JP2010135858A - Semiconductor light emitting device and lighting device using the same - Google Patents

Semiconductor light emitting device and lighting device using the same Download PDF

Info

Publication number
JP2010135858A
JP2010135858A JP2010060438A JP2010060438A JP2010135858A JP 2010135858 A JP2010135858 A JP 2010135858A JP 2010060438 A JP2010060438 A JP 2010060438A JP 2010060438 A JP2010060438 A JP 2010060438A JP 2010135858 A JP2010135858 A JP 2010135858A
Authority
JP
Japan
Prior art keywords
type
layer
light emitting
light
nanocolumn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010060438A
Other languages
Japanese (ja)
Other versions
JP4586934B2 (en
Inventor
Takayoshi Takano
隆好 高野
Yukihiro Kondo
行廣 近藤
Nobuyuki Takakura
信之 高倉
Masaharu Yasuda
正治 安田
Tomoya Iwahashi
友也 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010060438A priority Critical patent/JP4586934B2/en
Publication of JP2010135858A publication Critical patent/JP2010135858A/en
Application granted granted Critical
Publication of JP4586934B2 publication Critical patent/JP4586934B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a semiconductor light emitting device consisting of a plurality of nanocolumns, which is high efficient by utilizing the advantage of the nanocolumns of no through transition. <P>SOLUTION: An n-type GaN layer 21, a light-emitting layer 22 and a p-type GaN layer 23 are sequentially laminated on an SiC substrate 20, and in this case, a V/III ratio of an organic metal gas is changed to form nanocolumns 24 each having a spherical tip (Fig. 2(a)). Then, an SOG 25 is rotatably applied (Fig. 2(b)), the SOG is solidified by baking, only the p-type GaN layer 23 is exposed by etching (Fig. 2(c)), a p-type electrode 27 is formed thereon, and an n-type electrode 28 is continuously formed on the backside of the SiC substrate 20 by evaporation (Fig.2(d)). Accordingly, even when the p-type electrode 27 is continuously formed by usual evaporation, the n-type GaN layer 21 and the p-type GaN layer 23 can be prevented from short circuit over the light-emitting layer 22. Further, the light-emitting layer 22b is encapsulated in the each sphere, thereby improving the efficiency of light extraction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体内で電子と正孔とを結合させて発光させる半導体発光素子およびそれを用いる照明装置に関し、特に前記半導体発光素子としては、ナノコラムと称される柱状結晶構造体を複数有して成るものに関する。 The present invention relates to a semiconductor light emitting device and a lighting equipment using the same to emit light by coupling electrons and holes in the semiconductor, particularly the semiconductor light emitting element, a plurality of nano-columns called columnar crystal structure It relates to what it has.

近年、III−N化合物半導体(以下、ナイトライドと呼ぶ)または酸化物半導体を用いて、その中に量子井戸を形成し、外部から電流を流して、この量子井戸で電子と正孔とを結合させて発光させる固体発光素子の発展が目覚しい。しかしながら、これらの固体発光素子の作製においては、以下に述べる課題を有する。   In recent years, a quantum well is formed in a III-N compound semiconductor (hereinafter referred to as a nitride) or an oxide semiconductor, and a current is applied from outside to couple electrons and holes in the quantum well. The development of solid-state light-emitting elements that emit light by making them light is remarkable. However, the fabrication of these solid state light emitting devices has the following problems.

たとえば、ナイトライドに関して言及すると、結晶成長が抱える根本的な課題として、異種材料基板上への結晶成長が主であるということが挙げられる。ナイトライドのヘテロエピタキシャル成長に関する一般的な成長モデルとしては、先ず基板上に薄く堆積された低温バッファ層上に三次元核が形成され、さらに成長が進むと核が大きくなり、隣接する核と結合して平坦な面が形成される。以降、平坦な面を維持しながら2次元成長を継続する。しかしながら、隣接する核が結合する際、それぞれの核が独立して形成されているので、成長面が完全に一致せず、結合後、核界面に多くの欠陥を形成する。欠陥の多くは貫通転位として結晶表面にまで達する。この貫通転位は非発光再結合中心として作用し、固体発光素子の発光効率を著しく減少させる。   For example, when referring to nitride, a fundamental problem that crystal growth has is that crystal growth on a dissimilar material substrate is the main. As a general growth model for nitride heteroepitaxial growth, three-dimensional nuclei are first formed on a low-temperature buffer layer that is thinly deposited on the substrate, and as the growth proceeds further, the nuclei become larger and combine with adjacent nuclei. And a flat surface is formed. Thereafter, the two-dimensional growth is continued while maintaining a flat surface. However, when adjacent nuclei are bonded, the respective nuclei are formed independently, so that the growth planes do not coincide completely, and after bonding, many defects are formed at the nuclear interface. Many of the defects reach the crystal surface as threading dislocations. This threading dislocation acts as a non-radiative recombination center and significantly reduces the luminous efficiency of the solid state light emitting device.

このような課題に対して、従来から、貫通転位を減少させるための様々な取り組みがなされてきた。その結果、当初、ナイトライド結晶内に1010cm−2程度あった転位を、10cm−2程度まで減少させるに至っている。 Conventionally, various efforts have been made to reduce threading dislocations against such problems. As a result, the dislocation that was initially about 10 10 cm −2 in the nitride crystal has been reduced to about 10 5 cm −2 .

さらなる低転位化技術として、柱状結晶構造体(以下、ナノコラムと呼ぶ)が注目され始めている。ナノコラムは、100nm程度の直径を有し、隣接する核が結合することなく、独立して柱状の結晶を形成している。したがって、ナノコラムにはその結晶内にほとんど貫通転位を含まず、非常に高品質な結晶を得ることができる。また、ナノコラムは表面積が薄膜に比べて格段に大きく、円筒形状をしているので、通常の薄膜の発光素子に比べて、光取り出し効率の向上が期待されている。   As a further technique for lowering dislocations, columnar crystal structures (hereinafter referred to as nanocolumns) have begun to attract attention. The nanocolumn has a diameter of about 100 nm and forms columnar crystals independently without bonding adjacent nuclei. Therefore, the nanocolumn hardly contains threading dislocations in the crystal, and a very high quality crystal can be obtained. In addition, since the nanocolumn has a significantly larger surface area than a thin film and has a cylindrical shape, an improvement in light extraction efficiency is expected as compared with a normal thin film light emitting element.

そのようなナノコラムを用いた固体発光素子の製作が試みられた一例として、図9に非特許文献1の構造を示す。その従来技術によれば、RF−MBE(高周波分子線エピタキシー)装置によって、シリコン基板43上に、n型GaNナノコラム層44、発光層45を形成し、ナノコラム径を広げながらp型GaNコンタクト層46をエピタキシャル成長させた上に、半透明p型電極のNi(2nm)/Au(3nm)を形成させている。   As an example of an attempt to manufacture a solid state light emitting device using such a nanocolumn, FIG. According to the prior art, an n-type GaN nanocolumn layer 44 and a light emitting layer 45 are formed on a silicon substrate 43 by an RF-MBE (high frequency molecular beam epitaxy) apparatus, and the p-type GaN contact layer 46 is expanded while increasing the nanocolumn diameter. Is epitaxially grown, and Ni (2 nm) / Au (3 nm) of a translucent p-type electrode is formed.

