JP2010136110A - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP2010136110A
JP2010136110A JP2008310167A JP2008310167A JP2010136110A JP 2010136110 A JP2010136110 A JP 2010136110A JP 2008310167 A JP2008310167 A JP 2008310167A JP 2008310167 A JP2008310167 A JP 2008310167A JP 2010136110 A JP2010136110 A JP 2010136110A
Authority
JP
Japan
Prior art keywords
transistor
drain
row
state imaging
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008310167A
Other languages
English (en)
Inventor
Kazuo Yamazaki
和男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008310167A priority Critical patent/JP2010136110A/ja
Publication of JP2010136110A publication Critical patent/JP2010136110A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】オーバーフロードレイントランジスタのドレイン端子から光電変換部に蓄積された電荷が過剰に溢れることを防止することができる固体撮像装置を提供することを課題とする。
【解決手段】光電変換部(101)と、転送トランジスタ(102)と、出力トランジスタ(104)と、リセットトランジスタ(103)と、ソース端子が前記光電変換部に接続され、前記光電変換部に蓄積された電荷を排出するオーバーフロードレイントランジスタ(106)とを有する複数の画素が、複数の行及び複数の列にアレイ状に配置された固体撮像装置であって、最終選択行以外の行の前記オーバーフロードレイントランジスタのドレイン端子は、1行後に選択される行の前記出力トランジスタのドレイン端子、又は1行後に選択される行の前記リセットトランジスタのドレイン端子、の少なくとも一方のドレイン端子と同一のアクティブ領域で構成される。
【選択図】図1

Description

本発明は、スキャナ、ビデオカメラ、デジタルスチルカメラ、車載用カメラ、監視カメラ等に用いられる固体撮像装置に関するものである。
従来の固体撮像装置では、画素が信号電荷の排出機能を有する技術として、ラテラル(横型)オーバーフロードレインを用いる方式が提案されている。ラテラルオーバーフロードレインの目的はダイナミックレンジの拡大と混色の防止等である(特許文献1参照)。
特開2006−005483号公報
特許文献1において、ラテラルオーバーフロードレインを有する画素ではオーバーフロードレインを構成するトランジスタ(以下、オーバーフロードレイントランジスタと称す)のドレイン領域は電源電圧としている。また、出力トランジスタ及びリセットトランジスタのドレイン領域も電源電圧である。
したがって、レイアウト面積を小さくするためには、出力トランジスタもしくはリセットトランジスタのドレイン領域、もしくはその両方と、オーバーフロードレイントランジスタのドレイン領域を同一のアクティブ領域で構成することが有効である。
ここで本発明者は、以下のことを見出した。信号読み出し時もしくはリセット時に、出力トランジスタもしくはリセットトランジスタに過渡的な電流が流れ、トランジスタのドレイン領域が過度的に電圧変動する。そのため、オーバーフロードレイントランジスタのドレイン領域を同一のアクティブ領域で構成した場合、オーバーフロードレイントランジスタのドレイン電圧も変動し、光電変換部に蓄積された電荷が過剰に排出されてしまうことを見出した。
以下、本現象を更に詳細に説明する。出力トランジスタから信号を出力する際、垂直出力線を駆動するために、出力トランジスタに過渡的な電流が流れる。出力トランジスタのドレイン端子に電源電圧を供給する配線は有限のインピーダンスを有するため、ドレイン端子の電圧は過度的に変動する。
この出力トランジスタのドレイン領域とオーバーフロードレイントランジスタのドレイン領域が同一のアクティブ領域である場合、オーバーフロードレイントランジスタのドレイン領域の電圧も同時に変動する。
電圧が低下した時は、オーバーフロードレイントランジスタが電流を流しにくくなるため電荷が過剰に排出することは無い。しかし、低下した電圧が所望の電圧に戻る際、オーバーシュートが発生すると、オーバーフロードレイントランジスタが電流を流しやすくなるため、蓄積動作中の光電変換部に蓄積された電荷が過剰に排出される。
