JP2010230407A - Earthquake motion predicting system - Google Patents

Earthquake motion predicting system Download PDF

Info

Publication number
JP2010230407A
JP2010230407A JP2009076816A JP2009076816A JP2010230407A JP 2010230407 A JP2010230407 A JP 2010230407A JP 2009076816 A JP2009076816 A JP 2009076816A JP 2009076816 A JP2009076816 A JP 2009076816A JP 2010230407 A JP2010230407 A JP 2010230407A
Authority
JP
Japan
Prior art keywords
earthquake
motion level
predicted
seismometer
observed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009076816A
Other languages
Japanese (ja)
Other versions
JP5126143B2 (en
Inventor
Tatsuya Itoi
達哉 糸井
Yasuo Uchiyama
泰生 内山
Masami Takagi
政美 高木
Takatoshi Sueda
隆敏 末田
Ichiro Nagashima
一郎 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2009076816A priority Critical patent/JP5126143B2/en
Publication of JP2010230407A publication Critical patent/JP2010230407A/en
Application granted granted Critical
Publication of JP5126143B2 publication Critical patent/JP5126143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake motion predicting system capable of predicting the magnitude, or the like, of an earthquake at site with high accuracy, based on an emergency earthquake alert and an earthquake motion level observed by an on-site seismometer, at an early stage of earthquake generation, even at a spot within several tens of kilometers from the earthquake center. <P>SOLUTION: The system includes an analyzer with which a variance in predicted errors between a prediction value of an earthquake motion level, based on data of the emergency earthquake alert for a plurality of past earthquakes and an actual earthquake motion level observed on site; the variance in predicted errors between a prediction value of an earthquake motion level calculated from data of minor initial tremors observed on site by the seismometer and the actual earthquake motion level are specified; and a first predicted value of the local earthquake motion level based on the data of the emergency earthquake alert and a second predicted value of the local earthquake motion level calculated from the data of the minor initial tremors observed by the seismometer are weighted with the reciprocal ratio of the variance of the predicted error and averaged, to calculate the predicted earthquake motion level. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地震発生時の初期段階において、主要動が到達する前に、緊急地震速報および現地の地震計が観測した地震動レベルに基づいて、上記地震による現地での揺れの大きさ等を予測するための地震動の予測システムに関するものである。   The present invention predicts the magnitude of local shaking caused by the earthquake based on the earthquake early warning and the level of ground motion observed by the local seismometer before the main motion arrives at the initial stage of the earthquake. This is related to a seismic motion prediction system.

近年、気象庁の緊急地震速報によって、地震発生後数秒程度で、発生した地震のマグニチュードや震源位置等に関する情報を受け取ることができるようになっている。
そして、震源から数十Km以上離れた地点においては、S波に起因する地震動の主要動が到達するまでに数秒から数十秒の余裕があるため、例えば下記特許文献1に見られるような、上記緊急地震情報により、地震被害の発生を防止する技術が提案されている。
In recent years, the Japan Meteorological Agency's emergency earthquake bulletin has been able to receive information on the magnitude and location of the earthquake that occurred within a few seconds after the earthquake.
And at a point away from the epicenter by several tens of kilometers or more, there is a margin of several seconds to several tens of seconds until the main motion of the ground motion due to the S wave arrives. A technique for preventing occurrence of earthquake damage based on the emergency earthquake information has been proposed.

ところが、このような緊急地震速報は、一般に第1報の精度が悪く、情報が更新されるにつれて徐々に精度が向上することが知られている。このため、上記緊急地震速報のデータを利用した地震動の予測にあっては、上述したように震源から離れた地点の建物に対しては、相応の防災対策を採ることが可能であるものの、建物から比較的短距離の地点で発生した地震や、当該建物に近い地点において発生した直下地震に対しては精度の高い情報が間に合わず、所望とする防災効果を奏することができないという問題点がある。   However, it is known that such an earthquake early warning is generally inaccurate in the first report and gradually improves as information is updated. For this reason, in the prediction of ground motion using the data of the above earthquake early warnings, although it is possible to take appropriate disaster prevention measures for buildings at points far from the epicenter as described above, There is a problem that high-precision information is not in time for earthquakes that occur at relatively short distances from and from earthquakes that are close to the building, and the desired disaster prevention effect cannot be achieved. .

すなわち、直下地震の場合、地震発生から緊急地震速報の第2報が到達するまでに10秒程度の時間を要する。このため、S波速度が3km/sである場合には、震源から30kmの地点では緊急地震速報が間に合わないことになる。したがって、概ね震源から50km以上離れた地点においては、精度のよい緊急地震速報を利用することができるが、約50km以内の地点においては、有効利用することが難しいという問題点があった。   That is, in the case of a direct earthquake, it takes about 10 seconds from the occurrence of the earthquake to the arrival of the second emergency earthquake bulletin. For this reason, when the S wave velocity is 3 km / s, the earthquake early warning is not in time at a point 30 km from the epicenter. Therefore, it is possible to use highly accurate emergency earthquake warnings at a point approximately 50 km or more away from the epicenter, but there is a problem that it is difficult to use effectively at a point within about 50 km.