菊池、野村、岸野「窒化物半導体ナノコラム結晶を用いた新しい機能性デバイス材料の開発」(応用物理学会2004年秋季大会予稿集第1分冊4P−W−1)Kikuchi, Nomura, Kishino “Development of New Functional Device Materials Using Nitride Semiconductor Nanocolumn Crystals” (Applied Physics Society 2004 Autumn Conference Proceedings Vol. 1 P-W-1)

しかしながら、上述の従来技術では、p型電極を形成するために面方位の異なる結晶が混在して成長し、たとえナノコラム内に貫通転位が無くとも、p型電極形成層(p型GaNコンタクト層46)に多数の貫通転位が発生してしまうという問題がある。その貫通転位で、発光層45で発生した光の多くが、基板43やp型電極領域に吸収されてしまい、光取り出し効率が、期待される程、向上できていないのが実情である。   However, in the above-described prior art, crystals having different plane orientations grow together to form a p-type electrode, and even if there are no threading dislocations in the nanocolumn, the p-type electrode formation layer (p-type GaN contact layer 46). ) Has a problem that many threading dislocations are generated. Due to the threading dislocation, most of the light generated in the light emitting layer 45 is absorbed by the substrate 43 and the p-type electrode region, and the light extraction efficiency is not improved as expected.

一方、n型GaNナノコラム層44と同程度の径を持つp型GaNナノコラム層を形成し、その上にp型電極を連続して形成したとしても、ナノコラム間の空隙からp型電極用の金属材料がシリコン基板43側へと進入して、発光層45を跨いで、p型GaNナノコラム層部分とn型GaNナノコラム層44部分とを短絡し、固体発光素子として機能させなくしてしまう。また、短絡しないまでも、ナノコラムの側壁を通じて漏れ電流が増加し、発光効率の著しい低下を招く。   On the other hand, even if a p-type GaN nanocolumn layer having the same diameter as that of the n-type GaN nanocolumn layer 44 is formed and a p-type electrode is continuously formed thereon, the metal for the p-type electrode is formed from the gap between the nanocolumns. The material enters the silicon substrate 43 side, straddles the light emitting layer 45, short-circuits the p-type GaN nanocolumn layer portion and the n-type GaN nanocolumn layer 44 portion, and does not function as a solid light emitting device. Moreover, even if it does not short-circuit, a leakage current increases through the side wall of the nanocolumn, resulting in a significant decrease in luminous efficiency.

本発明の目的は、光取り出し効率を一層向上することができる半導体発光素子およびそれを用いる照明装置を提供することである。 An object of the present invention is to provide a lighting equipment using semiconductor light emitting device and it is possible to improve the light extraction efficiency even more.

本発明の半導体発光素子は、基板上に、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体を複数有し、前記基板上にn型電極が、前記p型窒化物半導体層またはp型酸化物半導体層上にp型電極が、それぞれ形成されて成る半導体発光素子において、少なくとも前記p型窒化物半導体層またはp型酸化物半導体層の部分に、隣接する柱状結晶構造体との間の空隙に充填される絶縁体を含み、前記柱状結晶構造体は、その先端領域が前記発光層を含んだ球状に形成されていることを特徴とする。 The semiconductor light-emitting device of the present invention has a columnar shape in which an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer or a p-type oxide semiconductor layer are sequentially stacked on a substrate. In a semiconductor light emitting device comprising a plurality of crystal structures, wherein an n-type electrode is formed on the substrate and a p-type electrode is formed on the p-type nitride semiconductor layer or the p-type oxide semiconductor layer, respectively, The p-type nitride semiconductor layer or the p-type oxide semiconductor layer includes an insulator filled in a gap between adjacent columnar crystal structures, and the columnar crystal structure has a tip region that emits light. It is characterized by being formed in a spherical shape including a layer .

上記の構成によれば、基板上にn型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体(ナノコラム)を複数有し、前記基板上にn型電極が、前記p型窒化物半導体層またはp型酸化物半導体層上にp型電極が、それぞれ形成されて成る半導体発光素子において、そのナノコラムの先端側に設けるべきp型電極には、前記p型窒化物半導体層またはp型酸化物半導体層の連続膜を用いるのではなく、p型電極(該p型電極側を光取出し面とする場合の透明導電膜を含む)の連続膜を用いる。ただし、そのp型電極の形成にあたっては、少なくとも前記p型窒化物半導体層またはp型酸化物半導体層の部分に、隣接するナノコラム間の空隙に絶縁体を充填しておく。   According to said structure, the columnar crystal structure which laminated | stacked the n-type nitride semiconductor layer or n-type oxide semiconductor layer, the light emitting layer, and the p-type nitride semiconductor layer or the p-type oxide semiconductor layer in order on the board | substrate. In a semiconductor light emitting device having a plurality of bodies (nanocolumns), wherein an n-type electrode is formed on the substrate and a p-type electrode is formed on the p-type nitride semiconductor layer or the p-type oxide semiconductor layer, respectively, The p-type electrode to be provided on the tip side of the nanocolumn is not a continuous film of the p-type nitride semiconductor layer or the p-type oxide semiconductor layer, but a p-type electrode (the p-type electrode side is defined as a light extraction surface). In this case, a continuous film (including a transparent conductive film) is used. However, when forming the p-type electrode, at least the p-type nitride semiconductor layer or the p-type oxide semiconductor layer is filled with an insulator in the gap between adjacent nanocolumns.

したがって、通常の蒸着などの技術で、p型電極を連続して形成しても、発光層を跨いで、n型窒化物半導体層またはn型酸化物半導体層と、p型窒化物半導体層またはp型酸化物半導体層とが該p型電極用の材料で短絡されてしまうことを防止することができる。これによって、ナノコラムが内部に貫通転位を持たないという利点を活かした高効率な半導体発光素子を実現することができる。   Therefore, even if the p-type electrode is continuously formed by a technique such as ordinary vapor deposition, the n-type nitride semiconductor layer or the n-type oxide semiconductor layer and the p-type nitride semiconductor layer or It is possible to prevent the p-type oxide semiconductor layer from being short-circuited with the material for the p-type electrode. As a result, a highly efficient semiconductor light emitting device can be realized that takes advantage of the fact that the nanocolumn does not have threading dislocations inside.

またナノコラム先端を球状に形成することで、先端側で前記空隙を大きくすることができる。したがって、前記絶縁体を充填し易くなるだけでなく、球の中に発光層を含めることで、発光層でどのような方向に発生した光も外部へ取出すことができ、発光層から発生した光をより効率的に取出すことができる。 In addition , by forming the tip of the nanocolumn in a spherical shape, the gap can be enlarged on the tip side. Therefore, not only is it easy to fill the insulator, but by including a light emitting layer in the sphere, light generated in any direction in the light emitting layer can be extracted to the outside, and light generated from the light emitting layer can be extracted. Can be taken out more efficiently.

また、本発明の半導体発光素子では、前記絶縁体は、蛍光材料を有して成ることを特徴とする。   In the semiconductor light emitting device of the present invention, the insulator includes a fluorescent material.