オーバーフロードレイントランジスタのドレイン領域がリセットトランジスタのドレイン領域と同一のアクティブ領域である場合も同様に、リセット動作時にリセットトランジスタに流れる電流が過渡的に変動する。これにより、オーバーフロードレイントランジスタのドレイン電圧が変動する。
本現象は光電変換部が飽和状態もしくは飽和に近い状態の時に顕著に発生し、オーバーフロードレイントランジスタの微小なドレイン電圧の変動によって、電子が過剰に排出されてしまう。フォトダイオードが飽和に近いレベルに達していない時は、多少のドレイン電圧の変動では光電変換部から電荷が排出されることはない。
したがって本現象は画素毎の飽和電荷量のばらつきと、高輝度時のリニアリティ低下の原因となり、画質を劣化させる。
本現象は画素の微細化に伴い、レイアウト面積削減のためにオーバーフロードレイントランジスタのドレイン領域と、出力トランジスタのドレインもしくはリセットトランジスタのドレインを共通のアクティブ領域で構成することにより新たに発生する課題である。
オーバーフロードレイントランジスタのチャネル長を大きくすること、オーバーフロードレイントランジスタのドレイン領域を独立のアクティブ領域とすることが対策として考えられるが、これらの対策では光電変換部の面積が小さくなり、画質劣化の一因となる。
本発明の目的は、電源電圧の変動の影響を受けオーバーフロードレイントランジスタのドレイン端子から光電変換部に蓄積された電荷が溢れることを防止することができる固体撮像装置を提供することである。
本発明の固体撮像装置は、光を電荷に変換して蓄積する光電変換部と、ソース端子が前記光電変換部に接続され、前記光電変換部に蓄積された電荷を読み出す転送トランジスタと、ゲート端子が前記転送トランジスタのドレイン端子に接続され、前記ゲート端子の電荷を増幅する出力トランジスタと、ソース端子が前記転送トランジスタの前記ドレイン端子及び前記出力トランジスタの前記ゲート端子に接続され、所定電圧にリセットするリセットトランジスタと、ソース端子が前記光電変換部に接続され、前記光電変換部に蓄積された電荷を排出するオーバーフロードレイントランジスタとを有する複数の画素が、複数の行及び複数の列にアレイ状に配置された固体撮像装置であって、前記転送トランジスタによる読み出し時に前記複数の行から1行を順次選択する行選択手段を有し、最終選択行以外の行の前記オーバーフロードレイントランジスタのドレイン端子は、1行後に選択される行の前記出力トランジスタのドレイン端子、又は1行後に選択される行の前記リセットトランジスタのドレイン端子、の少なくとも一方のドレイン端子と同一のアクティブ領域で構成されることを特徴とする。
オーバーフロードレイントランジスタのドレイン端子の過度的電圧変動を抑制し、光電変換部の電荷の過剰排出を低減することができる。その結果、画素毎の飽和電荷量のばらつきを抑え、高輝度信号入力時のリニアリティ低下を抑制できる。また同時に限られた画素あたりのスペース内で光電変換部のレイアウト面積を大きくとることが可能となり、画質劣化を防止できる。
以下、本発明の実施形態について図面を用いて詳細に説明する。
(第1の実施形態)
図1は本発明の第1の実施形態による固体撮像装置を示す等価回路図であり、複数の行及び複数の列に配置された画素の内、2行2列の画素を記載している。また図2は図1に対応する固体撮像装置のレイアウト図であり、図3は図1の固体撮像装置の信号を読み出すタイミング図である。
図1において、pix11、pix12、pix21、pix22はそれぞれ単位画素である。101は、光を電荷に変換して蓄積する光電変換部であるフォトダイオードである。102は、フォトダイオード101に蓄積された電荷を読み出す転送トランジスタである。103は、出力トランジスタ104のゲートを所定電圧にリセットするリセットトランジスタである。104は、信号を増幅し出力する出力トランジスタである。105は、垂直出力線VOUTと出力トランジスタ104の出力とを導通制御するセレクトトランジスタである。106は、ゲート電圧VOFDに応じて信号電荷を排出するオーバーフロードレイントランジスタである。
各列の垂直出力線VOUTにはそれぞれ電流源110が設けられており、選択した行の出力トランジスタ104によるソースフォロア回路の負荷となる。
以下、図3のタイミング図を用いて本実施形態における画素の動作を詳細に説明する。なお、本実施形態のトランジスタは全てNMOSトランジスタとして説明する。
読み出し動作に先だって、図3の時刻t1より前に所定の露光期間が経過しており、フォトダイオード101には光強度に応じた光電荷が蓄積されているものとする。この所定の露光期間においてフォトダイオード101の飽和電荷量に近いもしくは飽和電荷量を超える光電荷が発生した場合は、オーバーフロードレイントランジスタ106から信号電荷が排出される。