このような問題点を解決する手段として、現地に地震計を設置して、当該地震計が観測した地震の初期微動(P波)により、最終的な地震動レベルを予測する技術も提案されている。   As a means of solving such problems, a technique has been proposed in which a seismometer is installed on site and the final ground motion level is predicted based on the initial tremor (P wave) of the earthquake observed by the seismometer. .

そして、上述した震源から約50km以内の地点においては、上記地震計が観測した初期微動から算出された地震動レベルの予測値と、緊急地震速報からの地震動レベルの予測値とを、ほぼ同時に得ることができる。   And at a point within about 50 km from the above-mentioned epicenter, the predicted value of the ground motion level calculated from the initial tremor observed by the seismometer and the predicted value of the ground motion level from the early earthquake early warning are obtained almost simultaneously. Can do.

そこで、下記特許文献2においては、地震発生によるS波到達予測時刻及び予測震度を含む緊急地震速報が送られてくると、前記緊急地震速報を受信して前記予測震度が設定震度を超えるか否かを判定して第1の判定結果を出力する受信手段と、前記地震発生により到来するP波を検出するP 波地震計を有し、前記P波地震計の検出結果に基づき、到来予定の地震の種類を判定すると共に到来予定のS波の震度を予測判定して第2の判定結果を出力するP波検出手段と、前記第1及び第2の判定結果に基づき、前記到来予定のS波の予測震度が設定値を超えるか否かの確認判定を行い、前記設定値を上回った時にトリガ信号を発信する判定手段と、前記トリガ信号を受信すると起動して、前記S波到来前に保護対象の動作又は停止を制御する制御手段と、を有することを特徴とする地震防災システムが提案されている。   Therefore, in the following Patent Document 2, when an emergency earthquake warning including an S-wave arrival prediction time and a predicted seismic intensity due to the occurrence of an earthquake is sent, whether or not the predicted seismic intensity exceeds a set seismic intensity by receiving the emergency earthquake warning And receiving means for outputting the first determination result and a P-wave seismometer for detecting the P-wave that arrives due to the occurrence of the earthquake, and based on the detection result of the P-wave seismometer, P wave detection means for determining the type of earthquake and predicting and determining the seismic intensity of the S wave scheduled to arrive and outputting a second determination result, and based on the first and second determination results, the S arrival S Confirming whether or not the predicted seismic intensity of the wave exceeds the set value, and determining means for transmitting a trigger signal when the set value exceeds the set value, and starting upon receipt of the trigger signal, before the arrival of the S wave Control the operation or stop of the protection target And an earthquake disaster prevention system characterized by having a control means.

特開2003−66152号公報JP 2003-66152 A 特開2007−108012号公報JP 2007-108012 A

しかしながら、一般に、地震計が観測した初期微動から算出された予測値や、緊急地震速報に基づく予測値には、それぞれ予測誤差があり、両者の予測結果には大きな隔たりがある場合が多いのに対して、上記従来の地震防災システムにあっては、両者を比較して、いずれか一方を採用するとともに、他方を棄却しているために、例えば半導体製造工場等の多くの嫌振機器類が設置された構造物のように、防災上、地震による揺れの速度や加速度を高い精度で予測して、上記機器類の運転を制御しようとする要請には、そのままでは対応することができないという問題点があった。   However, in general, there are prediction errors in the predicted values calculated from the initial tremor observed by the seismometer and the predicted values based on the earthquake early warning, and there are many cases where there is a big gap between the prediction results of the two. On the other hand, in the conventional earthquake disaster prevention system, since both are compared and one is adopted and the other is rejected, for example, many vibration isolating devices such as semiconductor manufacturing factories are used. As with installed structures, it is impossible to respond directly to requests to control the operation of the above equipment by predicting the speed and acceleration of earthquake shaking with high accuracy for disaster prevention. There was a point.

本発明は、上記事情に鑑みてなされたものであり、特に震源から数十km以内の地点においても、地震発生時の初期段階において、緊急地震速報および現地の地震計が観測した地震動レベルに基づいて、上記地震による現地での揺れの大きさ等を高い精度で予測することが可能になる地震動の予測システムを提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and in particular, even at a point within several tens of kilometers from the epicenter, based on the ground motion level observed by the earthquake early warning and the local seismometer at the initial stage when the earthquake occurred. Thus, an object of the present invention is to provide a seismic motion prediction system capable of predicting the magnitude of local shaking caused by the earthquake with high accuracy.