上記の構成によれば、前記絶縁体内に蛍光材料を含ませることで、ナノコラムの励起光と異なる波長を持つ高効率な発光素子の実現が可能になる。   According to the above configuration, by including a fluorescent material in the insulator, it is possible to realize a highly efficient light-emitting element having a wavelength different from the excitation light of the nanocolumn.

さらにまた、本発明の照明装置は、前記の半導体発光素子を用いることを特徴とする。   Furthermore, the lighting device of the present invention is characterized by using the semiconductor light emitting element.

上記の構成によれば、貫通転位を持たない高効率な半導体発光素子を用いることで、同じ光束(輝度、照度)を得るにも、小型で低消費電力な照明装置を実現することができる。   According to the above configuration, by using a highly efficient semiconductor light-emitting element that does not have threading dislocations, it is possible to realize a small-sized and low-power-consumption illuminating device even when the same luminous flux (brightness and illuminance) is obtained.

本発明の半導体発光素子は、以上のように、基板上にn型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体(ナノコラム)を複数有し、前記基板上にn型電極が、前記p型窒化物半導体層またはp型酸化物半導体層上にp型電極が、それぞれ形成されて成る半導体発光素子において、そのナノコラムの先端側に設けるべきp型電極には、前記p型窒化物半導体層またはp型酸化物半導体層の連続膜を用いるのではなく、p型電極(該p型電極側を光取出し面とする場合の透明導電膜を含む)の連続膜を用いるようにし、そのp型電極の形成にあたっては、少なくとも前記p型窒化物半導体層またはp型酸化物半導体層の部分に、隣接するナノコラム間の空隙に絶縁体を充填しておく。 The semiconductor light emitting element of the present invention, as described above, an n-type nitride semiconductor layer or the n-type oxide semiconductor layer on a substrate, a light emitting layer, and a p-type nitride semiconductor layer or a p-type oxide semiconductor layer A plurality of columnar crystal structures (nanocolumns) stacked in order, an n-type electrode is formed on the substrate, and a p-type electrode is formed on the p-type nitride semiconductor layer or the p-type oxide semiconductor layer, respectively. In the semiconductor light emitting device, the p-type electrode to be provided on the tip side of the nanocolumn is not a continuous film of the p-type nitride semiconductor layer or the p-type oxide semiconductor layer, but a p-type electrode (the p-type electrode). In order to form the p-type electrode, at least a portion of the p-type nitride semiconductor layer or the p-type oxide semiconductor layer is used. Between adjacent nanocolumns Keep filled with an insulating material to chance.

それゆえ、通常の蒸着などの技術で、p型電極を連続して形成しても、発光層を跨いで、n型窒化物半導体層またはn型酸化物半導体層と、p型窒化物半導体層またはp型酸化物半導体層とが該p型電極用の材料で短絡されてしまうことを防止することができる。これによって、ナノコラムが内部に貫通転位を持たないという利点を活かした高効率な半導体発光素子を実現することができる。   Therefore, even if the p-type electrode is continuously formed by a technique such as ordinary vapor deposition, the n-type nitride semiconductor layer or the n-type oxide semiconductor layer and the p-type nitride semiconductor layer straddle the light emitting layer. Alternatively, the p-type oxide semiconductor layer can be prevented from being short-circuited with the material for the p-type electrode. This makes it possible to realize a highly efficient semiconductor light-emitting element taking advantage of the fact that the nanocolumn does not have threading dislocations inside.

さらにまた、本発明の照明装置は、以上のように、前記の半導体発光素子を用いる。   Furthermore, the illumination device of the present invention uses the semiconductor light emitting element as described above.

それゆえ、貫通転位を持たない高効率な半導体発光素子を用いることで、同じ光束(輝度、照度)を得るにも、小型で低消費電力な照明装置を実現することができる。   Therefore, by using a highly efficient semiconductor light emitting element that does not have threading dislocations, it is possible to realize a small-sized and low power consumption lighting device to obtain the same luminous flux (brightness and illuminance).

本発明の実施の第1の形態に係る半導体発光素子である発光ダイオードの製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the light emitting diode which is a semiconductor light-emitting device concerning the 1st Embodiment of this invention. 本発明の実施の第2の形態に係る半導体発光素子である発光ダイオードの製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the light emitting diode which is a semiconductor light-emitting device based on the 2nd Embodiment of this invention. 本発明の実施の第3の形態に係る半導体発光素子である発光ダイオードの製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the light emitting diode which is a semiconductor light-emitting device concerning the 3rd Embodiment of this invention. ナノコラムの先端をテーパ状に形成する形成方法を説明するためのグラフである。It is a graph for demonstrating the formation method which forms the front-end | tip of a nanocolumn in a taper shape. 本発明の実施の第4の形態に係る半導体発光素子である発光ダイオードの製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the light emitting diode which is a semiconductor light-emitting device based on the 4th Embodiment of this invention. ナノコラムの先端を球状に形成する形成方法を説明するためのグラフである。It is a graph for demonstrating the formation method which forms the front-end | tip of a nanocolumn in spherical shape. 本発明の実施の第5の形態に係る半導体発光素子である発光ダイオードの製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the light emitting diode which is a semiconductor light-emitting device based on the 5th Embodiment of this invention. 本発明の実施の第6の形態に係る半導体発光素子である発光ダイオードの製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the light emitting diode which is a semiconductor light-emitting device based on the 6th Embodiment of this invention. 典型的な従来技術の発光ダイオードの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the typical prior art light emitting diode.

[実施の形態1]
図1は、本発明の実施の第1の形態に係る半導体発光素子である発光ダイオードD1の製造工程を模式的に示す断面図である。本実施の形態では、ナノコラム7の形成にあたっては、フォトリソグラフィが用いられるが、その形成方法は本方法に限定されるものではなく、たとえば電子ビーム露光などの方法を用いても良いことは言うまでもない。また、本実施の形態および後述する他の実施の形態では、ナノコラム7の成長は、有機金属気相成長(MOCVD)によって行うことを前提としているが、ナノコラム7の成長方法はこれに限定されるものではなく、分子線エピタキシー(MBE)やハイドライド気相成長(HVPE)等の装置を用いてもナノコラムが作製可能であることは公知である。以下、特に断らない限り、MOCVD装置を用いるものとする。
[Embodiment 1]
FIG. 1 is a cross-sectional view schematically showing a manufacturing process of a light-emitting diode D1 which is a semiconductor light-emitting element according to the first embodiment of the present invention. In the present embodiment, photolithography is used to form the nanocolumns 7. However, the formation method is not limited to this method, and it goes without saying that a method such as electron beam exposure may be used. . In the present embodiment and other embodiments described later, it is assumed that the growth of the nanocolumn 7 is performed by metal organic chemical vapor deposition (MOCVD), but the growth method of the nanocolumn 7 is limited to this. It is well known that nanocolumns can be produced using an apparatus such as molecular beam epitaxy (MBE) or hydride vapor phase epitaxy (HVPE). Hereinafter, an MOCVD apparatus is used unless otherwise specified.