時刻t1において、行選択パルスSEL(1)がハイレベルになり、単位画素pix11及び、pix12のセレクトトランジスタ105がオンとなる。続いて、時刻t2で画素リセットパルスRES(1)がローレベルとなり、リセットトランジスタ103がオフする。出力トランジスタ104のゲート端子とリセットトランジスタ103のソース端子及び転送トランジスタ102のドレイン端子からなる、フローティングディフュージョン領域(以下FDと称する)の寄生容量のリセットが解除される。出力トランジスタ104は垂直出力線VOUT1及びVOUT2にソースフォロア出力し、時刻t3にノイズレベルとしてそれぞれサンプリングする。
続いて、時刻t4〜t5の間、転送パルスTX(1)がハイレベルになり、転送トランジスタ102がオンし、フォトダイオード101に蓄積された信号電荷をFDへ転送する。この結果FDの電位は、転送された電荷をQfd、FDの寄生容量の値をCfdとすると、Qfd/Cfd分、時刻t3のレベルから低下する。時刻t6に垂直出力線VOUTの電圧を明時レベルとしてサンプリングする。
このようにしてサンプリングしたノイズレベルと明時レベルの差分信号を取ることで、出力トランジスタ104の閾値電圧Vthばらつきとリセットトランジスタ103のリセット時に発生する画素毎のばらつきを、それぞれ打ち消した信号を得ることができる。
時刻t7〜t8の間、パルスRES(1)及びTX(1)がハイレベルとなり、リセットトランジスタ103及び転送トランジスタ102がオンし、次のフレームの蓄積に備えて、フォトダイオード101及びFDをリセットする。
続いて、時刻t9において行選択パルスSEL(1)がローレベル、行選択パルスSEL(2)がハイレベルになる。これにより、単位画素pix11、pix12の行のセレクトトランジスタ105がオフ、単位画素pix21、pix22のセレクトトランジスタ105がオンとなる。この後、時刻t10〜t16において、時刻t2〜t8の単位画素pix11、pix12と同様の読み出し動作を行う。
ここで、時刻t1、t9ではセレクトトランジスタ105がオンとなり、出力トランジスタ104が垂直出力線VOUTを駆動するために、電流源110の電流よりも大きな電流が過渡的に流れる。このとき出力トランジスタ104のドレイン電圧が過度的に変動する。
本実施形態においては、図1及び図2に示すように出力トランジスタ104のドレイン領域を1行前のオーバーフロードレイントランジスタ106のドレイン領域と共通アクティブ領域で構成している。例えば図1においては、単位画素pix21の出力トランジスタ104とリセットトランジスタ103のドレイン領域は、単位画素pix11のオーバーフロードレイントランジスタ106のドレイン領域と共通アクティブ領域で形成されている。
これにより出力トランジスタ104がセレクトトランジスタ105で選択されたときの出力トランジスタ104のドレイン電圧変動は、一行前の画素のオーバーフロードレイントランジスタ106のドレイン端子ヘと伝わる。例えば、時刻t9における単位画素pix21、pix22の出力トランジスタ104のドレイン電圧変動は、単位画素pix11、pix12のオーバーフロードレイントランジスタ106のドレイン端子へと伝播される。このとき、単位画素pix11、pix12はフォトダイオード101をリセットした後1行分の蓄積時間のみしか経過していない。そのため、フォトダイオード101が飽和レベルには達しておらずオーバーフロードレイントランジスタ106のドレイン電圧変動により、画素の電荷が溢れ出だす可能性は低い。
一方、単位画素pix21、pix22の出力トランジスタ104とリセットトランジスタ103のドレイン領域と単位画素pix11、pix12のオーバーフロードレイントランジスタ106のドレイン領域は、図2に示すように同一の活性領域からなる。この活性領域は更に電源電圧を供給するための金属配線で接続されている。この配線はすべての画素に共通な配線であり、配線の寄生容量及び配線に繋がっているトランジスタのソースドレインの寄生容量は通常数pF程度となる。
また配線とアクティブ領域を接続するコンタクトは有限のコンタクト抵抗がある。なおコンタクト抵抗は図1ではCNT抵抗と表記している。したがって、このコンタクト抵抗Rと寄生容量Cとで、CRのローパスフィルタが形成される。
仮にコンタクト抵抗Rを100Ω、寄生容量Cを20pFとすると、カットオフ周波数fpは、次式のようになる。
fp=1/(2×3.14×C×R)=1/(2×3.14×20p×100)≒80MHz