上記課題を解決するため、請求項1に記載の地震動の予測システムは、緊急地震速報の受信手段と、現地に設けられた地震計と、上記緊急地震速報のデータに基づく上記現地での地震動レベルの第1の予測値および上記地震計によって観測された初期微動のデータから算出した上記現地での地震動レベルの第2の予測値を併用して上記現地における予測地震動レベルを算出する解析装置とを備えてなり、上記解析装置は、予め複数の過去の地震時における上記緊急地震速報のデータに基づく地震動レベルの予測値と上記現地で観測された実際の地震動レベルとの間の予測誤差の分散と、上記地震計によって現地で観測された初期微動のデータから算出した地震動レベルの予測値と上記実際の地震動レベルとの間の予測誤差の分散が設定されており、これら予測誤差の分散の逆比によって、上記第1の予測値および第2の予測値に重み付けをして平均することにより、上記予測地震動レベルを算出することを特徴とするものである。   In order to solve the above-mentioned problem, the earthquake motion prediction system according to claim 1 is provided with an earthquake early warning receiving means, a seismometer installed in the field, and the local earthquake motion level based on the earthquake early warning data. An analysis device for calculating a predicted earthquake motion level at the local site using the first predicted value of the local motion and the second predicted value of the local ground motion level calculated from the initial tremor data observed by the seismometer. The analysis apparatus comprises a prediction error variance between a predicted value of a ground motion level based on the data of the earthquake early warning at the time of a plurality of past earthquakes and an actual ground motion level observed in the field in advance. The variance of the prediction error between the predicted value of the ground motion level calculated from the initial microtremor data observed by the seismometer and the actual ground motion level is set. Ri, the inverse ratio of the variance of these prediction error by averaging by weighting to the first predicted value and the second predicted values are those characterized by calculating the predicted ground motion levels.

ここで、上記地震動レベルとは、当該地震動の加速度、速度、変位量、SI値、計測震度もしくは建物の応答加速度である。   Here, the level of ground motion is the acceleration, speed, displacement, SI value, measured seismic intensity, or response acceleration of the building.

また、請求項2に記載の発明は、請求項1に記載の発明において、上記解析装置が、上記緊急地震速報の情報が更新された際に、その都度上記重み付けを変化させて上記予測地震動レベルを算出することを特徴とするものである。   The invention according to claim 2 is the invention according to claim 1, wherein the analysis device changes the weighting each time the information of the earthquake early warning is updated to change the predicted ground motion level. Is calculated.

請求項1または2に記載の発明においては、複数の過去の地震時に、上記緊急地震速報から得られた地震動レベルの予測値と現地で計測された実際の地震動レベルとの間の予測誤差の分散と、地震計によって現地で観測された初期微動のデータから得られた地震動レベルの予測値と上記実際の地震動レベルとの間の予測誤差とを求めておき、地震発生時に、解析装置によって、緊急地震速報に基づく上記現地での地震動レベルの第1の予測値と、地震計によって観測された初期微動のデータから算出した現地での地震動レベルの第2の予測値を、上記予測誤差の分散の逆比によって重み付けをして平均することにより統合して予測地震動レベルを得ている。   In the invention described in claim 1 or 2, in the case of a plurality of past earthquakes, the variance of the prediction error between the predicted value of the ground motion level obtained from the earthquake early warning and the actual ground motion level measured in the field And a prediction error between the predicted value of the ground motion level obtained from the initial microtremor data observed by the seismometer and the actual ground motion level, and an urgent The first predicted value of the local ground motion level based on the earthquake early warning and the second predicted value of the local ground motion level calculated from the initial tremor data observed by the seismometer are expressed as the variance of the prediction error. The predicted ground motion level is obtained by weighting with the inverse ratio and averaging.

このため、緊急地震速報から得られた第1の予測値や地震計から得られた第2の予測値を単独で用いる場合と比較して、より多くの情報に基づいた高い精度の地震動レベルの予測を行うことができる。
この結果、これまで実際の制御に使用することが困難であった、第1報〜第3報程度の地震発生初期の緊急地震速報等の情報を利用して、半導体製造工場等の高い精度で揺れの速度や加速度を予測して上記機器類の運転を制御しようとする要請にも応えることが可能になる。
For this reason, compared with the case where the first predicted value obtained from the earthquake early warning or the second predicted value obtained from the seismometer is used alone, the seismic motion level with high accuracy based on more information is obtained. Predictions can be made.
As a result, it is difficult to use for actual control until now, using information such as the early earthquake early warnings of the first report to the third report, etc., with high accuracy at semiconductor manufacturing plants, etc. It is also possible to respond to a request to control the operation of the devices by predicting the speed and acceleration of shaking.

