JP7162450B2 - Displacement measurement method and displacement measurement system - Google Patents

Displacement measurement method and displacement measurement system Download PDF

Info

Publication number
JP7162450B2
JP7162450B2 JP2018110579A JP2018110579A JP7162450B2 JP 7162450 B2 JP7162450 B2 JP 7162450B2 JP 2018110579 A JP2018110579 A JP 2018110579A JP 2018110579 A JP2018110579 A JP 2018110579A JP 7162450 B2 JP7162450 B2 JP 7162450B2
Authority
JP
Japan
Prior art keywords
satellite
positioning
satellites
signal receiver
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018110579A
Other languages
Japanese (ja)
Other versions
JP2019211445A (en
Inventor
範洋 山口
正憲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2018110579A priority Critical patent/JP7162450B2/en
Publication of JP2019211445A publication Critical patent/JP2019211445A/en
Application granted granted Critical
Publication of JP7162450B2 publication Critical patent/JP7162450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、衛星測位システムを用いた変位計測方法および変位計測システムに関し、特に構造物等を含めた比較的安定した物体の側面の変位計測に好適な変位計測方法および変位計測システムに関するものである。 The present invention relates to a displacement measuring method and a displacement measuring system using a satellite positioning system, and more particularly to a displacement measuring method and a displacement measuring system suitable for measuring the lateral displacement of relatively stable objects including structures. .

従来、衛星測位システムによる構造物の変位等計測に際しては、一般に米国のGPS(Global Positioning System:衛星測位システム)衛星を利用する方法が主流であった。例えば、構造物の周辺地盤の固定点に設置したGPS受信機と、構造物上の観測点に設置したGPS受信機との間の相対測位により、構造物の変位等を計測する方法が知られている(例えば、特許文献1、2を参照)。しかし、米国のGPS衛星の数にも限りがあり、利用に際して以下のような制約や課題がある。 2. Description of the Related Art Conventionally, when measuring the displacement of a structure using a satellite positioning system, the mainstream method was generally to use US GPS (Global Positioning System) satellites. For example, there is a known method of measuring the displacement of a structure by relative positioning between a GPS receiver installed at a fixed point on the ground around the structure and a GPS receiver installed at an observation point on the structure. (see Patent Documents 1 and 2, for example). However, the number of GPS satellites in the United States is also limited, and there are the following restrictions and problems when using them.

(1)測位解析に十分必要なGPS衛星を捕捉するために衛星測位機器からの仰角を15°以上に保つ等の工夫が必要である。
(2)そのため、構造物等が過密で上空視野を確保し難い都市部などでは、衛星測位機器の設置場所は構造物等の屋上に限定される。すなわち構造物等の屋上周辺の変位計測しかできない。
(3)しかし屋上にも様々な設備が配置され、衛星測位機器の設置場所は制限される。
(4)仮に屋上に衛星測位機器を設置できたとしても、屋上の他の設備や周辺のビルのマルチパスの影響を受け正確な変位計測を妨げるおそれがある。
(1) In order to capture the GPS satellites necessary for positioning analysis, it is necessary to keep the elevation angle from the satellite positioning device at 15° or more.
(2) Therefore, in urban areas where it is difficult to secure a view of the sky due to overcrowded structures, the installation location of the satellite positioning device is limited to the roof of the structure. In other words, it is only possible to measure the displacement around the roof of a structure or the like.
(3) However, since various facilities are installed on the roof, the installation location of the satellite positioning equipment is limited.
(4) Even if a satellite positioning device can be installed on the roof, there is a risk that it will be affected by multipaths of other equipment on the roof and surrounding buildings, preventing accurate displacement measurement.

従来はこうした課題により、構造物等の壁面測位に着目することもなかった。 Conventionally, due to these problems, no attention has been paid to wall surface positioning of structures and the like.

一方、GPS衛星を利用した測位技術に関して、特許文献3に示すような技術が知られている。この技術は、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別し、移動局の測定位置を補正するものである。 On the other hand, regarding positioning technology using GPS satellites, a technology as shown in Patent Document 3 is known. This technique discriminates satellite signals affected by multipath in a simple and reliable manner and corrects the measured position of the mobile station.

ところで現在、米国のGPS衛星のみならず、ロシア、欧州、中国、日本の衛星測位システム(以下、これら全てを総称してGNSS(Global Navigation Satellite System:全球測位衛星システム)と呼ぶ。)が運用されており、衛星測位機器で測位すると30前後のGNSS衛星からの信号を受信可能である。今後各国のGNSS衛星数の増加が見込まれ、さらに日本の準天頂衛星数の増加により、高仰角からの信号の取得も容易となる。衛星数の増加とともに上記の課題は容易に解決できると思われがちであるが、逆に衛星数の増加とともにマルチパス増大という課題も生じる。 By the way, currently, not only the GPS satellites of the United States, but also the satellite positioning systems of Russia, Europe, China, and Japan (hereinafter, all of these are collectively referred to as GNSS (Global Navigation Satellite System)) are in operation. It is possible to receive signals from around 30 GNSS satellites by positioning with a satellite positioning device. It is expected that the number of GNSS satellites in each country will increase in the future, and the increase in the number of quasi-zenith satellites in Japan will make it easier to acquire signals from high elevation angles. It is often thought that the above problems can be easily solved as the number of satellites increases, but conversely, the problem of multipath increase also arises as the number of satellites increases.

こうした課題を解決するための技術として、本発明者内の一部は既に特許文献4に示すような技術を提案している。この技術は、以下の機能を有するものである。これによれば、構造物の壁面などに設置した観測点変位を精度よく計測できるので、過密環境下に設置された構造物の屋上・側部の変位・変形等を監視するのに好適である。
(1)GNSS衛星の信号を取捨選択する機能
(2)RTK測位の要となるアンビギュイティを高い信頼度で決定する機能
(3)アンビギュイティを保持する機能
(4)GNSS受信機が出力する搬送波位相のサイクルスリップ情報等を利用する機能
As a technique for solving these problems, some of the inventors of the present invention have already proposed a technique as shown in Patent Document 4. This technique has the following functions. According to this, it is possible to accurately measure the displacement of the observation point installed on the wall of the structure, etc., so it is suitable for monitoring the displacement, deformation, etc. of the roof and sides of the structure installed in an overcrowded environment. .
(1) Function to select GNSS satellite signals (2) Function to determine ambiguity, which is the key to RTK positioning, with high reliability (3) Function to retain ambiguity (4) Output from GNSS receiver A function that uses cycle slip information, etc. of the carrier wave phase

上記(3)の機能について補足説明する。アンビギュイティ保持とは、サイクルスリップ等のない衛星については、いったん正しいアンビギュイティを求めると、理論上その値を保持してもRTKの測位は継続できる。アンビギュイティ保持とはその特徴を利用したものである。この方法の特徴は、従来の方法ではアンビギュイティ保持が途切れてしまうケースにおいても、その途切れを可能な限りなくすことができ、また途切れた後の復旧を早期にできるところにある。1つの具体例として、アンビギュイティ決定には、主衛星と従衛星による二重位相差が必須である。その主衛星が変更されるとアンビギュイティ保持はできなくなる。このような事象にも対応できるよう、あらかじめ品質のよい主衛星を選択することと、主衛星が変更されても瞬時に別の主衛星でアンビギュイティを保持できる能力を持つ機能である。 A supplementary explanation of the above function (3) will be given. Ambiguity retention means that once the correct ambiguity is determined for a satellite that does not have a cycle slip or the like, RTK positioning can theoretically continue even if that value is retained. Ambiguity retention utilizes this feature. The feature of this method is that even in the case where the ambiguity holding is interrupted in the conventional method, the interruption can be eliminated as much as possible, and the recovery after the interruption can be performed quickly. As one example, ambiguity determination requires a dual phase difference due to master and slave satellites. Ambiguity retention is no longer possible when the primary satellite is changed. In order to respond to such events, it is a function that selects a good quality main satellite in advance and has the ability to instantly maintain ambiguity with another main satellite even if the main satellite is changed.

RTK測位は、基準点と観測点の相対測位になるため、二重位相差を計算に用いる。二重位相差は、同一衛星からの搬送波位相を同時に2つの受信機で受信し、1サイクル単位で両受信データの一重位相差を2衛星に対して各々求め、この2つの一重位相差の差をとることによって求められる。この二重位相差を用いることによって、衛星および受信機時計誤差の消去が可能である。RTK測位では、この二重位相差を求める組合せを3組以上作り、多数回の測位データを利用して最小二乗法により各衛星と受信機間の搬送波の受信機の各チャンネルの整数波長分の不確定要素(整数値バイアス)を推定して基線ベクトル(3次元座標差)を決定する。 Since RTK positioning is relative positioning between a reference point and an observation point, a double phase difference is used for calculation. The double phase difference is obtained by simultaneously receiving the carrier wave phase from the same satellite with two receivers, obtaining the single phase difference of both received data for each of the two satellites in units of one cycle, and calculating the difference between the two single phase differences. is obtained by taking By using this dual phase difference, cancellation of satellite and receiver clock errors is possible. In RTK positioning, three or more sets of combinations for obtaining this double phase difference are created, and using the positioning data of many times, the least squares method is used to calculate the integer wavelengths of each channel of the receiver between each satellite and the receiver. A baseline vector (three-dimensional coordinate difference) is determined by estimating an uncertain factor (integer value bias).

異なる種類の衛星を利用してRTK測位を行う場合、衛星の種類毎に使用周波数等が異なることから考慮すべき様々なバイアスが生じる。これらバイアスの影響を避けるために、RTK測位では衛星測位システムの種類ごとに別々に二重位相差をとる混合測位が主流となっている。混合測位解析の際、同じ種類の衛星が少なくとも必ず2機以上必要で(例えば主衛星と従衛星)、そのとき受信機から見えている最高仰角の衛星を主衛星として採用する。1機しか見えていない衛星はそもそも解析に用いない。 When RTK positioning is performed using different types of satellites, various biases to be considered occur because the used frequencies and the like differ for each type of satellite. In order to avoid the influence of these biases, in RTK positioning, the mainstream is mixed positioning in which a double phase difference is obtained separately for each type of satellite positioning system. For mixed positioning analysis, at least two satellites of the same type are always required (for example, a primary satellite and a secondary satellite), and the satellite with the highest elevation angle visible from the receiver is adopted as the primary satellite. Satellites with only one visible satellite are not used for analysis in the first place.

例えば、主衛星がGPS衛星ならば従衛星もGPS衛星を選定し、主衛星が準天頂衛星ならば従衛星も準天頂衛星を選定し、選定したペアで二重位相差を計算する。ここで、上空にGPS衛星、準天頂衛星、ガリレオ衛星、グロナス衛星が2機ずつあったと仮定する。種類の異なる衛星が2機ずつあるため、天頂付近にある衛星を主衛星、天頂付近からはずれた位置にある衛星を従衛星として二重位相差を計算する。この場合は、GPS衛星のペア、準天頂衛星のペア、ガリレオ衛星のペア、グロナス衛星のペアで計算した二重位相差から適切なアンビギュイティを計算することになる。この混合測位では多くの衛星群の二重位相差を用いるため測位精度が向上する。 For example, if the main satellite is a GPS satellite, the secondary satellite also selects a GPS satellite, if the primary satellite is a quasi-zenith satellite, the secondary satellite also selects a quasi-zenith satellite, and the double phase difference is calculated for the selected pair. Here, it is assumed that there are two GPS satellites, two quasi-zenith satellites, two Galileo satellites, and two Glonass satellites in the sky. Since there are two satellites of different types each, the satellite near the zenith is regarded as the primary satellite, and the satellite located away from the zenith is regarded as the secondary satellite, and the double phase difference is calculated. In this case, an appropriate ambiguity is calculated from the double phase difference calculated with the GPS satellite pair, the quasi-zenith satellite pair, the Galileo satellite pair, and the Glonass satellite pair. This mixed positioning uses the dual phase differences of many satellite constellations to improve the positioning accuracy.

特開2015-197344号公報JP 2015-197344 A 特開2008-76117号公報JP 2008-76117 A 特許第5232994号公報Japanese Patent No. 5232994 特願2017-079210号明細書(現時点で未公開)Japanese Patent Application No. 2017-079210 (Unpublished at this time)

上空に障害物のないオープンスカイの場合、全種類の衛星がどの時間帯であっても上空に適度に配置されているため、各衛星群の二重位相差が容易に計算され、混合測位でも精度の良い計算が可能である。しかし、過密環境下にある建物の外壁やダムの左岸右岸の斜面等の観測点を測位するような場合、上空視野が比較的狭くなるため、上空に同じ種類の衛星の数が2機以下となることがある。上空に測位衛星が多いように見えても、ある衛星群の二重位相差の計算が困難となり、この結果、混合測位の精度が低下するおそれがある。 In the case of an open sky with no obstacles in the sky, all types of satellites are well positioned in the sky at any time of day, so the double phase difference of each constellation is easily calculated, and even mixed positioning Accurate calculation is possible. However, when positioning observation points such as the outer wall of a building in an overcrowded environment or the slope of the left or right bank of a dam, the sky field of view is relatively narrow, so the number of satellites of the same type in the sky is limited to two or less. can be. Even if there seems to be a lot of positioning satellites in the sky, the calculation of the double phase difference of some constellations becomes difficult, and as a result, there is a possibility that the accuracy of the mixed positioning is lowered.

さらに、上空視野が比較的狭いと、上空に同じ種類の衛星が2機以上ある時間帯も限られる。例えば、上空に衛星が7機あっても、ある種類の衛星は1機ということも多々あり得る。この7機の内訳がGPS衛星2機、準天頂衛星1機、ガリレオ衛星2機、グロナス衛星1機、BeiDou衛星1機の場合、従来の測位解析で二重位相差を計算できるのはGPS衛星とガリレオ衛星だけとなり、測位精度が低下するおそれがある。 In addition, the relatively narrow field of view limits the hours during which two or more satellites of the same type are in the sky. For example, even if there are seven satellites in the sky, it is often possible that there is only one satellite of a certain type. If the breakdown of these 7 satellites is 2 GPS satellites, 1 quasi-zenith satellite, 2 Galileo satellites, 1 Glonass satellite, and 1 BeiDou satellite, then only GPS satellites can calculate the double phase difference with conventional positioning analysis and Galileo satellites alone, and there is a risk that the positioning accuracy will be degraded.

なお、準天頂衛星は、GPS衛星に準じた仕様となっているため、GPS衛星数が減り、かつ準天頂衛星が複数存在する場合(環境の良い場合、合計で3機以上)、最高仰角にあるGPS衛星もしくは準天頂衛星を主衛星、その他を従衛星として二重位相差を計算可能である。しかし、上記の建物の外壁やダムの左岸右岸等ではこの状態が長時間継続することは稀であるため、24時間継続して測位することは困難である。 In addition, since the quasi-zenith satellites have specifications that conform to the GPS satellites, if the number of GPS satellites is reduced and there are multiple quasi-zenith satellites (three or more in total if the environment is good), the maximum elevation angle will be A double phase difference can be calculated with a certain GPS satellite or quasi-zenith satellite as the primary satellite and the others as secondary satellites. However, since this state rarely continues for a long time on the outer wall of the building, the left bank of the dam, or the like, it is difficult to measure the position continuously for 24 hours.

このような問題に対処するため、本発明者は、衛星間が持つシステムバイアス、特に衛星のクロック差に着目して様々な検討を行った。上述したように、GPS衛星と準天頂衛星の場合はクロック差がないため、GPS衛星や準天頂衛星を主衛星、その他のGPS衛星や準天頂衛星を従衛星とした組合せで二重位相差を計算できる。しかし、GPS衛星・準天頂衛星と他の種類の衛星にはクロック差があるため、他の種類の衛星は衛星種類毎に二重位相差を計算する必要がある。 In order to deal with such a problem, the present inventor conducted various studies focusing on the system bias between satellites, especially the clock difference between satellites. As described above, since there is no clock difference between the GPS satellite and the quasi-zenith satellite, the combination of the GPS satellite and the quasi-zenith satellite as the primary satellite and the other GPS satellites and the quasi-zenith satellite as the secondary satellites will create a double phase difference. can be calculated. However, since GPS satellites, quasi-zenith satellites, and other types of satellites have clock differences, other types of satellites need to calculate the double phase difference for each satellite type.

こうして様々な測位データの取得、測位解析アルゴリズムの改変・試行を重ねた結果、本発明者は、上記の従来の特許文献4よりも測位精度の向上を図れる以下の本発明に至った。すなわち、衛星間が持つシステムバイアス(衛星のクロック差)をアルゴリズム上で事前に解消させることにより、上空の衛星をできる限り多く利用し、1つを主衛星、他を従衛星として多くの二重位相差を取得でき、この結果、測位精度の向上を図れる以下の本発明に至った。 As a result of repeated acquisition of various positioning data and modifications and trials of the positioning analysis algorithm, the present inventor has arrived at the following invention, which can improve the positioning accuracy more than the above-mentioned conventional patent document 4. In other words, by eliminating the system bias (satellite clock difference) between satellites in advance on the algorithm, we can use as many satellites in the sky as possible and create many duplicates with one as the main satellite and the other as the slave satellite. A phase difference can be acquired, and as a result, the present invention described below can be achieved to improve positioning accuracy.

本発明は、上記に鑑みてなされたものであって、測位精度を向上した変位計測方法および変位計測システムを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a displacement measuring method and a displacement measuring system with improved positioning accuracy.

上記した課題を解決し、目的を達成するために、本発明に係る変位計測方法は、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うことを特徴とする。 In order to solve the above-described problems and achieve the object, a displacement measurement method according to the present invention uses a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems to measure a structure or the like. A method for measuring the displacement of a relatively stable object including: an observation point consisting of a satellite signal receiver installed on the outer surface of said object; and a satellite signal receiver installed at a location other than the outer surface of said object. A relative positioning step of obtaining a displacement over time with a fixed point configured by relative positioning, wherein the relative positioning step includes a positioning satellite at the highest elevation angle from the satellite signal receiver among a plurality of positioning satellites is selected as the primary satellite, a positioning satellite other than this positioning satellite is selected as the secondary satellite, and the selected primary satellite and secondary satellites are regarded as positioning satellites of the same satellite positioning system, thereby eliminating the bias between different satellite positioning systems. relative positioning based on the dual phase difference calculated using the satellite signals of the master satellite and the slave satellite.

また、本発明に係る変位計測システムは、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測するシステムであって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うことを特徴とする。 Further, the displacement measurement system according to the present invention measures the displacement of a relatively stable object including structures using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems. A system in which the passage of time between an observation point composed of a satellite signal receiver installed on the outer surface of said object and a fixed point composed of a satellite signal receiver installed at a location other than the outer surface of said object. Relative positioning means for obtaining displacement due to relative positioning by relative positioning, wherein the relative positioning means selects a positioning satellite at the highest elevation angle from the satellite signal receiver from among the plurality of positioning satellites as a main satellite, and selects other than this positioning satellite positioning satellites are selected as secondary satellites, and the selected primary and secondary satellites are regarded as positioning satellites of the same satellite positioning system to eliminate the bias between different satellite positioning systems, and the satellite signals of the primary and secondary satellites are relative positioning is performed based on the double phase difference calculated using the

本発明に係る変位計測方法によれば、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うので、構造物等を含めた比較的安定した物体の外面に設置した観測点変位を精度よく計測することができるという効果を奏する。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。 According to the displacement measurement method of the present invention, the displacement of a relatively stable object including structures is measured using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems. A method wherein the time lapse between an observation point consisting of a satellite signal receiver mounted on the outer surface of said object and a fixed point consisting of a satellite signal receiver mounted at a location other than the outer surface of said object. A relative positioning step of acquiring the displacement associated with the relative positioning by relative positioning. positioning satellites are selected as secondary satellites, and the selected primary and secondary satellites are regarded as positioning satellites of the same satellite positioning system to eliminate the bias between different satellite positioning systems, and the satellite signals of the primary and secondary satellites are Since relative positioning is performed based on the double phase difference calculated using this method, it is possible to accurately measure the displacement of the observation point installed on the outer surface of a relatively stable object including structures. For this reason, the present invention is suitable for monitoring displacement, deformation, etc., not only on the top (rooftop) of relatively stable objects, including structures installed in dense environments, but also on the sides (wall surfaces). preferred.

また、本発明に係る変位計測システムによれば、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測するシステムであって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うので、構造物等を含めた比較的安定した物体の外面に設置した観測点変位を精度よく計測することができるという効果を奏する。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。 Further, according to the displacement measurement system according to the present invention, a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems is used to measure relatively stable displacements of objects including structures. A measurement system between an observation point consisting of a satellite signal receiver installed on the outer surface of said object and a fixed point consisting of a satellite signal receiver installed at a location other than the outer surface of said object. Relative positioning means for obtaining displacement over time by relative positioning, wherein the relative positioning means selects a positioning satellite at the highest elevation angle from the satellite signal receiver from among the plurality of positioning satellites as a main satellite, and this positioning Selecting a positioning satellite other than a satellite as a secondary satellite, and considering the selected primary and secondary satellites as positioning satellites of the same satellite positioning system to eliminate the bias between different satellite positioning systems, and to eliminate the bias between the primary and secondary satellites Since relative positioning is performed based on the double phase difference calculated using the signal, it is possible to accurately measure the displacement of the observation point installed on the outer surface of a relatively stable object including structures. . For this reason, the present invention is suitable for monitoring displacement, deformation, etc., not only on the top (rooftop) of relatively stable objects, including structures installed in dense environments, but also on the sides (wall surfaces). preferred.

図1は、本発明に係る変位計測方法および変位計測システムの実施の形態を示す概略状況図である。FIG. 1 is a schematic diagram showing an embodiment of a displacement measuring method and a displacement measuring system according to the present invention. 図2は、本発明に係る変位計測システムの実施の形態を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing an embodiment of a displacement measuring system according to the present invention. 図3は、本発明に係る変位計測方法の実施の形態を示す概略フローチャート図である。FIG. 3 is a schematic flow chart diagram showing an embodiment of a displacement measuring method according to the present invention. 図4は、魚眼カメラで見た観測点の上空視野を示す図であり、(1)は観測点1の上空視野、(2)は観測点2の上空視野である。4A and 4B are diagrams showing the aerial field of view of the observation point as viewed with a fish-eye camera, where (1) is the aerial field of view of the observation point 1 and (2) is the aerial field of view of the observation point 2. FIG. 図5は、観測点1のRTK測位結果を示す図である。FIG. 5 is a diagram showing the RTK positioning result of observation point 1. As shown in FIG. 図6は、観測点2のRTK測位結果を示す図である。FIG. 6 is a diagram showing the RTK positioning result of the observation point 2. As shown in FIG.

上述したように、本発明者が様々な測位データの取得、アルゴリズムの改変・解析を試行した結果、従来の特許文献4よりも測位精度の向上を図れる本発明に至った。本発明を適用することで、例えば上空に1機しかないガリレオ衛星等のデータ利用も可能となり、後述するようにRTK測位性能を評価する「信頼性の高い(水平±10cm以内)Fix率」が格段に向上する。 As described above, the present inventors obtained various positioning data, modified and analyzed the algorithm, and as a result, arrived at the present invention that can improve the positioning accuracy more than the conventional Patent Document 4. By applying the present invention, it is possible to use data from, for example, only one Galileo satellite in the sky. improve markedly.

以下に、本発明に係る変位計測方法および変位計測システムの実施の形態を図面に基づいて詳細に説明する。なお、以下の説明では、変位を計測・監視する対象の構造物として都市部の過密環境に設置された中小マンションの壁面測位を例に説明するが、この実施の形態により本発明が限定されるものではない。なお、本発明は、単に構造物等を含めた比較的安定した静止物体の壁面測位のみならず、例えば構造物等を含めた比較的安定した静止物体の屋上などのように、衛星測位機器の設置場所周辺にマルチパスを生じさせる障害物等がある場合の測位などにも適用可能である。 EMBODIMENT OF THE INVENTION Below, embodiment of the displacement measuring method and displacement measuring system based on this invention is described in detail based on drawing. In the following description, wall surface positioning of a small and medium-sized apartment installed in a densely populated urban environment will be described as an example of a structure whose displacement is to be measured and monitored. However, the present invention is limited by this embodiment. not a thing It should be noted that the present invention can be used not only for wall positioning of relatively stable stationary objects including structures, but also for satellite positioning equipment such as roof positioning of relatively stable stationary objects including structures. It can also be applied to positioning when there are obstacles that cause multipath around the installation location.

本発明の実施の形態に係る変位計測方法は、複数の異なる衛星測位システムのGNSS衛星(測位衛星)からの衛星信号を受信するGNSS測位機器(衛星信号受信機)を用いて構造物の変位を計測する方法である。本実施の形態は、構造物の外壁面に設置したGNSS測位機器により構成される観測点と、構造物の外壁面以外の場所に設置したGNSS測位機器により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備える。 A displacement measurement method according to an embodiment of the present invention measures the displacement of a structure using a GNSS positioning device (satellite signal receiver) that receives satellite signals from GNSS satellites (positioning satellites) of a plurality of different satellite positioning systems. It is a method of measurement. In this embodiment, the time between the observation point configured by the GNSS positioning device installed on the outer wall surface of the structure and the fixed point configured by the GNSS positioning device installed on the outer wall surface of the structure It includes a relative positioning step of acquiring displacement over time by relative positioning.

相対測位ステップは、複数のGNSS衛星のうちGNSS測位機器から最高仰角にあるGNSS衛星を主衛星として選択するとともに、この衛星以外のGNSS衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うものである。ここでは、相対測位の中で最も精度が良い搬送波を用いた干渉測位を用いた方法で説明する。 In the relative positioning step, the GNSS satellite having the highest elevation angle from the GNSS positioning device among the plurality of GNSS satellites is selected as the main satellite, the GNSS satellites other than this satellite are selected as the secondary satellites, and the selected primary satellite and the secondary satellites are selected. are regarded as satellites of the same satellite positioning system, thereby removing the bias between different satellite positioning systems and performing relative positioning based on the double phase difference calculated using the satellite signals of the primary and secondary satellites. Here, a method using interferometric positioning using a carrier wave, which has the highest accuracy among relative positioning methods, will be described.

まず、GNSS測位機器の設置初期に固定点の座標を決定した後、固定点、観測点全てのGNSS測位機器で同時に観測をして、衛星からの電波到達の差(一重位相差)、二重位相差を解析し固定点と観測点間の距離を求める。例えばGNSS測位機器を5つ設置する場合には、固定点と他の観測点を1組とカウントしたとき、5組の座標変化や基線長の変化を取得することで、構造物のどの部分に傾斜や沈下が生じているか等を把握できる。 First, after determining the coordinates of the fixed point at the initial stage of installation of the GNSS positioning equipment, observation is performed simultaneously with the GNSS positioning equipment at all fixed points and observation points, and the difference in radio wave arrival from the satellite (single phase difference), double Analyze the phase difference and find the distance between the fixed point and the observation point. For example, when 5 GNSS positioning devices are installed, when a fixed point and other observation points are counted as 1 set, by acquiring 5 sets of coordinate changes and baseline length changes, it is possible to determine which part of the structure It is possible to grasp whether there is inclination or subsidence.

次に、GNSS測位機器(観測点)を5つ設置した場合の変位計測システムを例にとり、初期座標設定から観測までの流れを説明する。 Next, taking as an example a displacement measurement system in which five GNSS positioning devices (observation points) are installed, the flow from initial coordinate setting to observation will be described.

図1に示すように、中小マンションなどの構造物1の外壁面2の互いに異なる位置に、衛星からの衛星信号を受信する5台のGNSS測位機器A~Eを設置して観測点とし、別の構造物4の上にGNSS測位機器を1台設置して固定点Fとして干渉測位を行う。図1の例では、道路に面する外壁面2の上下左右の四隅と中央の合計5か所にGNSS測位機器A~Eを設置した場合を示しているが、設置位置、設置数についてはこれに限るものではなく同一構造物につき1点または互いに異なる複数点であればいかなる位置、数であっても構わない。図1のように固定点Fは外壁面2以外に設定してもよく、例えば構造物1の周辺地盤上や他の構造物3の屋上などに設置してもよい。 As shown in FIG. 1, five GNSS positioning devices A to E for receiving satellite signals from satellites are installed at different positions on the outer wall surface 2 of a structure 1 such as a small and medium-sized apartment building as observation points. One GNSS positioning device is installed on the structure 4 of , and interferometric positioning is performed as a fixed point F. The example in FIG. 1 shows the case where GNSS positioning devices A to E are installed at a total of five locations, the four corners of the top, bottom, left, right, and center of the outer wall surface 2 facing the road. However, any position and number may be used as long as they are one point for the same structure or a plurality of points different from each other. As shown in FIG. 1, the fixed point F may be set on a place other than the outer wall surface 2, for example, it may be set on the surrounding ground of the structure 1 or on the roof of another structure 3 or the like.

観測点、固定点に設置するGNSS測位機器としては、高性能な2周波GNSS機器、格安な1周波GNSS機器のどちらでもよい。なお、GNSS測位機器A~Eは、図示しない通信装置を通じて遠隔地の計測室のコンピュータに有線または無線通信回線を介して接続しているものとする。 GNSS positioning equipment installed at observation points and fixed points may be either high-performance dual-frequency GNSS equipment or inexpensive single-frequency GNSS equipment. It is assumed that the GNSS positioning devices A to E are connected to a computer in a remote measurement room via a wired or wireless communication line through a communication device (not shown).

図2は、本発明に係る変位計測システム10の概略構成図である。この図に示すように、この変位計測システム10は、計測室に設けられるコンピュータ12を有している。コンピュータ12は、相対測位手段14、報知手段16、警報手段18、記憶手段20、これらを制御する制御手段22を備えている。記憶手段20はGNSS測位機器A~Eから得られた計測データをリアルタイムに記憶・収集する。記憶手段20に記憶・収集されたデータは制御手段22を通じて適宜読み出され、相対測位手段14によって処理されるようになっている。相対測位手段14はGNSS測位機器A~Eどうしの間の時間経過に伴う変位・変形情報を相対測位により取得するものであり、各種解析ソフトウェア、演算手段などで構成される。なお、このコンピュータ12はインターネットに接続している。このため、例えばユーザの要求に応じて、報知手段16の機能によりインターネットを経由して構造物の管理関係者が有するユーザ端末装置(例えば、パソコンや携帯電話端末など)に取得した構造物の変位・変形情報を配信可能である。また、警報手段18は、所定の閾値以上の変位が取得された場合に、管理室のコンピュータ12や上記のユーザ端末装置を通じてアラーム音などの警報を発する処理を行う。 FIG. 2 is a schematic configuration diagram of the displacement measurement system 10 according to the present invention. As shown in this figure, this displacement measurement system 10 has a computer 12 provided in a measurement room. The computer 12 comprises relative positioning means 14, notification means 16, warning means 18, storage means 20, and control means 22 for controlling these. The storage means 20 stores and collects measurement data obtained from the GNSS positioning devices A to E in real time. The data stored and collected in the storage means 20 are appropriately read out through the control means 22 and processed by the relative positioning means 14 . The relative positioning means 14 acquires displacement/deformation information over time between the GNSS positioning devices A to E by relative positioning, and is composed of various kinds of analysis software, calculation means, and the like. This computer 12 is connected to the Internet. For this reason, for example, at the request of the user, the displacement of the structure acquired by the user terminal device (for example, personal computer, mobile phone terminal, etc.) owned by the person involved in the management of the structure via the Internet by the function of the notification means 16・Deformation information can be distributed. In addition, the alarm means 18 performs a process of issuing an alarm such as an alarm sound through the computer 12 in the control room or the above-described user terminal device when a displacement equal to or greater than a predetermined threshold is acquired.

図3に示すように、まず、5つの観測点にGNSS測位機器A~Eを設置する(ステップS1)。次に構造物4に設定した固定点Fの初期座標を数時間から数日間の単独測位や周辺の電子基準点とのスタティック測位等にて決定する(ステップS2)。 As shown in FIG. 3, first, GNSS positioning devices A to E are installed at five observation points (step S1). Next, the initial coordinates of the fixed point F set on the structure 4 are determined by independent positioning for several hours to several days, static positioning with the surrounding electronic control points, or the like (step S2).

次に、固定点と観測点で同時に観測を開始して衛星からの電波到達の差(一重位相差)および二重位相差を解析し、固定点と観測点の距離を求める(ステップS3)。以上の初期座標の設定から干渉測位は、計測室のコンピュータ12に備わる図示しない解析ソフトウェアや干渉測位手段が行うことができる。本実施の形態では、相対測位としてリアルタイムキネマティック(RTK)測位を利用する。その際、後述のアルゴリズムを適用し、構造物1の外壁面2に関して適切な座標・基線長解を得るものとする。 Next, observation is started simultaneously at the fixed point and the observation point, and the difference (single phase difference) and double phase difference in radio wave arrival from the satellite are analyzed to obtain the distance between the fixed point and the observation point (step S3). The above initial coordinate setting and interferometric positioning can be performed by analysis software and interferometric positioning means (not shown) provided in the computer 12 in the measurement room. In this embodiment, real-time kinematic (RTK) positioning is used as relative positioning. At that time, an algorithm, which will be described later, is applied to obtain an appropriate coordinate/baseline length solution for the outer wall surface 2 of the structure 1 .

異常値を含めた観測結果としての変位・変形情報は、報知手段16の機能により計測室のコンピュータ12やユーザ端末装置の画面などに報知される(ステップS4)。ここで、取得された異常値があらかじめ定めた所定の閾値以上である場合には、警報手段18は計測室のコンピュータ12やユーザ端末装置を通じてアラーム音などの警報を発する。これにより管理者や管理関係者などのユーザは、閾値以上の変位が生じたことを即座に把握することができる。 The displacement/deformation information as the observation result including the abnormal value is reported to the computer 12 in the measurement room, the screen of the user terminal device, etc. by the function of the reporting means 16 (step S4). Here, when the acquired abnormal value is equal to or greater than a predetermined threshold value, the alarm means 18 issues an alarm such as an alarm sound through the computer 12 in the measurement room or the user terminal device. This allows a user such as an administrator or a person concerned with management to immediately recognize that a displacement equal to or greater than the threshold has occurred.

上記の実施の形態において、コンピュータ12は観測点(固定点併用)の測位情報をリアルタイムで取得でき、相対測位手段14による解析もリアルタイムで可能である。また、報知手段16は、例えばユーザの要求に応じて、例えば所定時間毎(例えば1日(24時間)毎)の解析結果(観測結果)もユーザに報知することもできる。したがって、観測点を5つ設けた場合に必要となる解析時間も基本はリアルタイムである。また、一般に構造物はあまり大きく変位しないため、大地震時等を除き、測位情報を数時間平均または1日平均した測位平均値で比較するのが通例である。 In the above embodiment, the computer 12 can acquire the positioning information of the observation points (also fixed points) in real time, and the analysis by the relative positioning means 14 is also possible in real time. Further, the notification means 16 can also notify the user of the analysis results (observation results), for example, at predetermined time intervals (for example, every day (24 hours)) in response to the user's request. Therefore, the analysis time required when five observation points are provided is basically real time. In addition, since structures generally do not undergo large displacements, it is customary to compare the average value of positioning information obtained by averaging several hours or one day, except in the event of a major earthquake.

本実施の形態によれば、例えば、都市部など過密な環境下に設置された学校等の公共施設、施工者のいなくなった中小マンション等の杭や構造物の変形・変位、斜面、ダム傾斜部などを監視することができる。公共施設は一般に避難場所として利用されるが、大地震後の余震等が継続する中で当該施設が安全か否かの確認を行う際にも本発明を利用することができる。 According to the present embodiment, for example, deformation/displacement of piles and structures, slopes, and dam slopes of public facilities such as schools installed in overcrowded environments such as urban areas, small and medium-sized condominiums without builders, etc. departments can be monitored. Public facilities are generally used as evacuation sites, but the present invention can also be used when confirming whether or not the facilities are safe while aftershocks continue after a major earthquake.

<アルゴリズム>
次に、上記のRTK測位(相対測位)で使用するアルゴリズムについて説明する。
<Algorithm>
Next, an algorithm used in the above RTK positioning (relative positioning) will be described.

このアルゴリズムは、複数のGNSS衛星のうちGNSS測位機器から最高仰角にあるGNSS衛星を主衛星として選択するとともに、この衛星以外のGNSS衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うためのものである。 This algorithm selects the GNSS satellite with the highest elevation angle from the GNSS positioning equipment as the main satellite from among the plurality of GNSS satellites, selects the GNSS satellites other than this satellite as the secondary satellite, and selects the selected primary satellite and the secondary satellite. It is intended to remove the bias between different satellite navigation systems by regarding them as satellites of the same satellite navigation system, and to perform relative positioning based on the double phase difference calculated using the satellite signals of the primary and secondary satellites. .

このアルゴリズムでは、RTK測位の計算過程で、GPS、準天頂(QZSS)、ガリレオ等の異なる種類のGNSS衛星を、同じ種類(衛星測位システム上)のGNSS衛星とみなして二重位相差を計算する。より具体的には、GNSS測位機器から受信可能な衛星のうち最高仰角にあるGNSS衛星を主衛星、他の全てのGNSS衛星を従衛星として二重位相差を計算する。以後の測位解析では、この二重位相差を使用する。 In this algorithm, in the RTK positioning calculation process, different types of GNSS satellites such as GPS, Quasi-Zenith (QZSS), Galileo, etc. are treated as GNSS satellites of the same type (on the satellite positioning system) and the double phase difference is calculated. . More specifically, the double phase difference is calculated with the GNSS satellite at the highest elevation angle among the satellites receivable from the GNSS positioning equipment as the primary satellite and all the other GNSS satellites as secondary satellites. Subsequent positioning analysis uses this double phase difference.

このように、同じ種類の衛星のペアで二重位相差を計算するのではなく、GNSS測位機器の上空視野にある衛星を全て活用して二重位相差を計算する。これにより、どの種類の衛星であれ、天頂付近にあるものを主衛星とし、他の衛星全てを従衛星としたペアを組むことにより、上空に1機しかない衛星も利用して二重位相差を計算することが可能となり、アンビギュイティがより正確に計算され、この結果、測位精度が向上する。 Thus, instead of calculating the double phase difference for pairs of satellites of the same type, all satellites in the sky view of the GNSS positioning instrument are utilized to calculate the double phase difference. As a result, regardless of the type of satellite, by forming a pair with the one near the zenith as the master satellite and all the other satellites as slave satellites, it is possible to use even a single satellite in the sky to achieve a double phase difference. can be calculated, and the ambiguities are calculated more accurately, resulting in improved positioning accuracy.

例えば、GNSS測位機器の上空視野にGPS衛星が4機、準天頂衛星が1機、ガリレオ衛星が3機、BeiDou衛星が4機あると仮定する。従来の方法では、合計5機のGPS衛星および準天頂衛星から、最高仰角の1機を主衛星、他の4機を従衛星として4つの二重位相差を取得できる。3機のガリレオ衛星からは、最高仰角の1機を主衛星、他の2機を従衛星として2つの二重位相差を取得できる。4機のBeiDou衛星からは、最高仰角の1機を主衛星、他の3機を従衛星として3つの二重位相差を取得できる。したがって、従来の方法では合計9個(=4+2+3)の二重位相差を取得できる。ただし、各衛星群で二重位相差を計算できる環境にあることが条件となる。これに対し、本発明の方法では、全測位衛星12機(=4+1+3+4)から、最高仰角の1機を主衛星、他の11機を従衛星として合計11個の二重位相差を取得できる。このように、本発明によれば、従来の方法よりも二重位相差を多く取得できるため、アンビギュイティがより正確に計算され、この結果、測位精度が向上するのである。 For example, assume that there are four GPS satellites, one quasi-zenith satellite, three Galileo satellites, and four BeiDou satellites in the sky view of the GNSS positioning instrument. In the conventional method, four dual phase differences can be obtained from a total of five GPS satellites and quasi-zenith satellites, with the one with the highest elevation angle being the primary satellite and the other four satellites being secondary satellites. From the three Galileo satellites, one with the highest elevation angle is the main satellite and the other two are the secondary satellites, and two dual phase differences can be obtained. From the four BeiDou satellites, three dual phase differences can be obtained with the one with the highest elevation angle as the main satellite and the other three satellites as slave satellites. Therefore, a total of 9 (=4+2+3) double phase differences can be obtained with the conventional method. However, it is necessary to have an environment in which the double phase difference can be calculated for each satellite constellation. On the other hand, in the method of the present invention, from all 12 positioning satellites (=4+1+3+4), a total of 11 double phase differences can be obtained with one satellite having the highest elevation angle as the primary satellite and the other 11 satellites as secondary satellites. Thus, according to the present invention, since more double phase differences can be obtained than the conventional method, ambiguities are calculated more accurately, resulting in improved positioning accuracy.

<本発明の効果の検証>
次に、本発明の効果を検証するために行った測位実験について説明する。この実験は、既存建物の壁面の異なる場所に観測点1と観測点2を設け、上記のアルゴリズムを使用して測位解析した本発明の実施例と、従来のRTKLIBソフトウェアで測位解析した比較例とで結果を比較したものである。いずれの測位解析も2017年11月15日の3:30UTCから16日の2:30UTCの時間帯の23時間1Hz(82800秒分のデータ)を使用して解析した。また、種類の異なる衛星測位システムとして、GPS衛星、QZSS衛星、BeiDou衛星、ガリレオ衛星の各測位システムを使用し、これらのシステムから衛星数7機以上を使用した。図4(1)に観測点1の上空視野の写真を、(2)に観測点2の上空視野の写真を示す。いずれの上空視野も狭い状態となっている。
<Verification of effects of the present invention>
Next, positioning experiments conducted to verify the effects of the present invention will be described. In this experiment, an observation point 1 and an observation point 2 were provided at different locations on the wall surface of an existing building, and the positioning analysis was performed using the above algorithm. This is a comparison of the results. Both positioning analyzes were performed using 23 hours 1 Hz (82800 seconds worth of data) in the time zone from 3:30 UTC on November 15, 2017 to 2:30 UTC on 16 November. In addition, as different types of satellite positioning systems, GPS satellites, QZSS satellites, BeiDou satellites, and Galileo satellite positioning systems were used, and seven or more satellites from these systems were used. FIG. 4(1) shows a photograph of the sky view of observation point 1, and FIG. 4(2) shows a photograph of the sky view of observation point 2. In FIG. Both sky fields are narrow.

図5に観測点1の測位結果を示し、図6に観測点2の測位結果を示す。各図において、(1)は水平方向の結果のプロット、(2)は結果の比較、(3)は緯度方向の時系列推移、(4)は経度方向の時系列推移、(5)は高さ方向の時系列推移である。 FIG. 5 shows the positioning result of observation point 1, and FIG. 6 shows the positioning result of observation point 2. As shown in FIG. In each figure, (1) is a plot of the results in the horizontal direction, (2) is a comparison of the results, (3) is the time-series transition in the latitudinal direction, (4) is the time-series transition in the longitudinal direction, and (5) is the height It is a time-series transition in the downward direction.

これらの図に示すように、測位データを本実施例のアルゴリズムを使用して解析した結果、観測点1のFix率(信頼性(水平±10cm以内))は比較例の99.93%から100%に、観測点2は比較例の65.28%から98.89%に向上することが確認された。さらに測位時間中に時々現れる大きな位置の飛びも解消された。 As shown in these figures, as a result of analyzing the positioning data using the algorithm of the present embodiment, the Fix rate (reliability (within horizontal ± 10 cm)) of observation point 1 increased from 99.93% to 100% in the comparative example. %, it was confirmed that the observation point 2 improved from 65.28% of the comparative example to 98.89%. Furthermore, the large jump in position that sometimes appears during the positioning time has also been eliminated.

以上説明したように、本発明に係る変位計測方法によれば、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うので、構造物等を含めた比較的安定した物体の外面に設置した観測点変位を精度よく計測することができる。 As described above, according to the displacement measuring method according to the present invention, a relatively stable displacement including structures and the like is performed using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems. A method for measuring the displacement of an object, comprising an observation point composed of a satellite signal receiver installed on the outer surface of said object and a fixed point composed of a satellite signal receiver installed at a location other than the outer surface of said object. A relative positioning step of acquiring a displacement over time between and by relative positioning, wherein the relative positioning step selects the positioning satellite at the highest elevation angle from the satellite signal receiver among the plurality of positioning satellites as the main satellite In addition, a positioning satellite other than this positioning satellite is selected as a subsatellite, and the selected main satellite and subsatellite are regarded as positioning satellites of the same satellite positioning system, thereby removing the bias between different satellite positioning systems. Since relative positioning is performed based on the double phase difference calculated using satellite signals from secondary satellites, it is possible to accurately measure the displacement of observation points installed on the outer surface of relatively stable objects, including structures. .

また、本発明に係る変位計測システムによれば、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測するシステムであって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うので、構造物等を含めた比較的安定した物体の外面に設置した観測点変位を精度よく計測することができる。 Further, according to the displacement measurement system according to the present invention, a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems is used to measure relatively stable displacements of objects including structures. A measurement system between an observation point consisting of a satellite signal receiver installed on the outer surface of said object and a fixed point consisting of a satellite signal receiver installed at a location other than the outer surface of said object. Relative positioning means for obtaining displacement over time by relative positioning, wherein the relative positioning means selects a positioning satellite at the highest elevation angle from the satellite signal receiver from among the plurality of positioning satellites as a main satellite, and this positioning Selecting a positioning satellite other than a satellite as a secondary satellite, and considering the selected primary and secondary satellites as positioning satellites of the same satellite positioning system to eliminate the bias between different satellite positioning systems, and to eliminate the bias between the primary and secondary satellites Since relative positioning is performed based on the double phase difference calculated using the signal, the displacement of the observation point installed on the outer surface of a relatively stable object including structures can be accurately measured.

以上のように、本発明に係る変位計測方法および変位計測システムは、複数の異なる衛星測位システムを用いた構造物等の物体の変位監視に有用であり、特に、都市部などの過密した環境に設置されている構造物等の壁面を変位監視する場合や、マルチパスを生じさせる障害物がある屋上などの場所に衛星測位機器を設置して変位監視する場合などに適している。 As described above, the displacement measuring method and displacement measuring system according to the present invention are useful for displacement monitoring of objects such as structures using a plurality of different satellite positioning systems, especially in dense environments such as urban areas. It is suitable for monitoring the displacement of walls of installed structures, etc., and for monitoring displacement by installing satellite positioning equipment on rooftops where there are obstacles that cause multipath.

1,4 構造物
2 外壁面(外面)
3 屋上(外面)
10 変位計測システム
12 コンピュータ
14 相対測位手段
16 報知手段
18 警報手段
20 記憶手段
22 制御手段
A~E GNSS観測点(測位機器)
F GNSS固定点
1, 4 structure 2 outer wall surface (outer surface)
3 Rooftop (outer surface)
10 displacement measurement system 12 computer 14 relative positioning means 16 notification means 18 alarm means 20 storage means 22 control means A to E GNSS observation points (positioning equipment)
F GNSS fixed point

Claims (2)

複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて、上空視野の限られた構造物を含めた比較的安定した物体の変位を計測する方法であって、
前記物体の外面に設置した前記衛星信号受信機により構成される観測点と、前記物体とは異なる場所に設置した前記衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、
前記相対測位ステップは、前記衛星信号受信機で受信可能な複数の前記測位衛星のうち前記衛星信号受信機から最高仰角の位置にある前記測位衛星を主衛星として選択するとともに、前記衛星信号受信機から最高仰角の位置にない前記測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの前記測位衛星とみなすことによって前記衛星信号受信機の上空視野にある前記測位衛星を全て活用して二重位相差を計算し、計算した二重位相差に基づいて相対測位を行うことを特徴とする変位計測方法。
A method of measuring the displacement of a relatively stable object including a structure with a limited sky view using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems,
Displacement over time between an observation point configured by the satellite signal receiver installed on the outer surface of the object and a fixed point configured by the satellite signal receiver installed at a location different from the object , with relative positioning steps obtained by relative positioning,
The relative positioning step selects, as a main satellite, the positioning satellite located at the highest elevation angle position from the satellite signal receiver from among the plurality of positioning satellites receivable by the satellite signal receiver, and the positioning satellite in the sky field of view of the satellite signal receiver by selecting, as a secondary satellite, the positioning satellite that is not at the highest elevation position from the satellite signal receiver, and regarding the selected primary satellite and the secondary satellite as the positioning satellite of the same satellite positioning system ; A displacement measurement method comprising calculating a double phase difference using all satellites and performing relative positioning based on the calculated double phase difference.
複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて、上空視野の限られた構造物を含めた比較的安定した物体の変位を計測するシステムであって、
前記物体の外面に設置した前記衛星信号受信機により構成される観測点と、前記物体とは異なる場所に設置した前記衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、
前記相対測位手段は、前記衛星信号受信機で受信可能な複数の前記測位衛星のうち前記衛星信号受信機から最高仰角の位置にある前記測位衛星を主衛星として選択するとともに、前記衛星信号受信機から最高仰角の位置にない前記測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの前記測位衛星とみなすことによって前記衛星信号受信機の上空視野にある前記測位衛星を全て活用して二重位相差を計算し、計算した二重位相差に基づいて相対測位を行うことを特徴とする変位計測システム。
A system for measuring the displacement of a relatively stable object including a structure with a limited sky view using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems,
Displacement over time between an observation point configured by the satellite signal receiver installed on the outer surface of the object and a fixed point configured by the satellite signal receiver installed at a location different from the object , comprising relative positioning means obtained by relative positioning,
The relative positioning means selects, as a main satellite, the positioning satellite located at the highest elevation angle position from the satellite signal receiver from among the plurality of positioning satellites receivable by the satellite signal receiver, and the satellite signal receiver the positioning satellite in the sky view of the satellite signal receiver by selecting, as a secondary satellite, the positioning satellite that is not at the position of the highest elevation angle from the satellite signal receiver, and regarding the selected primary satellite and the secondary satellite as the positioning satellite of the same satellite positioning system ; A displacement measurement system characterized by calculating a double phase difference using all satellites and performing relative positioning based on the calculated double phase difference.
JP2018110579A 2018-06-08 2018-06-08 Displacement measurement method and displacement measurement system Active JP7162450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018110579A JP7162450B2 (en) 2018-06-08 2018-06-08 Displacement measurement method and displacement measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018110579A JP7162450B2 (en) 2018-06-08 2018-06-08 Displacement measurement method and displacement measurement system

Publications (2)

Publication Number Publication Date
JP2019211445A JP2019211445A (en) 2019-12-12
JP7162450B2 true JP7162450B2 (en) 2022-10-28

Family

ID=68845141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018110579A Active JP7162450B2 (en) 2018-06-08 2018-06-08 Displacement measurement method and displacement measurement system

Country Status (1)

Country Link
JP (1) JP7162450B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381251B (en) * 2020-03-18 2022-04-05 杭州微萤科技有限公司 Synchronous chain self-optimization method of positioning system and positioning system
WO2022201391A1 (en) * 2021-03-24 2022-09-29 三菱電機株式会社 Positioning device, positioning program, and positioning method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051041A (en) 1999-08-10 2001-02-23 Nec Corp Selection system for kinematic gps satellite
JP2001281323A (en) 2000-03-31 2001-10-10 Hitachi Zosen Corp Object displacement measuring method based on gps
JP2003194915A (en) 2001-12-27 2003-07-09 Furuno Electric Co Ltd Positioning apparatus and system
JP2007033324A (en) 2005-07-28 2007-02-08 Toshiba Corp Positioning system
US20090184869A1 (en) 2008-01-09 2009-07-23 Trimble Navigation Limited, A Corporation Of California Processing Multi-GNSS data from mixed-type receivers
US20110102254A1 (en) 2009-11-03 2011-05-05 Fenton Patrick C Centimeter positioning using low cost single frequency gnss receivers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051041A (en) 1999-08-10 2001-02-23 Nec Corp Selection system for kinematic gps satellite
JP2001281323A (en) 2000-03-31 2001-10-10 Hitachi Zosen Corp Object displacement measuring method based on gps
JP2003194915A (en) 2001-12-27 2003-07-09 Furuno Electric Co Ltd Positioning apparatus and system
JP2007033324A (en) 2005-07-28 2007-02-08 Toshiba Corp Positioning system
US20090184869A1 (en) 2008-01-09 2009-07-23 Trimble Navigation Limited, A Corporation Of California Processing Multi-GNSS data from mixed-type receivers
US20110102254A1 (en) 2009-11-03 2011-05-05 Fenton Patrick C Centimeter positioning using low cost single frequency gnss receivers
JP2013510298A (en) 2009-11-03 2013-03-21 ノヴァテル インコーポレイテッド Centimeter-accurate positioning method using low-cost single-frequency GNSS receiver

Also Published As

Publication number Publication date
JP2019211445A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
Strode et al. GNSS multipath detection using three-frequency signal-to-noise measurements
JP4920079B2 (en) Seismic measurement system with GPS receiver
JP5775449B2 (en) Method and system for determining position using a hybrid satellite / WLAN positioning system by selecting the best WLAN-PS derived solution
CN105849589B (en) Global Navigation Satellite System, positioning terminal, localization method and recording medium
CN111983654B (en) Method for constructing ionosphere phase scintillation factor in arctic region based on GNSS
KR101667331B1 (en) Apparatus for getting signal quality of base station of plurality satellite navigation
JP6262248B2 (en) Method and associated apparatus for estimating error level in satellite geolocation measurement and monitoring reliability of said estimation
US10371821B2 (en) Satellite signal reception apparatus, satellite signal reception method and program therefor
Groves et al. Performance assessment of 3D‐mapping–aided GNSS part 1: Algorithms, user equipment, and review
JP2008032730A (en) Method and apparatus for determining error estimate in hybrid position determination system
JPWO2006132003A1 (en) GPS receiver and GPS positioning correction method
JP7405378B2 (en) Displacement measurement method and displacement measurement system
JP2008506126A5 (en)
JP2013534623A (en) Global Navigation Satellite System-System for measuring seismic motion or vibration of structures based on GNSS and / or pseudo satellites
JP7162450B2 (en) Displacement measurement method and displacement measurement system
Jin et al. Ionospheric correlation analysis and spatial threat model for SBAS in China region
JP5925038B2 (en) Displacement observation method and displacement observation system
JP2015514979A (en) Method and apparatus for determining the position of a GNSS receiver
Lemmon et al. The Influence of the Number of Satellites on the Accuracy of RTK GPS Positions
Ogutcu et al. Static and kinematic PPP-AR performance of low-cost GNSS receiver in monitoring displacements
Shallberg et al. WAAS measurement processing; current design and potential improvements
US20140240174A1 (en) Method and apparatus for determining non-line of sight (nlos) around a gps receiver
JP4846779B2 (en) Disaster emergency ground fluctuation analysis system and disaster emergency ground fluctuation analysis method
JP2018059876A (en) Displacement monitoring method and displacement monitoring system for structure
KR101290085B1 (en) Method for monitoring tropospheric delay irregularity in multi-reference stations environment and system using monitoring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150