同一行の出力トランジスタ104とリセットトランジスタ103のドレイン領域の電圧変動はこのローパスフィルタを経由してオーバーフロードレイントランジスタ106のドレイン領域に接続される。そのため、出力トランジスタ104の周波数の高い過度的な電圧変動の影響を受けにくい。
ローパスフィルタの有無におけるドレイン領域の電圧変動の様子を図7に示す。図7の時刻t9は図3における時刻t9である。
ローパスフィルタなしの波形は、時刻t9における、単位画素pix11のオーバーフロードレイントランジスタ106のドレイン領域の電圧変動に相当し、オーバーシュートが生じる。ローパスフィルタ有りの波形は、単位画素pix21のオーバーフロードレイントランジスタ106のドレイン領域の電圧変動に相当し、オーバーシュートを防止できる。
オーバーフロードレイントランジスタ106の電荷の過剰な排出はドレイン電圧が、所定の電圧よりも上昇した時に発生するため、電圧変動のオーバーシュート分を低減させることができれば十分な効果が得られる。
ローパスフィルタがない場合、時刻t9等の信号読み出し時又はリセット時に、出力トランジスタ104又はリセットトランジスタ103に過渡的な電流が流れ、トランジスタ104又は103のドレイン領域が過度的に電圧変動し、オーバーシュートが発生する。すると、オーバーフロードレイントランジスタ106が電流を流しやすくなるため、蓄積動作中のフォトダイオード101に蓄積された電荷が過剰に排出される。これに対し、本実施形態のように、ローパスフィルタを設けることにより、出力トランジスタ104及びリセットトランジスタ103のドレイン領域における電圧変動のオーバーシュートを防止することができる。これにより、蓄積動作中のフォトダイオード101に蓄積された電荷が過剰に排出されることを防止できる。
なお、単位画素pix21、pix22の出力トランジスタ104とリセットトランジスタ103のドレイン領域と単位画素pix11、pix12のオーバーフロードレイントランジスタ106のドレイン領域は、それぞれが異なる活性領域を有し、互いに金属配線によって接続されている構成でもよい。
(第2の実施形態)
図4は本発明の第2の実施形態による固体撮像装置を示す等価回路図であり、複数の行及び複数の列に配置された画素の内、2行2列の画素を記載している。また図5は図4に対応する固体撮像装置のレイアウト図であり、図6は図4の固体撮像装置の信号を読み出すタイミング図である。
図4、図5において図1、図2と同一の機能を有するものに関しては、同一番号を付しているため詳細な説明を省略する。108はFDに接続可能な容量素子であり、107は容量素子108をFDに接続制御するためのスイッチトランジスタである。
スイッチトランジスタ107のゲート端子の電圧CSSELがハイレベルの時、容量素子108はFDに接続され、電圧CSSELがローレベル時、容量素子108はFDに対して非接続状態となる。
容量素子108の容量値をCsとし、転送トランジスタ102で転送した信号電荷を電圧変換するFDの容量をFDC2とすると、次式のようになる。ここで、Cfdは、FDの寄生容量値である。
CSSEL=ハイレベル時、 FDC2=Cfd+Cs
CSSEL=ローレベル時、 FDC2=Cfd
読み出し動作に先だって、図6のタイミング図における時刻t1より前に所定の露光時間が経過し、フォトダイオード101には光強度に応じた光電荷が蓄積されているものとする。この所定の露光期間においてフォトダイオード101の飽和電荷量を超える光電荷が発生した場合は、転送トランジスタ102を通って溢れ出す。蓄積期間中、電圧CSSELはハイレベルであり、漏れ出した信号電荷の一部は容量素子108に蓄積される。
以下、図6のタイミング図を用いて本実施形態における画素の動作を詳細に説明する。時刻t1において行選択パルスSEL(1)がハイレベルになり、単位画素pix11及び、pix12の行のセレクトトランジスタ105がオンとなる。同時に、電圧CSSEL(1)がローレベルとなり、スイッチトランジスタ107がオフし、選択行の容量素子108をFDから切り離す。容量素子108には漏れ出した信号電荷の一部が保持される。
次に、時刻t2〜t3にかけて画素リセットパルスRESが一定期間ハイレベルとなり、FDを所定のリセットレベルにリセットした後解除する。このFDのリセットが解除された後の垂直出力線VOUTの電圧を時刻t4にノイズレベルとしてサンプリングする。
続いて、時刻t5〜t6にかけて、転送パルスTX(1)が一定期間ハイレベルとなり、フォトダイオード101に蓄積された信号電荷をFD領域へ転送する。この結果FDの電位は、転送された電荷をQfdとすると、Qfd/Cfdだけ時刻t4のレベルより低下する。
出力トランジスタ104はソースフォロア動作をし、FD電位の変動に対応した電圧が、垂直出力線VOUT上に現れる。この値を時刻t7に明時レベルとしてサンプリングする。
次に、時刻t8で、電圧CSSEL(1)をハイレベルとして容量素子108とFDを再び接続する。FDと容量素子108には、転送された信号電荷と容量素子108に保持された溢れ電荷の総和が保持される。
容量素子108に保持させた溢れ電荷をQcsとするとFDの電位は、(Qfd+Qcs)/(Cfd+Cs)だけ時刻t4のレベルから低下する。
出力トランジスタ104はソースフォロア動作をし、変動に対応した電圧が、垂直出力線VOUT上には高輝度時出力として現れる。この値を時刻t9に高輝度レベルとしてサンプリングする。
次のフレームの蓄積に備えて時刻t10で信号RES(1)とTX(1)、電圧CSSEL(1)をハイレベルとし、フォトダイオード101及びFD、容量素子108をリセットする。時刻t11でパルスRES(1)、TX(1)を共にローレベルとし、次の蓄積を開始する。
このようにしてサンプリングしたノイズレベルと明時レベルの差分信号を取ることで、出力トランジスタ104の閾値電圧Vthばらつきとリセットトランジスタのリセット時に発生する画素毎のばらつきを、それぞれ打ち消した信号を得ることができる。
また、ノイズレベルと高輝度レベルの差分信号からフォトダイオード101の飽和電荷量を超える信号出力を得ることができ、ダイナミックレンジの拡大が可能となる。
時刻t12において、行選択パルスSEL(1)がローレベル、行選択パルスSEL(2)がハイレベルとなる。これにより、単位画素pix11、pix12の行のセレクトトランジスタ105がオフ、単位画素pix21、pix22のセレクトトランジスタ105がオンとなる。この後選択した行の単位画素pix21、pix22において、既に説明した単位画素pix11、pix12の読み出し動作と同様の駆動を行う。
本実施形態に示した読み出し方式においては、時刻t3においてFDをリセットする際、FDの容量FDC2に蓄積した電荷がリセットトランジスタ103のドレイン端子へと流れる。この電流によってリセットトランジスタ103のドレイン端子電圧が過度的に変動する。
リセットトランジスタ103のドレイン領域は1行前のオーバーフロードレイントランジスタ106のドレイン領域と接続している。このため、リセットトランジスタ103のドレイン端子電圧の過度的な変動は、一行前の画素のオーバーフロードレイントランジスタ106のドレイン端子へ伝わる。一行前の画素は一行分の蓄積時間のみしか経過していないため、フォトダイオード101が飽和レベルには達しておらずオーバーフロードレイントランジスタ106のドレイン電圧変動により、画素の電荷が溢れ出だす可能性は低い。
第1及び第2の実施形態によれば、画素が排出機能を有する固体撮像装置において、固体撮像装置駆動時におけるオーバーフロードレイントランジスタ106のドレイン領域の過度的電圧変動を抑制し、電荷の過剰排出を低減することができる。その結果、画素毎の飽和電荷量のばらつきを抑え、高輝度信号入力時のリニアリティ低下を抑制できる。また同時に限られた単位画素あたりのスペース内で光電変換部のレイアウト面積を大きくとることが可能となり、画質劣化を防止できる。本実施形態の固体撮像装置は、電子シャッタ動作を行う場合やダイナミックレンジを拡大する場合などに好適に用いられる。
第1及び第2の実施形態の固体撮像装置では、複数の画素pix11〜pix22が、複数の行及び複数の列にアレイ状に配置されている。各画素は、光電変換部101、転送トランジスタ102、出力トランジスタ104、リセットトランジスタ103及びオーバーフロードレイントランジスタ106を有する。光電変換部101は、光を電荷に変換して蓄積する。転送トランジスタ102は、ソース端子が光電変換部101に接続され、光電変換部101に蓄積された電荷を読み出す。出力トランジスタ104は、ゲート端子が転送トランジスタ102のドレイン端子に接続され、そのゲート端子の電荷を増幅する。リセットトランジスタ103は、ソース端子が転送トランジスタ102のドレイン端子及び出力トランジスタ104のゲート端子に接続され、所定電圧にリセットする。オーバーフロードレイントランジスタ106は、ソース端子が光電変換部101に接続され、光電変換部101に蓄積された電荷を排出する。オーバーフロードレイントランジスタ106のゲート電圧VOFDは、固定されている。セレクトトランジスタ105は、行選択手段であり、行選択パルスSELに応じて、転送トランジスタ102による読み出し時に複数の行から1行を順次選択する。最終選択行以外の行のオーバーフロードレイントランジスタ106のドレイン端子は、1行後に選択される行の出力トランジスタ104のドレイン端子、又は1行後に選択される行のリセットトランジスタ103のドレイン端子に接続される。すなわち、オーバーフロードレイントランジスタ106のドレイン端子は、1行後の行の出力トランジスタ104のドレイン端子又は1行後の行のリセットトランジスタ103のドレイン端子、の少なくとも一方のドレイン端子と同一のアクティブ領域で構成される。
オーバーフロードレイントランジスタ106のドレイン端子は、電源電圧ノードVDDに接続される。具体的には、オーバーフロードレイントランジスタ106のドレイン端子は、抵抗(コンタクト抵抗)Rを介して電源電圧ノードVDDに接続される。オーバーフロードレイントランジスタ106のドレイン端子に接続される抵抗(コンタクト抵抗)R及び容量(寄生容量)Cは、ローパスフィルタを構成する。
第2の実施形態では、画素pix11〜pix22は、容量素子108と、出力トランジスタ104のゲート端子と容量素子108との間の導通を制御するスイッチトランジスタ107とを有する。
第1及び第2の実施形態によれば、オーバーフロードレイントランジスタのドレイン端子の過度的電圧変動を抑制し、光電変換部の電荷の過剰排出を低減することができる。その結果、画素毎の飽和電荷量のばらつきを抑え、高輝度信号入力時のリニアリティ低下を抑制できる。また同時に限られた画素あたりのスペース内で光電変換部のレイアウト面積を大きくとることが可能となり、画質劣化を防止できる。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
本発明の第1の実施形態による固体撮像装置を示す等価回路図である。 本発明の第1の実施形態による固体撮像装置を示すレイアウト図である。 本発明の第1の実施形態による固体撮像装置を示すタイミング図である。 本発明の第2の実施形態による固体撮像装置を示す等価回路図である。 本発明の第2の実施形態による固体撮像装置を示すレイアウト図である。 本発明の第2の実施形態による固体撮像装置を示すタイミング図である。 本発明の第1の実施形態による固体撮像装置でのドレイン領域の電圧変動を示すグラフである。
符号の説明
101 フォトダイオード
102 転送トランジスタ
103 リセットトランジスタ
104 出力トランジスタ
105 セレクトトランジスタ
106 オーバーフロードレイントランジスタ
107 スイッチトランジスタ
108 容量素子
110 電流源

Claims (5)

  1. 光を電荷に変換して蓄積する光電変換部と、
    ソース端子が前記光電変換部に接続され、前記光電変換部に蓄積された電荷を読み出す転送トランジスタと、
    ゲート端子が前記転送トランジスタのドレイン端子に接続され、前記ゲート端子の電荷を増幅する出力トランジスタと、
    ソース端子が前記転送トランジスタの前記ドレイン端子及び前記出力トランジスタの前記ゲート端子に接続され、所定電圧にリセットするリセットトランジスタと、
    ソース端子が前記光電変換部に接続され、前記光電変換部に蓄積された電荷を排出するオーバーフロードレイントランジスタとを有する複数の画素が、複数の行及び複数の列にアレイ状に配置された固体撮像装置であって、
    前記転送トランジスタによる読み出し時に前記複数の行から1行を順次選択する行選択手段を有し、
    最終選択行以外の行の前記オーバーフロードレイントランジスタのドレイン端子は、1行後に選択される行の前記出力トランジスタのドレイン端子、又は1行後に選択される行の前記リセットトランジスタのドレイン端子、の少なくとも一方のドレイン端子と同一のアクティブ領域で構成されることを特徴とする固体撮像装置。
  2. 前記画素は、容量素子と、前記出力トランジスタの前記ゲート端子と前記容量素子との間の導通を制御するスイッチトランジスタとを有することを特徴とする請求項1記載の固体撮像装置。
  3. 前記オーバーフロードレイントランジスタのドレイン端子は、電源電圧ノードに接続されることを特徴とする請求項1又は2記載の固体撮像装置。
  4. 前記オーバーフロードレイントランジスタのドレイン端子は、抵抗を介して電源電圧ノードに接続されることを特徴とする請求項3記載の固体撮像装置。
  5. 前記オーバーフロードレイントランジスタのドレイン端子に接続される前記抵抗及び容量は、ローパスフィルタを構成することを特徴とする請求項4記載の固体撮像装置。
JP2008310167A 2008-12-04 2008-12-04 固体撮像装置 Pending JP2010136110A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310167A JP2010136110A (ja) 2008-12-04 2008-12-04 固体撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008310167A JP2010136110A (ja) 2008-12-04 2008-12-04 固体撮像装置

Publications (1)

Publication Number Publication Date