先ず、図1(a)で示すように、n型の導電性基板1上に、スパッタ法などによってシリコン酸化膜2が形成される。このとき、シリコン酸化膜2の厚さは、前記ナノコラム7に必要な高さよりも厚くすることが必要であり、たとえば1μm以上に形成される。そのシリコン酸化膜2上には、図1(b)で示すように、フォトレジスト3が塗布され、通常のフォトリソグラフィ技術を用いてパターン形成が行われる。次に、形成されたフォトレジスト3をマスク材として、フッ酸等の薬品を用いて、図1(c)で示すように、レジスト開口部4のシリコン酸化膜をエッチングし、その後レジスト3を除去することで、シリコン酸化膜パターン5が形成される。レジスト開口部4の密度は、任意に調整可能である。   First, as shown in FIG. 1A, a silicon oxide film 2 is formed on an n-type conductive substrate 1 by sputtering or the like. At this time, the thickness of the silicon oxide film 2 needs to be larger than the height necessary for the nanocolumn 7, and is formed to be, for example, 1 μm or more. A photoresist 3 is applied on the silicon oxide film 2 as shown in FIG. 1B, and pattern formation is performed using a normal photolithography technique. Next, using the formed photoresist 3 as a mask material, using a chemical such as hydrofluoric acid, the silicon oxide film in the resist opening 4 is etched as shown in FIG. 1C, and then the resist 3 is removed. As a result, a silicon oxide film pattern 5 is formed. The density of the resist openings 4 can be arbitrarily adjusted.

この状態で、前記MOCVD装置を用いて、GaNの結晶から成る前記ナノコラム7の成長が行われる。その成長は、成長温度を通常のGaN成長の温度より上げ、窒素過剰雰囲気とすることで行われ、GaN結晶が柱状に成長する。この成長において、通常のエピ成長による発光ダイオードの作製のドーピング技術を用いると、n型GaN層11、発光層12、p型GaN層13を、順次積層成長させることができる。   In this state, the nanocolumn 7 made of GaN crystal is grown using the MOCVD apparatus. The growth is performed by raising the growth temperature from the normal GaN growth temperature and setting it to a nitrogen-excess atmosphere, and the GaN crystal grows in a columnar shape. In this growth, the n-type GaN layer 11, the light-emitting layer 12, and the p-type GaN layer 13 can be sequentially stacked and grown by using a doping technique for manufacturing a light-emitting diode by normal epi-growth.

この時、図1(d)で示すように、前記レジスト開口部4には、上述のようにして単結晶のナノコラム7が形成されるが、シリコン酸化膜2上ではエピタキシャル成長できないので、多結晶のGaN層6が形成される。ここで、GaNの単結晶から成るナノコラム7は、シリコン酸化膜パターン5の厚さよりも厚くならないようにする必要がある。   At this time, as shown in FIG. 1 (d), a single-crystal nanocolumn 7 is formed in the resist opening 4 as described above, but it cannot be epitaxially grown on the silicon oxide film 2. A GaN layer 6 is formed. Here, the nanocolumn 7 made of a single crystal of GaN must not be thicker than the thickness of the silicon oxide film pattern 5.

その後、たとえば250℃の燐酸・硫酸混合溶液を用いて、図1(e)で示すように、シリコン酸化膜パターン5上の多結晶のGaN層6のみがエッチングによって除去される。これは、多結晶のGaN層6は、単結晶のGaNから成るナノコラム7に比べ、酸に対するエッチングレートが大きく、表面積も大きいので、選択的に除去可能となるためである。   Thereafter, using a phosphoric acid / sulfuric acid mixed solution at 250 ° C., for example, only the polycrystalline GaN layer 6 on the silicon oxide film pattern 5 is removed by etching, as shown in FIG. This is because the polycrystalline GaN layer 6 has a higher etching rate with respect to acid and a larger surface area than the nanocolumn 7 made of single-crystal GaN, and thus can be selectively removed.

こうして、隣接するナノコラム7の空隙間に、絶縁体としてのシリコン酸化膜2が埋込まれることになり、図1(f)で示すように、それらのナノコラム7およびシリコン酸化膜2上に、たとえばNi/Auから成り、ナノコラム7の先端のp型GaN層13とオーミックコンタクトすることができる透明電極8が、蒸着などで連続形成されてp型電極となり、導電性基板1の裏面には、たとえばTi/Alから成り、該導電性基板1とオーミックコンタクトすることができるn型電極9が蒸着などで連続形成されて、本実施の形態の発光ダイオードD1の構造が完成する。   In this way, the silicon oxide film 2 as an insulator is buried between the gaps between adjacent nanocolumns 7, and as shown in FIG. 1 (f), on the nanocolumns 7 and the silicon oxide film 2, for example, A transparent electrode 8 made of Ni / Au and capable of making ohmic contact with the p-type GaN layer 13 at the tip of the nanocolumn 7 is continuously formed by vapor deposition or the like to form a p-type electrode. An n-type electrode 9 made of Ti / Al and capable of making ohmic contact with the conductive substrate 1 is continuously formed by vapor deposition or the like, thereby completing the structure of the light emitting diode D1 of the present embodiment.

このように構成することで、ナノコラム7の先端にp型電極を形成するにあたって、各ナノコラム7は結合せずに独立しており、ナノコラム7の先端のp型GaNを面方向に成長させてp型電極とした場合に生じるような貫通転位はなく、かつそのp型電極を連続して形成しても、発光層12を跨いで、n型GaN層11とp型GaN層13とが該p型電極用の材料で短絡されてしまうことを防止することができ、ナノコラムが内部に貫通転位を持たないという利点を活かした高効率な発光ダイオードを製造することができる。   With this configuration, when forming the p-type electrode at the tip of the nanocolumn 7, each nanocolumn 7 is independent without being bonded, and the p-type GaN at the tip of the nanocolumn 7 is grown in the plane direction to form p. There are no threading dislocations that occur when a p-type electrode is formed, and even if the p-type electrode is formed continuously, the n-type GaN layer 11 and the p-type GaN layer 13 straddle the light-emitting layer 12 to form the p-type electrode. It is possible to prevent short-circuiting with the material for the mold electrode, and it is possible to manufacture a highly efficient light-emitting diode utilizing the advantage that the nanocolumn does not have threading dislocations inside.

[実施の形態2]
図2は、本発明の実施の第2の形態に係る半導体発光素子である発光ダイオードD2の製造工程を模式的に示す断面図である。注目すべきは、本実施の形態では、ナノコラム24を通常通り成長させた後、各ナノコラム24間の空隙に、絶縁体であるSOG(Spin on Glass)や液状のSiO等(以下、SOGで説明する)25が充填されることである。
[Embodiment 2]
FIG. 2 is a cross-sectional view schematically showing a manufacturing process of the light-emitting diode D2, which is a semiconductor light-emitting element according to the second embodiment of the present invention. It should be noted that in the present embodiment, after the nanocolumns 24 are grown as usual, an insulator such as SOG (Spin on Glass) or liquid SiO 2 (hereinafter referred to as SOG) is formed in the gaps between the nanocolumns 24. 25) will be filled.

先ず、図2(a)で示すように、SiC(炭化ケイ素)基板20上に、n型GaN層21、発光層22、p型GaN層23が順次積層された前記ナノコラム24が形成される。ここでは、青よりも長波長側で透明となるSiC基板20で一実施形態を述べるが、基板はSiCに限定されず、導電性を有し、かつ発光波長に対して透光性を持つものであればよい。たとえば、前記導電性を有し、かつ可視光域で透明となる窒化ガリウム、酸化ガリウムなどを用いることができる。またこの種のナノコラム24の作製方法については、当業者には公知であり、ここでの詳しい説明は省略する。   First, as shown in FIG. 2A, the nanocolumn 24 in which an n-type GaN layer 21, a light emitting layer 22, and a p-type GaN layer 23 are sequentially stacked is formed on a SiC (silicon carbide) substrate 20. Here, an embodiment will be described with a SiC substrate 20 that is transparent on the longer wavelength side than blue, but the substrate is not limited to SiC, has conductivity, and has translucency with respect to the emission wavelength. If it is. For example, gallium nitride, gallium oxide, or the like that has conductivity and is transparent in the visible light region can be used. A method for manufacturing this type of nanocolumn 24 is known to those skilled in the art, and a detailed description thereof is omitted here.

次に、回転塗布によって、前記SOG25を塗布すると、これは液状であるので、図2(b)で示すように、各ナノコラム24間の隙間に侵入し、ナノコラム24の間隔、SOG25の粘性などを制御することで、ナノコラム24のp型GaN層23よりSiC基板20側へ侵入させることは容易である。   Next, when the SOG 25 is applied by spin coating, the SOG 25 is in a liquid state. Therefore, as shown in FIG. 2B, the gaps between the nanocolumns 24 are entered, and the spacing between the nanocolumns 24, the viscosity of the SOG 25, and the like. By controlling, it is easy to penetrate from the p-type GaN layer 23 of the nanocolumn 24 to the SiC substrate 20 side.

この後、SOGを400℃で焼成して固化し、バッファードフッ酸を用いて、ナノコラム24のp型GaN層23のみが露出するようにSOG25を全面エッチングすると、図2(c)で示すように、少なくともp型GaN層23と発光層22とをカバーする形でSOG埋込層26が形成される。   Thereafter, the SOG is solidified by baking at 400 ° C., and the entire surface of the SOG 25 is etched using buffered hydrofluoric acid so that only the p-type GaN layer 23 of the nanocolumn 24 is exposed, as shown in FIG. In addition, the SOG buried layer 26 is formed so as to cover at least the p-type GaN layer 23 and the light emitting layer 22.

そして、この上に、図2(d)で示すように、たとえばNi/Auから成り、ナノコラム24の先端のp型GaN層23とオーミックコンタクトすることができる透明電極が、蒸着などで連続形成されてp型電極27となり、SiC基板20の裏面には、たとえばTi/Alから成り、該SiC基板20とオーミックコンタクトすることができるn型電極28が蒸着などで連続形成されて、本実施の形態の発光ダイオードD2の構造が完成する。   Then, as shown in FIG. 2D, a transparent electrode made of, for example, Ni / Au and capable of making ohmic contact with the p-type GaN layer 23 at the tip of the nanocolumn 24 is continuously formed by vapor deposition or the like. In this embodiment, an n-type electrode 28 made of, for example, Ti / Al and capable of making ohmic contact with the SiC substrate 20 is continuously formed by vapor deposition or the like on the back surface of the SiC substrate 20. The structure of the light emitting diode D2 is completed.

このように構成してもまた、通常の蒸着などの技術でp型電極27を連続して形成しても、発光層22を跨いで、n型GaN層21とp型GaN層23とが該p型電極27用の材料で短絡されてしまうことを防止することができる。絶縁体となるSOG25は、ナノコラム24の全長に亘って(基端部側まで)充填されている必要はなく、少なくともp型GaN層23の一部が塞がっていて、p型電極27の金属がn型GaN層21に侵入できなければよい。   Even if it comprises in this way, even if it forms the p-type electrode 27 continuously by techniques, such as normal vapor deposition, it straddles the light emitting layer 22, and the n-type GaN layer 21 and the p-type GaN layer 23 are the said It is possible to prevent short-circuiting with the material for the p-type electrode 27. The SOG 25 serving as an insulator does not need to be filled over the entire length of the nanocolumn 24 (up to the base end side), at least a part of the p-type GaN layer 23 is blocked, and the metal of the p-type electrode 27 is It is sufficient that the n-type GaN layer 21 cannot be penetrated.

[実施の形態3]
図3は、本発明の実施の第3の形態に係る半導体発光素子である発光ダイオードD3の製造工程を模式的に示す断面図である。この発光ダイオードD3の構造において、前述の発光ダイオードD2の構造に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。図3(a)〜図3(d)の各工程も、前述の図2(a)〜図2(d)の各工程に対応している。注目すべきは、本実施の形態では、ナノコラム24aの先端のp型GaN層23aがテーパ状に形成されていることである。
[Embodiment 3]
FIG. 3 is a cross-sectional view schematically showing a manufacturing process of a light-emitting diode D3 which is a semiconductor light-emitting element according to the third embodiment of the present invention. The structure of the light emitting diode D3 is similar to the structure of the light emitting diode D2 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. Each of the steps in FIGS. 3A to 3D also corresponds to the steps in FIGS. 2A to 2D described above. It should be noted that in the present embodiment, the p-type GaN layer 23a at the tip of the nanocolumn 24a is formed in a tapered shape.

前記テーパ状は、図3(a)のMOCVDの際に流す有機金属ガスのV/III比を変化することで実現することができる。詳しくは、ナノコラム24aの径は、前記V/III比を小さくすることで大きくなり、前記V/III比を大きくすることで小さくなり、図4で示すように、p型GaN層23aの先端を形成する時刻t1までは前記V/III比を一定とし、その先端を形成する時刻t1から前記V/III比を時間と共に増加させると、エピ終了時刻t2では、図3で示すようにp型GaN層23aは先端に行くにつれて徐々に細くなるテーパを持った形状となり、本実施の形態の構造を実現することができる。   The taper shape can be realized by changing the V / III ratio of the organometallic gas that flows during MOCVD in FIG. Specifically, the diameter of the nanocolumn 24a is increased by decreasing the V / III ratio, and is decreased by increasing the V / III ratio. As shown in FIG. 4, the tip of the p-type GaN layer 23a is The V / III ratio is kept constant until the formation time t1, and when the V / III ratio is increased with time from the formation time t1 of the tip, at the epi end time t2, as shown in FIG. The layer 23a has a tapered shape that gradually decreases toward the tip, and the structure of the present embodiment can be realized.

このようにナノコラム24aの先端をテーパ状に形成することで、ナノコラム24a間の空隙を大きくすることができ、絶縁体である前記SOG25を充填し易くなるだけでなく、発光層22から発生した光を、より効率的に取出すことができる。   Thus, by forming the tips of the nanocolumns 24a in a tapered shape, the gap between the nanocolumns 24a can be increased, and not only the SOG 25 that is an insulator can be easily filled, but also the light generated from the light emitting layer 22 Can be taken out more efficiently.

[実施の形態4]
図5は、本発明の実施の第4の形態に係る半導体発光素子である発光ダイオードD4の製造工程を模式的に示す断面図である。この発光ダイオードD4の構造において、前述の発光ダイオードD3の構造に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。図5(a)〜図5(d)の各工程も、上述の図3(a)〜図3(d)の各工程に対応している。注目すべきは、本実施の形態では、ナノコラム24bの先端領域が発光層22bを含んだ球状に形成されていることである。
[Embodiment 4]
FIG. 5 is a cross-sectional view schematically showing a manufacturing process of a light-emitting diode D4 which is a semiconductor light-emitting element according to the fourth embodiment of the present invention. The structure of the light emitting diode D4 is similar to the structure of the light emitting diode D3 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. Each process of Fig.5 (a)-FIG.5 (d) also respond | corresponds to each process of the above-mentioned FIG.3 (a)-FIG.3 (d). It should be noted that in the present embodiment, the tip region of the nanocolumn 24b is formed in a spherical shape including the light emitting layer 22b.

前記球状は前記図3のテーパ状と同様に、図5(a)のMOCVDの際に流す有機金属ガスのV/III比を変化することで実現することができる。詳しくは、図6で示すように、n型GaN層21bの先端を形成する時刻t11までは前記V/IIIを一定とし、続いて発光層22bを形成する時刻t12までは前記V/III比を時間と共に減少させてナノコラム24bの径を太くして球の下半分を形成し、その後、時刻t13まで、同じ時間をかけてV/III比を元に戻すことで、ナノコラム24bの径は、前記n型GaN層21bの基端側の径と等しくなる。この時刻t11〜t13のV/III比の変化の間に、n型GaN層21b、発光層22b、p型GaN層23bを形成すると、図5で示すような球状のGaNの積層形状を形成することができる。さらにp型GaN層23bの先端を完全に球形にするためには、時刻t13〜t14で示すように、前記V/III比を急峻に増加させればよい。 The spherical shape can be realized by changing the V / III ratio of the organometallic gas to be flowed during MOCVD in FIG. 5A, similarly to the tapered shape in FIG. Specifically, as shown in FIG. 6, the V / III ratio is constant until time t11 when the tip of the n-type GaN layer 21b is formed, and the V / III ratio is maintained until time t12 when the light emitting layer 22b is subsequently formed. Is reduced with time to increase the diameter of the nanocolumn 24b to form the lower half of the sphere, and then until the time t13, the V / III ratio is restored over the same time, so that the diameter of the nanocolumn 24b is It becomes equal to the diameter of the base end side of the n-type GaN layer 21b. When the n-type GaN layer 21b, the light-emitting layer 22b, and the p-type GaN layer 23b are formed during the change in the V / III ratio at times t11 to t13, a spherical GaN laminated shape as shown in FIG. 5 is formed. be able to. Furthermore, in order to make the tip of the p-type GaN layer 23b completely spherical, the V / III ratio may be increased sharply as shown at times t13 to t14.

このようにナノコラム24bの先端を球状に形成しても、その先端部ではナノコラム24b間の空隙を大きくすることができ、絶縁体である前記SOG25を充填し易くすることができる。また、球の中に発光層22bを含めることで、該発光層22bでどのような方向に発生した光も外部へ取出すことができ、該発光層22bから発生した光を、より効率的に取出すことができる。   Thus, even if the tip of the nanocolumn 24b is formed in a spherical shape, the gap between the nanocolumns 24b can be enlarged at the tip, and the SOG 25 that is an insulator can be easily filled. In addition, by including the light emitting layer 22b in the sphere, light generated in any direction in the light emitting layer 22b can be extracted to the outside, and light generated from the light emitting layer 22b can be extracted more efficiently. be able to.

[実施の形態5]
図7は、本発明の実施の第5の形態に係る半導体発光素子である発光ダイオードD5の製造工程を模式的に示す断面図である。本実施の形態は、前述の図2で示す発光ダイオードD2、図3で示す発光ダイオードD3、図5で示す発光ダイオードD4のいずれの構成にも適用可能であるが、図3で示す発光ダイオードD3に適用した場合について説明する。したがって、図7(a)〜図7(d)の各工程は、図3(a)〜図3(d)の各工程と同一であり、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、本実施の形態では、ナノコラム24a間に充填されるSOG25aには、蛍光体粉末29が溶かし込まれていることである。
[Embodiment 5]
FIG. 7 is a cross-sectional view schematically showing a manufacturing process of the light-emitting diode D5 which is the semiconductor light-emitting element according to the fifth embodiment of the present invention. The present embodiment can be applied to any configuration of the light emitting diode D2 shown in FIG. 2, the light emitting diode D3 shown in FIG. 3, and the light emitting diode D4 shown in FIG. 5, but the light emitting diode D3 shown in FIG. The case where it applies to is demonstrated. Therefore, each process of FIGS. 7A to 7D is the same as each process of FIGS. 3A to 3D, and corresponding portions are denoted by the same reference numerals. The description is omitted. It should be noted that in the present embodiment, the phosphor powder 29 is dissolved in the SOG 25a filled between the nanocolumns 24a.

このように構成することで、ナノコラム24aの励起光と異なる波長を持つ高効率な発光ダイオードを実現することができる。なお、より多量の蛍光体粉末29を充填するためには、p型GaN層23aの部分だけでなく、発光層22さらにはn型GaN層21の部分(ナノコラム24aの基端部側)までSOG25aを充填することが好ましい。   With this configuration, a highly efficient light emitting diode having a wavelength different from that of the excitation light of the nanocolumn 24a can be realized. In order to fill a larger amount of the phosphor powder 29, not only the portion of the p-type GaN layer 23a but also the light emitting layer 22 and further the portion of the n-type GaN layer 21 (the base end side of the nanocolumn 24a) SOG 25a Is preferably filled.

[実施の形態6]
図8は、本発明の実施の第6の形態に係る半導体発光素子である発光ダイオードD6の製造工程を模式的に示す断面図である。本実施の形態は、前述の図2で示す発光ダイオードD2、図3で示す発光ダイオードD3、図5で示す発光ダイオードD4、図7で示す発光ダイオードD5のいずれの構成にも適用可能であるが、図3で示す発光ダイオードD3に適用した場合について説明する。注目すべきは、本実施の形態では、サファイア基板30に対して、n型電極37が、p型電極27と同じ面に形成されていることである。
[Embodiment 6]
FIG. 8 is a cross-sectional view schematically showing a manufacturing process of a light-emitting diode D6 which is a semiconductor light-emitting element according to the sixth embodiment of the present invention. The present embodiment can be applied to any configuration of the light emitting diode D2 shown in FIG. 2, the light emitting diode D3 shown in FIG. 3, the light emitting diode D4 shown in FIG. 5, and the light emitting diode D5 shown in FIG. A case where the present invention is applied to the light emitting diode D3 shown in FIG. 3 will be described. It should be noted that in the present embodiment, the n-type electrode 37 is formed on the same surface as the p-type electrode 27 with respect to the sapphire substrate 30.

先ず、図8(a)で示すように、サファイア基板30上に、n型GaN層31が形成される。このn型GaN層31は、前記n型電極37とオーミックコンタクトをとるために設けられ、ドナーとなるSiを高濃度にドープして低抵抗化されている。その後は、前述の発光ダイオードD3と同様なプロセスによって、前記n型GaN層21、発光層22、p型GaN層23a、SOG埋込層26およびp型電極27が形成される。   First, as shown in FIG. 8A, the n-type GaN layer 31 is formed on the sapphire substrate 30. The n-type GaN layer 31 is provided to make ohmic contact with the n-type electrode 37, and has a low resistance by doping Si serving as a donor at a high concentration. Thereafter, the n-type GaN layer 21, the light-emitting layer 22, the p-type GaN layer 23a, the SOG buried layer 26, and the p-type electrode 27 are formed by a process similar to that of the light-emitting diode D3.

そして、通常のフォトリソグラフィとエッチングとを用いて、図8(b)で示すように、将来n型電極37を形成する領域36が、n型GaN層31に到達するまで掘り込まれる。このプロセスは、従来の絶縁性基板、たとえばサファイアを用いた通常の発光ダイオードの作製プロセスと同様であり、当業者にとっては公知の方法である。   Then, using ordinary photolithography and etching, as shown in FIG. 8B, the region 36 where the n-type electrode 37 will be formed in the future is dug until it reaches the n-type GaN layer 31. This process is similar to a process for manufacturing a normal light emitting diode using a conventional insulating substrate, for example, sapphire, and is known to those skilled in the art.

その後、ウェハ全面にフォトレジストを塗布し、将来n型電極37となる領域36のみのフォトレジストを露光・現像によって取除き、次いで全面にn型電極37用の金属、たとえばTi/Alを蒸着して、リフトオフ法によってレジスト上の金属をレジストと共に取除くと、図8(c)で示すようにn型電極37が形成される。   Thereafter, a photoresist is applied to the entire surface of the wafer, and the photoresist only in the region 36 that will become the n-type electrode 37 in the future is removed by exposure and development, and then a metal for the n-type electrode 37, for example, Ti / Al is evaporated on the entire surface. Then, when the metal on the resist is removed together with the resist by the lift-off method, an n-type electrode 37 is formed as shown in FIG.

[実施の形態7]
以下に、本発明の実施の第7の形態に係る半導体発光素子である発光ダイオードについて説明するが、素子構造は、上述の発光ダイオードD1〜D6のいずれの構造であってもよい。注目すべきは、上述の発光ダイオードD1〜D6では、ナノコラム7,24,24a,24bは、窒化物半導体層から成るのに対して、本実施の形態では、酸化物半導体層から成ることである。
[Embodiment 7]
Hereinafter, a light-emitting diode that is a semiconductor light-emitting element according to the seventh embodiment of the present invention will be described. The element structure may be any of the above-described light-emitting diodes D1 to D6. It should be noted that in the above-described light emitting diodes D1 to D6, the nanocolumns 7, 24, 24a, and 24b are made of a nitride semiconductor layer, whereas in the present embodiment, the nanocolumns 7, 24, 24a, and 24b are made of an oxide semiconductor layer. .

酸化物半導体であるZnOは、発光素子として非常に優れた特性を有している。励起子の結合エネルギが60meVと、GaNの2〜3倍であり、内部量子効率がGaNに比べて高くなる可能性がある上、屈折率は約2であり、GaNの屈折率2.5に比べて小さく、光取出しの点で圧倒的に有利である。また材料自身が安価であることも商業ベースで考えると魅力的である。   ZnO which is an oxide semiconductor has extremely excellent characteristics as a light-emitting element. The exciton binding energy is 60 meV, 2 to 3 times that of GaN, the internal quantum efficiency may be higher than that of GaN, and the refractive index is about 2. It is small compared to the above, and is overwhelmingly advantageous in terms of light extraction. It is also attractive from a commercial basis that the materials themselves are inexpensive.

そこで、上述の実施の形態1〜6は、窒化物半導体であるGaN系ナノコラムについて述べているが、結晶構造上、よく似ている酸化物半導体であるZnOについても、全く同じ構造の半導体発光素子を、同様に作製することができる。詳述すれば、以下のとおりである。   Thus, although the above-described first to sixth embodiments describe a GaN-based nanocolumn that is a nitride semiconductor, a semiconductor light-emitting element having exactly the same structure also applies to ZnO that is an oxide semiconductor that is similar in crystal structure. Can be produced similarly. The details are as follows.

GaNとZnOとは、共に六方晶系の結晶構造を持ち、結晶の格子定数も近い。バンドギャップも、GaNの3.4に対して、ZnOは3.3と、これもまた近い。両方とも直接遷移型半導体である。したがってGaNでナノコラムが形成されるのであれば、ZnOでもナノコラムが形成できる。実際、文献1では、MOCVD法を用いて、サファイア基板上にZnOのナノコラム(同文献ではナノロッドと呼んでいる)を形成している(文献1:W.I.Park, Y.H.Jun, S.W.Jung and Gyu-Chul Yi Appl.Phys.Lett. 964(2003))。   Both GaN and ZnO have a hexagonal crystal structure, and the lattice constants of the crystals are close. The band gap is also close to 3.4 for GaN and 3.3 for ZnO. Both are direct transition semiconductors. Therefore, if a nanocolumn is formed of GaN, a nanocolumn can be formed of ZnO. In fact, in literature 1, ZnO nanocolumns (called nanorods in this literature) are formed on a sapphire substrate using MOCVD (Reference 1: WIPark, YHJun, SWJung and Gyu-Chul). Yi Appl. Phys. Lett. 964 (2003)).

上述のように構成される発光ダイオードD1〜D6を照明装置に用いることで、同じ光束(輝度、照度)を得るにも、小型で低消費電力な照明装置を実現することができる。   By using the light emitting diodes D1 to D6 configured as described above for the lighting device, it is possible to realize a small lighting device with low power consumption even in order to obtain the same luminous flux (luminance, illuminance).

1 n型の導電性基板
2 シリコン酸化膜
3 フォトレジスト
4 レジスト開口部
5 シリコン酸化膜パターン
6 多結晶のGaN層
7,24,24a,24b ナノコラム
8 透明電極
9 n型電極
11,21 n型GaN層
12,22,22b 発光層
13,23,23a p型GaN層
20 SiC基板
25,25a SOG
26 SOG埋込層
27 p型電極
28,37 n型電極
29 蛍光体粉末
30 サファイア基板
31 n型GaN層
DESCRIPTION OF SYMBOLS 1 N-type conductive substrate 2 Silicon oxide film 3 Photoresist 4 Resist opening 5 Silicon oxide film pattern 6 Polycrystalline GaN layer 7, 24, 24a, 24b Nanocolumn 8 Transparent electrode 9 N-type electrode 11, 21 n-type GaN Layers 12, 22, 22b Light-emitting layers 13, 23, 23a p-type GaN layer 20 SiC substrate 25, 25a SOG
26 SOG buried layer 27 p-type electrode 28, 37 n-type electrode 29 phosphor powder 30 sapphire substrate 31 n-type GaN layer

Claims (3)

基板上に、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体を複数有し、前記基板上にn型電極が、前記p型窒化物半導体層またはp型酸化物半導体層上にp型電極が、それぞれ形成されて成る半導体発光素子において、
少なくとも前記p型窒化物半導体層またはp型酸化物半導体層の部分に、隣接する柱状結晶構造体との間の空隙に充填される絶縁体を含み、
前記柱状結晶構造体は、その先端領域が前記発光層を含んだ球状に形成されていることを特徴とする半導体発光素子。
A plurality of columnar crystal structures in which an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer or a p-type oxide semiconductor layer are sequentially stacked on a substrate; In a semiconductor light emitting device, wherein an n-type electrode is formed on the substrate and a p-type electrode is formed on the p-type nitride semiconductor layer or the p-type oxide semiconductor layer, respectively.
Including at least a portion of the p-type nitride semiconductor layer or the p-type oxide semiconductor layer including an insulator filled in a gap between adjacent columnar crystal structures;
The columnar crystal structure has a tip region formed in a spherical shape including the light emitting layer.
前記絶縁体は、蛍光材料を有して成ることを特徴とする請求項記載の半導体発光素子。 The insulator, semiconductor light-emitting device according to claim 1, characterized in that it comprises a fluorescent material. 前記請求項1または2記載の半導体発光素子を用いることを特徴とする照明装置。 Lighting apparatus, which comprises using a semiconductor light emitting device of claim 1 or 2 wherein.
JP2010060438A 2010-03-17 2010-03-17 Semiconductor light emitting element and lighting device using the same Expired - Fee Related JP4586934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060438A JP4586934B2 (en) 2010-03-17 2010-03-17 Semiconductor light emitting element and lighting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060438A JP4586934B2 (en) 2010-03-17 2010-03-17 Semiconductor light emitting element and lighting device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005205243A Division JP4525500B2 (en) 2005-07-14 2005-07-14 Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JP2010135858A true JP2010135858A (en) 2010-06-17
JP4586934B2 JP4586934B2 (en) 2010-11-24

Family

ID=42346737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060438A Expired - Fee Related JP4586934B2 (en) 2010-03-17 2010-03-17 Semiconductor light emitting element and lighting device using the same

Country Status (1)

Country Link
JP (1) JP4586934B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070784A2 (en) * 2010-11-26 2012-05-31 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
WO2012091275A1 (en) * 2010-12-30 2012-07-05 포항공과대학교 산학협력단 Light-emitting diode and method for manufacturing same
WO2014108289A1 (en) * 2013-01-11 2014-07-17 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2016535434A (en) * 2013-09-30 2016-11-10 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ Method for manufacturing an optoelectronic device comprising a light emitting diode
JP2019054127A (en) * 2017-09-15 2019-04-04 セイコーエプソン株式会社 Light-emitting device, method for manufacturing the same, and projector
US11624973B2 (en) 2019-09-30 2023-04-11 Seiko Epson Corporation Light emitting device having columnar parts surrounded by concavo-convex shapes and projector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208993A1 (en) * 2015-06-23 2016-12-29 엘지이노텍 주식회사 Light-emitting element and display device comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212489A (en) * 1990-04-20 1992-08-04 Hitachi Ltd Optical element
JPH06244455A (en) * 1993-02-16 1994-09-02 Nisshin Steel Co Ltd Manufacture of light emitting diode
JP2004363382A (en) * 2003-06-05 2004-12-24 Sharp Corp Oxide semiconductor light-emitting element and manufacturing method thereof
WO2007001098A1 (en) * 2005-06-25 2007-01-04 Seoul Opto Device Co., Ltd. Nanostructure having a nitride-based quantum well and light emitting diode employing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212489A (en) * 1990-04-20 1992-08-04 Hitachi Ltd Optical element
JPH06244455A (en) * 1993-02-16 1994-09-02 Nisshin Steel Co Ltd Manufacture of light emitting diode
JP2004363382A (en) * 2003-06-05 2004-12-24 Sharp Corp Oxide semiconductor light-emitting element and manufacturing method thereof
WO2007001098A1 (en) * 2005-06-25 2007-01-04 Seoul Opto Device Co., Ltd. Nanostructure having a nitride-based quantum well and light emitting diode employing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070784A2 (en) * 2010-11-26 2012-05-31 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
WO2012070784A3 (en) * 2010-11-26 2012-07-19 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
CN103229316A (en) * 2010-11-26 2013-07-31 首尔Opto仪器股份有限公司 Light emitting device and method of fabricating same
CN103229316B (en) * 2010-11-26 2016-08-17 首尔伟傲世有限公司 Light-emitting device and manufacture method thereof
WO2012091275A1 (en) * 2010-12-30 2012-07-05 포항공과대학교 산학협력단 Light-emitting diode and method for manufacturing same
WO2014108289A1 (en) * 2013-01-11 2014-07-17 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
CN104919607A (en) * 2013-01-11 2015-09-16 欧司朗光电半导体有限公司 Optoelectronic semiconductor chip
US9496462B2 (en) 2013-01-11 2016-11-15 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2016535434A (en) * 2013-09-30 2016-11-10 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ Method for manufacturing an optoelectronic device comprising a light emitting diode
JP2019054127A (en) * 2017-09-15 2019-04-04 セイコーエプソン株式会社 Light-emitting device, method for manufacturing the same, and projector
US11158993B2 (en) 2017-09-15 2021-10-26 Seiko Epson Corporation Light-emitting device, method for manufacturing the same, and projector
US11624973B2 (en) 2019-09-30 2023-04-11 Seiko Epson Corporation Light emitting device having columnar parts surrounded by concavo-convex shapes and projector

Also Published As

Publication number Publication date
JP4586934B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP4525500B2 (en) Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element
JP4552828B2 (en) Manufacturing method of semiconductor light emitting device
JP4586934B2 (en) Semiconductor light emitting element and lighting device using the same
JP5475833B2 (en) Vertical light emitting device
JP5807015B2 (en) Method for manufacturing light emitting device
JP4591276B2 (en) Manufacturing method of semiconductor light emitting device
JP5932664B2 (en) Group III nitride semiconductor device and manufacturing method thereof
JP2008182284A (en) Light emitting device using nitride semiconductor and fabrication method of the same
JP4852755B2 (en) Method for manufacturing compound semiconductor device
JP2010098336A (en) GaN SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP5112761B2 (en) COMPOUND SEMICONDUCTOR ELEMENT, LIGHTING DEVICE USING SAME, AND METHOD FOR PRODUCING COMPOUND SEMICONDUCTOR ELEMENT
JP4586935B2 (en) Manufacturing method of semiconductor light emitting device
KR102094471B1 (en) Method for growing nitride semiconductor layer and Nitride semiconductor formed therefrom
JP4483736B2 (en) Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element
KR101737981B1 (en) GAlIUM-NITRIDE LIGHT EMITTING DEVICE OF MICROARRAY TYPE STRUCTURE AND MANUFACTURING THEREOF
CN102280533A (en) Method for preparing gallium nitride substrate material
JP4508021B2 (en) Manufacturing method of semiconductor light emitting device
KR100820836B1 (en) Method for manufacturing light emitting diode
CN102244169A (en) Light-emitting diode and manufacturing method thereof
CN102222745A (en) LED (Light Emitting Diode) and manufacturing method thereof
US20120068196A1 (en) Semiconductor light-emitting device and a method of manufacture thereof
CN102280544A (en) Semiconductor light emitting diode and method for fabricating the same
JP5946333B2 (en) Group III nitride semiconductor device and manufacturing method thereof
KR101241331B1 (en) Nitride based LED and method of manufacturing the same
TWI612686B (en) Light-emitting device and manufacturing metode thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees