JP2019211445A - Displacement measurement method and displacement measurement system - Google Patents

Displacement measurement method and displacement measurement system Download PDF

Info

Publication number
JP2019211445A
JP2019211445A JP2018110579A JP2018110579A JP2019211445A JP 2019211445 A JP2019211445 A JP 2019211445A JP 2018110579 A JP2018110579 A JP 2018110579A JP 2018110579 A JP2018110579 A JP 2018110579A JP 2019211445 A JP2019211445 A JP 2019211445A
Authority
JP
Japan
Prior art keywords
satellite
positioning
satellites
displacement
signal receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018110579A
Other languages
Japanese (ja)
Other versions
JP7162450B2 (en
Inventor
範洋 山口
Norihiro Yamaguchi
範洋 山口
正憲 鈴木
Masanori Suzuki
正憲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2018110579A priority Critical patent/JP7162450B2/en
Publication of JP2019211445A publication Critical patent/JP2019211445A/en
Application granted granted Critical
Publication of JP7162450B2 publication Critical patent/JP7162450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

To provide a displacement measurement method and a displacement measurement system with improved positioning accuracy.SOLUTION: A method for measuring a displacement of a relatively stable object including a structure by using a satellite signal receiver for receiving satellite signals from positioning satellites of a plurality of different satellite positioning systems, includes a relative positioning step for obtaining a displacement over time between an observation point installed on an outer surface of the object and a fixed point installed at a location other than the outer surface of the object by relative positioning. The relative positioning step selects a positioning satellite at the highest elevation angle from the satellite signal receiver as a main satellite and positioning satellites other than the positioning satellite as sub satellites, among the plurality of positioning satellites, removes a bias between the different satellite positioning systems by assuming the selected main satellite and the selected sub satellites as being positioning satellites of the same satellite positioning system, and performs relative positioning on the basis of a double phase difference calculated using satellite signals of the main satellite and the sub satellites.SELECTED DRAWING: Figure 3

Description

本発明は、衛星測位システムを用いた変位計測方法および変位計測システムに関し、特に構造物等を含めた比較的安定した物体の側面の変位計測に好適な変位計測方法および変位計測システムに関するものである。   The present invention relates to a displacement measuring method and a displacement measuring system using a satellite positioning system, and more particularly to a displacement measuring method and a displacement measuring system suitable for measuring a relatively stable side displacement of an object including a structure or the like. .

従来、衛星測位システムによる構造物の変位等計測に際しては、一般に米国のGPS(Global Positioning System:衛星測位システム)衛星を利用する方法が主流であった。例えば、構造物の周辺地盤の固定点に設置したGPS受信機と、構造物上の観測点に設置したGPS受信機との間の相対測位により、構造物の変位等を計測する方法が知られている(例えば、特許文献1、2を参照)。しかし、米国のGPS衛星の数にも限りがあり、利用に際して以下のような制約や課題がある。   Conventionally, when measuring the displacement of a structure using a satellite positioning system, generally, a method using a GPS (Global Positioning System) satellite in the United States has been the mainstream. For example, a method of measuring the displacement of a structure by relative positioning between a GPS receiver installed at a fixed point on the ground around the structure and a GPS receiver installed at an observation point on the structure is known. (For example, refer to Patent Documents 1 and 2). However, the number of GPS satellites in the United States is also limited, and there are the following restrictions and issues in use.

(1)測位解析に十分必要なGPS衛星を捕捉するために衛星測位機器からの仰角を15°以上に保つ等の工夫が必要である。
(2)そのため、構造物等が過密で上空視野を確保し難い都市部などでは、衛星測位機器の設置場所は構造物等の屋上に限定される。すなわち構造物等の屋上周辺の変位計測しかできない。
(3)しかし屋上にも様々な設備が配置され、衛星測位機器の設置場所は制限される。
(4)仮に屋上に衛星測位機器を設置できたとしても、屋上の他の設備や周辺のビルのマルチパスの影響を受け正確な変位計測を妨げるおそれがある。
(1) In order to capture GPS satellites sufficiently necessary for positioning analysis, it is necessary to devise such as keeping the elevation angle from the satellite positioning device at 15 ° or more.
(2) Therefore, in urban areas where structures and the like are overcrowded and it is difficult to secure an aerial view, the location of satellite positioning devices is limited to the rooftops of structures and the like. In other words, it can only measure displacement around the rooftop of structures and the like.
(3) However, various facilities are arranged on the roof, and the installation location of satellite positioning equipment is limited.
(4) Even if a satellite positioning device can be installed on the rooftop, it may interfere with accurate displacement measurement due to the influence of other equipment on the rooftop and the multipath of surrounding buildings.

従来はこうした課題により、構造物等の壁面測位に着目することもなかった。   Conventionally, due to such problems, attention has not been paid to positioning of a wall surface of a structure or the like.

一方、GPS衛星を利用した測位技術に関して、特許文献3に示すような技術が知られている。この技術は、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別し、移動局の測定位置を補正するものである。   On the other hand, as a positioning technique using a GPS satellite, a technique as shown in Patent Document 3 is known. This technique discriminates satellite signals affected by multipaths by a simple and reliable method, and corrects the measurement position of the mobile station.

ところで現在、米国のGPS衛星のみならず、ロシア、欧州、中国、日本の衛星測位システム(以下、これら全てを総称してGNSS(Global Navigation Satellite System:全球測位衛星システム)と呼ぶ。)が運用されており、衛星測位機器で測位すると30前後のGNSS衛星からの信号を受信可能である。今後各国のGNSS衛星数の増加が見込まれ、さらに日本の準天頂衛星数の増加により、高仰角からの信号の取得も容易となる。衛星数の増加とともに上記の課題は容易に解決できると思われがちであるが、逆に衛星数の増加とともにマルチパス増大という課題も生じる。   By the way, not only GPS satellites in the United States but also Russian, European, Chinese, and Japanese satellite positioning systems (hereinafter collectively referred to as GNSS (Global Navigation Satellite System)) are operated. Therefore, when positioning with a satellite positioning device, signals from about 30 GNSS satellites can be received. In the future, the number of GNSS satellites in each country is expected to increase, and the increase in the number of quasi-zenith satellites in Japan will make it easier to acquire signals from high elevation angles. The above problem tends to be easily solved as the number of satellites increases, but conversely, as the number of satellites increases, the problem of an increase in multipaths also arises.

こうした課題を解決するための技術として、本発明者内の一部は既に特許文献4に示すような技術を提案している。この技術は、以下の機能を有するものである。これによれば、構造物の壁面などに設置した観測点変位を精度よく計測できるので、過密環境下に設置された構造物の屋上・側部の変位・変形等を監視するのに好適である。
(1)GNSS衛星の信号を取捨選択する機能
(2)RTK測位の要となるアンビギュイティを高い信頼度で決定する機能
(3)アンビギュイティを保持する機能
(4)GNSS受信機が出力する搬送波位相のサイクルスリップ情報等を利用する機能
As a technique for solving such a problem, a part of the inventors has already proposed a technique as shown in Patent Document 4. This technique has the following functions. According to this, since the observation point displacement installed on the wall surface of the structure can be accurately measured, it is suitable for monitoring the displacement / deformation etc. of the rooftop / side part of the structure installed in an overcrowded environment. .
(1) A function for selecting GNSS satellite signals (2) A function for determining ambiguity that is the key to RTK positioning with high reliability (3) A function for maintaining ambiguity (4) A GNSS receiver outputs Function to use cycle slip information of carrier phase

上記(3)の機能について補足説明する。アンビギュイティ保持とは、サイクルスリップ等のない衛星については、いったん正しいアンビギュイティを求めると、理論上その値を保持してもRTKの測位は継続できる。アンビギュイティ保持とはその特徴を利用したものである。この方法の特徴は、従来の方法ではアンビギュイティ保持が途切れてしまうケースにおいても、その途切れを可能な限りなくすことができ、また途切れた後の復旧を早期にできるところにある。1つの具体例として、アンビギュイティ決定には、主衛星と従衛星による二重位相差が必須である。その主衛星が変更されるとアンビギュイティ保持はできなくなる。このような事象にも対応できるよう、あらかじめ品質のよい主衛星を選択することと、主衛星が変更されても瞬時に別の主衛星でアンビギュイティを保持できる能力を持つ機能である。   The function (3) will be supplementarily described. With ambiguity holding, once a correct ambiguity is obtained for a satellite without a cycle slip, RTK positioning can be continued even if the value is held theoretically. Ambiguity retention uses this characteristic. The feature of this method is that even when the ambiguity maintenance is interrupted in the conventional method, the interruption can be eliminated as much as possible, and the recovery after the interruption can be performed early. As one specific example, a double phase difference between a primary satellite and a secondary satellite is essential for determining ambiguity. Ambiguity cannot be maintained if the main satellite is changed. This function has the ability to select a high-quality primary satellite in advance so that it can cope with such an event and to maintain ambiguity with another primary satellite instantly even if the primary satellite is changed.

RTK測位は、基準点と観測点の相対測位になるため、二重位相差を計算に用いる。二重位相差は、同一衛星からの搬送波位相を同時に2つの受信機で受信し、1サイクル単位で両受信データの一重位相差を2衛星に対して各々求め、この2つの一重位相差の差をとることによって求められる。この二重位相差を用いることによって、衛星および受信機時計誤差の消去が可能である。RTK測位では、この二重位相差を求める組合せを3組以上作り、多数回の測位データを利用して最小二乗法により各衛星と受信機間の搬送波の受信機の各チャンネルの整数波長分の不確定要素(整数値バイアス)を推定して基線ベクトル(3次元座標差)を決定する。   Since RTK positioning is relative positioning between a reference point and an observation point, a double phase difference is used for calculation. The double phase difference is obtained by simultaneously receiving the carrier phase from the same satellite by two receivers, and obtaining the single phase difference of both received data for each of the two satellites in units of one cycle, and the difference between the two single phase differences. Required by taking By using this double phase difference, satellite and receiver clock errors can be eliminated. In RTK positioning, three or more combinations for obtaining this double phase difference are made, and by using the positioning data of a large number of times, a carrier wave between each satellite and the receiver for each channel of the channel of the carrier wave by the least square method. An uncertain element (integer value bias) is estimated to determine a baseline vector (three-dimensional coordinate difference).

異なる種類の衛星を利用してRTK測位を行う場合、衛星の種類毎に使用周波数等が異なることから考慮すべき様々なバイアスが生じる。これらバイアスの影響を避けるために、RTK測位では衛星測位システムの種類ごとに別々に二重位相差をとる混合測位が主流となっている。混合測位解析の際、同じ種類の衛星が少なくとも必ず2機以上必要で(例えば主衛星と従衛星)、そのとき受信機から見えている最高仰角の衛星を主衛星として採用する。1機しか見えていない衛星はそもそも解析に用いない。   When RTK positioning is performed using different types of satellites, various biases to be taken into consideration are generated due to the use frequency and the like being different for each type of satellite. In order to avoid the influence of these biases, in RTK positioning, mixed positioning that takes a double phase difference separately for each type of satellite positioning system has become the mainstream. In the mixed positioning analysis, at least two satellites of the same type are always required (for example, the primary satellite and the secondary satellite), and the satellite with the highest elevation visible from the receiver at that time is adopted as the primary satellite. In the first place, only one satellite is not used for analysis.

例えば、主衛星がGPS衛星ならば従衛星もGPS衛星を選定し、主衛星が準天頂衛星ならば従衛星も準天頂衛星を選定し、選定したペアで二重位相差を計算する。ここで、上空にGPS衛星、準天頂衛星、ガリレオ衛星、グロナス衛星が2機ずつあったと仮定する。種類の異なる衛星が2機ずつあるため、天頂付近にある衛星を主衛星、天頂付近からはずれた位置にある衛星を従衛星として二重位相差を計算する。この場合は、GPS衛星のペア、準天頂衛星のペア、ガリレオ衛星のペア、グロナス衛星のペアで計算した二重位相差から適切なアンビギュイティを計算することになる。この混合測位では多くの衛星群の二重位相差を用いるため測位精度が向上する。   For example, if the primary satellite is a GPS satellite, the secondary satellite also selects the GPS satellite, and if the primary satellite is the quasi-zenith satellite, the secondary satellite also selects the quasi-zenith satellite, and the double phase difference is calculated for the selected pair. Here, it is assumed that there are two GPS satellites, quasi-zenith satellites, Galileo satellites, and Glonus satellites in the sky. Since there are two different types of satellites, the double phase difference is calculated with the satellite near the zenith as the primary satellite and the satellite at a position off the zenith as the secondary satellite. In this case, an appropriate ambiguity is calculated from the double phase difference calculated for the GPS satellite pair, the quasi-zenith satellite pair, the Galileo satellite pair, and the Glonus satellite pair. This mixed positioning uses the double phase difference of many satellite groups, so positioning accuracy is improved.

特開2015−197344号公報JP-A-2015-197344 特開2008−76117号公報JP 2008-76117 A 特許第5232994号公報Japanese Patent No. 5232994 特願2017−079210号明細書(現時点で未公開)Japanese Patent Application No. 2017-079210 (unpublished at present)

上空に障害物のないオープンスカイの場合、全種類の衛星がどの時間帯であっても上空に適度に配置されているため、各衛星群の二重位相差が容易に計算され、混合測位でも精度の良い計算が可能である。しかし、過密環境下にある建物の外壁やダムの左岸右岸の斜面等の観測点を測位するような場合、上空視野が比較的狭くなるため、上空に同じ種類の衛星の数が2機以下となることがある。上空に測位衛星が多いように見えても、ある衛星群の二重位相差の計算が困難となり、この結果、混合測位の精度が低下するおそれがある。   In the case of open sky with no obstacles in the sky, all types of satellites are placed appropriately in the sky at any time, so the double phase difference of each satellite group is easily calculated, and even in mixed positioning Accurate calculation is possible. However, when positioning observation points such as the outer wall of a building in an overcrowded environment or the slope of the left bank and the right bank of a dam, the sky field of view is relatively narrow, so the number of satellites of the same type in the sky is less than two. May be. Even if there are many positioning satellites in the sky, it is difficult to calculate the double phase difference of a certain satellite group, and as a result, the accuracy of mixed positioning may be reduced.

さらに、上空視野が比較的狭いと、上空に同じ種類の衛星が2機以上ある時間帯も限られる。例えば、上空に衛星が7機あっても、ある種類の衛星は1機ということも多々あり得る。この7機の内訳がGPS衛星2機、準天頂衛星1機、ガリレオ衛星2機、グロナス衛星1機、BeiDou衛星1機の場合、従来の測位解析で二重位相差を計算できるのはGPS衛星とガリレオ衛星だけとなり、測位精度が低下するおそれがある。   Furthermore, when the sky field of view is relatively narrow, the time period in which two or more same-type satellites are in the sky is also limited. For example, even if there are seven satellites in the sky, there can often be one kind of satellite. If the breakdown of these seven is two GPS satellites, one quasi-zenith satellite, two Galileo satellites, one Glonus satellite, and one BeiDou satellite, the GPS satellite can calculate the double phase difference by conventional positioning analysis. And only the Galileo satellite, there is a risk that the positioning accuracy will decrease.

なお、準天頂衛星は、GPS衛星に準じた仕様となっているため、GPS衛星数が減り、かつ準天頂衛星が複数存在する場合(環境の良い場合、合計で3機以上)、最高仰角にあるGPS衛星もしくは準天頂衛星を主衛星、その他を従衛星として二重位相差を計算可能である。しかし、上記の建物の外壁やダムの左岸右岸等ではこの状態が長時間継続することは稀であるため、24時間継続して測位することは困難である。   The quasi-zenith satellites have specifications conforming to the GPS satellites, so if the number of GPS satellites is reduced and there are multiple quasi-zenith satellites (three or more in total in a good environment), the maximum elevation angle A double phase difference can be calculated using a certain GPS satellite or quasi-zenith satellite as a primary satellite and others as secondary satellites. However, since it is rare that this state continues for a long time on the outer wall of the building or the left bank and the right bank of the dam, it is difficult to measure the position continuously for 24 hours.

このような問題に対処するため、本発明者は、衛星間が持つシステムバイアス、特に衛星のクロック差に着目して様々な検討を行った。上述したように、GPS衛星と準天頂衛星の場合はクロック差がないため、GPS衛星や準天頂衛星を主衛星、その他のGPS衛星や準天頂衛星を従衛星とした組合せで二重位相差を計算できる。しかし、GPS衛星・準天頂衛星と他の種類の衛星にはクロック差があるため、他の種類の衛星は衛星種類毎に二重位相差を計算する必要がある。   In order to deal with such a problem, the present inventor has made various studies by paying attention to a system bias between satellites, particularly a clock difference between satellites. As described above, there is no clock difference between GPS satellites and quasi-zenith satellites, so a double phase difference can be obtained by combining GPS satellites and quasi-zenith satellites as primary satellites and other GPS satellites and quasi-zenith satellites as secondary satellites. Can be calculated. However, since there is a clock difference between the GPS satellite / quasi-zenith satellite and other types of satellites, it is necessary for other types of satellites to calculate a double phase difference for each satellite type.

こうして様々な測位データの取得、測位解析アルゴリズムの改変・試行を重ねた結果、本発明者は、上記の従来の特許文献4よりも測位精度の向上を図れる以下の本発明に至った。すなわち、衛星間が持つシステムバイアス(衛星のクロック差)をアルゴリズム上で事前に解消させることにより、上空の衛星をできる限り多く利用し、1つを主衛星、他を従衛星として多くの二重位相差を取得でき、この結果、測位精度の向上を図れる以下の本発明に至った。   As a result of repeatedly acquiring various positioning data and modifying / trialting the positioning analysis algorithm in this way, the present inventor has reached the following present invention in which positioning accuracy can be improved as compared with the above-mentioned conventional Patent Document 4. In other words, the system bias (satellite clock difference) between the satellites is eliminated in advance by the algorithm, so that the satellites in the sky are used as much as possible, one is the primary satellite and the other is the secondary satellite. The phase difference can be acquired, and as a result, the present invention has been reached which can improve the positioning accuracy.

本発明は、上記に鑑みてなされたものであって、測位精度を向上した変位計測方法および変位計測システムを提供することを目的とする。   The present invention has been made in view of the above, and an object thereof is to provide a displacement measuring method and a displacement measuring system with improved positioning accuracy.

上記した課題を解決し、目的を達成するために、本発明に係る変位計測方法は、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うことを特徴とする。   In order to solve the above-described problems and achieve the object, a displacement measuring method according to the present invention uses a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems to A method for measuring the displacement of a relatively stable object including an observation point constituted by a satellite signal receiver installed on the outer surface of the object, and a satellite signal receiver installed at a place other than the outer surface of the object A relative positioning step for acquiring relative displacement with time from a fixed point constituted by a relative positioning step, wherein the relative positioning step is a positioning satellite at a maximum elevation angle from a satellite signal receiver among a plurality of positioning satellites. Is selected as the primary satellite, a positioning satellite other than this positioning satellite is selected as the secondary satellite, and the selected primary satellite and secondary satellite are regarded as positioning satellites of the same satellite positioning system. Bias is removed between a satellite positioning system comprising, and performs relative positioning based on double phase difference calculated using a satellite signal of the main satellite and 従衛 star.

また、本発明に係る変位計測システムは、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測するシステムであって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うことを特徴とする。   The displacement measurement system according to the present invention measures a relatively stable displacement of an object including a structure using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems. A time lapse between an observation point configured by a satellite signal receiver installed on the outer surface of the object and a fixed point configured by a satellite signal receiver installed at a location other than the outer surface of the object. Relative positioning means for acquiring the displacement caused by relative positioning by relative positioning. The relative positioning means selects the positioning satellite at the highest elevation angle from the satellite signal receiver among the plurality of positioning satellites as the main satellite, and other than this positioning satellite. By selecting one of the positioning satellites as a secondary satellite, the bias between different satellite positioning systems is removed by considering the selected primary and secondary satellites as positioning satellites of the same satellite positioning system. And, and performs relative positioning based on double phase difference calculated using a satellite signal of the main satellite and 従衛 star.

本発明に係る変位計測方法によれば、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うので、構造物等を含めた比較的安定した物体の外面に設置した観測点変位を精度よく計測することができるという効果を奏する。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。   According to the displacement measurement method of the present invention, the displacement of a relatively stable object including a structure or the like is measured using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems. A time lapse between an observation point constituted by a satellite signal receiver installed on the outer surface of the object and a fixed point constituted by a satellite signal receiver installed at a place other than the outer surface of the object The relative positioning step acquires the displacement accompanying the relative positioning by relative positioning. In the relative positioning step, the positioning satellite at the highest elevation angle from the satellite signal receiver is selected as the primary satellite from the plurality of positioning satellites, and other than the positioning satellites. By selecting one of the positioning satellites as a secondary satellite, the bias between different satellite positioning systems is removed by considering the selected primary and secondary satellites as positioning satellites of the same satellite positioning system. Since relative positioning is performed based on the double phase difference calculated using the satellite signals of the primary and secondary satellites, the displacement of the observation point installed on the outer surface of a relatively stable object, including structures, can be accurately detected. The effect that it can measure is produced. For this reason, the present invention monitors not only the top (rooftop) of a relatively stable object including structures installed in an overcrowded environment but also the displacement / deformation of the side (wall surface). Is preferred.

また、本発明に係る変位計測システムによれば、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測するシステムであって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うので、構造物等を含めた比較的安定した物体の外面に設置した観測点変位を精度よく計測することができるという効果を奏する。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。   In addition, according to the displacement measurement system of the present invention, the displacement of a relatively stable object including a structure or the like can be detected using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems. A system for measuring between an observation point configured by a satellite signal receiver installed on the outer surface of the object and a fixed point configured by a satellite signal receiver installed at a location other than the outer surface of the object Relative positioning means for acquiring displacement with time by relative positioning is provided, and the relative positioning means selects a positioning satellite at the highest elevation angle from a satellite signal receiver as a main satellite from a plurality of positioning satellites. By selecting a positioning satellite other than the satellite as a secondary satellite and considering the selected primary and secondary satellites as positioning satellites of the same satellite positioning system, a via between different satellite positioning systems Relative positioning is performed based on the double phase difference calculated using the satellite signals of the primary and secondary satellites, so the displacement of the observation point installed on the outer surface of a relatively stable object including structures There is an effect that measurement can be performed with high accuracy. For this reason, the present invention monitors not only the top (rooftop) of a relatively stable object including structures installed in an overcrowded environment but also the displacement / deformation of the side (wall surface). Is preferred.

図1は、本発明に係る変位計測方法および変位計測システムの実施の形態を示す概略状況図である。FIG. 1 is a schematic situation diagram showing an embodiment of a displacement measuring method and a displacement measuring system according to the present invention. 図2は、本発明に係る変位計測システムの実施の形態を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing an embodiment of a displacement measurement system according to the present invention. 図3は、本発明に係る変位計測方法の実施の形態を示す概略フローチャート図である。FIG. 3 is a schematic flowchart showing an embodiment of the displacement measuring method according to the present invention. 図4は、魚眼カメラで見た観測点の上空視野を示す図であり、(1)は観測点1の上空視野、(2)は観測点2の上空視野である。FIGS. 4A and 4B are diagrams showing the sky field of view of the observation point as viewed by the fisheye camera, where (1) is the sky field of view of observation point 1 and (2) is the sky field of view of observation point 2. FIG. 図5は、観測点1のRTK測位結果を示す図である。FIG. 5 is a diagram showing an RTK positioning result at the observation point 1. 図6は、観測点2のRTK測位結果を示す図である。FIG. 6 is a diagram showing an RTK positioning result at the observation point 2.

上述したように、本発明者が様々な測位データの取得、アルゴリズムの改変・解析を試行した結果、従来の特許文献4よりも測位精度の向上を図れる本発明に至った。本発明を適用することで、例えば上空に1機しかないガリレオ衛星等のデータ利用も可能となり、後述するようにRTK測位性能を評価する「信頼性の高い(水平±10cm以内)Fix率」が格段に向上する。   As described above, as a result of the inventor's attempts to acquire various positioning data and modify / analyze the algorithm, the present invention has been achieved in which positioning accuracy can be improved as compared with the conventional Patent Document 4. By applying the present invention, it becomes possible to use data such as a Galileo satellite having only one aircraft in the sky, for example. As described later, a “reliable (horizontal within ± 10 cm) Fix rate” for evaluating RTK positioning performance is provided. Greatly improved.

以下に、本発明に係る変位計測方法および変位計測システムの実施の形態を図面に基づいて詳細に説明する。なお、以下の説明では、変位を計測・監視する対象の構造物として都市部の過密環境に設置された中小マンションの壁面測位を例に説明するが、この実施の形態により本発明が限定されるものではない。なお、本発明は、単に構造物等を含めた比較的安定した静止物体の壁面測位のみならず、例えば構造物等を含めた比較的安定した静止物体の屋上などのように、衛星測位機器の設置場所周辺にマルチパスを生じさせる障害物等がある場合の測位などにも適用可能である。   Hereinafter, embodiments of a displacement measuring method and a displacement measuring system according to the present invention will be described in detail with reference to the drawings. In the following description, wall surface positioning of a small and medium-sized apartment installed in an overcrowded environment in an urban area will be described as an example of a structure for measuring and monitoring displacement, but the present invention is limited by this embodiment. It is not a thing. It should be noted that the present invention is not limited to wall positioning of a relatively stable stationary object including a structure or the like, but also a satellite positioning device such as a roof of a relatively stable stationary object including a structure or the like. It is also applicable to positioning when there are obstacles that cause multipath around the installation location.

本発明の実施の形態に係る変位計測方法は、複数の異なる衛星測位システムのGNSS衛星(測位衛星)からの衛星信号を受信するGNSS測位機器(衛星信号受信機)を用いて構造物の変位を計測する方法である。本実施の形態は、構造物の外壁面に設置したGNSS測位機器により構成される観測点と、構造物の外壁面以外の場所に設置したGNSS測位機器により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備える。   In the displacement measuring method according to the embodiment of the present invention, the displacement of a structure is measured using a GNSS positioning device (satellite signal receiver) that receives satellite signals from GNSS satellites (positioning satellites) of a plurality of different satellite positioning systems. It is a method of measuring. In the present embodiment, the time between the observation point configured by the GNSS positioning device installed on the outer wall surface of the structure and the fixed point configured by the GNSS positioning device installed at a location other than the outer wall surface of the structure. A relative positioning step of acquiring a displacement with progress by relative positioning;

相対測位ステップは、複数のGNSS衛星のうちGNSS測位機器から最高仰角にあるGNSS衛星を主衛星として選択するとともに、この衛星以外のGNSS衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うものである。ここでは、相対測位の中で最も精度が良い搬送波を用いた干渉測位を用いた方法で説明する。   The relative positioning step selects a GNSS satellite at the highest elevation angle from a GNSS positioning device as a primary satellite among a plurality of GNSS satellites, and selects a GNSS satellite other than this satellite as a secondary satellite. Is regarded as a satellite of the same satellite positioning system, the bias between different satellite positioning systems is removed, and relative positioning is performed based on the double phase difference calculated using the satellite signals of the primary satellite and the secondary satellite. Here, a method using interference positioning using a carrier wave having the highest accuracy in relative positioning will be described.

まず、GNSS測位機器の設置初期に固定点の座標を決定した後、固定点、観測点全てのGNSS測位機器で同時に観測をして、衛星からの電波到達の差(一重位相差)、二重位相差を解析し固定点と観測点間の距離を求める。例えばGNSS測位機器を5つ設置する場合には、固定点と他の観測点を1組とカウントしたとき、5組の座標変化や基線長の変化を取得することで、構造物のどの部分に傾斜や沈下が生じているか等を把握できる。   First, after determining the coordinates of the fixed point in the initial stage of installation of the GNSS positioning device, the GNSS positioning devices at all the fixed points and observation points are simultaneously observed, and the difference in arrival of radio waves from the satellite (single phase difference), double Analyze the phase difference to find the distance between the fixed point and the observation point. For example, when five GNSS positioning devices are installed, when a fixed point and another observation point are counted as one set, by acquiring five sets of coordinate changes and baseline length changes, It is possible to grasp whether there is an inclination or settlement.

次に、GNSS測位機器(観測点)を5つ設置した場合の変位計測システムを例にとり、初期座標設定から観測までの流れを説明する。   Next, a flow from initial coordinate setting to observation will be described by taking a displacement measurement system in the case where five GNSS positioning devices (observation points) are installed as an example.

図1に示すように、中小マンションなどの構造物1の外壁面2の互いに異なる位置に、衛星からの衛星信号を受信する5台のGNSS測位機器A〜Eを設置して観測点とし、別の構造物4の上にGNSS測位機器を1台設置して固定点Fとして干渉測位を行う。図1の例では、道路に面する外壁面2の上下左右の四隅と中央の合計5か所にGNSS測位機器A〜Eを設置した場合を示しているが、設置位置、設置数についてはこれに限るものではなく同一構造物につき1点または互いに異なる複数点であればいかなる位置、数であっても構わない。図1のように固定点Fは外壁面2以外に設定してもよく、例えば構造物1の周辺地盤上や他の構造物3の屋上などに設置してもよい。   As shown in FIG. 1, five GNSS positioning devices A to E that receive satellite signals from satellites are installed at different positions on the outer wall surface 2 of the structure 1 such as a small and medium-sized apartment, and are used as observation points. One GNSS positioning device is installed on the structure 4 and interference positioning is performed as a fixed point F. In the example of FIG. 1, the case where GNSS positioning devices A to E are installed at a total of five places in the four corners of the top, bottom, left, and right of the outer wall surface 2 facing the road and the center is shown. The position is not limited to the above, and any position and number may be used as long as they are one point or a plurality of points different from each other for the same structure. As shown in FIG. 1, the fixed point F may be set other than the outer wall surface 2, and may be installed on the ground around the structure 1 or on the roof of another structure 3, for example.

観測点、固定点に設置するGNSS測位機器としては、高性能な2周波GNSS機器、格安な1周波GNSS機器のどちらでもよい。なお、GNSS測位機器A〜Eは、図示しない通信装置を通じて遠隔地の計測室のコンピュータに有線または無線通信回線を介して接続しているものとする。   As a GNSS positioning device installed at an observation point or a fixed point, either a high-performance two-frequency GNSS device or a cheap one-frequency GNSS device may be used. Note that the GNSS positioning devices A to E are connected to a computer in a remote measurement room through a communication device (not shown) via a wired or wireless communication line.

図2は、本発明に係る変位計測システム10の概略構成図である。この図に示すように、この変位計測システム10は、計測室に設けられるコンピュータ12を有している。コンピュータ12は、相対測位手段14、報知手段16、警報手段18、記憶手段20、これらを制御する制御手段22を備えている。記憶手段20はGNSS測位機器A〜Eから得られた計測データをリアルタイムに記憶・収集する。記憶手段20に記憶・収集されたデータは制御手段22を通じて適宜読み出され、相対測位手段14によって処理されるようになっている。相対測位手段14はGNSS測位機器A〜Eどうしの間の時間経過に伴う変位・変形情報を相対測位により取得するものであり、各種解析ソフトウェア、演算手段などで構成される。なお、このコンピュータ12はインターネットに接続している。このため、例えばユーザの要求に応じて、報知手段16の機能によりインターネットを経由して構造物の管理関係者が有するユーザ端末装置(例えば、パソコンや携帯電話端末など)に取得した構造物の変位・変形情報を配信可能である。また、警報手段18は、所定の閾値以上の変位が取得された場合に、管理室のコンピュータ12や上記のユーザ端末装置を通じてアラーム音などの警報を発する処理を行う。   FIG. 2 is a schematic configuration diagram of the displacement measurement system 10 according to the present invention. As shown in this figure, this displacement measurement system 10 has a computer 12 provided in a measurement room. The computer 12 includes a relative positioning unit 14, a notification unit 16, an alarm unit 18, a storage unit 20, and a control unit 22 for controlling them. The storage means 20 stores and collects measurement data obtained from the GNSS positioning devices A to E in real time. The data stored and collected in the storage means 20 is appropriately read out through the control means 22 and processed by the relative positioning means 14. The relative positioning means 14 acquires displacement / deformation information associated with the passage of time between the GNSS positioning devices A to E by relative positioning, and includes various analysis software, arithmetic means, and the like. The computer 12 is connected to the Internet. For this reason, the displacement of the structure acquired in the user terminal device (for example, a personal computer, a mobile telephone terminal, etc.) which the management relevant person of the structure has via the Internet by the function of the notification means 16 according to a user request, for example.・ Transformation information can be distributed. Moreover, the alarm means 18 performs the process which issues alarms, such as an alarm sound, through the computer 12 of said management room or said user terminal device, when the displacement more than a predetermined threshold value is acquired.

図3に示すように、まず、5つの観測点にGNSS測位機器A〜Eを設置する(ステップS1)。次に構造物4に設定した固定点Fの初期座標を数時間から数日間の単独測位や周辺の電子基準点とのスタティック測位等にて決定する(ステップS2)。   As shown in FIG. 3, first, GNSS positioning devices A to E are installed at five observation points (step S1). Next, the initial coordinates of the fixed point F set on the structure 4 are determined by single positioning for several hours to several days, static positioning with surrounding electronic reference points, or the like (step S2).

次に、固定点と観測点で同時に観測を開始して衛星からの電波到達の差(一重位相差)および二重位相差を解析し、固定点と観測点の距離を求める(ステップS3)。以上の初期座標の設定から干渉測位は、計測室のコンピュータ12に備わる図示しない解析ソフトウェアや干渉測位手段が行うことができる。本実施の形態では、相対測位としてリアルタイムキネマティック(RTK)測位を利用する。その際、後述のアルゴリズムを適用し、構造物1の外壁面2に関して適切な座標・基線長解を得るものとする。   Next, observation is started simultaneously at the fixed point and the observation point, and the difference between the arrival of radio waves from the satellite (single phase difference) and the double phase difference are analyzed to obtain the distance between the fixed point and the observation point (step S3). From the above initial coordinate setting, interference positioning can be performed by analysis software or interference positioning means (not shown) provided in the computer 12 of the measurement room. In the present embodiment, real-time kinematic (RTK) positioning is used as relative positioning. At that time, an algorithm described later is applied to obtain an appropriate coordinate / baseline length solution for the outer wall surface 2 of the structure 1.

異常値を含めた観測結果としての変位・変形情報は、報知手段16の機能により計測室のコンピュータ12やユーザ端末装置の画面などに報知される(ステップS4)。ここで、取得された異常値があらかじめ定めた所定の閾値以上である場合には、警報手段18は計測室のコンピュータ12やユーザ端末装置を通じてアラーム音などの警報を発する。これにより管理者や管理関係者などのユーザは、閾値以上の変位が生じたことを即座に把握することができる。   The displacement / deformation information as the observation result including the abnormal value is notified to the computer 12 of the measurement room or the screen of the user terminal device by the function of the notification means 16 (step S4). Here, when the acquired abnormal value is equal to or greater than a predetermined threshold value, the alarm unit 18 issues an alarm such as an alarm sound through the computer 12 or the user terminal device in the measurement room. As a result, users such as managers and managers can immediately recognize that a displacement greater than the threshold has occurred.

上記の実施の形態において、コンピュータ12は観測点(固定点併用)の測位情報をリアルタイムで取得でき、相対測位手段14による解析もリアルタイムで可能である。また、報知手段16は、例えばユーザの要求に応じて、例えば所定時間毎(例えば1日(24時間)毎)の解析結果(観測結果)もユーザに報知することもできる。したがって、観測点を5つ設けた場合に必要となる解析時間も基本はリアルタイムである。また、一般に構造物はあまり大きく変位しないため、大地震時等を除き、測位情報を数時間平均または1日平均した測位平均値で比較するのが通例である。   In the above embodiment, the computer 12 can acquire the positioning information of the observation point (in combination with the fixed point) in real time, and the analysis by the relative positioning means 14 is also possible in real time. The notification unit 16 can also notify the user of an analysis result (observation result) every predetermined time (for example, every day (24 hours)), for example, in response to a user request. Therefore, the analysis time required when five observation points are provided is basically in real time. In general, since structures do not change so much, it is common to compare positioning information with average values obtained by averaging several hours or one day, except during a large earthquake.

本実施の形態によれば、例えば、都市部など過密な環境下に設置された学校等の公共施設、施工者のいなくなった中小マンション等の杭や構造物の変形・変位、斜面、ダム傾斜部などを監視することができる。公共施設は一般に避難場所として利用されるが、大地震後の余震等が継続する中で当該施設が安全か否かの確認を行う際にも本発明を利用することができる。   According to this embodiment, for example, public facilities such as schools installed in an overcrowded environment such as urban areas, deformation and displacement of piles and structures such as small and medium-sized condominiums that have lost the construction, slope, dam inclination Can be monitored. Public facilities are generally used as evacuation sites, but the present invention can also be used when confirming whether the facility is safe while aftershocks after a major earthquake continue.

<アルゴリズム>
次に、上記のRTK測位(相対測位)で使用するアルゴリズムについて説明する。
<Algorithm>
Next, an algorithm used in the above RTK positioning (relative positioning) will be described.

このアルゴリズムは、複数のGNSS衛星のうちGNSS測位機器から最高仰角にあるGNSS衛星を主衛星として選択するとともに、この衛星以外のGNSS衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うためのものである。   This algorithm selects a GNSS satellite at the highest elevation from a GNSS positioning device as a primary satellite among a plurality of GNSS satellites, selects a GNSS satellite other than this satellite as a secondary satellite, and selects the selected primary and secondary satellites. It is intended to perform relative positioning based on the double phase difference calculated using the satellite signals of the primary and secondary satellites by removing the bias between the different satellite positioning systems by regarding them as satellites of the same satellite positioning system. .

このアルゴリズムでは、RTK測位の計算過程で、GPS、準天頂(QZSS)、ガリレオ等の異なる種類のGNSS衛星を、同じ種類(衛星測位システム上)のGNSS衛星とみなして二重位相差を計算する。より具体的には、GNSS測位機器から受信可能な衛星のうち最高仰角にあるGNSS衛星を主衛星、他の全てのGNSS衛星を従衛星として二重位相差を計算する。以後の測位解析では、この二重位相差を使用する。   In this algorithm, in the calculation process of RTK positioning, different types of GNSS satellites such as GPS, Quasi-Zenith (QZSS), Galileo, etc. are regarded as GNSS satellites of the same type (on the satellite positioning system) and the double phase difference is calculated. . More specifically, the double phase difference is calculated using the GNSS satellite at the highest elevation among the satellites receivable from the GNSS positioning device as the primary satellite and all other GNSS satellites as the secondary satellites. In the subsequent positioning analysis, this double phase difference is used.

このように、同じ種類の衛星のペアで二重位相差を計算するのではなく、GNSS測位機器の上空視野にある衛星を全て活用して二重位相差を計算する。これにより、どの種類の衛星であれ、天頂付近にあるものを主衛星とし、他の衛星全てを従衛星としたペアを組むことにより、上空に1機しかない衛星も利用して二重位相差を計算することが可能となり、アンビギュイティがより正確に計算され、この結果、測位精度が向上する。   In this way, the double phase difference is not calculated with a pair of satellites of the same type, but the double phase difference is calculated using all the satellites in the sky field of view of the GNSS positioning device. This makes it possible to use a single satellite in the sky to create a double phase difference by forming a pair of satellites near the zenith as the primary satellite and all other satellites as secondary satellites. Can be calculated, and the ambiguity can be calculated more accurately. As a result, the positioning accuracy is improved.

例えば、GNSS測位機器の上空視野にGPS衛星が4機、準天頂衛星が1機、ガリレオ衛星が3機、BeiDou衛星が4機あると仮定する。従来の方法では、合計5機のGPS衛星および準天頂衛星から、最高仰角の1機を主衛星、他の4機を従衛星として4つの二重位相差を取得できる。3機のガリレオ衛星からは、最高仰角の1機を主衛星、他の2機を従衛星として2つの二重位相差を取得できる。4機のBeiDou衛星からは、最高仰角の1機を主衛星、他の3機を従衛星として3つの二重位相差を取得できる。したがって、従来の方法では合計9個(=4+2+3)の二重位相差を取得できる。ただし、各衛星群で二重位相差を計算できる環境にあることが条件となる。これに対し、本発明の方法では、全測位衛星12機(=4+1+3+4)から、最高仰角の1機を主衛星、他の11機を従衛星として合計11個の二重位相差を取得できる。このように、本発明によれば、従来の方法よりも二重位相差を多く取得できるため、アンビギュイティがより正確に計算され、この結果、測位精度が向上するのである。   For example, assume that there are four GPS satellites, one quasi-zenith satellite, three Galileo satellites, and four BeiDou satellites in the sky field of view of the GNSS positioning device. In the conventional method, four double phase differences can be obtained from a total of five GPS satellites and quasi-zenith satellites, with one of the highest elevation angles being the primary satellite and the other four being secondary satellites. From the three Galileo satellites, two double phase differences can be obtained, with one of the highest elevation angles being the primary satellite and the other two being secondary satellites. From the four BeiDou satellites, three double phase differences can be acquired with one of the highest elevation angles as the primary satellite and the other three as secondary satellites. Therefore, in the conventional method, a total of nine (= 4 + 2 + 3) double phase differences can be acquired. However, it is a condition that each satellite group is in an environment where a double phase difference can be calculated. In contrast, in the method of the present invention, a total of 11 double phase differences can be acquired from all 12 positioning satellites (= 4 + 1 + 3 + 4), with one of the highest elevation angles as the primary satellite and the other 11 satellites as slave satellites. As described above, according to the present invention, more double phase differences can be obtained than in the conventional method, so that the ambiguity is calculated more accurately, and as a result, the positioning accuracy is improved.

<本発明の効果の検証>
次に、本発明の効果を検証するために行った測位実験について説明する。この実験は、既存建物の壁面の異なる場所に観測点1と観測点2を設け、上記のアルゴリズムを使用して測位解析した本発明の実施例と、従来のRTKLIBソフトウェアで測位解析した比較例とで結果を比較したものである。いずれの測位解析も2017年11月15日の3:30UTCから16日の2:30UTCの時間帯の23時間1Hz(82800秒分のデータ)を使用して解析した。また、種類の異なる衛星測位システムとして、GPS衛星、QZSS衛星、BeiDou衛星、ガリレオ衛星の各測位システムを使用し、これらのシステムから衛星数7機以上を使用した。図4(1)に観測点1の上空視野の写真を、(2)に観測点2の上空視野の写真を示す。いずれの上空視野も狭い状態となっている。
<Verification of the effect of the present invention>
Next, a positioning experiment conducted for verifying the effect of the present invention will be described. In this experiment, the observation point 1 and the observation point 2 are provided at different locations on the wall surface of the existing building, and the embodiment of the present invention in which the positioning analysis is performed using the above algorithm, and the comparative example in which the positioning analysis is performed with the conventional RTKLIB software, The results are compared. All the positioning analyzes were analyzed using 23 hours 1 Hz (data for 82800 seconds) in the time zone from 3:30 UTC on November 15, 2017 to 2:30 UTC on March 16. In addition, GPS satellites, QZSS satellites, BeiDou satellites, and Galileo satellites were used as different types of satellite positioning systems, and more than 7 satellites were used from these systems. FIG. 4 (1) shows a photograph of the sky field of the observation point 1, and FIG. 4 (2) shows a photograph of the sky field of the observation point 2. The sky field of view is narrow.

図5に観測点1の測位結果を示し、図6に観測点2の測位結果を示す。各図において、(1)は水平方向の結果のプロット、(2)は結果の比較、(3)は緯度方向の時系列推移、(4)は経度方向の時系列推移、(5)は高さ方向の時系列推移である。   FIG. 5 shows the positioning result at observation point 1, and FIG. 6 shows the positioning result at observation point 2. In each figure, (1) is a plot of results in the horizontal direction, (2) is a comparison of results, (3) is a time series transition in the latitude direction, (4) is a time series transition in the longitude direction, and (5) is a high It is a time series transition in the vertical direction.

これらの図に示すように、測位データを本実施例のアルゴリズムを使用して解析した結果、観測点1のFix率(信頼性(水平±10cm以内))は比較例の99.93%から100%に、観測点2は比較例の65.28%から98.89%に向上することが確認された。さらに測位時間中に時々現れる大きな位置の飛びも解消された。   As shown in these figures, as a result of analyzing the positioning data using the algorithm of this example, the Fix rate (reliability (horizontal within ± 10 cm)) of the observation point 1 is 99.93% to 100 of the comparative example. %, It was confirmed that the observation point 2 was improved from 65.28% of the comparative example to 98.89%. In addition, the jump of a large position that sometimes appears during positioning time has been eliminated.

以上説明したように、本発明に係る変位計測方法によれば、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うので、構造物等を含めた比較的安定した物体の外面に設置した観測点変位を精度よく計測することができる。   As described above, according to the displacement measuring method according to the present invention, the satellite signal receiver that receives the satellite signals from the positioning satellites of a plurality of different satellite positioning systems is used, and the structure including the structure is relatively stable. A method for measuring the displacement of an object, comprising an observation point constituted by a satellite signal receiver installed on the outer surface of the object and a fixed point constituted by a satellite signal receiver installed at a place other than the outer surface of the object The relative positioning step acquires relative displacement with time with the relative positioning step, and the relative positioning step selects the positioning satellite at the highest elevation angle from the satellite signal receiver among the plurality of positioning satellites as the main satellite. In addition, different positioning satellites can be obtained by selecting positioning satellites other than this positioning satellite as secondary satellites and considering the selected primary and secondary satellites as positioning satellites of the same satellite positioning system. Since the relative positioning is performed based on the double phase difference calculated using the satellite signals of the primary and secondary satellites, it is installed on the outer surface of a relatively stable object including structures. Observation point displacement can be accurately measured.

また、本発明に係る変位計測システムによれば、複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測するシステムであって、前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うので、構造物等を含めた比較的安定した物体の外面に設置した観測点変位を精度よく計測することができる。   In addition, according to the displacement measurement system of the present invention, the displacement of a relatively stable object including a structure or the like can be detected using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems. A system for measuring between an observation point configured by a satellite signal receiver installed on the outer surface of the object and a fixed point configured by a satellite signal receiver installed at a location other than the outer surface of the object Relative positioning means for acquiring displacement with time by relative positioning is provided, and the relative positioning means selects a positioning satellite at the highest elevation angle from a satellite signal receiver as a main satellite from a plurality of positioning satellites. By selecting a positioning satellite other than the satellite as a secondary satellite and considering the selected primary and secondary satellites as positioning satellites of the same satellite positioning system, a via between different satellite positioning systems Relative positioning is performed based on the double phase difference calculated using the satellite signals of the primary and secondary satellites, so the displacement of the observation point installed on the outer surface of a relatively stable object including structures It can measure with high accuracy.

以上のように、本発明に係る変位計測方法および変位計測システムは、複数の異なる衛星測位システムを用いた構造物等の物体の変位監視に有用であり、特に、都市部などの過密した環境に設置されている構造物等の壁面を変位監視する場合や、マルチパスを生じさせる障害物がある屋上などの場所に衛星測位機器を設置して変位監視する場合などに適している。   As described above, the displacement measuring method and the displacement measuring system according to the present invention are useful for monitoring the displacement of an object such as a structure using a plurality of different satellite positioning systems, particularly in an overcrowded environment such as an urban area. It is suitable for monitoring the displacement of a wall of a structure or the like that is installed, or for monitoring the displacement by installing a satellite positioning device on a rooftop where there is an obstacle that causes multipath.

1,4 構造物
2 外壁面(外面)
3 屋上(外面)
10 変位計測システム
12 コンピュータ
14 相対測位手段
16 報知手段
18 警報手段
20 記憶手段
22 制御手段
A〜E GNSS観測点(測位機器)
F GNSS固定点
1, 4 Structure 2 Outer wall surface (outer surface)
3 Rooftop (outside)
DESCRIPTION OF SYMBOLS 10 Displacement measurement system 12 Computer 14 Relative positioning means 16 Notification means 18 Alarm means 20 Storage means 22 Control means A-E GNSS observation point (positioning equipment)
F GNSS fixed point

Claims (2)

複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、
前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、
相対測位ステップは、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うことを特徴とする変位計測方法。
A method of measuring displacement of a relatively stable object including a structure using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems,
Displacement over time between an observation point configured by a satellite signal receiver installed on the outer surface of the object and a fixed point configured by a satellite signal receiver installed at a location other than the outer surface of the object, It has a relative positioning step to acquire by relative positioning,
The relative positioning step selects a positioning satellite at the highest elevation angle from the satellite signal receiver among the plurality of positioning satellites as a primary satellite, and selects a positioning satellite other than the positioning satellite as a secondary satellite, and selects the selected primary satellite and the secondary satellite. Relative positioning based on double phase difference calculated using satellite signals of primary and secondary satellites by removing the bias between different satellite positioning systems by regarding the satellite as a positioning satellite of the same satellite positioning system Displacement measuring method characterized by
複数の異なる衛星測位システムの測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測するシステムであって、
前記物体の外面に設置した衛星信号受信機により構成される観測点と、前記物体の外面以外の場所に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、
相対測位手段は、複数の測位衛星のうち衛星信号受信機から最高仰角にある測位衛星を主衛星として選択するとともに、この測位衛星以外の測位衛星を従衛星として選択し、選択した主衛星と従衛星とを同じ衛星測位システムの測位衛星とみなすことによって異なる衛星測位システム間のバイアスを除去し、主衛星と従衛星の衛星信号を用いて計算した二重位相差に基づいて相対測位を行うことを特徴とする変位計測システム。
A system for measuring displacement of a relatively stable object including a structure using a satellite signal receiver that receives satellite signals from positioning satellites of a plurality of different satellite positioning systems,
Displacement over time between an observation point configured by a satellite signal receiver installed on the outer surface of the object and a fixed point configured by a satellite signal receiver installed at a location other than the outer surface of the object, Equipped with relative positioning means to acquire by relative positioning,
The relative positioning means selects a positioning satellite at the highest elevation angle from the satellite signal receiver among a plurality of positioning satellites as a primary satellite, selects a positioning satellite other than the positioning satellite as a secondary satellite, and selects the selected primary satellite and the secondary satellite. Relative positioning based on double phase difference calculated using satellite signals of primary and secondary satellites by removing the bias between different satellite positioning systems by regarding the satellite as a positioning satellite of the same satellite positioning system Displacement measurement system characterized by
JP2018110579A 2018-06-08 2018-06-08 Displacement measurement method and displacement measurement system Active JP7162450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018110579A JP7162450B2 (en) 2018-06-08 2018-06-08 Displacement measurement method and displacement measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018110579A JP7162450B2 (en) 2018-06-08 2018-06-08 Displacement measurement method and displacement measurement system

Publications (2)

Publication Number Publication Date
JP2019211445A true JP2019211445A (en) 2019-12-12
JP7162450B2 JP7162450B2 (en) 2022-10-28

Family

ID=68845141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018110579A Active JP7162450B2 (en) 2018-06-08 2018-06-08 Displacement measurement method and displacement measurement system

Country Status (1)

Country Link
JP (1) JP7162450B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381251A (en) * 2020-03-18 2020-07-07 杭州微萤科技有限公司 Positioning system and synchronization chain self-optimization method thereof
WO2022201606A1 (en) * 2021-03-24 2022-09-29 三菱電機株式会社 Position measurement apparatus, position measurement program, and position measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051041A (en) * 1999-08-10 2001-02-23 Nec Corp Selection system for kinematic gps satellite
JP2001281323A (en) * 2000-03-31 2001-10-10 Hitachi Zosen Corp Object displacement measuring method based on gps
JP2003194915A (en) * 2001-12-27 2003-07-09 Furuno Electric Co Ltd Positioning apparatus and system
JP2007033324A (en) * 2005-07-28 2007-02-08 Toshiba Corp Positioning system
US20090184869A1 (en) * 2008-01-09 2009-07-23 Trimble Navigation Limited, A Corporation Of California Processing Multi-GNSS data from mixed-type receivers
US20110102254A1 (en) * 2009-11-03 2011-05-05 Fenton Patrick C Centimeter positioning using low cost single frequency gnss receivers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051041A (en) * 1999-08-10 2001-02-23 Nec Corp Selection system for kinematic gps satellite
JP2001281323A (en) * 2000-03-31 2001-10-10 Hitachi Zosen Corp Object displacement measuring method based on gps
JP2003194915A (en) * 2001-12-27 2003-07-09 Furuno Electric Co Ltd Positioning apparatus and system
JP2007033324A (en) * 2005-07-28 2007-02-08 Toshiba Corp Positioning system
US20090184869A1 (en) * 2008-01-09 2009-07-23 Trimble Navigation Limited, A Corporation Of California Processing Multi-GNSS data from mixed-type receivers
US20110102254A1 (en) * 2009-11-03 2011-05-05 Fenton Patrick C Centimeter positioning using low cost single frequency gnss receivers
JP2013510298A (en) * 2009-11-03 2013-03-21 ノヴァテル インコーポレイテッド Centimeter-accurate positioning method using low-cost single-frequency GNSS receiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381251A (en) * 2020-03-18 2020-07-07 杭州微萤科技有限公司 Positioning system and synchronization chain self-optimization method thereof
CN111381251B (en) * 2020-03-18 2022-04-05 杭州微萤科技有限公司 Synchronous chain self-optimization method of positioning system and positioning system
WO2022201606A1 (en) * 2021-03-24 2022-09-29 三菱電機株式会社 Position measurement apparatus, position measurement program, and position measurement method
JP7464790B2 (en) 2021-03-24 2024-04-09 三菱電機株式会社 Positioning device, positioning program, and positioning method

Also Published As

Publication number Publication date
JP7162450B2 (en) 2022-10-28

Similar Documents

Publication Publication Date Title
TWI297782B (en) Earthquake forecast method and its system
US9720095B2 (en) System and method for wireless collaborative verification of global navigation satellite system measurements
Sparks et al. Estimating ionospheric delay using kriging: 1. Methodology
JP5775449B2 (en) Method and system for determining position using a hybrid satellite / WLAN positioning system by selecting the best WLAN-PS derived solution
Muzli et al. The 2016 M w 6.5 Pidie Jaya, Aceh, North Sumatra, earthquake: reactivation of an unidentified sinistral fault in a region of distributed deformation
KR101667331B1 (en) Apparatus for getting signal quality of base station of plurality satellite navigation
Groves et al. Performance assessment of 3D‐mapping–aided GNSS part 1: Algorithms, user equipment, and review
JP2010156695A (en) Earthquake measurement system including gps receiver
JP7405378B2 (en) Displacement measurement method and displacement measurement system
JPWO2006132003A1 (en) GPS receiver and GPS positioning correction method
EP3140670B1 (en) Location error radius determination
JP6602176B2 (en) Building damage assessment method
JP2011095223A (en) Positioning system, positioning method, and positioning program
TW201833588A (en) Abnormality detecting device, communication device, abnormality detecting method, program, and recording medium
JP2016501365A (en) Method and associated apparatus for estimating error level in satellite geolocation measurement and monitoring reliability of said estimation
JP2019211445A (en) Displacement measurement method and displacement measurement system
CN112083446B (en) Method and device for positioning deception jamming source
Jin et al. Ionospheric correlation analysis and spatial threat model for SBAS in China region
JP2018031744A (en) Fraud detection program, fraud detection method and fraud detector
WO2019151158A1 (en) Position detection system
KR20160016974A (en) Method and apparatus for detecting gnss satellite signals in signal degraded environments
US20140240174A1 (en) Method and apparatus for determining non-line of sight (nlos) around a gps receiver
WO2021002746A1 (en) A device, a system, a method and computer program product for identifying interfering devices in position measurements
JP2018059876A (en) Displacement monitoring method and displacement monitoring system for structure
Proctor et al. Protecting the UK infrastructure: A system to detect GNSS jamming and interference

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150