JP2010136110A true JP2010136110A (ja) 2010-06-17

Family

ID=42346939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310167A Pending JP2010136110A (ja) 2008-12-04 2008-12-04 固体撮像装置

Country Status (1)

Country Link
JP (1) JP2010136110A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070745A1 (ja) * 2009-12-09 2011-06-16 パナソニック株式会社 固体撮像装置及び撮像装置
JP2015524160A (ja) * 2012-04-30 2015-08-20 コーニンクレッカ フィリップス エヌ ヴェ 読み出しエレクトロニクス及び/又はフォトセンサにアンチエイリアシングフィルタを備えた撮像検出器
CN111726547A (zh) * 2019-03-20 2020-09-29 松下知识产权经营株式会社 摄像装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070745A1 (ja) * 2009-12-09 2011-06-16 パナソニック株式会社 固体撮像装置及び撮像装置
JP2015524160A (ja) * 2012-04-30 2015-08-20 コーニンクレッカ フィリップス エヌ ヴェ 読み出しエレクトロニクス及び/又はフォトセンサにアンチエイリアシングフィルタを備えた撮像検出器
CN111726547A (zh) * 2019-03-20 2020-09-29 松下知识产权经营株式会社 摄像装置

Similar Documents

Publication Publication Date Title
US10171760B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus using an amplifier and signal lines for low and high gain
JP6226254B2 (ja) 固体撮像装置及びスイッチング回路
US9973700B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP4625685B2 (ja) 固体撮像装置
KR101069524B1 (ko) 픽셀 개별 안티-이클립스 회로 및 그 동작 방법
JP4701975B2 (ja) 固体撮像装置および撮像装置
JP5250474B2 (ja) 固体撮像装置
CN108337459B (zh) 图像拾取装置和图像拾取系统
WO2009096168A1 (ja) 固体撮像装置およびその駆動方法
US20100238332A1 (en) Solid-state imaging device, driving method thereof, and electronic apparatus
JP2008205639A (ja) 固体撮像装置及びその動作方法
US20070091191A1 (en) Solid-state imaging device, method of driving solid-state imaging device, and imaging apparatus
JP6037178B2 (ja) 固体撮像装置及び撮像装置
JPWO2012144181A1 (ja) 固体撮像装置及びその駆動方法
JP4602889B2 (ja) 増幅型固体撮像装置
US10728480B2 (en) Solid-state image sensor and image capturing device with setting of gate voltages of transfer and reset transistors
JP2010136110A (ja) 固体撮像装置
CN107257445B (zh) 固体成像元件和拍摄装置
JP6532224B2 (ja) 撮像装置、撮像システム、及び撮像装置の駆動方法
JP2020005253A (ja) 撮像装置
US20100302422A1 (en) Solid-state imaging device, camera, and driving method for solid-state imaging device
JP2012151692A (ja) 固体撮像装置及びこれを備えた撮像システム
JP2008167478A (ja) 固体撮像装置
WO2011064921A1 (ja) 固体撮像装置、その駆動方法、及び撮像装置
JP2010278786A (ja) 撮像装置、固体撮像素子および固体撮像素子の駆動方法