing unit that calculates geocentric orthogonal coordinates and ellipsoidal heights indicating the fixed positions of the satellite positioning signal receiving antennas 10 based on the satellite positioning signals. The antenna position calculation result output unit 25 is a processing unit that outputs information calculated by the antenna position calculation unit 24 to the ground analysis device 1. The database 26 stores data of satellite positioning signals received by the satellite positioning signal receiving antenna 10 and information such as geocentric orthogonal coordinates and ellipsoidal heights indicating the fixed positions of the satellite positioning signal receiving antennas 10 in association with each other. This is a storage unit.

本実施形態による地盤情報システムは、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナ10それぞれが位置観測用衛星から受信した衛星測位信号を受信する。地盤情報システムは、衛星測位信号に基づいて衛星測位信号受信アンテナ10の座標を算出する。地盤情報システムは、上記地点それぞれのうち、隣接すると判定される3以上の各地点を結ぶ各基線により構成される閉領域が領域面で連なる基線網において、基準期間に基準閾値以上変動する閉領域を特定する。地盤情報システムは、特定した閉領域を他の閉領域と表示状態を変更して国土領域に基線網を重ねた表示情報を含む地盤解析結果(表示データ)を出力する。
このような処理により地盤情報システムは、有用性の高い地盤の変動の情報を学者、気象情報配信会社、測量企業、建設企業などの世間に迅速に伝える。
In the ground information system according to the present embodiment, each of the plurality of satellite positioning signal receiving antennas 10 fixedly installed at a plurality of different points in the land area receives the satellite positioning signals received from the position observation satellites. The ground information system calculates the coordinates of the satellite positioning signal receiving antenna 10 based on the satellite positioning signal. In the ground information system, a closed area that varies by more than a reference threshold during a reference period in a base line network in which closed areas formed by base lines connecting three or more points determined to be adjacent to each other are connected in the area plane. Is identified. The ground information system outputs a ground analysis result (display data) including display information obtained by changing the display state of the specified closed region to another closed region and overlaying a base line network on the national land region.
Through such processing, the ground information system quickly conveys information on highly useful ground changes to the world such as scholars, weather information distribution companies, surveying companies, and construction companies.

地盤情報システムは、複数の座標計測装置2と地盤解析装置1とが通信ネットワークを介して接続されており、複数の座標計測装置2のそれぞれが、通信ネットワークに接続され複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナ10のそれぞれが位置観測用衛星(GPS衛星)から受信した衛星測位信号を、通信ネットワークを介して受信し、地盤解析装置1より算出対象に係わる24時間平均の算出に用いる基準時刻を受信し、受信した24時間分の衛星測位信号と基準時刻とに基づいて、衛星測位信号受信アンテナ10それぞれの固定設置された位置における24時間平均の地心直交座標を算出する。地盤解析装置1が、複数の座標計測装置2それぞれに、算出対象に係わる24時間平均の算出に用いる基準時刻を所定の間隔ずらして通知し、所定の間隔毎に、異なる座標計測装置2から24時間平均の複数の衛星測位信号受信アンテナ10それぞれの地心直交座標を受信して、各衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の地心直交座標を示す地心直交座標変動結果を出力する処理を行う。   In the ground information system, a plurality of coordinate measuring devices 2 and a ground analyzing device 1 are connected via a communication network, and each of the plurality of coordinate measuring devices 2 is connected to the communication network and fixedly installed at a plurality of different points. Each of the plurality of satellite positioning signal receiving antennas 10 receives the satellite positioning signals received from the position observation satellites (GPS satellites) via the communication network, and the ground analysis device 1 calculates the average of 24 hours related to the calculation target. The reference time used for the calculation is received, and based on the received satellite positioning signals for 24 hours and the reference time, the geocentric orthogonal coordinates of the 24-hour average at the fixed positions of the satellite positioning signal receiving antennas 10 are calculated. To do. The ground analysis device 1 notifies each of the plurality of coordinate measuring devices 2 of the reference time used for calculating the 24-hour average related to the calculation object with a predetermined interval shifted, and the different coordinate measuring devices 2 to 24 are changed at predetermined intervals. The geocentric orthogonal coordinates of each of the plurality of time-averaged satellite positioning signal receiving antennas 10 are received, and the 24-hour average geocentric orthogonal coordinates at a predetermined interval at each fixed position of each satellite positioning signal receiving antenna 10. The process which outputs the geocentric orthogonal coordinate fluctuation result which shows is performed.

地盤情報システムは、座標計測装置2のそれぞれが、算出した衛星測位信号受信アンテナ10それぞれの地心直交座標と基準時刻とに基づいて、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の楕円体高を算出してもよい。この時地盤解析装置1は、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の楕円体高を示す楕円体高変動結果を出力する処理を行う。   In the ground information system, each of the coordinate measuring devices 2 is determined in a predetermined position at a fixed position of each of the satellite positioning signal receiving antennas 10 based on the geocentric orthogonal coordinates of each of the satellite positioning signal receiving antennas 10 and the reference time. The average ellipsoidal height for 24 hours for each interval may be calculated. At this time, the ground analysis device 1 performs a process of outputting an ellipsoidal height fluctuation result indicating an average ellipsoidal height for 24 hours at predetermined intervals at each fixed position of the satellite positioning signal receiving antenna 10.

地盤情報システムは、地盤解析装置1が、算出された衛星測位信号受信アンテナ10それぞれの所定の間隔毎の24時間平均の地心直交座標に基づいて、当該地心直交座標毎に対応する所定の間隔毎の24時間平均の水平移動量を算出してもよい。この時地盤解析装置1は、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の前記24時間平均の水平移動量の算出結果を表示した水平移動量変動結果を出力する処理を行う。   The ground information system is configured so that the ground analysis device 1 uses a predetermined 24-hour average geocentric Cartesian coordinate for each predetermined interval of the satellite positioning signal receiving antennas 10 to calculate a predetermined corresponding to each geocentric orthogonal coordinate. A 24-hour average horizontal movement amount for each interval may be calculated. At this time, the ground analysis device 1 outputs a horizontal movement amount fluctuation result displaying a calculation result of the 24-hour average horizontal movement amount for each predetermined interval at each fixed position of the satellite positioning signal receiving antenna 10. I do.

地盤情報システムは、地盤解析装置1が、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の楕円体高に基づいて、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の地盤高変動量を算出し、衛星測位信号受信アンテナ10それぞれの固定設置された位置における所定の間隔毎の24時間平均の地盤高変動量の算出結果を表示した地盤高変動量変動結果を出力する処理を行ってもよい。
そして地盤解析装置1は、このような処理により、観察者の所望の時間において、大きな災害が発生する箇所を緊急に判定するための出力結果を出力する処理を行う。
In the ground information system, the ground analysis device 1 is configured so that each satellite positioning signal receiving antenna 10 is fixedly installed on the basis of the average ellipsoidal height for 24 hours at a predetermined interval at the position where each satellite positioning signal receiving antenna 10 is fixedly installed. A 24-hour average ground height fluctuation amount for each predetermined interval at the determined position is calculated, and a 24-hour average ground height fluctuation amount for each predetermined interval at each fixed position of the satellite positioning signal receiving antenna 10 is calculated. You may perform the process which outputs the ground height fluctuation amount fluctuation result which displayed the result.
And the ground analysis apparatus 1 performs the process which outputs the output result for urgently determining the location where a big disaster generate | occur | produces in an observer's desired time by such a process.

図3は地盤解析装置の処理フローを示す図である。
図4は測地座標と楕円体高の算出概要を示す図である。
図5は楕円体高の説明図である。
図6は算出結果テーブルの例を示す図である。
次に図3〜図11を用いて地盤解析装置の処理の詳細について説明する。
衛星測位信号受信装置20は、通信ネットワークを介して日本全国の衛星測位信号受信アンテナ10から、当該衛星測位信号受信アンテナ10がGPS衛星から受信した衛星測位信号(地心直交座標を特定するための信号)を通信ネットワークを介して受信する。例えば、衛星測位信号受信アンテナ10は日本全国の1200地点に固定設置されており、衛星測位信号受信装置20は、30秒間隔で衛星測位信号受信アンテナ10から衛星測位信号を受信している。その衛星測位信号受信装置20が受信した衛星測位信号を、所定の時間毎(例えば10分毎)に座標計測装置2の衛星測位信号受信部23が受信する(ステップS101)。
FIG. 3 is a diagram showing a processing flow of the ground analysis apparatus.
FIG. 4 is a diagram showing an outline of calculation of geodetic coordinates and ellipsoidal height.
FIG. 5 is an explanatory diagram of the height of the ellipsoid.
FIG. 6 is a diagram illustrating an example of a calculation result table.
Next, details of the processing of the ground analysis device will be described with reference to FIGS.
The satellite positioning signal receiving device 20 receives a satellite positioning signal (for specifying geo-orthogonal coordinates) received from a GPS satellite by the satellite positioning signal receiving antenna 10 from a satellite positioning signal receiving antenna 10 all over Japan via a communication network. Signal) via a communication network. For example, the satellite positioning signal receiving antenna 10 is fixedly installed at 1200 points throughout Japan, and the satellite positioning signal receiving device 20 receives satellite positioning signals from the satellite positioning signal receiving antenna 10 at intervals of 30 seconds. The satellite positioning signal receiving unit 23 of the coordinate measuring device 2 receives the satellite positioning signal received by the satellite positioning signal receiving device 20 every predetermined time (for example, every 10 minutes) (step S101).

座標計測装置2のアンテナ位置算出部24は、受信した衛星測位信号のうち複数地点の衛星測位信号受信アンテナ10で受信された30秒間隔の24時間分の衛星測位信号を用いて、三角網による網平均計算を行う(ステップS102)。三角網とは、衛星測位信号受信アンテナ10の設置された複数の位置におけるある3点の三角形の頂点として互いに直線で結ぶことによって構成される三角形の集合体である。網平均計算とは、この三角形の頂点の位置を角条件や辺条件といった制約条件の下で最小二乗法を行うことによって位置データを確定する計算方法である。このような網平均計算については、例えば「最小二乗法の理論とその応用」(田島稔他著、東洋書店)等に詳述されている。   The antenna position calculation unit 24 of the coordinate measuring device 2 uses a satellite positioning signal for 24 hours at intervals of 30 seconds received by the satellite positioning signal receiving antennas 10 at a plurality of points among the received satellite positioning signals. A net average calculation is performed (step S102). The triangular network is an aggregate of triangles formed by connecting straight lines as vertices of three triangular points at a plurality of positions where the satellite positioning signal receiving antennas 10 are installed. The net average calculation is a calculation method in which position data is determined by performing a least-squares method on the positions of the vertices of the triangles under constraint conditions such as corner conditions and edge conditions. Such network average calculation is described in detail in, for example, “Theory of Least Squares Method and Its Application” (Tajima Kei et al., Toyo Shoten).

このような計算をアンテナ位置算出部24で行うことによって、特定した複数地点の三角網を用いて、それら複数地点における衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)を衛星測位信号の受信時刻毎に算出する(ステップS103)。アンテナ位置算出部24は、他の各衛星測位信号受信アンテナ10の固定設置された位置についても同様にその地心直交座標(X,Y,Z)を衛星測位信号の受信時刻毎に順次算出する。この地心直交座標の算出処理は、衛星測位信号受信アンテナ10が日本全国に配置された1200地点を39グループに分け、それぞれのグループ毎の各衛星測位信号受信アンテナ10で受信された衛星測位信号を用いてグループ内の衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)を算出する処理を、グループ毎に順次を行うようにしてよい。地心直交座標の算出において、日本周辺(国土領域周辺)の国際測地基準点(IGS点;つくばTSKB、臼田USUD、北京BJFS、上海SHAO、台湾桃園TWTF、グアムGUAM)を用いて、IGS点を含む三角網により網平均計算を行って地心直交座標(X,Y,Z)を算出するようにしてよい。また更には、当該地心直交座標の算出にあたり、日本周辺に限らず、全世界のIGS点のうちの複数を用いて、それらIGS点を含む三角網により網平均計算を行って地心直交座標(X,Y,Z)を算出するようにしてよい。アンテナ位置算出部24は各衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)を、対応する衛星測位信号受信アンテナ10のIDと、その衛星測位信号受信アンテナ10から衛星測位信号を受信した時刻と、に対応付けてデータベースへ登録する(ステップS104)。   By performing such calculation by the antenna position calculation unit 24, the geocentric orthogonal coordinates (X, Y, Z) of the satellite positioning signal receiving antenna 10 at the plurality of points are determined using the triangular network of the specified points. The positioning signal is calculated for each reception time (step S103). The antenna position calculation unit 24 sequentially calculates the geocentric orthogonal coordinates (X, Y, Z) for each satellite positioning signal reception time in the same manner for the positions where the other satellite positioning signal receiving antennas 10 are fixedly installed. . This geocentric Cartesian coordinate calculation process is performed by dividing the 1200 points where the satellite positioning signal receiving antennas 10 are arranged throughout Japan into 39 groups, and the satellite positioning signals received by the satellite positioning signal receiving antennas 10 for each group. The processing for calculating the geocentric orthogonal coordinates (X, Y, Z) of the satellite positioning signal receiving antennas 10 in the group may be performed sequentially for each group. In calculating geocentric Cartesian coordinates, IGS points are calculated using international geodetic reference points (IGS points; Tsukuba TSKB, Usuda USUD, Beijing BJFS, Shanghai SHAO, Taiwan Taoyuan TWTF, Guam GUAM) around Japan (land area). You may make it calculate a center orthogonal coordinate (X, Y, Z) by performing a net | network average calculation with the triangular network containing. Still further, in calculating the geocentric orthogonal coordinates, not only in the vicinity of Japan, but using a plurality of IGS points around the world, a network average calculation is performed using a triangular network including these IGS points, and geocentric orthogonal coordinates are calculated. (X, Y, Z) may be calculated. The antenna position calculation unit 24 uses the geocentric orthogonal coordinates (X, Y, Z) of each satellite positioning signal receiving antenna 10, the ID of the corresponding satellite positioning signal receiving antenna 10, and the satellite positioning signal from the satellite positioning signal receiving antenna 10. Is registered in the database in association with the time of receiving (step S104).

アンテナ位置算出部24は、各衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)を算出すると、各衛星測位信号受信アンテナ10の楕円体高を衛星測位信号の受信時刻毎に算出する(ステップS105)。図4、図5で示すように楕円体高は、地心直交座標(X,Y,Z)と地球重心とを結ぶ直線の距離から、当該直線が地球楕円体に交わる点と地球重心とを結ぶ直線の距離を減じた値により算出できる。なお、地球重心や、地心直交座標(X,Y,Z)と地球重心とを結ぶ直線が地球楕円体に交わる点と地球重心とを結ぶ直線の距離は既知の値であるとする。アンテナ位置算出部24は、各衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)における楕円体高を、対応する衛星測位信号受信アンテナ10のID、その衛星測位信号受信アンテナ10から衛星測位信号を受信した時刻と、に対応付けてデータベースへ登録する(ステップS106)。
アンテナ位置算出部24は、所定の間隔毎に受信した衛星測位信号に基づいて、各衛星測位信号受信アンテナ10の固定設置された位置における、所定の間隔毎の地心直交座標(X,Y,Z)と楕円体高の値を衛星測位信号の受信時刻毎に算出し続ける。アンテナ位置算出部24は、衛星測位信号の受信時刻毎でなくとも、24時間より短い所定の時刻間隔毎に、各衛星測位信号受信アンテナ10の地心直交座標(X,Y,Z)と楕円体高の値を算出するようにしてよい。
After calculating the geocentric orthogonal coordinates (X, Y, Z) of each satellite positioning signal receiving antenna 10, the antenna position calculating unit 24 calculates the height of the ellipsoid of each satellite positioning signal receiving antenna 10 for each reception time of the satellite positioning signal. (Step S105). As shown in FIG. 4 and FIG. 5, the ellipsoidal height connects the point where the straight line intersects the earth ellipsoid and the center of gravity of the earth from the distance of the straight line connecting the geocentric orthogonal coordinates (X, Y, Z) and the center of gravity of the earth. It can be calculated from a value obtained by subtracting the distance of the straight line. It is assumed that the distance between the earth's center of gravity and the straight line connecting the point where the straight line connecting the geocentric orthogonal coordinates (X, Y, Z) and the earth's center of gravity intersects the earth ellipsoid and the earth's center of gravity is a known value. The antenna position calculation unit 24 calculates the ellipsoidal height at the geocentric orthogonal coordinates (X, Y, Z) of each satellite positioning signal receiving antenna 10 from the ID of the corresponding satellite positioning signal receiving antenna 10 and the satellite positioning signal receiving antenna 10. It is registered in the database in association with the time when the satellite positioning signal is received (step S106).
Based on the satellite positioning signals received at predetermined intervals, the antenna position calculation unit 24 has geocentric orthogonal coordinates (X, Y, and X) at predetermined intervals at positions where the satellite positioning signal receiving antennas 10 are fixedly installed. Z) and the ellipsoidal height values are continuously calculated for each satellite positioning signal reception time. The antenna position calculation unit 24 calculates the geocentric orthogonal coordinates (X, Y, Z) and the ellipse of each satellite positioning signal receiving antenna 10 at predetermined time intervals shorter than 24 hours, not every satellite positioning signal reception time. You may make it calculate the value of body height.

各座標計測装置2は、予め地盤解析装置1の基準時刻通知部17より、地心直交座標の24時間平均と、楕円体高の24時間平均を算出するための基準時刻の通知を受けている。例えば図1で示す各座標計測装置2が2A,2B,2C,…,2Hの8つの座標計測装置であるとすると、座標計測装置2Aに対しては基準時刻は9時、座標計測装置2Bに対しては基準時刻は12時、座標計測装置2Cに対しては基準時刻は15時、座標計測装置2Dに対しては基準時刻は18時、・・・、座標計測装置2Hに対しては基準時刻は6時、と3時間ずつずらした基準時刻を、地盤解析装置1は座標計測装置2A〜2Hのそれぞれへ通知する。各座標計測装置2のアンテナ位置算出部24は、通知を受けた基準時刻に時刻計測処理部のタイマが達したことを検出し、上述の処理により算出した地心直交座標および楕円体高のうち、前日の基準時刻から当日の基準時刻の前に算出された所定の時間毎(10分毎)の情報をデータベース26から読み取り、それら読み取った地心直交座標および楕円体高の24時間平均を算出し、データベース26に算出対象の衛星測位信号受信アンテナ10のアンテナIDと地心直交座標および楕円体高の24時間平均を対応付けて登録する。各座標計測装置2のアンテナ位置算出結果出力部25は、地盤解析装置1からの要求に基づいて、所定の間隔毎の各衛星測位信号受信アンテナ10における地心直交座標と楕円体高の24時間平均を送信する。   Each coordinate measuring device 2 has previously received a notification of a reference time for calculating a 24-hour average of geocentric orthogonal coordinates and a 24-hour average of ellipsoidal height from the reference time notification unit 17 of the ground analysis device 1. For example, if each coordinate measuring device 2 shown in FIG. 1 is eight coordinate measuring devices 2A, 2B, 2C,..., 2H, the reference time for the coordinate measuring device 2A is 9:00, and the coordinate measuring device 2B For the coordinate measuring device 2C, the reference time is 12:00, for the coordinate measuring device 2C, the reference time is 15:00, for the coordinate measuring device 2D, the reference time is 18:00, and so on, for the coordinate measuring device 2H. The ground analysis device 1 notifies each of the coordinate measurement devices 2A to 2H of the reference time shifted by 3 hours, which is 6 o'clock. The antenna position calculation unit 24 of each coordinate measurement device 2 detects that the timer of the time measurement processing unit has reached the reference time when the notification is received, and among the geocentric orthogonal coordinates and the ellipsoidal height calculated by the above processing, Read from the database 26 information for every predetermined time (every 10 minutes) calculated from the previous day's reference time to the current day's reference time, calculate the 24-hour average of the geocentric orthogonal coordinates and ellipsoidal heights read, In the database 26, the antenna ID of the satellite positioning signal receiving antenna 10 to be calculated is registered in association with the 24-hour average of the geocentric orthogonal coordinates and the ellipsoidal height. The antenna position calculation result output unit 25 of each coordinate measuring device 2 is based on the request from the ground analysis device 1 and calculates the average of the geocentric orthogonal coordinates and the ellipsoidal height for each satellite positioning signal receiving antenna 10 at predetermined intervals. Send.

地盤解析装置1は、ある地域における地盤変動を解析するために、管理者の入力などにより受け付けた情報等に基づいて、解析対象となる地域に位置する衛星測位信号受信アンテナ10のアンテナIDを格納したアンテナ位置要求情報を各座標計測装置2へ送信する。各座標計測装置2はアンテナ位置要求情報の受信に基づいて、アンテナIDに対応付けられてデータベース26に登録されている地心直交座標と楕円体高の24時間平均を地盤解析装置1へ送信する。地盤解析装置1は、アンテナ位置要求情報に時間範囲指定の情報を格納することにより、当該時間範囲指定した時間帯に算出された24時間平均の地心直交座標と楕円体高を座標計測装置2から受信するようにしてもよい。そして、これにより、地盤解析装置1は、例えば時間範囲指定の情報が9時00分から次の日の8時59分までの24時間平均の地心直交座標と楕円体高のデータを座標計測装置2Aから受信し、12時00分から次の日の11時59分までの24時間平均の地心直交座標と楕円体高のデータを座標計測装置2Bから受信し、15時00分から次の日の14時59分までの24時間平均の地心直交座標と楕円体高のデータを座標計測装置2Cから受信し、同様に基準時刻を基準とした24時間平均の地心直交座標と楕円体高のデータを座標計測装置2D〜2Hから受信する。   The ground analysis device 1 stores the antenna ID of the satellite positioning signal receiving antenna 10 located in the analysis target area based on information received by an administrator's input or the like in order to analyze the ground fluctuation in a certain area. The transmitted antenna position request information is transmitted to each coordinate measuring device 2. Each coordinate measuring device 2 transmits to the ground analyzing device 1 the 24-hour average of the geocentric orthogonal coordinates and the ellipsoidal height registered in the database 26 in association with the antenna ID based on the reception of the antenna position request information. The ground analysis device 1 stores the time range designation information in the antenna position request information, and obtains the 24-hour average geocentric orthogonal coordinates and ellipsoidal height calculated in the time zone designated by the time range from the coordinate measurement device 2. You may make it receive. Accordingly, the ground analysis device 1 uses, for example, the coordinate measuring device 2A to obtain the data of the center-of-the-centre orthogonal coordinates and the ellipsoidal height of the time range designation information from 9:00 to 8:59 on the next day. From 12:00 to 11:59 on the next day, 24 hour average geocentric orthogonal coordinates and ellipsoidal height data are received from the coordinate measuring device 2B, and from 15:00 to 14:00 on the next day Receives the 24-hour average geocentric orthogonal coordinates and ellipsoidal height data up to 59 minutes from the coordinate measuring device 2C, and similarly measures the 24-hour average geocentric orthogonal coordinates and ellipsoidal height data based on the reference time. Receive from devices 2D-2H.

地盤解析装置1の地盤変動解析部14は、各座標計測装置2からそれぞれ別々に受信した所定の間隔(基準時刻のずれである3時間)毎の24時間平均の地心直交座標(X,Y,Z)の受信に基づいて、その所定の間隔毎(3時間毎)の地心直交座標(X,Y,Z)のずれによる各衛星測位信号受信アンテナ10の水平移動量の24時間平均を算出する(ステップS107)。地盤変動解析部14はその所定の間隔毎の水平移動量の24時間平均と、その水平移動量の算出対象である衛星測位信号受信アンテナ10のIDと、その水平移動量の24時間平均の算出に用いた地心直交座標の24時間平均と、その地心直交座標を受信した時刻と、を対応付けてデータベース16へ登録する(ステップS108)。24時間平均の水平移動量は、衛星測位信号受信アンテナ10の地心直交座標の24時間平均を(X1,Y1,Z1)、その時刻より所定の間隔の時間後の同じ衛星測位信号受信アンテナ10の地心直交座標の24時間平均を(X2,Y2,Z2)とすると、(X2−X1,Y2−Y1)である。   The ground fluctuation analysis unit 14 of the ground analysis device 1 has a 24-hour average geocentric Cartesian coordinate (X, Y) for each predetermined interval (3 hours which is a deviation of the reference time) received separately from each coordinate measurement device 2. , Z), the 24-hour average of the horizontal movement amount of each satellite positioning signal receiving antenna 10 due to the shift of the geocentric orthogonal coordinates (X, Y, Z) at every predetermined interval (every 3 hours) is calculated. Calculate (step S107). The ground fluctuation analysis unit 14 calculates the 24-hour average of the horizontal movement amount for each predetermined interval, the ID of the satellite positioning signal receiving antenna 10 that is the calculation target of the horizontal movement amount, and the 24-hour average of the horizontal movement amount. The 24-hour average of the geocentric Cartesian coordinates used in the above and the time when the geocentric Cartesian coordinates are received are associated with each other and registered in the database 16 (step S108). The horizontal movement amount of the 24-hour average is the same as the 24-hour average of the geocentric orthogonal coordinates of the satellite positioning signal receiving antenna 10 (X1, Y1, Z1), and the same satellite positioning signal receiving antenna 10 after a predetermined interval from that time. When the 24-hour average of the geocentric orthogonal coordinates of (X2, Y2, Z2) is (X2-X1, Y2-Y1).

地盤変動解析部14は、各座標計測装置2から受信した所定の間隔毎の24時間平均の楕円体高の受信に基づいて、その所定の間隔毎(本実施形態においては3時間毎)の楕円体高のずれによる各衛星測位信号受信アンテナ10の地盤高変動量の24時間平均を算出する(ステップS109)。地盤変動解析部14は、その所定の間隔毎の地盤高変動量の24時間平均と、その地盤高変動量の算出対象である衛星測位信号受信アンテナ10のIDと、その地盤高変動量の24時間平均の算出に用いた楕円体高の24時間平均と、その楕円体高を受信した時刻と、を対応付けてデータベース16へ登録する(ステップS110)。24時間平均の地盤高変動量は、ある時刻における衛星測位信号受信アンテナ10の楕円体高の24時間平均を(D1)、その時刻より所定の間隔の時間後の同じ衛星測位信号受信アンテナ10の楕円体高の24時間平均を(D2)とすると、(D2−D1)である。なお上記では地盤変動解析部14が、所定の間隔(基準時刻のずれである3時間)毎の24時間平均の地心直交座標(X,Y,Z)を受信することについて記載したが、所定の間隔を24時間として、24時間毎に受信するようにしてもよい。この場合は地盤変動解析部14は、24時間の間隔毎の、地心直交座標の24時間平均と、地盤高変動量の24時間平均と、その地盤高変動量の算出対象である衛星測位信号受信アンテナ10のIDと、その地盤高変動量の24時間平均の算出に用いた楕円体高の24時間平均と、その楕円体高を受信した時刻と、を対応付けてデータベース16へ登録することとなる。   Based on the reception of the average ellipsoidal height for 24 hours for each predetermined interval received from each coordinate measuring device 2, the ground fluctuation analysis unit 14 performs the ellipsoidal height for each predetermined interval (every 3 hours in the present embodiment). The 24-hour average of the ground height fluctuation amount of each satellite positioning signal receiving antenna 10 due to the deviation is calculated (step S109). The ground fluctuation analysis unit 14 averages the ground height fluctuation amount for each predetermined interval for 24 hours, the ID of the satellite positioning signal receiving antenna 10 that is the calculation target of the ground height fluctuation quantity, and 24 of the ground height fluctuation amount. The 24-hour average of the ellipsoidal height used for calculating the time average and the time when the ellipsoidal height is received are associated with each other and registered in the database 16 (step S110). The 24-hour average ground height variation is the average of the ellipsoidal height of the satellite positioning signal receiving antenna 10 at a certain time (D1), and the ellipse of the same satellite positioning signal receiving antenna 10 after a predetermined interval from that time. When the average of the body height for 24 hours is (D2), it is (D2-D1). In the above description, it has been described that the ground fluctuation analysis unit 14 receives the geocentric Cartesian coordinates (X, Y, Z) averaged for 24 hours every predetermined interval (3 hours which is a deviation of the reference time). The interval may be 24 hours and may be received every 24 hours. In this case, the ground fluctuation analysis unit 14 performs the 24-hour average of the geocentric orthogonal coordinates, the 24-hour average of the ground height fluctuation amount, and the satellite positioning signal that is the calculation target of the ground height fluctuation amount at every 24 hour interval. The ID of the receiving antenna 10, the 24-hour average of the ellipsoidal height used for calculating the 24-hour average of the ground height fluctuation amount, and the time when the ellipsoidal height is received are registered in the database 16 in association with each other. .

図6で示す算出結果テーブルは、衛星測位信号受信アンテナ10それぞれについて、所定の間隔である3時間毎に上述の処理により算出された地心直交座標、楕円体高、水平移動量、地盤高変動量を記憶するデータテーブルである。図6においては、アンテナID「00001」となる衛星測位信号受信アンテナ10の固定設置された位置の2008年1月1日12時00分(200801011200)において、地心直交座標の24時間平均は(X1,Y1,Z1)、楕円体高の24時間平均は(D1)、水平移動量の24時間平均は(値無し)、地盤高変動量の24時間平均は(値無し)であり、またその衛星測位信号受信アンテナ10の固定設置された位置の2008年1月1日15時00分(200801011500)において、地心直交座標の24時間平均は(X2,Y2,Z2)、楕円体高の24時間平均は(D2)、水平移動量の24時間平均は(X2−X1,Y2−Y1)、地盤高変動量の24時間平均は(D2−D1)であり、またその衛星測位信号受信アンテナ10の固定設置された位置の2008年1月1日18時00分(200801011800)において、地心直交座標の24時間平均は(X3,Y3,Z3)、楕円体高の24時間平均は(D3)、水平移動量の24時間平均は(X3−X2,Y3−Y2)、地盤高変動量の24時間平均は(D3−D2)であることを示している。   The calculation result table shown in FIG. 6 shows the geocentric orthogonal coordinates, the ellipsoidal height, the horizontal movement amount, and the ground height fluctuation amount calculated by the above-described processing every three hours, which is a predetermined interval, for each satellite positioning signal receiving antenna 10. Is a data table for storing In FIG. 6, at 12:00 on January 1, 2008 (20080101011200) at the position where the satellite positioning signal receiving antenna 10 having the antenna ID “00001” is fixedly installed, the 24-hour average of the geocentric orthogonal coordinates is ( X1, Y1, Z1), the 24-hour average of ellipsoidal height is (D1), the 24-hour average of horizontal movement is (no value), the 24-hour average of ground height fluctuation is (no value), and the satellite At 15:00 (200801101500) on January 1, 2008 at the position where the positioning signal receiving antenna 10 is fixedly installed, the 24-hour average of geocentric orthogonal coordinates is (X2, Y2, Z2), and the 24-hour average of ellipsoidal height (D2), the 24-hour average of horizontal movement is (X2-X1, Y2-Y1), the 24-hour average of ground height fluctuation is (D2-D1), and the satellite positioning signal At 18:00 on January 1, 2008 (200801011800) at the position where the receiving antenna 10 is fixedly installed, the 24-hour average of geocentric coordinates is (X3, Y3, Z3), and the 24-hour average of ellipsoidal height is ( D3), the 24-hour average of the horizontal movement amount is (X3-X2, Y3-Y2), and the 24-hour average of the ground height fluctuation amount is (D3-D2).

地盤変動解析部14は、1つの衛星測位信号受信アンテナ10について最も新しく算出された地心直交座標の24時間平均をデータベース16から取得する。この地心直交座標の24時間平均を第1の地心直交座標と呼ぶ。地盤変動解析部14は、同じ衛星測位信号受信アンテナ10について最も新しく算出された地心直交座標の24時間平均の1日前(24時間前)に算出された地心直交座標の24時間平均をデータベース16から取得する。この地心直交座標の24時間平均を第2の地心直交座標と呼ぶ。地盤変動解析部14は第1の地心直交座標と、第2の地心直交座標との距離を算出する。地盤変動解析部14は、第1の地心直交座標と、第2の地心直交座標との差が基準閾値以上であるかを判定する。基準閾値としては例えば3cmを想定する。   The ground fluctuation analysis unit 14 acquires, from the database 16, a 24-hour average of the geocentric orthogonal coordinates calculated most recently for one satellite positioning signal receiving antenna 10. The 24-hour average of the geocentric orthogonal coordinates is referred to as the first geocentric orthogonal coordinates. The ground deformation analysis unit 14 is a database of the 24-hour average of geocentric orthogonal coordinates calculated one day before (24 hours before) the 24-hour average of geocentric orthogonal coordinates calculated most recently for the same satellite positioning signal receiving antenna 10. 16 from. The 24-hour average of the geocentric orthogonal coordinates is referred to as second geocentric orthogonal coordinates. The ground fluctuation analysis unit 14 calculates the distance between the first geocentric orthogonal coordinate and the second geocentric orthogonal coordinate. The ground fluctuation analysis unit 14 determines whether the difference between the first geocentric orthogonal coordinate and the second geocentric orthogonal coordinate is equal to or greater than a reference threshold. As the reference threshold value, for example, 3 cm is assumed.

第1の地心直交座標と、第2の地心直交座標との差が基準閾値以上である場合には、第1の地心直交座標と、第2の地心直交座標との差が24時間で3cm以上変動したことを示している。地盤変動解析部14は、第1の地心直交座標と、第2の地心直交座標との差が基準閾値以上である場合には、その第1の地心直交座標の位置の衛星測位信号受信アンテナ10と、第2の地心直交座標の位置の衛星測位信号受信アンテナ10とを端点として結ばれる基線を特定する。この基線の特定は、基準期間に基準閾値以上変動する閉領域を特定することの一態様である。地盤変動解析部14はさらに、特定した基線が基準閾値以上長く変動(伸長)したのか、または短く変動(収縮)したのかを判定する。地盤変動解析部14は、特定した基線の識別情報と、その基線が基準閾値以上長く変動したのか、または短く変動したのかを示す変動識別情報とを、データベース16に記録する。   When the difference between the first geocentric orthogonal coordinate and the second geocentric orthogonal coordinate is equal to or greater than the reference threshold, the difference between the first geocentric orthogonal coordinate and the second geocentric orthogonal coordinate is 24. It shows that the time fluctuated by 3 cm or more. If the difference between the first geocentric orthogonal coordinate and the second geocentric orthogonal coordinate is greater than or equal to a reference threshold, the ground fluctuation analysis unit 14 determines the satellite positioning signal at the position of the first geocentric orthogonal coordinate. A base line connecting the receiving antenna 10 and the satellite positioning signal receiving antenna 10 at the position of the second geocentric orthogonal coordinates is specified. The specification of the baseline is an aspect of specifying a closed region that fluctuates more than a reference threshold value in the reference period. The ground fluctuation analysis unit 14 further determines whether the specified baseline has fluctuated (stretched) longer than the reference threshold or fluctuated (shrinked) short. The ground fluctuation analysis unit 14 records the identified base line identification information and the fluctuation identification information indicating whether the base line has fluctuated longer or shorter than the reference threshold in the database 16.

データベース16は、衛星測位信号受信アンテナ10の位置を示す複数の地点それぞれのうち隣接すると判定される3点以上の各地点の頂点を環状に結ぶことによって構成される閉領域の識別情報と、その閉領域を構成する基線の識別情報と、基線の変動識別情報とを対応付けて保持した解析結果テーブルを記憶している。閉領域を構成する各地点や基線は予め定められていてよいし、任意に決定されてもよい。3点の各地点を環状に結ぶ閉領域である場合にはその閉領域は三角形を示し、4点の各地点を環状に結ぶ閉領域である場合にはその閉領域は四角形を示す。本実施形態の地盤解析装置1は、各地点を環状に結ぶ四角形の閉領域を、国土領域に設置される衛星測位信号受信アンテナ10の各地点を用いて特定し、その閉領域の識別情報を主に解析結果テーブルに記憶する。地盤解析装置1は衛星測位信号受信アンテナ10の各地点を環状に結ぶ四角形の閉領域が構成できない場合には三角形の閉領域を特定し、その閉領域の識別情報を解析結果テーブルに記憶する。地盤変動解析部14は全ての閉領域を構成する各基線について、基準期間(24時間)に基準閾値(3cm)以上長さが変動したかを判定する(ステップS111)。地盤変動解析部14は、その処理結果により特定した基線の識別情報と変動識別情報とを解析結果テーブルに記録していく。   The database 16 includes identification information of a closed region formed by linking vertices of three or more points determined to be adjacent to each other among a plurality of points indicating the position of the satellite positioning signal receiving antenna 10, and An analysis result table is stored in which the identification information of the base line constituting the closed region and the fluctuation identification information of the base line are held in association with each other. Each point and base line constituting the closed region may be determined in advance or may be arbitrarily determined. When the closed region connects the three points in a ring shape, the closed region indicates a triangle. In the closed region that connects the four points in a ring shape, the closed region indicates a quadrangle. The ground analysis device 1 according to the present embodiment specifies a square closed region that connects each point in a ring shape by using each point of the satellite positioning signal receiving antenna 10 installed in the land area, and identifies identification information of the closed region. Mainly stored in the analysis result table. The ground analysis device 1 specifies a closed region of a triangle when a quadrangular closed region that connects each point of the satellite positioning signal receiving antenna 10 in a ring shape cannot be formed, and stores identification information of the closed region in the analysis result table. The ground fluctuation analysis unit 14 determines whether or not the length of each base line constituting all the closed regions has fluctuated by the reference threshold (3 cm) or more in the reference period (24 hours) (step S111). The ground fluctuation analysis unit 14 records the base line identification information and the fluctuation identification information specified by the processing result in the analysis result table.

地盤変動結果出力部15は、データベース16に記録されている解析結果テーブルから基線の変動識別情報が保持されている基線の識別情報と、その基線に対応付けられている変動識別情報とを読み取る。地盤変動結果出力部15は、国土領域配置された衛星測位信号受信アンテナ10の地点間を結ぶ四角形または三角形の閉領域が領土面全域に連なる基線網を、国土領域の地図上に重ねて表示するための表示データを生成する(ステップS112)。地盤変動結果出力部15は、表示データの生成の際に、基線の識別情報と基線の変動識別情報とに基づいて基線の表示態様を変更する。例えば地盤変動結果出力部15は、基線の変動識別情報が、基準閾値以上長く変動したことを示す場合には、その基線の色を赤に変更する。また地盤変動結果出力部15は、基線の変動識別情報が、基準閾値以上短く変動したことを示す場合には、その基線の色を青に変更する。地盤変動結果出力部15は、生成した表示データをインターネットなどの通信網を介して接続された端末へ送信する(ステップS113)。送信先の端末は、学者、気象情報配信会社、測量企業、建設企業、自治体が保有する端末であってよい。送信先の端末は、個人が携帯する携帯端末であってもよい。送信先の端末はSNS(Social Networking Service)の情報を配信する、インターネットに接続されたコンピュータサーバであってもよい。   The ground fluctuation result output unit 15 reads from the analysis result table recorded in the database 16 the base line identification information in which the base line fluctuation identification information is held, and the fluctuation identification information associated with the base line. The ground change result output unit 15 displays a base line network in which quadrangular or triangular closed areas connecting the points of the satellite positioning signal receiving antennas 10 arranged in the national land area are continuous over the entire territorial surface, superimposed on the national land area map. Display data is generated (step S112). The ground change result output unit 15 changes the display mode of the base line based on the base line identification information and the base line change identification information when generating the display data. For example, if the base line change identification information indicates that the base line change identification information has changed longer than the reference threshold, the base line change result output unit 15 changes the color of the base line to red. The ground change result output unit 15 changes the color of the base line to blue when the base line change identification information indicates that the base line change information has changed shorter than the reference threshold. The ground change result output unit 15 transmits the generated display data to a terminal connected via a communication network such as the Internet (step S113). The destination terminal may be a terminal held by a scholar, a weather information distribution company, a surveying company, a construction company, or a local government. The destination terminal may be a portable terminal carried by an individual. The destination terminal may be a computer server connected to the Internet that distributes SNS (Social Networking Service) information.

地盤変動解析部14は、基準期間に基準閾値以上変動する閉領域を特定することの一態様として、閉領域の面積の変化率を用いて特定してもよい。
この場合、地盤変動解析部14は、1つの閉領域を構成する衛星測位信号受信アンテナ10の各地点について最も新しく算出された地心直交座標の24時間平均をデータベース16から取得する。地盤変動解析部14はそれら各地点の地心直交座標の24時間平均から閉領域の面積を算出する。この面積を第1の面積と呼ぶ。
地盤変動解析部14は、同一の1つの閉領域を構成する衛星測位信号受信アンテナ10の各地点について最も新しく算出された地心直交座標の24時間平均の1日前(24時間前)に算出された地心直交座標の24時間平均をデータベース16から取得する。地盤変動解析部14はそれら各地点の地心直交座標の24時間平均から1日前の閉領域の面積を算出する。この面積を第2の面積と呼ぶ。
地盤変動解析部14は、第1の面積から第2の面積への変化率を算出する。地盤変動解析部14は、第1の面積から第2の面積への変化率が基準閾値以上であるかを判定する。基準閾値としては例えば3パーミル(‰)を想定する。
The ground fluctuation analysis unit 14 may specify the closed area that changes more than the reference threshold in the reference period by using the change rate of the area of the closed area.
In this case, the ground fluctuation analysis unit 14 acquires from the database 16 the 24-hour average of the geocentric orthogonal coordinates calculated most recently for each point of the satellite positioning signal receiving antenna 10 constituting one closed region. The ground fluctuation analysis unit 14 calculates the area of the closed region from the 24-hour average of the geocentric Cartesian coordinates of each point. This area is called the first area.
The ground fluctuation analysis unit 14 is calculated one day before (24 hours before) the 24-hour average of the latest geocentric orthogonal coordinates calculated for each point of the satellite positioning signal receiving antenna 10 constituting the same closed region. A 24-hour average of the geocentric Cartesian coordinates is obtained from the database 16. The ground deformation analysis unit 14 calculates the area of the closed region one day ago from the 24-hour average of the geocentric Cartesian coordinates of each point. This area is called the second area.
The ground fluctuation analysis unit 14 calculates the rate of change from the first area to the second area. The ground fluctuation analysis unit 14 determines whether the rate of change from the first area to the second area is greater than or equal to a reference threshold value. As the reference threshold value, for example, 3 per mil (‰) is assumed.

第1の面積から第2の面積への変化率が基準閾値以上である場合には、第1の面積から第2の面積への変化率が24時間で3‰以上変化したことを示している。地盤変動解析部14は、第1の面積から第2の面積への変化率が基準閾値以上である場合には、その第1および第2の面積を算出した閉領域を特定する。この閉領域の特定は、基準期間に基準閾値以上変動する閉領域を特定することの一態様である。地盤変動解析部14はさらに、特定した閉領域が基準閾値以上大きく変動(拡大)したのか、または小さく変動(縮小)したのかを判定する。地盤変動解析部14は、特定した閉領域の識別情報と、その閉領域が基準閾値以上拡大したのか、または縮小したのかを示す変動識別情報とを、データベース16に記録する。   If the rate of change from the first area to the second area is equal to or greater than the reference threshold, it indicates that the rate of change from the first area to the second area has changed by 3 ‰ or more in 24 hours. . If the rate of change from the first area to the second area is greater than or equal to the reference threshold value, the ground fluctuation analysis unit 14 specifies the closed region where the first and second areas are calculated. The specification of the closed region is an aspect of specifying a closed region that fluctuates more than a reference threshold value in the reference period. The ground fluctuation analysis unit 14 further determines whether the specified closed region has fluctuated (enlarged) or fluctuated (reduced) a little more than a reference threshold. The ground fluctuation analysis unit 14 records the identified closed area identification information and the fluctuation identification information indicating whether the closed area has been expanded or reduced by a reference threshold value or more in the database 16.

データベース16の保持する解析結果テーブルは、閉領域の識別情報と、その閉領域についての変動識別情報とを記憶する。地盤変動解析部14は全ての閉領域について、基準期間(24時間)に基準閾値(3‰)以上大きさが変動したかを判定する。地盤変動解析部14は、その処理結果により特定した閉領域の識別情報と変動識別情報とを解析結果テーブルに記録していく。   The analysis result table held in the database 16 stores the identification information of the closed region and the fluctuation identification information about the closed region. The ground fluctuation analysis unit 14 determines whether or not the magnitude of all the closed areas has fluctuated by the reference threshold (3 ‰) or more in the reference period (24 hours). The ground fluctuation analysis unit 14 records the identification information and the fluctuation identification information of the closed region specified by the processing result in the analysis result table.

地盤変動結果出力部15は、データベース16に記録されている解析結果テーブルから閉領域についての変動識別情報が保持されている閉領域と、その変動識別情報とを読み取る。地盤変動結果出力部15は、国土領域配置された地点間を結ぶ四角形または三角形の閉領域が領土面全域に連なる基線網を国土領域の地図上に重ねて表示するための表示データを生成する。地盤変動結果出力部15は、表示データの生成の際に、閉領域の識別情報と、閉領域の変動識別情報とに基づいて閉領域の表示態様を変更する。例えば地盤変動結果出力部15は、閉領域の変動識別情報が、基準閾値以上変化したことを示す場合には、その閉領域に色を付けて変更する。地盤変動結果出力部15は、閉領域の変動識別情報に基づいて変化が拡大か収縮かを判定し、拡大か縮小かに応じて異なる色を付けて変更するようにしてもよい。地盤変動結果出力部15は、生成した表示データをインターネットなどの通信網を介して接続された端末へ送信する。   The ground fluctuation result output unit 15 reads from the analysis result table recorded in the database 16 the closed area in which the fluctuation identification information about the closed area is held and the fluctuation identification information. The ground change result output unit 15 generates display data for displaying a base line network in which quadrangular or triangular closed regions connecting between points arranged in the national land region are connected to the entire territorial surface on the map of the national land region. The ground fluctuation result output unit 15 changes the display mode of the closed area based on the identification information of the closed area and the fluctuation identification information of the closed area when generating the display data. For example, when the change identification information of the closed region indicates that the closed region change identification information has changed by a reference threshold value or more, the ground change result output unit 15 changes the closed region by coloring it. The ground change result output unit 15 may determine whether the change is expansion or contraction based on the change identification information of the closed region, and may change the color with a different color depending on whether the change is expansion or reduction. The ground change result output unit 15 transmits the generated display data to a terminal connected via a communication network such as the Internet.

図7は閉領域のひずみに算出する算出式に用いるパラメータを説明する図である。
地盤変動解析部14は、基準期間に基準閾値以上変動する閉領域を特定することの一態様として、閉領域のひずみ(歪)を用いて特定してもよい。
この場合、地盤変動解析部14は、1つの閉領域を構成する衛星測位信号受信アンテナ10の各地点について最も新しく算出された地心直交座標の24時間平均をデータベース16から取得する。地盤変動解析部14はそれら各地点の地心直交座標から閉領域を構成する三角形領域を特定する。例えば閉領域が四角形領域であれば、対角の2つの地点を結ぶことにより2つの三角形領域を特定することができる。
FIG. 7 is a diagram for explaining parameters used in a calculation formula for calculating the strain in the closed region.
The ground fluctuation analysis unit 14 may specify the closed region by using the strain (strain) of the closed region as one aspect of specifying the closed region that fluctuates more than the reference threshold value in the reference period.
In this case, the ground fluctuation analysis unit 14 acquires from the database 16 the 24-hour average of the geocentric orthogonal coordinates calculated most recently for each point of the satellite positioning signal receiving antenna 10 constituting one closed region. The ground fluctuation analysis unit 14 specifies a triangular area constituting a closed area from the geocentric orthogonal coordinates of each point. For example, if the closed region is a quadrangular region, two triangular regions can be specified by connecting two diagonal points.

地盤変動解析部14は特定した三角形領域の各地点について最も新しく算出された地心直交座標の24時間平均の1日前(24時間前)に算出された地心直交座標の24時間平均をデータベース16から取得する。そして地盤変動解析部14は特定した三角形領域の頂点である各地点について算出された地心直交座標の24時間平均と、その1日前の地心直交座標の24時間平均とを用いて、三角形領域のある頂点を端点とする一辺(基線)の変動量成分である、(1)x軸方向の伸縮量、(2)x軸のy方向への変位量、(3)y軸方向の伸縮量、(4)y軸のx方向への変位量を算出する。   The ground fluctuation analysis unit 14 uses the database 16 to calculate the 24-hour average of the geocentric Cartesian coordinates calculated one day before (24 hours before) the 24-hour average of the most recently calculated geocentric Cartesian coordinates for each point of the specified triangular region. Get from. Then, the ground fluctuation analysis unit 14 uses the 24-hour average of the geocentric orthogonal coordinates calculated for each point that is the apex of the identified triangular area, and the 24-hour average of the geocentric orthogonal coordinates one day before the triangular area. (1) The amount of expansion / contraction in the x-axis direction, (2) The amount of displacement of the x-axis in the y-direction, and (3) The amount of expansion / contraction in the y-axis direction. (4) The amount of displacement of the y axis in the x direction is calculated.

ここでx軸方向の伸縮量(−εxxδx)は、特定した三角形領域において設定した頂点を原点として南北方向をx軸、東西方向をy軸と仮定し、24時間後の三角形領域の同一頂点を原点としたときの、当該頂点を基準とする2つの辺のうちのx軸との成す角度が小さい辺のx軸方向の伸縮量を示す。δxは特定した三角形領域においてx軸との成す角度が小さい辺の元の長さである。
またy軸方向の伸縮量(−εyyδy)は、三角形領域における上記と同じ頂点を原点とした同様のx軸、y軸を仮定し、24時間後の三角形領域の同一頂点を原点としたときの、当該頂点を基準とする2つの辺のうちのy軸との成す角度が小さい辺のy軸方向の伸縮量を示す。δyは特定した三角形領域においてy軸との成す角度が小さい辺の元の長さである。
Here, the amount of expansion and contraction in the x-axis direction (−ε xx δx) is the same as that in the triangle area after 24 hours, assuming that the apex set in the specified triangle area is the origin and the north-south direction is the x-axis and the east-west direction is the y-axis. The amount of expansion / contraction in the x-axis direction of a side having a small angle with the x-axis of two sides with the vertex as a reference when the vertex is the origin is shown. δx is the original length of the side having a small angle with the x axis in the specified triangular region.
The amount of expansion and contraction in the y-axis direction (-ε yy δy) is assumed to be the same x-axis and y-axis with the same vertex in the triangle region as the origin, and the same vertex in the triangle region after 24 hours as the origin. The amount of expansion / contraction in the y-axis direction of the side with a small angle formed with the y-axis of the two sides with the vertex as a reference is shown. δy is the original length of the side having a small angle with the y-axis in the specified triangular region.

またx軸のy方向への変位量(−(εxy+ω)δx)は、三角形領域の原点を一端として伸び、x軸との成す角度が小さい辺における他端の頂点がy軸方向の変位した量を示している。
またy軸のx方向への変位量(−(ω−εxy)δy)は、三角形領域の原点を一端として伸び、y軸との成す角度が小さい辺における他端の頂点がy軸方向の変位した量を示している。
Further, the displacement amount (− (ε xy + ω z ) δx) of the x axis in the y direction extends with the origin of the triangular region as one end, and the apex of the other end in the side having a small angle with the x axis is in the y axis direction. The amount of displacement is shown.
The displacement amount (− (ω z −ε xy ) δy) of the y axis in the x direction extends with the origin of the triangular region as one end, and the apex of the other end on the side having a small angle with the y axis is the y axis direction. The amount of displacement is shown.

これら、(1)x軸方向の伸縮量、(2)x軸のy方向への変位量、(3)y軸方向の伸縮量、(4)y軸のx方向への変位量を用いて、特定した三角形領域において設定した頂点を端点とする一辺(基線)の変動量成分を表す式を以下の式(1)、式(2)に示す。   Using (1) the amount of expansion / contraction in the x-axis direction, (2) the amount of displacement of the x-axis in the y-direction, (3) the amount of expansion / contraction in the y-axis direction, and (4) the amount of displacement of the y-axis in the x-direction. The following formulas (1) and (2) represent the variation component of one side (base line) with the vertex set in the specified triangular area as an end point.

Figure 2017075810
Figure 2017075810

Figure 2017075810
Figure 2017075810

また式(1)、式(2)より、24時間後の三角形領域のある設定した頂点を端点とする一辺(基線)の変動量が十分小さいと認定される場合には、その一辺(基線)の変位量成分を、式(3),式(4)で表すことができる。   In addition, when it is recognized from Equations (1) and (2) that the variation amount of one side (baseline) whose end point is a set vertex of a triangular area after 24 hours is determined to be sufficiently small, the one side (baseline) These displacement amount components can be expressed by Equations (3) and (4).

Figure 2017075810
Figure 2017075810

Figure 2017075810
Figure 2017075810

上記式において、ωは回転を示しており、 In the above equation, ω z indicates rotation,

Figure 2017075810
Figure 2017075810

Figure 2017075810
Figure 2017075810

Figure 2017075810
Figure 2017075810

で表される。
そして、当該一辺をLと表すと、当該辺Lの伸び率(dL/L)を、式(8)で表すことができる。また同様に特定した三角形領域の残りの2つの辺をL,Lと呼ぶとする。すると、辺Lの伸び率(dL/L)とLの伸び率(dL/L)を、式(9),式(10)で表すことができる。なお各式においてθ,θ,θは、変動前の三角形領域における各辺L,L,Lがx軸と成す角度を示している(図7参照)。
It is represented by
When representing the one side and L 1, elongation of the sides L 1 a (dL 1 / L 1), it can be expressed by Equation (8). Similarly, the remaining two sides of the specified triangular area are referred to as L 2 and L 3 . Then, elongation of the side L 2 (dL 2 / L 2 ) and elongation L 3 a (dL 3 / L 3), can be expressed by Equation (9), equation (10). In each equation, θ 1 , θ 2 , and θ 3 indicate angles formed by the sides L 1 , L 2 , and L 3 in the triangular region before the change with the x-axis (see FIG. 7).

Figure 2017075810
Figure 2017075810

Figure 2017075810
Figure 2017075810

Figure 2017075810
Figure 2017075810

地盤変動解析部14は式(5)、式(6)、式(7)を連立方程式で解くことにより、ひずみ成分εxx,εyyを算出する。なお、上記式のそれぞれや、ひずみの計算手法については公知の技術であり、例えば、「Turcotte, D.L. and G.Schubelt, Geodynamics - Application of Continuous Physics to Geological Problems, Second Edition CAMBRIDGE UNIVERSITY PRESS ,September 2013,p154-p167」に記載されている手法を用いてよい。 The ground fluctuation analysis unit 14 calculates strain components ε xx and ε yy by solving the equations (5), (6), and (7) with simultaneous equations. Note that each of the above formulas and strain calculation methods are known techniques, such as `` Turcotte, DL and G. Schubelt, Geodynamics-Application of Continuous Physics to Geological Problems, Second Edition CAMBRIDGE UNIVERSITY PRESS, September 2013, The method described in “p154-p167” may be used.

地盤変動解析部14はひずみ成分εxx,εyyの合計値(dilatation(面積ひずみ))を算出し、当該合計値が基準閾値以上である場合には、その三角形領域を含む閉領域において24時間でひずみが発生したと判定し、その閉領域を特定する。この閉領域の特定は、基準期間に基準閾値以上のひずみが発生した閉領域を特定することの一態様である。地盤変動解析部14はさらに、特定した閉領域に基準閾値以上大きなひずみが発生したのか、または小さなひずみが発生したのかを判定してもよい。地盤変動解析部14は、特定した閉領域の識別情報と、その閉領域に基準閾値以上の大きなひずみが発生したのか、または小さなひずみが発生したのかを示す変動識別情報とを、データベース16に記録してもよい。 The ground deformation analysis unit 14 calculates a total value (dilatation (area strain)) of the strain components ε xx and ε yy , and when the total value is equal to or greater than the reference threshold, the ground region analysis unit 14 performs 24 hours in a closed region including the triangular region. It is determined that distortion has occurred, and the closed region is specified. The specification of the closed region is an aspect of specifying a closed region in which a strain greater than or equal to the reference threshold has occurred in the reference period. The ground fluctuation analysis unit 14 may further determine whether a strain larger than the reference threshold has occurred or a small strain has occurred in the specified closed region. The ground fluctuation analysis unit 14 records the identified closed area identification information and the fluctuation identification information indicating whether a large strain greater than or equal to a reference threshold has occurred in the closed region or a small strain has occurred in the database 16. May be.

データベース16の保持する解析結果テーブルは、閉領域の識別情報と、その閉領域についての変動識別情報とを記憶する。地盤変動解析部14は全ての閉領域について、基準期間に基準閾値以上のひずみが発生したかを判定する。地盤変動解析部14は、その処理結果により特定した閉領域の識別情報と変動識別情報とを解析結果テーブルに記録していく。   The analysis result table held in the database 16 stores the identification information of the closed region and the fluctuation identification information about the closed region. The ground fluctuation analysis unit 14 determines whether a strain greater than the reference threshold has occurred in the reference period for all closed regions. The ground fluctuation analysis unit 14 records the identification information and the fluctuation identification information of the closed region specified by the processing result in the analysis result table.

地盤変動結果出力部15は、データベース16に記録されている解析結果テーブルから閉領域についての変動識別情報が保持されている閉領域と、その変動識別情報とを読み取る。地盤変動結果出力部15は、国土領域配置された地点間を結ぶ四角形または三角形の閉領域が領土面全域に連なる基線網を国土領域の地図上に重ねて表示するための表示データを生成する。地盤変動結果出力部15は、表示データの生成の際に、閉領域の識別情報と、閉領域の変動識別情報とに基づいて閉領域の表示態様を変更する。例えば地盤変動結果出力部15は、閉領域の変動識別情報が、基準閾値以上のひずみ発生を示す場合には、その閉領域に色を付けて変更する。地盤変動結果出力部15は、生成した表示データをインターネットなどの通信網を介して接続された端末へ送信する。   The ground fluctuation result output unit 15 reads from the analysis result table recorded in the database 16 the closed area in which the fluctuation identification information about the closed area is held and the fluctuation identification information. The ground change result output unit 15 generates display data for displaying a base line network in which quadrangular or triangular closed regions connecting between points arranged in the national land region are connected to the entire territorial surface on the map of the national land region. The ground fluctuation result output unit 15 changes the display mode of the closed area based on the identification information of the closed area and the fluctuation identification information of the closed area when generating the display data. For example, when the variation identification information of the closed region indicates the occurrence of distortion greater than or equal to the reference threshold, the ground variation result output unit 15 changes the closed region with a color. The ground change result output unit 15 transmits the generated display data to a terminal connected via a communication network such as the Internet.

上述の例では、基線の長さの、閉領域の面積、閉領域のひずみ、のそれぞれの変化率が基準時間に基準閾値以上変動した場合の例について説明したが、何れか一つまたは複数の変化によって閉領域の表示態様を変化させてよい。なお地盤解析装置1は、閉領域が4地点以上を結ぶ基線により構成される閉領域である場合には、当該閉領域を三角形領域に区分けして、当該三角形領域が基準期間に基準閾値以上変動するかを判定するようにしてよい。   In the above example, the example in which the change rate of the length of the base line, the area of the closed region, and the strain of the closed region fluctuates more than the reference threshold at the reference time has been described. The display mode of the closed region may be changed by the change. The ground analysis device 1 divides the closed area into triangular areas when the closed area is composed of a base line connecting four or more points, and the triangular area fluctuates more than the reference threshold value during the reference period. You may decide to do.

図8は基線網を示す図である。
地盤解析装置1は、図8で示すような、国土領域配置された地点間を結ぶ四角形または三角形の閉領域が領土面全域に連なる基線網を、国土領域の地図上に重ねた画像を出力することができる。地盤解析装置1は図7で示す画像において、特定された基線の表示態様を変更した画像を示す表示データを送信する。
FIG. 8 is a diagram showing a baseline network.
As shown in FIG. 8, the ground analysis device 1 outputs an image in which a base line network in which a closed area of a quadrangle or a triangle connecting between points arranged in the land area is connected to the entire territorial surface is superimposed on a map of the land area. be able to. The ground analysis device 1 transmits display data indicating an image obtained by changing the display mode of the identified baseline in the image shown in FIG.

図9は表示データの一例を示す第一の図である。
図9中A1,A2,A3,A4,A5,B1,B2は基準期間(24時間)に基準閾値(3cm)以上長さが変動した基線を示している。基線A1,A2,A3,A4,A5は基準期間(24時間)に基準閾値(3cm)以上長さが伸長した基線を示している。基線B1,B2は基準期間(24時間)に基準閾値(3cm)以上長さが収縮した基線を示している。また閉領域S1,S2はそれぞれ基準期間に基準閾値以上面積が変化した閉領域を示している。なお閉領域や基線の表示の態様はどのようなものであってもよい。例えば変化のあった閉領域にマークや番号を表示して変化のあった閉領域を判定者が判定できるようにしてもよい。閉領域S1,S2はひずみが閾値以上の閉領域として表示するようにしてもよい。
FIG. 9 is a first diagram showing an example of display data.
In FIG. 9, A1, A2, A3, A4, A5, B1, and B2 indicate baselines whose lengths fluctuated by the reference threshold (3 cm) or more in the reference period (24 hours). Base lines A1, A2, A3, A4, and A5 indicate base lines whose length is extended by a reference threshold (3 cm) or more in a reference period (24 hours). Base lines B1 and B2 indicate base lines whose length contracted by a reference threshold (3 cm) or more in the reference period (24 hours). Closed regions S1 and S2 indicate closed regions whose areas have changed by a reference threshold value or more during the reference period. Note that the display mode of the closed region and the baseline may be any. For example, a mark or a number may be displayed on the closed area that has changed so that the determiner can determine the closed area that has changed. You may make it display closed area | region S1, S2 as a closed area | region where distortion is more than a threshold value.

図10は表示データの一例を示す第二の図である。
図10で示す表示データのように、地盤解析装置1は、閉領域が示す四角形の対角線の基線(A6,B3)が、基準期間に基準閾値以上変化した場合に、その基線を特定して表示データにおいて表示するようにしてもよい。
FIG. 10 is a second diagram illustrating an example of display data.
As in the display data shown in FIG. 10, the ground analysis device 1 identifies and displays the base line of the square diagonal line (A6, B3) indicated by the closed region more than the reference threshold during the reference period. You may make it display in data.

以上の地盤解析装置1の処理によれば、通信ネットワークを介して日本全国に固定設置された多くの衛星測位信号受信アンテナ10からの衛星測位信号を座標計測装置2が受信し、そのデータに基づいて、特定の衛星測位信号受信アンテナ10の24時間平均の地心直交座標を、座標計測装置2や地盤解析装置1が即時に算出することができる。そしてそのように算出した地心直交座標に基づいて、基準期間に基準閾値以上変化した閉領域を、通信ネットワークを介して接続された端末等に出力できる。これにより、地盤変動の大きい国土領域の特定位置が明らかに迅速に分かるように観察者に通知することができ、大きな災害等が発生する箇所を緊急に判定することができるようになる。これにより、有用性の高い地盤の変動の情報を迅速に伝えることができる。   According to the processing of the ground analysis device 1 described above, the coordinate measurement device 2 receives satellite positioning signals from many satellite positioning signal receiving antennas 10 fixedly installed throughout Japan through the communication network, and based on the data. Thus, the coordinate measuring device 2 and the ground analysis device 1 can immediately calculate the 24-hour average geocentric orthogonal coordinates of the specific satellite positioning signal receiving antenna 10. Based on the geocentric Cartesian coordinates calculated in this way, a closed region that has changed by a reference threshold value or more during the reference period can be output to a terminal or the like connected via a communication network. Thereby, it is possible to notify the observer so that the specific position of the land area having a large ground fluctuation can be clearly and quickly understood, and it is possible to urgently determine a location where a large disaster or the like occurs. Thereby, the information of the fluctuation of the ground having high utility can be quickly transmitted.

地盤解析装置1は国土領域において任意に与えられた3点以上の座標に基づいて新たな閉領域を特定し、その閉領域が基準期間に基準閾値以上変化したかを判定して、その閉領域についての上述のような表示データを生成するようにしてもよい。この場合、地盤解析装置1は、任意に与えられた3点の座標の変動を、その周りの幾つかの衛星測位信号受信アンテナ10の24時間平均の地心直交座標と、それらの地点の移動速度と、四次元統合網平均計算式を用いて算出する。   The ground analysis device 1 specifies a new closed area based on three or more arbitrarily given coordinates in the land area, determines whether the closed area has changed by a reference threshold or more during the reference period, and then determines the closed area. Display data as described above may be generated. In this case, the ground analysis device 1 uses the three-dimensional coordinate fluctuation given arbitrarily, the 24-hour average geocentric orthogonal coordinates of several satellite positioning signal receiving antennas 10 around it, and the movement of those points. Calculate using the speed and the four-dimensional integrated network average formula.

地盤変動解析部14の処理により各衛星測位信号受信アンテナ10についての所定の間隔毎の地心直交座標の24時間平均、楕円体高の24時間平均、水平移動量の24時間平均、地盤高変動量の24時間平均の算出結果が算出結果テーブルに蓄積された後、例えば、地盤変動結果出力部15は、それら地心直交座標の24時間平均、楕円体高の24時間平均、水平移動量の24時間平均、地盤高変動量の24時間平均の、所定の間隔毎(本実施形態においては3時間毎)の結果を他の端末に送信、モニタに出力、またはプリント印刷するようにしてもよい。   By the processing of the ground fluctuation analysis unit 14, the 24-hour average of the geocentric orthogonal coordinates, the 24-hour average of the ellipsoidal height, the 24-hour average of the horizontal movement amount, and the ground height fluctuation amount for each satellite positioning signal receiving antenna 10. After the 24-hour average calculation results are accumulated in the calculation result table, for example, the ground fluctuation result output unit 15 performs the 24-hour average of the geocentric orthogonal coordinates, the 24-hour average of the ellipsoidal height, and the horizontal movement amount of 24 hours. The average and the ground height fluctuation amount of the 24-hour average, the result at every predetermined interval (every 3 hours in the present embodiment) may be transmitted to another terminal, output to a monitor, or printed.

図11は楕円体高の地盤変動解析結果の出力例を示す図である。
この図が示すように地盤変動結果出力部15は、上述の処理により算出した24時間平均の衛星測位信号受信アンテナ10(ID=00001)の楕円体高を、所定の間隔毎に算出し、それらをグラフに表した出力結果をモニタ等に出力するようにしてもよい。図11で示すような24時間平均の楕円体高等の地盤変動を表示することにより、地震後などに地盤変動の周期的な変化が収まらないような場合にも正確な地盤変動量を出力することが可能となり、その所定の間隔における変動量の大きさにより、災害が発生するか否かの判定に用いることができる。
FIG. 11 is a diagram showing an output example of the ground deformation analysis result of the ellipsoidal height.
As shown in this figure, the ground fluctuation result output unit 15 calculates the ellipsoidal height of the satellite positioning signal receiving antenna 10 (ID = 00001) averaged for 24 hours calculated by the above-described processing at predetermined intervals, and outputs them. The output result shown in the graph may be output to a monitor or the like. By displaying the ground deformation such as the ellipsoidal height averaged over 24 hours as shown in FIG. 11, even when the periodic change of the ground deformation does not fit after an earthquake etc., an accurate ground deformation amount is output. And can be used for determining whether or not a disaster occurs depending on the magnitude of the fluctuation amount at the predetermined interval.

また、同様に、地盤変動の出力の指示入力、またはプログラムによる地盤変動の出力処理の開始時刻の検出に基づいて、地盤変動結果出力部15は、特定の衛星測位信号受信アンテナ10の24時間平均の地心直交座標、水平移動量、地盤高変動量などの出力結果を出力するようにしてもよい。   Similarly, based on the detection input of the ground fluctuation output instruction or the start time of the ground fluctuation output process by the program, the ground fluctuation result output unit 15 averages the 24-hour average of the specific satellite positioning signal receiving antenna 10. Output results such as the geocentric orthogonal coordinates, the horizontal movement amount, and the ground height fluctuation amount may be output.

上述の処理によれば、また、通信ネットワークを介して日本全国に固定設置された多くの衛星測位信号受信アンテナ10からの衛星測位信号を座標計測装置2が受信し、そのデータに基づいて、特定の衛星測位信号受信アンテナ10の24時間平均の地心直交座標、楕円体高、水平移動量、地盤高変動量などの地盤変動を、座標計測装置2や地盤解析装置1が即時に確認することができる。これにより、観察者の所望の時間において、大きな災害が発生する箇所を緊急に判定することのできるようになる。
また、座標計測装置2それぞれが異なる基準時刻で地心直交座標と楕円体高の24時間平均を算出するので、処理負荷が分散されるとともに、1時間以上かかる24時間平均の算出処理を、24時間より短い所定の時間毎(本実施形態では3時間毎)に地盤解析装置1で受信することができ、緊急性を要する地域の地盤変動を解析することができる。
According to the above processing, the coordinate measuring device 2 receives satellite positioning signals from many satellite positioning signal receiving antennas 10 that are fixedly installed throughout Japan through the communication network, and specifies the data based on the data. The coordinate measurement device 2 and the ground analysis device 1 can immediately confirm ground fluctuations such as 24-hour average geocentric orthogonal coordinates, ellipsoidal height, horizontal movement amount, ground height fluctuation amount of the satellite positioning signal receiving antenna 10 of the satellite positioning signal receiving antenna 10. it can. This makes it possible to urgently determine a location where a large disaster occurs at the time desired by the observer.
In addition, since each coordinate measuring device 2 calculates the 24-hour average of the geocentric orthogonal coordinates and the ellipsoidal height at different reference times, the processing load is dispersed and the 24-hour average calculation process that takes 1 hour or more is performed for 24 hours. It can be received by the ground analysis device 1 every shorter predetermined time (every 3 hours in the present embodiment), and the ground fluctuation in the area requiring urgency can be analyzed.

なお、上述の処理においては、地盤解析装置1が、座標計測装置2から衛星測位信号を直接受信する場合について説明したが、何らかの衛星測位信号の蓄積サーバを経由して、当該衛星測位信号を受信するようにしてもよい。   In the above-described processing, the case where the ground analysis device 1 directly receives the satellite positioning signal from the coordinate measuring device 2 has been described. However, the satellite positioning signal is received via some kind of satellite positioning signal storage server. You may make it do.

上述の地盤解析装置1は、内部にコンピュータシステムを有している。そして、上述した各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。   The above-described ground analysis device 1 has a computer system inside. Each process described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing the program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。   The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

1・・・地盤解析装置
2・・・座標計測装置
10・・・衛星測位信号受信アンテナ
20・・・衛星測位信号受信装置
11,21・・・通信処理部
12,22・・・制御部
13・・・アンテナ位置算出結果受信部
14・・・地盤変動解析部
15・・・地盤変動結果出力部
16,26・・・データベース
23・・・衛星測位信号受信部
24・・・アンテナ位置算出部
25・・・アンテナ位置算出結果出力部
DESCRIPTION OF SYMBOLS 1 ... Ground analysis device 2 ... Coordinate measuring device 10 ... Satellite positioning signal receiving antenna 20 ... Satellite positioning signal receiving device 11, 21 ... Communication processing part 12, 22 ... Control part 13・ ・ ・ Antenna position calculation result receiver 14 ・ ・ ・ Ground fluctuation analysis part 15 ・ ・ ・ Ground fluctuation result output part 16, 26 ・ ・ ・ Database 23 ・ ・ ・ Satellite positioning signal receiver 24 ・ ・ ・ Antenna position calculator 25 ... Antenna position calculation result output unit

本発明は、地盤情報システム、地盤解析装置、地盤情報処理方法、プログラムに関する。 The present invention relates to a ground information system, a ground analysis device, a ground information processing method, and a program.

そこでこの発明は、上述の課題を解決する地盤情報システム、地盤解析装置、地盤情報処理方法、プログラムを提供することを目的としている。 Accordingly, an object of the present invention is to provide a ground information system, a ground analysis device, a ground information processing method, and a program that solve the above-described problems.

本発明の第1の態様によれば、地盤情報システムは、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信する衛星測位信号受信手段と、所定時間平均の算出に用いる基準時刻と前記所定時間分の前記衛星測位信号に基づいて前記衛星測位信号受信アンテナそれぞれ前記固定設置された位置における前記基準時刻を基準とした所定時間平均の座標を前記所定時間毎に算出するアンテナ位置算出部と、前記地点それぞれのうち隣接すると判定される地点を結ぶ各基線の辺により構成される四角形の閉領域と前記地点それぞれのうち隣接すると判定される3地点を結ぶ各基線の辺により構成される三角形の閉領域が領域面で連なる基線網において、連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が基準閾値以上変動する前記閉領域を特定する特定部と、特定された閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を、通信ネットワーク網を介して接続された端末に対して所定間隔毎に送信する解析結果出力部と、を備える。 According to the first aspect of the present invention, the ground information system receives a satellite positioning signal received from a position observation satellite by each of a plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area. a satellite positioning signal receiving means for, the reference time in the fixed installation position of each of the satellite positioning signal receiving antenna based on said satellite positioning signal with the reference time used to calculate the average predetermined time the predetermined time period A rectangular closed region composed of an antenna position calculation unit that calculates the average coordinates for a predetermined time for each predetermined time, a base line side connecting four points determined to be adjacent to each other, and the reference point in baseline network continuous in the closed region and the region surface of the triangle formed by sides of the base line connecting the 3 points that are determined to be adjacent one point respectively, A specifying unit for specifying the closed region in which the predetermined time average of the coordinates calculated for each of the predetermined time before and after to continue varies more reference threshold, and change the display state closed regions identified as other closed regions An analysis result output unit that transmits a ground analysis result including display information obtained by superimposing the base line network on the national land area to a terminal connected via a communication network at predetermined intervals .

述の地盤情報システムは、前記四角形の閉領域を特定し、前記四角形の閉領域を特定できない前記地点については当該地点を結ぶ三角形の閉領域を特定して前記基線網を地図上に重ねて表示する前記表示情報を生成する表示情報生成部と、を備え、前記特定部は前記基線網を構成する前記四角形の閉領域については当該四角形を構成する対角の2地点を結ぶ線で当該四角形を分けた2つの三角形の領域に対する歪みを前記連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標に基づいて算出し、前記三角形の閉領域については当該三角形の領域に対する歪みを前記連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標に基づいて算出し、それら歪みの値と基準閾値とに基づいて歪を発生する閉領域を特定し、前記解析結果出力部は、特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた前記表示情報を含む地盤解析結果を出力してもよい。 Geotechnical systems above mentioned identifies the closed area of the quadrangle, the baseline network to identify the closed area of a triangle connecting the point for the point can not be determined closed area of the rectangle superimposed on the map A display information generating unit that generates the display information to be displayed, and the specifying unit includes, for a closed region of the quadrangle that forms the base line network, a line connecting two diagonal points that form the quadrangle Is calculated on the basis of the coordinates of the predetermined time average calculated for each of the predetermined times before and after the continuous, and for the closed region of the triangle, the distortion for the triangular region is calculated. Calculated based on the coordinates of the predetermined time average calculated for each of the predetermined time before and after the continuous, and distortion based on the value of the distortion and a reference threshold The analysis result output unit changes the display state of the specified closed area with another closed area and displays the ground analysis result including the display information obtained by overlaying the base line network on the national land area. It may be output .

また上述の地盤情報システムにおいて、前記特定部は、前記基線網において、前記基線の端点にそれぞれ位置する前記衛星測位信号受信アンテナの前記連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が変動することにより前記基線の長さが基準閾値以上変化した基線を、当該基線を含む閉領域において特定し、前記解析結果出力部は、特定された基線を他の基線と表示状態を変更して前記国土領域に前記基線網を重ねた前記表示情報を含む地盤解析結果を出力してもよい。 Further, in the above ground information system, the specifying unit may calculate the predetermined time average calculated for each of the predetermined times before and after the satellite positioning signal receiving antennas respectively located at the end points of the base line in the base line network. The base line whose base line length has changed by a reference threshold or more due to a change in the coordinates of the base line is specified in a closed region including the base line, and the analysis result output unit displays the specified base line in a display state with other base lines. A ground analysis result including the display information obtained by changing and overlaying the base line network on the national land area may be output .

また上述の地盤情報システムにおいて、前記特定部は、前記四角形の2つの対角線を示す対角の基線を特定し、当該基線の端点にそれぞれ位置する前記衛星測位信号受信アンテナの前記連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が変動することにより当該基線の長さが基準閾値以上変化した基線を、当該基線を含む閉領域において特定してもよい。 Further, in the above ground information system, the specifying unit specifies a diagonal base line indicating two diagonal lines of the quadrangle, and the satellite positioning signal receiving antennas before and after the continuous positioning signals respectively positioned at end points of the base line A base line in which the length of the base line has changed by a reference threshold or more due to a change in the average coordinates calculated for each predetermined time may be specified in a closed region including the base line.

また上述の地盤情報システムにおいて、前記特定部は、前記基線網を構成する前記四角形と前記三角形のそれぞれの前記閉領域のうち前記連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が変動することに基づく基準閾値以上の面積変動を発生する閉領域を特定し、前記解析結果出力部は、特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた前記表示情報を含む地盤解析結果を出力してもよい。 Further, in the above ground information system , the specifying unit calculates the average of the predetermined times calculated for each of the predetermined times before and after the continuous in each of the closed regions of the quadrangle and the triangle constituting the baseline network. A closed region that generates an area variation equal to or greater than a reference threshold based on the change in coordinates is identified, and the analysis result output unit changes the display state of the identified closed region to another closed region and changes the display state to the national land region. A ground analysis result including the display information on which a base line network is superimposed may be output .

本発明の第2の態様によれば、地盤解析装置は、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信する衛星測位信号受信手段と、所定時間平均の算出に用いる基準時刻と前記所定時間分の前記衛星測位信号とに基づいて前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記基準時刻を基準とした所定時間平均の座標を前記所定時間毎に算出するアンテナ位置算出部と、を備えた座標計測装置から、前記衛星測位信号受信アンテナそれぞれの前記所定時間平均の座標を受信するアンテナ位置算出結果受信部と、前記地点それぞれのうち隣接すると判定される4地点を結ぶ各基線の辺により構成される四角形の閉領域と前記地点それぞれのうち隣接すると判定される3地点を結ぶ各基線の辺により構成される三角形の閉領域とが領域面で連なる基線網において、連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が基準閾値以上変動する前記閉領域を特定する特定部と、特定された閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を、通信ネットワーク網を介して接続された端末に対して所定間隔毎に送信する解析結果出力部と、を備える。  According to the second aspect of the present invention, the ground analysis device receives the satellite positioning signals received from the position observation satellites by the plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area. Satellite positioning signal receiving means, a reference time used for calculating a predetermined time average, and the satellite positioning signal for the predetermined time based on the reference time at the fixed position of each of the satellite positioning signal receiving antennas. Antenna position calculation for receiving the coordinates of the predetermined time average of each of the satellite positioning signal receiving antennas from a coordinate measuring device comprising: an antenna position calculation unit that calculates the average coordinates of the predetermined time for each predetermined time A square closed region composed of a side of each base line connecting the result receiving unit and four points determined to be adjacent to each of the points, and the ground The average of the predetermined times calculated for each of the predetermined times before and after in a baseline network in which a triangle closed region composed of sides of each baseline connecting three points determined to be adjacent to each other is connected on the region plane. A specifying unit that specifies the closed region in which the coordinates of the reference point fluctuate by more than a reference threshold, and a ground including display information in which the specified closed region is changed from another closed region to a display state and the base line network is overlaid on the national land region An analysis result output unit that transmits the analysis result to a terminal connected via a communication network at predetermined intervals.
上述の地盤解析装置は、前記四角形の閉領域を特定し、前記四角形の閉領域を特定できない前記地点については当該地点を結ぶ三角形の閉領域を特定して前記基線網を地図上に重ねて表示する前記表示情報を生成する表示情報生成部と、を備え、前記特定部は前記基線網を構成する前記四角形の閉領域については当該四角形を構成する対角の2地点を結ぶ線で当該四角形を分けた2つの三角形の領域に対する歪みを前記連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標に基づいて算出し、前記三角形の閉領域については当該三角形の領域に対する歪みを前記連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標に基づいて算出し、それら歪みの値と基準閾値とに基づいて歪を発生する閉領域を特定し、前記解析結果出力部は、特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた前記表示情報を含む地盤解析結果を出力してもよい。  The ground analysis device described above identifies the closed region of the quadrangle, and for the points where the closed region of the quadrangle cannot be identified, identifies the closed region of the triangle connecting the points and displays the base line network on the map. A display information generation unit that generates the display information, and for the closed region of the quadrangle that configures the baseline network, the specifying unit defines the quadrangle by a line connecting two diagonal points that configure the quadrangle. The distortion for the divided two triangular areas is calculated based on the coordinates of the predetermined time average calculated for each of the predetermined times before and after the continuous, and for the closed area of the triangle, the distortion for the triangular area is calculated. Calculate based on the average coordinates of the predetermined time calculated for each of the predetermined time before and after the continuous, and generate distortion based on the distortion value and the reference threshold The analysis result output unit outputs a ground analysis result including the display information obtained by superimposing the base line network on the national land area by changing the display state of the specified closed area with another closed area. May be.

本発明の第の態様によれば、地盤情報処理方法は、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信する衛星測位信号受信手段と、所定時間平均の算出に用いる基準時刻と前記所定時間分の前記衛星測位信号に基づいて前記衛星測位信号受信アンテナそれぞれ前記固定設置された位置における前記基準時刻を基準とした所定時間平均の座標を前記所定時間毎に算出するアンテナ位置算出部と、を備えた座標計測装置から、前記衛星測位信号受信アンテナそれぞれの前記所定時間平均の座標を受信し、前記地点それぞれのうち隣接すると判定される地点を結ぶ各基線の辺により構成される四角形の閉領域と前記地点それぞれのうち隣接すると判定される3地点を結ぶ各基線の辺により構成される三角形の閉領域が領域面で連なる基線網において、連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が基準閾値以上変動する前記閉領域を特定し、特定された閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を、通信ネットワーク網を介して接続された端末に対して所定間隔毎に送信する。 According to the third aspect of the present invention, in the ground information processing method, the satellite positioning signals received from the position observation satellites by the plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area are obtained. a satellite positioning signal receiving means for receiving said reference time in said satellite positioning signal receiving antenna each of the fixedly installed position based on said satellite positioning signal with the reference time of the predetermined time used to calculate the average predetermined time calculating a predetermined time average of coordinates relative to each of the predetermined time and an antenna position calculation unit, from the coordinate measurement device having a to receive the predetermined time average of the coordinates of each of the satellite positioning signal receiving antenna, the When the adjacent one of the points respectively closed area of the rectangle formed by the sides of the base line connecting the four points which are determined that adjacent ones of the point, respectively In the baseline network and closed area of a triangle formed by sides of the base line connecting the three points to be constant is contiguous with the area surface, the predetermined time average of the coordinates of the reference threshold value calculated for each of the before and after successive predetermined time identify the closed area varying over the soil analysis results including the display information overlaid the baseline network a closed area specified by changing the display state and the other closed regions in the national land area, the communication network system It transmits at predetermined intervals to the terminals connected through the network.

本発明の第の態様によれば、プログラムは、地盤解析装置のコンピュータを、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信する衛星測位信号受信手段と、所定時間平均の算出に用いる基準時刻と前記所定時間分の前記衛星測位信号とに基づいて前記衛星測位信号受信アンテナそれぞれ前記固定設置された位置における前記基準時刻を基準とした所定時間平均の座標を前記所定時間毎に算出するアンテナ位置算出部と、を備えた座標計測装置から、前記衛星測位信号受信アンテナそれぞれの前記所定時間平均の座標を受信するアンテナ位置算出結果受信手段、前記地点それぞれのうち隣接すると判定される地点を結ぶ各基線の辺により構成される四角形の閉領域と前記地点それぞれのうち隣接すると判定される3地点を結ぶ各基線の辺により構成される三角形の閉領域が領域面で連なる基線網において、連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が基準閾値以上変動する前記閉領域を特定する特定手段、特定された閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を、通信ネットワーク網を介して接続された端末に対して所定間隔毎に送信する解析結果出力手段、として機能させる。 According to the fourth aspect of the present invention, the program receives the computer of the ground analysis device from each of the plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area from the position observation satellite. Satellite positioning signal receiving means for receiving a satellite positioning signal, a fixed time of each of the satellite positioning signal receiving antennas based on a reference time used for calculating a predetermined time average and the satellite positioning signal for the predetermined time And an antenna position calculating unit that calculates a predetermined time average coordinate with respect to the reference time at each predetermined time, from the coordinate measuring device, the coordinate of the predetermined time average of each of the satellite positioning signal receiving antennas receive antenna position calculation result receiving unit, configured by the base line of the side connecting the four points which are determined that adjacent ones of said points, respectively In baseline network closed area of a triangle formed by sides of the base line connecting the 3 points that are determined to be adjacent one of each of the the closed area of the square points are continuous on the region surface which, for each of the before and after successive predetermined time specifying means for specifying the closed region calculated the predetermined time average of the coordinates varies more reference threshold, the closed area specified by changing the display state and the other closed regions overlapping the baseline network to the national land area It is made to function as an analysis result output means for transmitting the ground analysis result including the displayed information to the terminals connected via the communication network at predetermined intervals .

本発明の第1の態様によれば、地盤情報システムは、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信する衛星測位信号受信手段と、所定時間平均の算出に用いる基準時刻と前記所定時間分の前記衛星測位信号とに基づいて前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記基準時刻を基準とした所定時間平均の座標を前記所定時間毎に算出するアンテナ位置算出部と、前記地点それぞれのうち隣接すると判定される4地点を結ぶ各基線の辺により構成される四角形の閉領域が特定され、前記四角形の閉領域を特定できない前記地点については前記地点それぞれのうち隣接すると判定される3地点を結ぶ各基線の辺により構成される三角形の閉領域が特定された、当該四角形の閉領域と三角形の閉領域とが領域面で連なる基線網において、連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が基準閾値以上変動する前記閉領域を特定する特定部と、特定された閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を、通信ネットワーク網を介して接続された端末に対して所定間隔毎に送信する解析結果出力部と、を備える。 According to the first aspect of the present invention, the ground information system receives a satellite positioning signal received from a position observation satellite by each of a plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area. Satellite positioning signal receiving means, a reference time used for calculating a predetermined time average, and the satellite positioning signal for the predetermined time based on the reference time at the fixed position of each of the satellite positioning signal receiving antennas. A rectangular closed region composed of an antenna position calculation unit that calculates the average coordinates for a predetermined time as a reference every predetermined time, and sides of each base line connecting four points determined to be adjacent among the points is specified. is, for the point can not be determined closed area of the rectangle the sides of the base line connecting the 3 points that are determined to adjacent ones of each said point Closed area of the triangle is identified consists in baseline network closed region of the closed region and a triangle of the square and is contiguous with the area surface, the predetermined time average of coordinates calculated for each of before and after successive predetermined time A ground analysis result that includes a specifying unit that identifies the closed region in which the threshold value fluctuates by more than a reference threshold, and display information in which the identified closed region is changed from another closed region to a display state and the base line network is overlaid on the national land region And an analysis result output unit that transmits the data to a terminal connected via a communication network at predetermined intervals.

本発明の第2の態様によれば、地盤解析装置は、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信する衛星測位信号受信手段と、所定時間平均の算出に用いる基準時刻と前記所定時間分の前記衛星測位信号とに基づいて前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記基準時刻を基準とした所定時間平均の座標を前記所定時間毎に算出するアンテナ位置算出部と、を備えた座標計測装置から、前記衛星測位信号受信アンテナそれぞれの前記所定時間平均の座標を受信するアンテナ位置算出結果受信部と、前記地点それぞれのうち隣接すると判定される4地点を結ぶ各基線の辺により構成される四角形の閉領域が特定され、前記四角形の閉領域を特定できない前記地点については前記地点それぞれのうち隣接すると判定される3地点を結ぶ各基線の辺により構成される三角形の閉領域が特定された、当該四角形の閉領域と三角形の閉領域とが領域面で連なる基線網において、連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が基準閾値以上変動する前記閉領域を特定する特定部と、特定された閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を、通信ネットワーク網を介して接続された端末に対して所定間隔毎に送信する解析結果出力部と、を備える。
上述の地盤解析装置は、前記四角形の閉領域を特定し、前記四角形の閉領域を特定できない前記地点については当該地点を結ぶ三角形の閉領域を特定して前記基線網を地図上に重ねて表示する前記表示情報を生成する表示情報生成部と、を備え、前記特定部は前記基線網を構成する前記四角形の閉領域については当該四角形を構成する対角の2地点を結ぶ線で当該四角形を分けた2つの三角形の領域に対する歪みを前記連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標に基づいて算出し、前記三角形の閉領域については当該三角形の領域に対する歪みを前記連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標に基づいて算出し、それら歪みの値と基準閾値とに基づいて歪を発生する閉領域を特定し、前記解析結果出力部は、特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた前記表示情報を含む地盤解析結果を出力してもよい。
According to the second aspect of the present invention, the ground analysis device receives the satellite positioning signals received from the position observation satellites by the plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area. Satellite positioning signal receiving means, a reference time used for calculating a predetermined time average, and the satellite positioning signal for the predetermined time based on the reference time at the fixed position of each of the satellite positioning signal receiving antennas. Antenna position calculation for receiving the coordinates of the predetermined time average of each of the satellite positioning signal receiving antennas from a coordinate measuring device comprising: an antenna position calculation unit that calculates the average coordinates of the predetermined time for each predetermined time a result receiving unit, of certain closed region rectangle constituted by the base line of the side connecting the four points which are determined that adjacent ones of said points, respectively For the point can not be determined closed area of the square closed area of a triangle formed by sides of the base line connecting the 3 points that are determined to adjacent ones of each said point is identified, the closed area of the quadrangle A specifying unit that specifies the closed region in which the coordinate of the predetermined time average calculated for each of the predetermined times before and after the continuous fluctuates more than a reference threshold in a baseline network in which a triangular closed region is continuous on a region surface; The ground analysis result including the display information obtained by changing the display state of the closed area from the other closed areas and overlaying the base line network on the national land area is transmitted to the terminals connected via the communication network at predetermined intervals. And an analysis result output unit that transmits the data.
The ground analysis device described above identifies the closed region of the quadrangle, and for the points where the closed region of the quadrangle cannot be identified, identifies the closed region of the triangle connecting the points and displays the base line network on the map. A display information generation unit that generates the display information, and for the closed region of the quadrangle that configures the baseline network, the specifying unit defines the quadrangle by a line connecting two diagonal points that configure the quadrangle. The distortion for the divided two triangular areas is calculated based on the coordinates of the predetermined time average calculated for each of the predetermined times before and after the continuous, and for the closed area of the triangle, the distortion for the triangular area is calculated. Calculate based on the average coordinates of the predetermined time calculated for each of the predetermined time before and after the continuous, and generate distortion based on the distortion value and the reference threshold The analysis result output unit outputs a ground analysis result including the display information obtained by superimposing the base line network on the national land area by changing the display state of the specified closed area with another closed area. May be.

本発明の第3の態様によれば、地盤情報処理方法は、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信する衛星測位信号受信手段と、所定時間平均の算出に用いる基準時刻と前記所定時間分の前記衛星測位信号とに基づいて前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記基準時刻を基準とした所定時間平均の座標を前記所定時間毎に算出するアンテナ位置算出部と、を備えた座標計測装置から、前記衛星測位信号受信アンテナそれぞれの前記所定時間平均の座標を受信し、前記地点それぞれのうち隣接すると判定される4地点を結ぶ各基線の辺により構成される四角形の閉領域が特定され、前記四角形の閉領域を特定できない前記地点については前記地点それぞれのうち隣接すると判定される3地点を結ぶ各基線の辺により構成される三角形の閉領域が特定された、当該四角形の閉領域と三角形の閉領域とが領域面で連なる基線網において、連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が基準閾値以上変動する前記閉領域を特定し、特定された閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を、通信ネットワーク網を介して接続された端末に対して所定間隔毎に送信する。 According to the third aspect of the present invention, in the ground information processing method, the satellite positioning signals received from the position observation satellites by the plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area are obtained. The satellite positioning signal receiving means for receiving, the reference time used for calculating a predetermined time average, and the reference time at the fixed position of each of the satellite positioning signal receiving antennas based on the satellite positioning signal for the predetermined time Receiving the coordinates of the predetermined time average of each of the satellite positioning signal receiving antennas from a coordinate measuring device including an antenna position calculating unit that calculates the coordinates of the predetermined time average with respect to the predetermined time, closed area of the rectangle formed by the sides of the base line connecting the four points which are determined that adjacent ones of points, each identified, JP closed areas of the quadrangle Closed area of a triangle formed by sides of the base line for the point can not connect 3 point is determined to adjacent ones of each said point is identified, the closed region and the region surface of the closed region and a triangle of the quadrangle In the baseline network, the closed region in which the average coordinate of the predetermined time calculated for each of the predetermined times before and after the continuous fluctuates more than a reference threshold is specified, and the specified closed region is displayed as another closed region. The ground analysis result including the display information obtained by superimposing the base line network on the land area is transmitted at predetermined intervals to the terminals connected via the communication network.

本発明の第4の態様によれば、プログラムは、地盤解析装置のコンピュータを、国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信する衛星測位信号受信手段と、所定時間平均の算出に用いる基準時刻と前記所定時間分の前記衛星測位信号とに基づいて前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記基準時刻を基準とした所定時間平均の座標を前記所定時間毎に算出するアンテナ位置算出部と、を備えた座標計測装置から、前記衛星測位信号受信アンテナそれぞれの前記所定時間平均の座標を受信するアンテナ位置算出結果受信手段、前記地点それぞれのうち隣接すると判定される4地点を結ぶ各基線の辺により構成される四角形の閉領域が特定され、前記四角形の閉領域を特定できない前記地点については前記地点それぞれのうち隣接すると判定される3地点を結ぶ各基線の辺により構成される三角形の閉領域が特定された、当該四角形の閉領域と三角形の閉領域とが領域面で連なる基線網において、連続する前後の前記所定時間それぞれについて算出された前記所定時間平均の座標が基準閾値以上変動する前記閉領域を特定する特定手段、特定された閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を、通信ネットワーク網を介して接続された端末に対して所定間隔毎に送信する解析結果出力手段、として機能させる。 According to the fourth aspect of the present invention, the program receives the computer of the ground analysis device from each of the plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area from the position observation satellite. Satellite positioning signal receiving means for receiving a satellite positioning signal, a fixed time of each of the satellite positioning signal receiving antennas based on a reference time used for calculating a predetermined time average and the satellite positioning signal for the predetermined time And an antenna position calculating unit that calculates a predetermined time average coordinate with respect to the reference time at each predetermined time, from the coordinate measuring device, the coordinate of the predetermined time average of each of the satellite positioning signal receiving antennas Receiving antenna position calculation result receiving means, constituted by sides of each base line connecting four points determined to be adjacent to each of the points The closed area of the rectangle are identified, the closed region of a triangle formed by sides of the base line connecting the 3 points that are determined to adjacent ones of each said point for the point can not be determined closed area of the square is identified Further, in the baseline network in which the closed region of the rectangle and the closed region of the triangle are continuous on the region surface, the closed region where the coordinates of the predetermined time average calculated for each of the predetermined times before and after the variation fluctuate more than a reference threshold value. A specifying means for specifying, and the ground analysis result including display information obtained by overlaying the base line network on the national land area by changing the display state of the specified closed area with another closed area is connected via a communication network It is made to function as an analysis result output means for transmitting to the terminal at predetermined intervals.

Claims (8)

国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信する衛星測位信号受信手段と、
前記衛星測位信号に基づいて前記衛星測位信号受信アンテナの座標を算出するアンテナ位置算出部と、
前記地点それぞれのうち隣接すると判定される3以上の各地点を結ぶ各基線の辺により構成される閉領域が領域面で連なる基線網において基準期間に基準閾値以上変動する前記閉領域を特定する特定部と、
特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力する解析結果出力部と、
を備えることを特徴とする地盤情報システム。
Satellite positioning signal receiving means for receiving a satellite positioning signal received from a position observation satellite by each of a plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area;
An antenna position calculator for calculating coordinates of the satellite positioning signal receiving antenna based on the satellite positioning signal;
A specification for identifying the closed region in which a closed region composed of sides of each base line connecting three or more points determined to be adjacent to each other in the respective points fluctuates by a reference period or more in a reference period in a base line network connected on the region surface And
An analysis result output unit that outputs a ground analysis result including display information obtained by overlaying the base line network on the national land region by changing the display state of the identified closed region with another closed region;
A ground information system characterized by comprising:
前記特定部は、前記基線網において、前記基線の端点にそれぞれ位置する前記衛星測位信号受信アンテナの各座標が基準期間に基準閾値以上変化した基線を、当該基線を含む閉領域において特定し、
前記解析結果出力部は、特定された基線を他の基線と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力する
ことを特徴とする請求項1に記載の地盤情報システム。
The specifying unit specifies, in a closed region including the base line, a base line in which each coordinate of the satellite positioning signal receiving antenna, which is located at each end point of the base line, has changed by a reference threshold or more in a reference period in the base line network,
2. The analysis result output unit outputs a ground analysis result including display information obtained by changing the display state of the identified base line from another base line and overlaying the base line network on the land area. The ground information system described in 1.
前記特定部は、前記基線網を構成する前記閉領域のうち基準期間に基準閾値以上の歪を発生する閉領域を特定し、
前記解析結果出力部は、特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力する
ことを特徴とする請求項1または請求項2に記載の地盤情報システム。
The specifying unit specifies a closed region that generates a distortion greater than a reference threshold value in a reference period among the closed regions constituting the baseline network,
The analysis result output unit outputs a ground analysis result including display information obtained by superposing the base line network on the national land area by changing the display state of the identified closed area from another closed area. The ground information system according to claim 1 or 2.
前記特定部は、前記基線網を構成する前記閉領域のうち基準期間に基準閾値以上の面積変動を発生する閉領域を特定し、
前記解析結果出力部は、特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力する
ことを特徴とする請求項1から請求項3の何れか一項に記載の地盤情報システム。
The specifying unit specifies a closed region that generates an area variation equal to or greater than a reference threshold value in a reference period among the closed regions constituting the baseline network,
The analysis result output unit outputs a ground analysis result including display information obtained by superposing the base line network on the national land area by changing the display state of the identified closed area from another closed area. The ground information system according to any one of claims 1 to 3.
前記閉領域が4地点以上を結ぶ基線により構成される閉領域である場合には、当該閉領域を三角形領域に区分けして、当該三角形領域が基準期間に基準閾値以上変動するかを判定し、
前記特定部は、基準期間に基準閾値以上変動する三角形領域を含む閉領域を特定する
請求項1から請求項4の何れか一項に記載の地盤情報システム。
When the closed region is a closed region constituted by a base line connecting four or more points, the closed region is divided into triangular regions, and it is determined whether the triangular region fluctuates more than a reference threshold during a reference period,
The ground information system according to any one of claims 1 to 4, wherein the specifying unit specifies a closed region including a triangular region that fluctuates more than a reference threshold during a reference period.
24時間平均の算出に用いる基準時刻を受信する基準時刻受信手段と、
24時間分の前記衛星測位信号と前記基準時刻とに基づいて、前記衛星測位信号受信アンテナそれぞれの前記固定設置された位置における前記24時間平均の地心直交座標を算出する地心直交座標算出手段と、
を備えることを特徴とする請求項1から請求項4の何れか一項に記載の地盤情報システム。
A reference time receiving means for receiving a reference time used for calculating the 24-hour average;
Based on the satellite positioning signal for 24 hours and the reference time, the geocentric orthogonal coordinate calculation means for calculating the 24-hour average geocentric orthogonal coordinates at the fixed position of each of the satellite positioning signal receiving antennas. When,
The ground information system according to any one of claims 1 to 4, further comprising:
国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号を受信し、
前記衛星測位信号に基づいて前記衛星測位信号受信アンテナの座標を算出し、
前記地点それぞれのうち隣接すると判定される3以上の各地点を結ぶ各基線の辺により構成される閉領域が領域面で連なる基線網において基準期間に基準閾値以上変動する前記閉領域を特定し、
前記地点それぞれのうち隣接すると判定される3以上の各地点を結ぶ基線を一辺として構成した閉領域が領域面において連なる基線網のうちの前記閉領域が基準期間に基準閾値以上変動する閉領域を特定し、
その特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力する
地盤情報処理方法。
Each of the plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the land area receives the satellite positioning signals received from the position observation satellites,
Calculate coordinates of the satellite positioning signal receiving antenna based on the satellite positioning signal,
Identifying the closed region in which a closed region constituted by sides of each base line connecting each of three or more points determined to be adjacent among the points varies in a reference period in a base line network connected on the region surface, more than a reference threshold value,
A closed region in which a closed region composed of a base line connecting three or more points determined to be adjacent to each other as one side among the points is connected in the region surface is a closed region in which the closed region fluctuates more than a reference threshold during a reference period. Identify,
A ground information processing method for outputting a ground analysis result including display information obtained by changing the display state of the identified closed region from another closed region and overlaying the base line network on the national land region.
地盤情報システムを構成するコンピュータを、
国土領域の複数の異なる地点に固定設置された複数の衛星測位信号受信アンテナのそれぞれが位置観測用衛星から受信した衛星測位信号に基づいて算出された前記衛星測位信号受信アンテナの座標に基づいて、前記地点それぞれのうち隣接すると判定される3以上の各地点を結ぶ各基線の辺により構成される閉領域が領域面で連なる基線網において基準期間に基準閾値以上変動する前記閉領域を特定する特定手段、
特定した閉領域を他の閉領域と表示状態を変更して前記国土領域に前記基線網を重ねた表示情報を含む地盤解析結果を出力する解析結果出力手段、
として機能させるプログラム。
Computers that make up the ground information system
Based on the coordinates of the satellite positioning signal receiving antennas calculated based on the satellite positioning signals received from the satellites for position observation each of the plurality of satellite positioning signal receiving antennas fixedly installed at a plurality of different points in the national land area, A specification for identifying the closed region in which a closed region composed of sides of each base line connecting three or more points determined to be adjacent to each other in the respective points fluctuates by a reference period or more in a reference period in a base line network connected on the region surface means,
An analysis result output means for outputting a ground analysis result including display information obtained by superposing the base line network on the national land region by changing the display state of the identified closed region with another closed region;
Program to function as.
JP2015202409A 2015-10-13 2015-10-13 Ground information system, ground analysis device, ground information processing method, program Active JP6082795B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015202409A JP6082795B1 (en) 2015-10-13 2015-10-13 Ground information system, ground analysis device, ground information processing method, program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015202409A JP6082795B1 (en) 2015-10-13 2015-10-13 Ground information system, ground analysis device, ground information processing method, program

Publications (2)

Publication Number Publication Date
JP6082795B1 JP6082795B1 (en) 2017-02-15
JP2017075810A true JP2017075810A (en) 2017-04-20

Family

ID=58043353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015202409A Active JP6082795B1 (en) 2015-10-13 2015-10-13 Ground information system, ground analysis device, ground information processing method, program

Country Status (1)

Country Link
JP (1) JP6082795B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107768A (en) * 2019-12-27 2021-07-29 株式会社オプテージ Strain measuring device, strain measuring program and strain measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061856B2 (en) * 2017-09-20 2022-05-02 清水建設株式会社 Displacement monitoring device and displacement monitoring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226388A (en) * 2003-01-24 2004-08-12 Kankyo Chishitsu Kenkyushitsu:Kk Earthquake/eruption foreseeing method
JP2010139335A (en) * 2008-12-10 2010-06-24 Nippo:Kk Disaster urgent ground fluctuations analysis system and disaster urgent ground fluctuations analysis method
JP2011102736A (en) * 2009-11-10 2011-05-26 Shimizu Corp System and method of tracking diastrophism
JP2013072704A (en) * 2011-09-27 2013-04-22 Kumagai Gumi Co Ltd Extraction method of discontinuity surface of tunnel working face and device of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226388A (en) * 2003-01-24 2004-08-12 Kankyo Chishitsu Kenkyushitsu:Kk Earthquake/eruption foreseeing method
JP2010139335A (en) * 2008-12-10 2010-06-24 Nippo:Kk Disaster urgent ground fluctuations analysis system and disaster urgent ground fluctuations analysis method
JP2011102736A (en) * 2009-11-10 2011-05-26 Shimizu Corp System and method of tracking diastrophism
JP2013072704A (en) * 2011-09-27 2013-04-22 Kumagai Gumi Co Ltd Extraction method of discontinuity surface of tunnel working face and device of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107768A (en) * 2019-12-27 2021-07-29 株式会社オプテージ Strain measuring device, strain measuring program and strain measuring method
JP7402400B2 (en) 2019-12-27 2023-12-21 一般社団法人防災減災技術開発機構 Strain measurement device, strain measurement program, and strain measurement method

Also Published As

Publication number Publication date
JP6082795B1 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
US11710322B2 (en) Surveillance information generation apparatus, imaging direction estimation apparatus, surveillance information generation method, imaging direction estimation method, and program
CN108917758B (en) Navigation method and system based on AR
US10412594B2 (en) Network planning tool support for 3D data
US8817093B2 (en) Photogrammetric networks for positional accuracy
US20080036758A1 (en) Systems and methods for determining a global or local position of a point of interest within a scene using a three-dimensional model of the scene
JP5343210B2 (en) Subject area calculation device, subject area calculation system, and subject area calculation method
CN110914870B (en) Annotation generation for image networks
CN108759835A (en) A kind of localization method, device, readable storage medium storing program for executing and mobile terminal
US20080131029A1 (en) Systems and methods for visualizing and measuring real world 3-d spatial data
JP6082795B1 (en) Ground information system, ground analysis device, ground information processing method, program
JP5483076B2 (en) Crustal movement tracking system and crustal movement tracking method
JP6436461B2 (en) Vertical axis calibration apparatus, method and program
JP6683195B2 (en) Information processing apparatus, information processing system, information processing method, and program
JP4846779B2 (en) Disaster emergency ground fluctuation analysis system and disaster emergency ground fluctuation analysis method
JP2018106596A (en) Surface movement detection apparatus, wireless tag, surface movement detection method and disaster relief support system
EP2569958B1 (en) Method, computer program and apparatus for determining an object in sight
JP2022145441A (en) Survey information management system, survey information management method, and survey information management program
Gonçalves et al. 3D cliff reconstruction by drone: An in-depth analysis of the image network
AU2021392727A1 (en) Collaborative augmented reality measurement systems and methods
EP4220081A1 (en) Surveying information management system, surveying information management method, and surveying information management program
JP7511147B2 (en) Imaging parameter output method and imaging parameter output device
CN117539971B (en) Massive geographic coordinate aggregation method and related equipment
KR101053900B1 (en) Location tracking system and method
CN105279341A (en) Method for intercepting google earth image and directly applying in engineering design
CN115561755A (en) Method for constructing corresponding multidimensional image by using multidimensional heterogeneous Lei Dalian and electronic equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6082795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250