さらに、請求項2に記載の発明によれば、上記緊急地震速報の情報が更新されるたびに、その都度解析装置が上記重み付けを変化させて上記予測地震動レベルを算出しているために、リアルタイムで現地でのS波による予測地震動レベルの精度を高めて行くことができる。   Further, according to the invention described in claim 2, since the analysis device calculates the predicted seismic motion level by changing the weighting each time the information of the earthquake early warning is updated, real time The accuracy of the predicted ground motion level due to S waves at the site can be improved.

本発明に係る地震動の予測システムの一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the earthquake motion prediction system which concerns on this invention. 図1の解析装置におけるデータの処理の流れを示すブロック図である。It is a block diagram which shows the flow of a process of the data in the analyzer of FIG. 図1の予測システムを用いた現地での予測地震動レベルの予測方法を説明するための時系列図である。It is a time series diagram for demonstrating the prediction method of the prediction ground motion level in the field using the prediction system of FIG. 単独の予測値と統合した予測値の関係を示す模式図である。It is a schematic diagram which shows the relationship between the prediction value integrated with the single prediction value. 本実施形態における緊急地震速報と現地地震計とによって得られた予測値に対する重み付けの変化を時系列で示すグラフである。It is a graph which shows the change of the weighting with respect to the predicted value obtained by the earthquake early warning and the local seismometer in this embodiment in time series. 図1の地震動の予測システムを適用して好適な震源からの距離を示す図である。It is a figure which shows the distance from a suitable epicenter by applying the earthquake motion prediction system of FIG. 本発明の実施例を示すグラフである。It is a graph which shows the Example of this invention.

図1は、本発明に係る地震動の予測システムの一実施形態の概略構成を示すもので、図中符号1が、このシステムが設置されている半導体製造工場等の建物(現地)であり、この建物1内には、振動を嫌う多くの設備機器(図では、そのうちの1機のみを示している。)2が設置されている。   FIG. 1 shows a schematic configuration of an embodiment of a ground motion prediction system according to the present invention. Reference numeral 1 in the figure denotes a building (on-site) such as a semiconductor manufacturing factory in which the system is installed. In the building 1, many facility devices (only one of them is shown in the figure) 2 that dislikes vibration are installed.

そして、この建物1内には、地震動のレベルPを検知するための地震計3が取り付けられている。ここで、地震計3によって検出および出力される地震動のレベルとしては、地震動の加速度、速度、変位量、SI値もしくは計測震度、またはこれらの組合せを適用することが可能である。なお、本実施形態においては、以下上記地震動レベルとして計測震度を用いた場合について説明する。   And in this building 1, the seismometer 3 for detecting the level P of a ground motion is attached. Here, as the level of seismic motion detected and output by the seismometer 3, it is possible to apply acceleration, velocity, displacement, SI value or measured seismic intensity, or a combination thereof. In the present embodiment, the case where the measured seismic intensity is used as the above-mentioned ground motion level will be described below.

また、この建物1内には、高度利用者向け緊急地震速報の受信手段4からのデータおよび地震計3からのデータが入力され、これらのデータに基づいて建物1における揺れの大きさを予測する解析装置5が設置されている。   Further, in this building 1, data from the receiving means 4 for the earthquake early warning for advanced users and data from the seismometer 3 are inputted, and the magnitude of shaking in the building 1 is predicted based on these data. An analysis device 5 is installed.

この解析装置5には、図4に示すように、予め複数の過去の地震時における緊急地震速報のデータに基づく地震動レベルの予測値x0eと建物1で観測された実際の地震動レベルxobsとの間の予測誤差の平均値Δx0の標準偏差(分散)σ0と、地震計3によって建物1で観測された初期微動(P波)のデータから算出した地震動レベルの予測値x1と実際の地震動レベルxobsとの間の予測誤差の標準偏差(分散)σが設定されている。 As shown in FIG. 4, the analysis device 5 includes an earthquake motion level predicted value x 0e based on emergency earthquake early warning data at the time of a plurality of past earthquakes and an actual earthquake motion level x obs observed in the building 1. The standard deviation (variance) σ 0 of the mean value Δx 0 of the prediction error during the period and the actual value x 1 of the ground motion level calculated from the initial tremor (P wave) data observed at the building 1 by the seismometer 3 and the actual value The standard deviation (variance) σ of the prediction error between the seismic motion level x obs is set.

また、この解析装置5には、新たな地震発生時に高度利用者向け緊急地震情報として入力される、発生した地震のマグニチュードM、地震発生場所の緯度および経度、深さDのデータと、建物1から震源までの距離Xとから、距離減衰式等の経験式を用いて建物1の地震動レベルの予測値x0eを算出する演算回路が組み込まれている。 Further, in this analysis device 5, data of the magnitude M of the earthquake that occurred, the latitude and longitude of the earthquake occurrence location, and the depth D, which are input as emergency earthquake information for advanced users when a new earthquake occurs, and the building 1 An arithmetic circuit for calculating a predicted value x 0e of the ground motion level of the building 1 using an empirical formula such as a distance attenuation formula from the distance X from the to the epicenter is incorporated.

加えて、新たな地震発生時に、地震計3によって建物1で観測された初期微動(P波)のデータから予測式を用いて建物1での地震動レベルの第2の予測値x1を算出する演算回路が組み込まれている。なお、上記予測式としては、過去の多数の地震から統計的に得られている予測式や、解析による予測式を用いることができる。 In addition, when a new earthquake occurs, the second predicted value x 1 of the ground motion level in the building 1 is calculated from the initial tremor (P wave) data observed in the building 1 by the seismometer 3 using a prediction formula. Arithmetic circuit is incorporated. In addition, as said prediction formula, the prediction formula statistically obtained from many past earthquakes, or the prediction formula by analysis can be used.

ちなみに、P波から揺れの大きさを統計的に予測する予測式として、例えば、Wu,Y.-M. and Kanamori, H. (2005):Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves,Bulletin of the Seismological Society of America, Volume 95, Number 3,pp. 1181-1185に開示されている予測式を応用することができる。   Incidentally, for example, Wu, Y.-M. and Kanamori, H. (2005): Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of The prediction formula disclosed in P Waves, Bulletin of the Seismological Society of America, Volume 95, Number 3, pp. 1181-1185 can be applied.

そして、この解析装置5においては、図2および図3に示すように、地震発生時に、例えば緊急地震速報の第2報を受信した際に、当該緊急地震情報から算出された建物1の地震動レベルの第1の予測値x0eに平均的な予測誤差Δxを補正した第1の予測値x0(x0e+Δx=x0)と、地震計3によって建物1で観測された初期微動(P波)のデータから予測式を用いて建物1での地震動レベルの第2の予測値x1に、下記式1によって予測誤差の分散の逆比によって重み付けをして平均することにより統合して予測地震動レベルx2を算出する演算回路が組み込まれている。 In the analysis device 5, as shown in FIGS. 2 and 3, when an earthquake occurs, for example, when the second report of the early earthquake early warning is received, the ground motion level of the building 1 calculated from the emergency earthquake information is received. average prediction error first predicted value x 0 which corrected [Delta] x and (x 0e + Δx = x 0 ), preliminary tremor (P wave observed in the building 1 by seismometer 3 to the first predicted value x 0e of from the data to the second predicted value x 1 of the ground motion level in the building 1 using a prediction equation of), the predicted seismic motion are integrated by averaging by weighting by the inverse ratio of the variance of the prediction error by the following formula 1 An arithmetic circuit for calculating level x 2 is incorporated.

Figure 2010230407
Figure 2010230407

なお、この解析装置5においては、図5に示すように、上記緊急地震速報の情報が第1報、第2報、第3報と更新されるたびに、その都度上述した演算を行って式1に示した重み付けを変化させて平均することにより予測地震動レベルx2を算出するようになっている。 In this analysis device 5, as shown in FIG. 5, every time the information on the emergency earthquake warning is updated as the first report, the second report, and the third report, the above-described calculation is performed each time, The predicted ground motion level x 2 is calculated by changing the weighting shown in 1 and averaging.

以上の構成からなる地震動の予測システムによれば、緊急地震速報から得られた第1の予測値x0や地震計3から得られた第2の予測値x1を単独で用いる場合と比較して、より多くの情報に基づいた高い精度の地震動レベルの予測を行うことができる。
すなわち、複数の過去の地震時における緊急地震速報のデータに基づく地震動レベルの予測値x0eには、建物1で観測された実際の地震動レベルxobsとの間には、予測誤差がある。その予測誤差の確率密度分布を正規分布N(Δx0、σ0)とする(x0e+Δx0=x0)。このとき、新たな地震発生時に観測される観測値xobsの事前確率分布p0(xobs)は、図4中aで示す正規分布N(x0、σ0)で表すことができる。
According to the earthquake motion prediction system configured as described above, the first predicted value x 0 obtained from the earthquake early warning and the second predicted value x 1 obtained from the seismometer 3 are compared with the case of using alone. Thus, it is possible to predict the ground motion level with high accuracy based on more information.
That is, there is a prediction error between the predicted value x 0e of the ground motion level based on the data of the emergency earthquake early warning at the time of a plurality of past earthquakes and the actual ground motion level x obs observed in the building 1. The probability density distribution of the prediction error is assumed to be a normal distribution N (Δx 0 , σ 0 ) (x 0e + Δx 0 = x 0 ). At this time, the prior probability distribution p 0 (x obs ) of the observed value x obs observed when a new earthquake occurs can be represented by a normal distribution N (x 0 , σ 0 ) indicated by a in FIG.

一方、複数の過去の地震時における初期微動と主要動の関係から、主要動の地震動レベルがxobsとなる場合、初期微動から予測される主要動の地震動レベルx1の確率分布p(x1|xobs)は、図4中bで示す正規分布N(xobs、σ)で表すことができる。ここで、上記初期微動と主要動の関係は、建物1の地震計3における複数の過去の地震時におけるデータや日本各地における過去の地震時のデータから求めることができる。
なお、本実施形態においては、上記主要動の地震動レベルxobsと地震計による予測値x1の間は、予測が適切に行われていて平均的なずれがないことを前提とする。
以上により、新たな地震発生時に緊急地震速報により主要動の地震動レベルxobsが確率分布p0(xobs)で予測され、その後、地震計3で観測される初期微動から主要動の地震動レベルxobsがx1と予測される場合、緊急地震速報および現地地震計から予測される主要動の地震動レベルxobsの確率分布p1(xobs|x1)は、
On the other hand, if the ground motion level of the main motion is x obs from the relationship between the initial tremor and the main motion at the time of a plurality of past earthquakes, the probability distribution p (x 1) of the ground motion level x 1 of the main motion predicted from the initial tremor. | X obs ) can be represented by a normal distribution N (x obs , σ) indicated by b in FIG. Here, the relationship between the initial tremor and the main motion can be obtained from a plurality of past earthquake data in the seismometer 3 of the building 1 and past earthquake data in various parts of Japan.
In the present embodiment, it is assumed that the prediction between the ground motion level x obs of the main motion and the predicted value x 1 by the seismometer is appropriately made and there is no average deviation.
As described above, when a new earthquake occurs, the ground motion level x obs of the main motion is predicted with the probability distribution p 0 (x obs ) by the emergency earthquake warning, and then the ground motion level x of the main motion from the initial microtremor observed by the seismometer 3. When obs is predicted to be x 1 , the probability distribution p1 (x obs | x 1 ) of the main ground motion level x obs predicted from the earthquake early warning and the local seismometer is

Figure 2010230407
Figure 2010230407

Figure 2010230407
Figure 2010230407

と表すことができ、上記確率分布p1(xobs|x1)は、図4中cで示すように、正規分布N(x2、σ2)となる。ここで、x2は、上記式1で示した通りであり、σ2=σ・σ0/(σ2+σ0 21/2となる。
図4から、緊急地震速報から得られた第1の予測値x0や地震計3から得られた第2の予測値x1を単独で用いる場合と比較して、より多くの情報に基づいた高い精度の地震動レベルの予測を行うことができることが判る。
The probability distribution p 1 (x obs | x 1 ) is a normal distribution N (x 2 , σ 2 ) as indicated by c in FIG. Here, x 2 is as shown in Equation 1 above, and is σ 2 = σ · σ 0 / (σ 2 + σ 0 2 ) 1/2 .
From FIG. 4, it was based on more information compared with the case where the first predicted value x 0 obtained from the earthquake early warning and the second predicted value x 1 obtained from the seismometer 3 are used alone. It can be seen that the earthquake motion level can be predicted with high accuracy.

この結果、図6に示すように、これまで実際の制御に使用することが困難であった、特に震源から数十km以内の地点においても、地震発生時の初期段階において、第1報〜第3報程度の地震発生初期の緊急地震速報および現地の地震計が観測した地震動レベルに基づいて、上記地震による現地での揺れの大きさ等を高い精度で予測することが可能になり、よって半導体製造工場等の高い精度で揺れの速度や加速度を予測して上記機器類の運転を制御しようとする要請にも応えることが可能になる。   As a result, as shown in FIG. 6, the first report to the first report in the initial stage at the time of the earthquake, especially at a point within tens of kilometers from the epicenter, which has been difficult to use for actual control until now. Based on the early earthquake early warning of about 3 earthquakes and the ground motion level observed by the local seismometer, it is possible to predict the magnitude of the local shaking caused by the above earthquake with high accuracy. It is possible to respond to a request to control the operation of the devices by predicting the speed and acceleration of shaking with high accuracy in a manufacturing factory or the like.

図7は、本発明に係る地震動の予測システムの効果を確認するために、2007年新潟県中越沖地震時に新潟県内で観測された記録に基づき、緊急地震速報に基づく震度の予測値、現地地震計に基づく震度の予測値、およびこれらに対して重み付けして平均した本発明に係る震度の予測値を、観測された実際の震度と対比して示したものである。   FIG. 7 shows the seismic intensity predicted value based on the emergency earthquake bulletin, the local earthquake based on the records observed in Niigata Prefecture during the 2007 Chuetsu-Oki Earthquake in 2007 to confirm the effect of the earthquake motion prediction system according to the present invention. The predicted values of seismic intensity based on the totals and the predicted values of seismic intensity according to the present invention weighted and averaged for these are shown in comparison with the observed actual seismic intensity.

同図から、緊急地震速報に基づく予測値においては、第2報以降、実際の震度より高めの震度が予測されて、更新されるにつれて徐々に実際の震度に近い予測値となったものの、それまでに15秒以上の時間を要したことを判る。他方、現地地震計による予測値は、当初から実際の震度より低い予測値となっており、同様に実際の震度に近い予測値となるまでに15秒以上の時間を要している。   From the figure, in the predicted values based on the earthquake early warning, the seismic intensity higher than the actual seismic intensity was predicted from the second report onwards, and gradually became closer to the actual seismic intensity as it was updated. It can be seen that it took more than 15 seconds to complete. On the other hand, the predicted value by the local seismometer is a predicted value lower than the actual seismic intensity from the beginning, and similarly it takes 15 seconds or more to reach a predicted value close to the actual seismic intensity.

これに対して、本発明に係る予測値では、現地地震計が地震の初期微動を観測した当初から、ほぼ実際の震度に近い予測値が得られることが判る。   On the other hand, with the predicted value according to the present invention, it can be seen that a predicted value almost similar to the actual seismic intensity can be obtained from the beginning when the local seismometer observed the initial tremor of the earthquake.

地震発生時の初期段階において、主要動が到達する前に、緊急地震速報および現地の地震計が観測した地震動レベルに基づいて、上記地震による現地での揺れの大きさ等を予測するために利用される。   Used to predict the magnitude of local shaking caused by the earthquake based on the earthquake early warning and the level of ground motion observed by the local seismometer before the main motion arrives at the initial stage of the earthquake. Is done.

1 建物(現地)
3 地震計
4 緊急地震速報の受信手段
5 解析装置
1 building (local)
3 Seismometer 4 Receiving means for earthquake early warning 5 Analyzing device

Claims (2)

緊急地震速報の受信手段と、現地に設けられた地震計と、上記緊急地震速報のデータに基づく上記現地での地震動レベルの第1の予測値および上記地震計によって観測された初期微動のデータから算出した上記現地での地震動レベルの第2の予測値を併用して上記現地における予測地震動レベルを算出する解析装置とを備えてなり、
上記解析装置は、予め複数の過去の地震時における上記緊急地震速報のデータに基づく地震動レベルの予測値と上記現地で観測された実際の地震動レベルとの間の予測誤差の分散と、上記地震計によって現地で観測された初期微動のデータから算出した地震動レベルの予測値と上記実際の地震動レベルとの間の予測誤差の分散が設定されており、これら予測誤差の分散の逆比によって、上記第1の予測値および第2の予測値に重み付けをして平均することにより、上記予測地震動レベルを算出することを特徴とする地震の予測システム。
From the means for receiving the earthquake early warning, the seismometer installed in the field, the first predicted value of the ground motion level based on the data of the earthquake early warning and the data of the initial tremor observed by the seismometer An analysis device that calculates the predicted earthquake motion level at the site using the calculated second predicted value of the earthquake motion level at the site,
The analysis apparatus includes a variance of a prediction error between a predicted value of a ground motion level based on the data of the earthquake early warning at the time of a plurality of past earthquakes and an actual ground motion level observed in the field, and the seismometer The variance of the prediction error between the predicted value of the ground motion level calculated from the initial microtremor data observed at the site and the actual ground motion level is set. An earthquake prediction system, wherein the predicted earthquake motion level is calculated by weighting and averaging the predicted value of 1 and the second predicted value.
上記解析装置は、上記緊急地震速報の情報が更新された際に、その都度上記重み付けを変化させて上記予測地震動レベルを算出することを特徴とする請求項1に記載の地震の予測システム。   2. The earthquake prediction system according to claim 1, wherein the analysis device calculates the predicted earthquake motion level by changing the weighting each time the information of the earthquake early warning is updated. 3.
JP2009076816A 2009-03-26 2009-03-26 Earthquake motion prediction system Expired - Fee Related JP5126143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076816A JP5126143B2 (en) 2009-03-26 2009-03-26 Earthquake motion prediction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076816A JP5126143B2 (en) 2009-03-26 2009-03-26 Earthquake motion prediction system

Publications (2)

Publication Number Publication Date
JP2010230407A true JP2010230407A (en) 2010-10-14
JP5126143B2 JP5126143B2 (en) 2013-01-23

Family

ID=43046392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076816A Expired - Fee Related JP5126143B2 (en) 2009-03-26 2009-03-26 Earthquake motion prediction system

Country Status (1)

Country Link
JP (1) JP5126143B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078196A (en) * 2010-10-01 2012-04-19 Taisei Corp Seismic ground motion forecasting system
JP2013174455A (en) * 2012-02-23 2013-09-05 Taisei Corp Earthquake motion prediction system
JP2014503818A (en) * 2010-12-17 2014-02-13 サイズミック・ワーニング・システムズ・インコーポレイテッド Earthquake warning system
JP2016035392A (en) * 2014-08-01 2016-03-17 パナソニックIpマネジメント株式会社 Meter controller
JP2016138819A (en) * 2015-01-28 2016-08-04 大成建設株式会社 Seismic intensity prediction system using real-time seismic intensity
JP2017001917A (en) * 2015-06-11 2017-01-05 住友電気工業株式会社 Production method of optical fiber
JP2019120660A (en) * 2018-01-11 2019-07-22 清水建設株式会社 Earthquake information service system
CN114966832A (en) * 2022-04-07 2022-08-30 西南交通大学 Train earthquake disposal mode calculation method, device and equipment and readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105862A (en) * 2004-10-07 2006-04-20 Real Time Jishin Joho Riyo Kyogikai Method for predicting real-time earthquake risk
JP2008005981A (en) * 2006-06-28 2008-01-17 Taisei Corp Disaster prevention system and method of stopping operation of facility
JP2009270680A (en) * 2008-05-09 2009-11-19 Kajima Corp Vibration restraining device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105862A (en) * 2004-10-07 2006-04-20 Real Time Jishin Joho Riyo Kyogikai Method for predicting real-time earthquake risk
JP2008005981A (en) * 2006-06-28 2008-01-17 Taisei Corp Disaster prevention system and method of stopping operation of facility
JP2009270680A (en) * 2008-05-09 2009-11-19 Kajima Corp Vibration restraining device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078196A (en) * 2010-10-01 2012-04-19 Taisei Corp Seismic ground motion forecasting system
JP2014503818A (en) * 2010-12-17 2014-02-13 サイズミック・ワーニング・システムズ・インコーポレイテッド Earthquake warning system
US9372272B2 (en) 2010-12-17 2016-06-21 Seismic Warning Systems, Inc. Earthquake warning system
JP2016194530A (en) * 2010-12-17 2016-11-17 サイズミック・ワーニング・システムズ・インコーポレイテッド Earthquake warning system
JP2013174455A (en) * 2012-02-23 2013-09-05 Taisei Corp Earthquake motion prediction system
JP2016035392A (en) * 2014-08-01 2016-03-17 パナソニックIpマネジメント株式会社 Meter controller
JP2016138819A (en) * 2015-01-28 2016-08-04 大成建設株式会社 Seismic intensity prediction system using real-time seismic intensity
JP2017001917A (en) * 2015-06-11 2017-01-05 住友電気工業株式会社 Production method of optical fiber
JP2019120660A (en) * 2018-01-11 2019-07-22 清水建設株式会社 Earthquake information service system
JP7061877B2 (en) 2018-01-11 2022-05-16 清水建設株式会社 Earthquake information provision system
CN114966832A (en) * 2022-04-07 2022-08-30 西南交通大学 Train earthquake disposal mode calculation method, device and equipment and readable storage medium

Also Published As

Publication number Publication date
JP5126143B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5126143B2 (en) Earthquake motion prediction system
Beskhyroun et al. New methodology for the application of vibration‐based damage detection techniques
JP6290859B2 (en) System and method for risk prediction and assessment
Saunders et al. Seismogeodesy using GPS and low‐cost MEMS accelerometers: Perspectives for earthquake early warning and rapid response
US10955573B2 (en) Multi facility earthquake automation system and method
US10598756B2 (en) System and method for determining the source location of a firearm discharge
Festa et al. Performance of earthquake early warning systems during the 2016–2017 Mw 5–6.5 Central Italy sequence
JP2007071707A (en) Earthquake motion intensity prediction method and disaster prevention system, using real-time earthquake information
JP5015970B2 (en) Earthquake motion prediction system
Michel et al. The potential of high‐rate GPS for strong ground motion assessment
JP2009092402A (en) Prediction system of seismic intensity of building according to earthquake information
JP4506625B2 (en) Earthquake motion prediction system using real-time earthquake information
Grapenthin et al. The utility of GNSS for earthquake early warning in regions with sparse seismic networks
JP2006275696A (en) Early earthquake specification estimation method and its system
Peng et al. Application of a Threshold‐Based Earthquake Early Warning Method to the M w 6.6 Lushan Earthquake, Sichuan, China
JP2003296396A (en) Expected life cycle cost evaluation system of building and recording medium in which expected life cycle cost evaluation program is recorded
JP2006112999A (en) Earthquake warning device
RU2464594C2 (en) Method of estimating main characteristics of anticipated strong tsunamigenic earthquake and system for realising said method
WO2020138359A1 (en) Earthquake predicting device and earthquake predicting method
JP5345993B2 (en) Earthquake motion prediction system
JP2018197679A (en) Earthquake alarm system
US7932823B2 (en) Disaster noticing system, disaster noticing server, disaster reporting terminal method, and program
JP2006337083A (en) Earthquake motion arrival determining system
JP5791543B2 (en) Earthquake motion prediction system
JP2013007728A (en) Real time estimation method of hypocentral region of giant earthquake

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20181109

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees