WO2012091275A1 - Light-emitting diode and method for manufacturing same - Google Patents

Light-emitting diode and method for manufacturing same Download PDF

Info

Publication number
WO2012091275A1
WO2012091275A1 PCT/KR2011/008243 KR2011008243W WO2012091275A1 WO 2012091275 A1 WO2012091275 A1 WO 2012091275A1 KR 2011008243 W KR2011008243 W KR 2011008243W WO 2012091275 A1 WO2012091275 A1 WO 2012091275A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
semiconductor layer
type nitride
type
phosphor
Prior art date
Application number
PCT/KR2011/008243
Other languages
French (fr)
Korean (ko)
Other versions
WO2012091275A8 (en
Inventor
이종람
송양희
김범준
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2012091275A1 publication Critical patent/WO2012091275A1/en
Publication of WO2012091275A8 publication Critical patent/WO2012091275A8/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material

Definitions

  • the present invention relates to a light emitting diode and a method of manufacturing the same. More specifically, the present invention relates to a light emitting diode having a novel structure and a method of manufacturing the same, which can significantly increase the phosphor coating area of the present invention.
  • the white light source gallium nitride-based light emitting diodes have various forms of energy conversion efficiency, long life, high light directivity, low voltage driving, no preheating time and complicated driving circuit, and strong against shock and vibration. It is expected to be a solid-state lighting source that will replace the existing light sources such as incandescent lamps, fluorescent lamps and mercury lamps within the next five years due to the implementation of high quality lighting systems.
  • a gallium nitride-based light emitting diode In order to use a gallium nitride-based light emitting diode as a white light source to replace a mercury lamp or a fluorescent lamp, it must not only have excellent thermal stability but also be able to emit high power at low power consumption. In order to emit light of high power, researches are being conducted to change the structure of the light emitting diodes.
  • Horizontal gallium nitride-based light emitting diodes which are widely used as white light sources, have the advantages of relatively low manufacturing cost and simple manufacturing process. have.
  • a vertical structure light emitting diode is a device that overcomes the disadvantages of the horizontal structure light emitting diode and is easy to apply a large area high power light emitting diode.
  • Such vertical structured light emitting diodes have various advantages compared to conventional horizontal structured devices.
  • the current spreading resistance is small, so a very uniform current spreading can be obtained, resulting in a lower operating voltage and a large light output, and a smooth heat dissipation through a metal or semiconductor substrate having good thermal conductivity. Long device life and significantly improved high power operation are possible.
  • the maximum applied current is increased by 3-4 or more compared to the horizontal structured light emitting diode, so it is certain that it will be widely used as a white light source for lighting.
  • Nichia chemical company in Japan Philips Lumileds company in USA, Osram company in Germany Leading overseas light emitting diode companies and domestic companies such as Seoul Semiconductor, Samsung Electro-Mechanics and LG Innotek are actively conducting R & D to commercialize gallium nitride-based vertical light emitting diodes and improve their performance. Selling products.
  • the phosphor is applied in the package step after the chip fabrication step.
  • the phosphor absorbs the light emitted from the chip and emits light of different wavelengths, and the light conversion efficiency of the phosphor is very important for making a white light source.
  • the light conversion efficiency of the phosphor and the light conversion efficiency of the phosphor must be improved simultaneously.
  • the phosphor is coated on the outside of the chip, the phosphor coating area is small, and the phosphor is significantly separated from the MQW where light is generated. For this reason, many researches have been conducted on the structure of the light emitting diode for disposing the light emitting MQW and the phosphor in the vicinity of the phosphor coating area, but there is no clear research result.
  • the present invention has been made in an effort to provide a light emitting diode having a novel structure and a method of manufacturing the same, which can dramatically increase the coating area and fluorescent conversion efficiency of a phosphor.
  • the light emitting diode according to an aspect of the present invention for solving this problem is a p-type electrode formed on a conductive substrate, a p-type nitride semiconductor layer formed on the p-type electrode, an active layer formed on the p-type nitride semiconductor layer, An n-type nitride semiconductor layer formed on the active layer and an n-type electrode formed on the n-type nitride semiconductor layer, and an uneven portion is formed in a portion of the n-type nitride semiconductor layer, and the n-type electrode is It is formed on the convex part of the uneven part formed in the n-type nitride semiconductor layer, and the recessed part of the uneven part formed in the said n-type nitride semiconductor layer is filled with fluorescent substance.
  • the light emitting diode is characterized in that it further comprises a transparent electrode formed between the n-type nitride semiconductor layer and the n-type electrode.
  • the transparent electrode is characterized in that it comprises at least one selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X.
  • the thickness of the transparent electrode is characterized in that 10nm or more and 300nm or less.
  • a light emitting diode further comprising a protective film formed between the recessed portion and the phosphor formed in the n-type nitride semiconductor layer.
  • the protective film is characterized in that it comprises at least one selected from the group consisting of SiO X , SiN X , MgO X , AlO X , GaO X.
  • the recessed portion is formed in a portion of the p-type nitride semiconductor layer through the n-type nitride semiconductor layer and the active layer.
  • the light emitting diode there are two or more kinds of phosphors filled in the recessed portions of the uneven portion, and a fret phosphor converting thermal energy into visible light is filled in the recessed region adjacent to the active layer. do.
  • a light emitting diode includes a substrate on which a pattern for scattering and reflecting incident light is formed, formed on the substrate, and having a step with the first region and the first region and exposed to the outside.
  • An n-type nitride semiconductor layer including a second region, an active layer formed on the first region of the n-type nitride semiconductor layer, a p-type nitride semiconductor layer formed on the active layer, and formed on a second region of the n-type nitride semiconductor layer and an p-type electrode formed on the n-type electrode and the p-type nitride semiconductor layer, wherein the uneven portion penetrates through the p-type nitride semiconductor layer and the active layer and is formed in a partial region of the n-type nitride semiconductor layer.
  • the main recess is characterized in that the phosphor is filled.
  • the light emitting diode further comprises a transparent electrode formed between the p-type nitride semiconductor layer and the p-type electrode.
  • the transparent electrode is characterized in that it comprises at least one selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X.
  • the thickness of the transparent electrode is characterized in that 10nm or more and 300nm or less.
  • the light emitting diode in another aspect of the present invention, it characterized in that it further comprises a protective film formed between the recessed portion and the phosphor.
  • the protective film is characterized in that it comprises at least one selected from the group consisting of SiO X , SiN X , MgO X , AlO X , GaO X.
  • the light emitting diode there are at least two kinds of phosphors filled in the recessed portions of the uneven portion, and a fret phosphor converting thermal energy into visible light is filled in the recessed region adjacent to the active layer. do.
  • a light emitting diode manufacturing method in which a p-type electrode, a p-type nitride semiconductor layer, an active layer, and an n-type nitride semiconductor layer are formed on a conductive substrate.
  • a second step of forming an uneven portion a third step of filling a phosphor in the uneven portion of the uneven portion, a fourth step of forming a transparent electrode on the convex portion of the n-type nitride semiconductor layer and the phosphor and on the n-type nitride semiconductor layer and a fifth step of forming an n-type electrode.
  • the recessed portion is formed in a portion of the p-type nitride semiconductor layer through the n-type nitride semiconductor layer and the active layer.
  • a light emitting diode there are two or more kinds of phosphors filled in the recessed portions of the uneven portion, and a fret phosphor that converts thermal energy into visible light is filled in the recessed region adjacent to the active layer. It features.
  • a light emitting diode manufacturing method comprising: forming an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer on a substrate on which a pattern for scattering and reflecting incident light is formed; a second step of mesa etching a portion of the p-type nitride semiconductor layer, the light emitting layer, and the n-type nitride semiconductor layer to expose a portion of the n-type nitride semiconductor layer, and penetrating the n-type nitride semiconductor layer and the active layer
  • a light emitting diode having a new structure and a method of manufacturing the same, which can dramatically increase the coating area and fluorescence conversion efficiency of a phosphor.
  • the present invention is a device technology made by inserting a phosphor into a pillar-type or hole-type light emitting diode fabricated by dry etching after forming a pattern using a photolithography and nanoimprint method capable of a large area process It is immediately applicable to the manufacturing process of light emitting diodes.
  • the light emitting diode has a low fluorescence efficiency because the phosphor is coated on the periphery of the chip after chip formation, and the phosphor coating area is narrow and is far from the MQW generated by the light.
  • the phosphor is coated.
  • FIG. 1 is a view showing a light emitting diode according to a first embodiment of the present invention.
  • FIGS. 2 and 3 are views showing a modification of the first embodiment of the present invention.
  • FIG. 4 is a view showing a light emitting diode according to a second embodiment of the present invention.
  • FIG. 5 is a view showing a modification of the second embodiment of the present invention.
  • 6 to 14 illustrate a method of manufacturing a light emitting diode according to a first embodiment of the present invention.
  • 15 to 20 illustrate a method of manufacturing a light emitting diode according to a second exemplary embodiment of the present invention.
  • FIG. 1 is a view showing a light emitting diode according to a first embodiment of the present invention
  • Figure 2 and Figure 3 is a view showing a modification of the first embodiment of the present invention.
  • the light emitting diode according to the first embodiment of the present invention is a conductive substrate 100, p-type electrode 110, p-type nitride semiconductor layer 120, active layer 130, n-type
  • the nitride semiconductor layer 140, the passivation layer 150, the phosphor 160, the transparent electrode 170, and the n-type electrode 180 are configured to be included.
  • the p-type electrode 110 is formed on the conductive substrate 100.
  • the p-type electrode 110 is also conductive and also functions as a reflective film that reflects light emitted from the active layer 130 described later.
  • the p-type nitride semiconductor layer 120 is formed on the p-type electrode 110.
  • the p-type nitride semiconductor layer 120 may be GaN doped with a p-type.
  • the active layer 130 that is, the multi quantum well (MQW) layer, is formed between the p-type nitride semiconductor layer 120 and the n-type nitride semiconductor layer 140, which will be described later with the p-type electrode 110.
  • the excitons generated by the combination of electrons and holes according to the potential difference applied through the n-type electrode 180 emit light.
  • the n-type nitride semiconductor layer 140 is formed on the active layer 130 and may be n-type doped GaN.
  • Uneven portions are formed in some regions of the n-type nitride semiconductor layer 140.
  • This uneven part is comprised by the uneven part which is the recessed area
  • the recessed portion may be formed to almost penetrate the n-type nitride semiconductor layer 140, that is, the portion directly above the active layer 130.
  • the recessed portion may be formed in a portion of the p-type nitride semiconductor layer 121 through the n-type nitride semiconductor layer 141 and the active layer 131. . That is, the recessed portion may be formed up to the portion directly above the p-type electrode 110.
  • the phosphor 160 is filled in the recessed portion of the uneven portion formed in the n-type nitride semiconductor layer 140. That is, by forming the uneven portion as described above and filling the phosphor 160 in the uneven portion of the uneven portion, the phosphor coating area can be greatly increased.
  • the phosphor filled in the recessed portion may be two or more kinds.
  • the active layer ( The recessed portion A adjacent to 131 is preferably filled with a fret phosphor that converts thermal energy into visible light. According to this configuration, there is an effect that the fluorescence conversion efficiency of the phosphor dramatically increases.
  • the transparent electrode 170 is formed between the n-type nitride semiconductor layer 140 and the n-type electrode 180.
  • the transparent electrode 170 may include one or more selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X.
  • any material having excellent light transmittance and electrical conductivity may be used as a material of the transparent electrode 170.
  • the thickness of the transparent electrode 170 is preferably 10 nm or more and 300 nm or less. If the thickness of the transparent electrode 170 is less than 10 nm, it may not function properly as an electrode for flowing current. If the thickness of the transparent electrode 170 exceeds 300 nm, the light transmittance may be deteriorated.
  • the n-type electrode 180 is formed on the n-type nitride semiconductor layer 140 and may be formed on, for example, the convex portion of the uneven portion to increase light transmittance.
  • the first embodiment of the present invention may further include a passivation layer 150, and the passivation layer 150 is formed between the recessed portions of the uneven portions formed in the n-type nitride semiconductor layer 140 and the phosphor 160. , to protect the n-type nitride semiconductor layer 140.
  • the passivation layer 150 may include one or more selected from the group consisting of SiO X , SiN X , MgO X , AlO X , GaO X.
  • FIG. 4 is a view showing a light emitting diode according to a second embodiment of the present invention
  • Figure 5 is a view showing a modification of a second embodiment of the present invention.
  • the light emitting diode according to the second embodiment of the present invention is a substrate 200, n-type nitride semiconductor layer 210, active layer 220, p-type nitride semiconductor layer 230, transparent
  • the electrode 260 may be configured to include an n-type electrode 280 and a p-type electrode 270.
  • the substrate 200 is formed with a pattern for scattering and reflecting light incident from the active layer 220 to be described later.
  • the substrate 200 may be made of sapphire (Al 2 O 3).
  • the n-type nitride semiconductor layer 210 is formed on the substrate 200 and includes a first region and a second region.
  • the first region is a region where the active layer 220 to be described later is formed.
  • the second region is a region having a step with the first region and exposed to the outside.
  • the active layer 220 is formed on the first region of the n-type nitride semiconductor layer 210.
  • the p-type nitride semiconductor layer 230 is formed on the active layer 220.
  • the transparent electrode 260 is formed between the p-type nitride semiconductor layer 230 and the p-type electrode 270 described later.
  • the transparent electrode 260 may include one or more selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X.
  • any material having excellent light transmittance and electrical conductivity may be used as a material of the transparent electrode 260.
  • the thickness of the transparent electrode 260 is 10 nm or more and 300 nm or less. If the thickness of the transparent electrode 260 is less than 10 nm, it does not function properly as an electrode for flowing current. If the thickness of the transparent electrode 260 exceeds 300 nm, the light transmittance is reduced.
  • the n-type electrode 280 is formed on the second region of the n-type nitride semiconductor layer 210, and the p-type electrode 270 is formed on the p-type nitride semiconductor layer 230 via the transparent electrode 260. Formed.
  • the uneven portion which is a feature of the second embodiment of the present invention, extends through the p-type nitride semiconductor layer 230 and the active layer 220 to a part of the n-type nitride semiconductor layer 210, and the recessed portion has a phosphor ( 250) is filled.
  • the phosphors 251 there may be two or more kinds of phosphors 251 filled in recesses of the uneven portion, and a fret for converting thermal energy into visible light in the recessed region B adjacent to the active layer 220. It is preferable that the phosphor is filled. According to this configuration, there is an effect that the fluorescence conversion efficiency of the phosphor dramatically increases.
  • the second embodiment of the present invention may further include a passivation layer 240, and the passivation layer 240 is formed between the recessed portion and the phosphor 250 formed in the n-type nitride semiconductor layer 210. , to protect the n-type nitride semiconductor layer 210.
  • the passivation layer 240 may include one or more selected from the group consisting of SiO X , SiN X , MgO X , AlO X , GaO X.
  • 6 to 14 illustrate a method of manufacturing a light emitting diode according to a first embodiment of the present invention.
  • a light emitting diode manufacturing method includes a p-type electrode 110, a p-type nitride semiconductor layer 120, and an active layer 130 on a conductive substrate 100.
  • a first step of forming the n-type nitride semiconductor layer 140 a second step of forming an uneven portion in a portion of the n-type nitride semiconductor layer 140, a third step of filling the phosphor 160 in the uneven portion of the uneven portion, a fourth step of forming the transparent electrode 170 on the convex portion of the n-type nitride semiconductor layer 140 and the phosphor 160 and a fifth step of forming the n-type electrode 180 on the n-type nitride semiconductor layer 140. It consists of steps.
  • the p-type electrode 110, the p-type nitride semiconductor layer 120, the active layer 130, and the n-type nitride semiconductor layer 140 are formed on the conductive substrate 100.
  • the process is performed.
  • the dry etching protective film M is used as a mask to form n-type.
  • a process of forming an uneven portion in a portion of the nitride semiconductor layer 140 is performed. This uneven portion is composed of a recessed area and a recessed area.
  • the concave portion of the concave-convex portion may be formed to almost penetrate the n-type nitride semiconductor layer 140, that is, to the portion directly above the active layer 130.
  • a process of filling the phosphor 160 with recesses of the uneven portion is performed.
  • a protective film 150 for protecting the n-type nitride semiconductor layer 140 is formed on the recessed portion, and then the phosphor 160 is filled.
  • the passivation layer 150 may include one or more selected from the group consisting of SiO X , SiN X , MgO X , AlO X , and GaO X.
  • the n-type electrode 180 may be formed directly on the n-type nitride semiconductor layer 140, but as shown in FIG. 12, it is preferable to first form the transparent electrode 170.
  • a process of forming the transparent electrode 170 on the convex portion and the phosphor of the n-type nitride semiconductor layer 140 is performed.
  • the transparent electrode 170 may include one or more selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X.
  • any material having excellent light transmittance and electrical conductivity may be used as a material of the transparent electrode 170.
  • the thickness of the transparent electrode 170 is preferably 10 nm or more and 300 nm or less. If the thickness of the transparent electrode 170 is less than 10 nm, it may not function properly as an electrode for flowing current. If the thickness of the transparent electrode 170 exceeds 300 nm, the light transmittance may be deteriorated.
  • a process of forming the n-type electrode 180 on the n-type nitride semiconductor layer 140 via the transparent electrode 170 is performed.
  • the n-type electrode 180 may be formed on the convex portion of the uneven portion to increase light transmittance.
  • the recessed portion may be formed in a portion of the p-type nitride semiconductor layer 121 through the n-type nitride semiconductor layer 141 and the active layer 131. That is, the recessed portion may be formed up to the portion directly above the p-type electrode 110.
  • the phosphor 160 is filled in the recessed portion of the uneven portion formed in the n-type nitride semiconductor layer 140. That is, by forming the uneven portion as described above and filling the phosphor 160 in the uneven portion of the uneven portion, the phosphor coating area can be greatly increased.
  • the phosphor filled in the recessed portion may be two or more kinds.
  • the active layer ( The recessed portion adjacent to 131 is preferably filled with a fret phosphor that converts thermal energy into visible light. According to this configuration, there is an effect that the fluorescence conversion efficiency of the phosphor dramatically increases.
  • 15 to 20 illustrate a method of manufacturing a light emitting diode according to a second exemplary embodiment of the present invention.
  • an n-type nitride semiconductor layer 210 is formed on a substrate 200 on which a pattern for scattering and reflecting incident light is formed.
  • a first step of forming the light emitting layer and the p-type nitride semiconductor layer 230, mesa-etched a portion of the p-type nitride semiconductor layer 230, the light emitting layer and the n-type nitride semiconductor layer 210 to n-type nitride semiconductor layer ( The second step of exposing a portion of the 210, the third step of forming the uneven portion through the p-type nitride semiconductor layer 230 and the active layer 220 to the partial region of the n-type nitride semiconductor layer 210, recessed portion Filling the phosphor in the fourth step, forming the transparent electrode 260 on the convex portion of the p-type nitride semiconductor layer 230
  • an n-type nitride semiconductor layer 210, a light emitting layer, and a p-type nitride semiconductor layer 230 are formed on a substrate 200 on which a pattern for scattering and reflecting incident light is formed. ) Is carried out.
  • a portion of the p-type nitride semiconductor layer 230, the active layer 220, and the n-type nitride semiconductor layer 210 may be mesa-etched to form the n-type nitride semiconductor layer 210.
  • the process of exposing a part to the outside is performed.
  • a process of forming the uneven portion through the p-type nitride semiconductor layer 230 and the active layer 220 to a part of the n-type nitride semiconductor layer 210 is performed.
  • This uneven part consists of a uneven part and an uneven part.
  • the recess is the recessed area, and the convex part is the protruding area.
  • the recessed portion may be formed up to a portion directly above the p-type electrode 270.
  • the phosphor is filled in the recessed portion of the uneven portion. That is, by forming the uneven portion as described above, and filling the phosphor in the uneven portion of the uneven portion, the phosphor coating area can be greatly increased.
  • the phosphor filled in the recessed portion may be two or more kinds, and the recessed portion is formed in the partial region of the p-type nitride semiconductor layer 230 through the n-type nitride semiconductor layer 210 and the active layer 220 In the recess region adjacent to the active layer 220, a fret phosphor for converting thermal energy into visible light is preferably filled. According to this configuration, there is an effect that the fluorescence conversion efficiency of the phosphor dramatically increases.
  • a process of forming the transparent electrode 260 on the convex portion and the phosphor of the p-type nitride semiconductor layer 230 is performed.
  • the p-type electrode 270 is formed on the transparent electrode 260, and the n-type electrode 280 is formed on the exposed region of the n-type nitride semiconductor layer 210. The process is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

The present invention relates to a light-emitting diode and a method for manufacturing same. The light-emitting diode of the present invention comprises: a p-type electrode formed on a conductive substrate; a p-type nitride semiconductor layer formed on the p-type electrode; an active layer formed on the p-type nitride semiconductor; an n-type nitride semiconductor layer formed on the active layer; and an n-type electrode formed on the n-type nitride semiconductor layer, wherein the n-type nitride semiconductor layer has formed on some areas thereof a concavo-convex portion, the n-type electrode is formed on the convex portion of the concavo-convex portion formed on the n-type nitride semiconductor layer, and the concave portion of the concavo-convex portion formed on the n-type nitride semiconductor layer is filled with a fluorescent body. The present invention provides a light-emitting diode having a novel structure that can significantly increase the coating area of the fluorescent body and the fluorescence conversion efficiency, and a method for manufacturing same.

Description

발광다이오드 및 그 제조방법Light emitting diode and manufacturing method
본 발명은 발광다이오드 및 그 제조방법에 관한 것이다. 보다 구체적으로, 본 발명의 형광체 도포 면적을 획기적으로 증가시킬 수 있는 새로운 구조의 발광다이오드 및 그 제조방법에 관한 것이다.The present invention relates to a light emitting diode and a method of manufacturing the same. More specifically, the present invention relates to a light emitting diode having a novel structure and a method of manufacturing the same, which can significantly increase the phosphor coating area of the present invention.
백색광원 질화갈륨계 발광다이오드는 에너지 변환 효율이 높고, 수명이 길며, 빛의 지향성이 높고, 저전압 구동이 가능하며, 예열 시간과 복잡한 구동회로가 필요하지 않고, 충격 및 진동에 강하기 때문에 다양한 형태의 고품격 조명 시스템의 구현이 가능해 향후 5년 이내에 백열등, 형광등, 수은등과 같은 기존의 광원을 대체할 고체 조명(solid-state lighting) 광원으로 기대되고 있다. 질화갈륨계 발광다이오드가 기존의 수은등이나 형광등을 대체하여 백색광원으로서 쓰이기 위해서는 열적 안정성이 뛰어나야 할 뿐만 아니라 낮은 소비 전력에서도 고출력 빛을 발할 수 있어야 한다. 이러럼 고출력의 빛을 발하기 위해서 발광다이오드의 구조를 바꾸는 연구가 진행되고 있다. 현재 백색광원으로 널리 이용되고 있는 수평구조의 질화물갈륨계 발광다이오드는 상대적으로 제조단가가 작고 제작 공정이 간단하다는 장점이 있으나, 인가전류가 높고 면적이 큰 고출력의 광원으로 쓰이기에는 부적절하다는 원천적 결함이 있다. 이러한 수평구조 발광다이오드의 단점을 극복하고 대면적의 고출력 발광다이오드 적용이 용이한 소자가 수직구조 발광다이오드이다. 이러한 수직구조 발광다이오드는 기존의 수평구조 소자와 비교하여 여러 가지 장점을 가지고 있다. 수직구조 발광다이오드에서는 전류 확산 저항이 작아 매우 균일한 전류 확산을 얻을 수 있어 보다 낮은 작동 전압과 큰 광출력을 얻을 수 있으며, 열전도성이 좋은 금속 또는 반도체 기판을 통해 원활한 열방출이 가능하기 때문에 보다 긴 소자 수명과 월등히 향상된 고출력 작동이 가능하다. 이러한 수직구조 발광다이오드에서는 최대 인가전류가 수평구조 발광다이오드에 비해 3-4 이상 증가되므로 조명용 백색광원으로 널리 이용될 것이 확실시 되어, 현재 일본의 Nichia chemical사, 미국의 Philips Lumileds사, 독일의 Osram사와 같은 국외 발광다이오드 선두 기업들과 서울반도체, 삼성전기, LG 이노텍과 같은 국내 기업들이 질화물갈륨계 수직 발광다이오드의 상용화 및 성능향상을 위해 활발한 연구 개발을 진행하고 있고, Osram과 같은 일부 기업에서는 이미 관련 제품을 판매하고 있는 실정이다.The white light source gallium nitride-based light emitting diodes have various forms of energy conversion efficiency, long life, high light directivity, low voltage driving, no preheating time and complicated driving circuit, and strong against shock and vibration. It is expected to be a solid-state lighting source that will replace the existing light sources such as incandescent lamps, fluorescent lamps and mercury lamps within the next five years due to the implementation of high quality lighting systems. In order to use a gallium nitride-based light emitting diode as a white light source to replace a mercury lamp or a fluorescent lamp, it must not only have excellent thermal stability but also be able to emit high power at low power consumption. In order to emit light of high power, researches are being conducted to change the structure of the light emitting diodes. Horizontal gallium nitride-based light emitting diodes, which are widely used as white light sources, have the advantages of relatively low manufacturing cost and simple manufacturing process. have. A vertical structure light emitting diode is a device that overcomes the disadvantages of the horizontal structure light emitting diode and is easy to apply a large area high power light emitting diode. Such vertical structured light emitting diodes have various advantages compared to conventional horizontal structured devices. In the vertical light emitting diode, the current spreading resistance is small, so a very uniform current spreading can be obtained, resulting in a lower operating voltage and a large light output, and a smooth heat dissipation through a metal or semiconductor substrate having good thermal conductivity. Long device life and significantly improved high power operation are possible. In this vertical structured light emitting diode, the maximum applied current is increased by 3-4 or more compared to the horizontal structured light emitting diode, so it is certain that it will be widely used as a white light source for lighting. Currently, Nichia chemical company in Japan, Philips Lumileds company in USA, Osram company in Germany Leading overseas light emitting diode companies and domestic companies such as Seoul Semiconductor, Samsung Electro-Mechanics and LG Innotek are actively conducting R & D to commercialize gallium nitride-based vertical light emitting diodes and improve their performance. Selling products.
이러한 발광다이오드의 구조를 바꾸는 연구뿐만 아니라 백색광원 발광다이오드를 위해 형광효율을 증가시키기 위한 연구도 진행되고 있다. 발광다이오드를 백색광원으로 사용하기 위해서는 칩 제작 단계 이후 패키지 단계에서 형광체 도포를 거치게 된다. 이때 형광체는 칩에서 나온 빛을 흡수하여 다른 파장의 빛을 발산하게 되는데 이때 형광체의 광변환효율이 백색광원을 만드는데 있어 매우 중요하다. 고효율의 백색광원을 만들기 위해서는 칩의 광변환효율과 함께 형광체의 광변환효율이 동시에 향상되어야 한다. 하지만 형광체는 칩의 외부에 도포됨에 따라 형광체 도포 면적이 작고, 빛이 발생하는 MQW과는 상당히 거리를 가지게 되어 형광체 변환효율이 낮은 단점을 가지고 있다. 이러한 이유로 형광체 도포 면적을 넓히면서 빛의 발생하는 MQW과 형광체를 가까운 자리에 배치하기 위한 발광다이오드 구조에 대한 연구가 많이 진행되고 있으나 뚜렷한 연구 성과가 없는 실정이다.In addition to researches to change the structure of the light emitting diodes, researches for increasing the fluorescence efficiency for white light emitting light emitting diodes are being conducted. In order to use the light emitting diode as a white light source, the phosphor is applied in the package step after the chip fabrication step. In this case, the phosphor absorbs the light emitted from the chip and emits light of different wavelengths, and the light conversion efficiency of the phosphor is very important for making a white light source. In order to make a highly efficient white light source, the light conversion efficiency of the phosphor and the light conversion efficiency of the phosphor must be improved simultaneously. However, since the phosphor is coated on the outside of the chip, the phosphor coating area is small, and the phosphor is significantly separated from the MQW where light is generated. For this reason, many researches have been conducted on the structure of the light emitting diode for disposing the light emitting MQW and the phosphor in the vicinity of the phosphor coating area, but there is no clear research result.
본 발명은 형광체의 도포 면적 및 형광변환효율을 획기적으로 증가시킬 수 있는 새로운 구조의 발광다이오드 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.The present invention has been made in an effort to provide a light emitting diode having a novel structure and a method of manufacturing the same, which can dramatically increase the coating area and fluorescent conversion efficiency of a phosphor.
이러한 과제를 해결하기 위한 본 발명의 일 측면에 따른 발광다이오드는 도전성 기판 상에 형성된 p형 전극, 상기 p형 전극 상에 형성된 p형 질화물 반도체층, 상기 p형 질화물 반도체층 상에 형성된 활성층, 상기 활성층 상에 형성된 n형 질화물 반도체층 및 상기 n형 질화물 반도체층 상에 형성된 n형 전극을 포함하여 구성되고, 상기 n형 질화물 반도체층의 일부 영역에 요철부가 형성되어 있고, 상기 n형 전극은 상기 n형 질화물 반도체층에 형성되어 있는 요철부의 철부 상에 형성되어 있고, 상기 n형 질화물 반도체층에 형성되어 있는 요철부의 요부에는 형광체가 채워진 것을 특징으로 한다.The light emitting diode according to an aspect of the present invention for solving this problem is a p-type electrode formed on a conductive substrate, a p-type nitride semiconductor layer formed on the p-type electrode, an active layer formed on the p-type nitride semiconductor layer, An n-type nitride semiconductor layer formed on the active layer and an n-type electrode formed on the n-type nitride semiconductor layer, and an uneven portion is formed in a portion of the n-type nitride semiconductor layer, and the n-type electrode is It is formed on the convex part of the uneven part formed in the n-type nitride semiconductor layer, and the recessed part of the uneven part formed in the said n-type nitride semiconductor layer is filled with fluorescent substance.
본 발명의 일 측면에 따른 발광다이오드에 있어서, 상기 n형 질화물 반도체층과 상기 n형 전극 사이에 형성된 투명전극을 더 포함하는 것을 특징으로 한다.In the light emitting diode according to the aspect of the present invention, it is characterized in that it further comprises a transparent electrode formed between the n-type nitride semiconductor layer and the n-type electrode.
본 발명의 일 측면에 따른 발광다이오드에 있어서, 상기 투명전극은 ITOX, ZnOX, CaOX, WOX, TiOX로 이루어진 군중에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.In the light emitting diode according to an aspect of the present invention, the transparent electrode is characterized in that it comprises at least one selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X.
본 발명의 일 측면에 따른 발광다이오드에 있어서, 상기 투명전극의 두께는 10nm 이상 300nm 이하인 것을 특징으로 한다.In the light emitting diode according to an aspect of the present invention, the thickness of the transparent electrode is characterized in that 10nm or more and 300nm or less.
본 발명의 일 측면에 따른 발광다이오드에 있어서, 상기 n형 질화물 반도체층에 형성되어 있는 요철부의 요부와 상기 형광체 사이에 형성된 보호막을 더 포함하는 것을 특징으로 한다.A light emitting diode according to an aspect of the present invention, further comprising a protective film formed between the recessed portion and the phosphor formed in the n-type nitride semiconductor layer.
본 발명의 일 측면에 따른 발광다이오드에 있어서, 상기 보호막은 SiOX, SiNX, MgOX, AlOX, GaOX로 이루어진 군중에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.In the light emitting diode according to an aspect of the present invention, the protective film is characterized in that it comprises at least one selected from the group consisting of SiO X , SiN X , MgO X , AlO X , GaO X.
본 발명의 일 측면에 따른 발광다이오드에 있어서, 상기 요철부의 요부는 상기 n형 질화물 반도체층과 상기 활성층을 관통하여 상기 p형 질화물 반도체층의 일부 영역에까지 형성되어 있는 것을 특징으로 한다.In the light emitting diode according to the aspect of the present invention, the recessed portion is formed in a portion of the p-type nitride semiconductor layer through the n-type nitride semiconductor layer and the active layer.
본 발명의 일 측면에 따른 발광다이오드에 있어서, 상기 요철부의 요부에 채워진 형광체는 2종 이상이고, 상기 활성층에 인접하는 요부 영역에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워진 것을 특징으로 한다.In the light emitting diode according to an aspect of the present invention, there are two or more kinds of phosphors filled in the recessed portions of the uneven portion, and a fret phosphor converting thermal energy into visible light is filled in the recessed region adjacent to the active layer. do.
본 발명의 다른 측면에 따른 발광다이오드는 입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판, 상기 기판 상에 형성되어 있으며 제1 영역 및 상기 제1 영역과 단차를 가지며 외부로 노출되어 있는 제2 영역으로 이루어진 n형 질화물 반도체층, 상기 n형 질화물 반도체층의 제1 영역 상에 형성된 활성층, 상기 활성층 상에 형성된 p형 질화물 반도체층, 상기 n형 질화물 반도체층의 제2 영역 상에 형성된 n형 전극 및 상기 p형 질화물 반도체층 상에 형성된 p형 전극을 포함하고, 요철부가 상기 p형 질화물 반도체층과 상기 활성층을 관통하여 상기 n형 질화물 반도체층의 일부 영역에까지 형성되어 있고, 상기 요철부의 요부에는 형광체가 채워진 것을 특징으로 한다.According to another aspect of the present invention, a light emitting diode includes a substrate on which a pattern for scattering and reflecting incident light is formed, formed on the substrate, and having a step with the first region and the first region and exposed to the outside. An n-type nitride semiconductor layer including a second region, an active layer formed on the first region of the n-type nitride semiconductor layer, a p-type nitride semiconductor layer formed on the active layer, and formed on a second region of the n-type nitride semiconductor layer and an p-type electrode formed on the n-type electrode and the p-type nitride semiconductor layer, wherein the uneven portion penetrates through the p-type nitride semiconductor layer and the active layer and is formed in a partial region of the n-type nitride semiconductor layer. The main recess is characterized in that the phosphor is filled.
본 발명의 다른 측면에 따른 발광다이오드에 있어서, 상기 p형 질화물 반도체층과 상기 p형 전극 사이에 형성된 투명전극을 더 포함하는 것을 특징으로 한다.In the light emitting diode according to another aspect of the present invention, the light emitting diode further comprises a transparent electrode formed between the p-type nitride semiconductor layer and the p-type electrode.
본 발명의 다른 측면에 따른 발광다이오드에 있어서, 상기 투명전극은 ITOX, ZnOX, CaOX, WOX, TiOX로 이루어진 군중에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.In the light emitting diode according to another aspect of the present invention, the transparent electrode is characterized in that it comprises at least one selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X.
본 발명의 다른 측면에 따른 발광다이오드에 있어서, 상기 투명전극의 두께는 10nm 이상 300nm 이하인 것을 특징으로 한다.In the light emitting diode according to another aspect of the present invention, the thickness of the transparent electrode is characterized in that 10nm or more and 300nm or less.
본 발명의 다른 측면에 따른 발광다이오드에 있어서, 상기 요철부의 요부와 상기 형광체 사이에 형성된 보호막을 더 포함하는 것을 특징으로 한다.In the light emitting diode according to another aspect of the present invention, it characterized in that it further comprises a protective film formed between the recessed portion and the phosphor.
본 발명의 다른 측면에 따른 발광다이오드에 있어서, 상기 보호막은 SiOX, SiNX, MgOX, AlOX, GaOX로 이루어진 군중에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.In the light emitting diode according to another aspect of the invention, the protective film is characterized in that it comprises at least one selected from the group consisting of SiO X , SiN X , MgO X , AlO X , GaO X.
본 발명의 다른 측면에 따른 발광다이오드에 있어서, 상기 요철부의 요부에 채워진 형광체는 2종 이상이고, 상기 활성층에 인접하는 요부 영역에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워진 것을 특징으로 한다.In the light emitting diode according to another aspect of the present invention, there are at least two kinds of phosphors filled in the recessed portions of the uneven portion, and a fret phosphor converting thermal energy into visible light is filled in the recessed region adjacent to the active layer. do.
본 발명의 일 측면에 따른 발광다이오드 제조방법은 도전성 기판 상에 p형 전극, p형 질화물 반도체층, 활성층, n형 질화물 반도체층을 형성하는 제1 단계, 상기 n형 질화물 반도체층의 일부 영역에 요철부를 형성하는 제2 단계, 상기 요철부의 요부에 형광체를 채우는 제3 단계, 상기 n형 질화물 반도체층의 철부와 상기 형광체 상에 투명전극을 형성하는 제4 단계 및 상기 n형 질화물 반도체층 상에 n형 전극을 형성하는 제5 단계를 포함하여 구성된다.According to an aspect of the present invention, there is provided a light emitting diode manufacturing method in which a p-type electrode, a p-type nitride semiconductor layer, an active layer, and an n-type nitride semiconductor layer are formed on a conductive substrate. A second step of forming an uneven portion, a third step of filling a phosphor in the uneven portion of the uneven portion, a fourth step of forming a transparent electrode on the convex portion of the n-type nitride semiconductor layer and the phosphor and on the n-type nitride semiconductor layer and a fifth step of forming an n-type electrode.
본 발명의 일 측면에 따른 발광다이오드 제조방법에 있어서, 상기 요철부의 요부는 상기 n형 질화물 반도체층과 상기 활성층을 관통하여 상기 p형 질화물 반도체층의 일부 영역에까지 형성되어 있는 것을 특징으로 한다.In the method of manufacturing a light emitting diode according to an aspect of the present invention, the recessed portion is formed in a portion of the p-type nitride semiconductor layer through the n-type nitride semiconductor layer and the active layer.
본 발명의 일 측면에 따른 발광다이오드 제조방법에 있어서, 상기 요철부의 요부에 채워진 형광체는 2종 이상이고, 상기 활성층에 인접하는 요부 영역에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워진 것을 특징으로 한다.In the method of manufacturing a light emitting diode according to an aspect of the present invention, there are two or more kinds of phosphors filled in the recessed portions of the uneven portion, and a fret phosphor that converts thermal energy into visible light is filled in the recessed region adjacent to the active layer. It features.
본 발명의 다른 측면에 따른 발광다이오드 제조방법은 입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판 상에 n형 질화물 반도체층, 활성층 및 p형 질화물 반도체층을 형성하는 제1 단계, 상기 p형 질화물 반도체층, 상기 발광층 및 상기 n형 질화물 반도체층의 일부를 메사 식각하여 상기 n형 질화물 반도체층의 일부를 노출시키는 제2 단계, 상기 p형 질화물 반도체층과 상기 활성층을 관통하여 상기 n형 질화물 반도체층의 일부 영역에까지 요철부를 형성하는 제3 단계, 상기 요철부의 요부에 형광체를 채우는 제4 단계, 상기 p형 질화물 반도체층의 철부와 상기 형광체 상에 투명전극을 형성하는 제5 단계 및 상기 투명전극상에 p형 전극을 형성하고 상기 n형 질화물 반도체층의 노출 영역 상에 n형 전극을 형성하는 제6 단계를 포함하여 구성된다.According to another aspect of the present invention, there is provided a light emitting diode manufacturing method comprising: forming an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer on a substrate on which a pattern for scattering and reflecting incident light is formed; a second step of mesa etching a portion of the p-type nitride semiconductor layer, the light emitting layer, and the n-type nitride semiconductor layer to expose a portion of the n-type nitride semiconductor layer, and penetrating the n-type nitride semiconductor layer and the active layer A third step of forming an uneven portion up to a portion of the type nitride semiconductor layer, a fourth step of filling a phosphor in the uneven portion of the uneven portion, a fifth step of forming a transparent electrode on the convex portion of the p-type nitride semiconductor layer and the phosphor; Forming a p-type electrode on the transparent electrode and forming an n-type electrode on an exposed region of the n-type nitride semiconductor layer; It is sex.
본 발명의 다른 측면에 따른 발광다이오드 제조방법에 있어서, 상기 요철부의 요부에 채워진 형광체는 2종 이상이고, 상기 활성층에 인접하는 요부 영역에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워진 것을 특징으로 한다.In the method of manufacturing a light emitting diode according to another aspect of the present invention, there are two or more kinds of phosphors filled in the recessed portions of the uneven portion, and filled with a fret phosphor converting thermal energy into visible light in the recessed region adjacent to the active layer. It features.
본 발명에 따르면, 형광체의 도포 면적 및 형광변환효율을 획기적으로 증가시킬 수 있는 새로운 구조의 발광다이오드 및 그 제조방법이 제공되는 효과가 있다.According to the present invention, it is possible to provide a light emitting diode having a new structure and a method of manufacturing the same, which can dramatically increase the coating area and fluorescence conversion efficiency of a phosphor.
보다 구체적으로, 본 발명 기술은 대면적 공정이 가능한 포토 리소그래피 및 나노 임프린트 방법을 이용하여 패턴을 형성 후 건식 에칭을 이용하여 제작한 필라형 또는 홀형태의 발광다이오드에 형광체를 삽입하여 만드는 소자 기술로서 발광다이오드의 제조 공정에 즉시 적용 가능하다. 일반적인 발광다이오드는 칩 형성 후, 칩의 주변에 형광체를 도포하여 형광체 도포 면적이 좁고 빛이 생성하는 MQW과 멀리 떨어져 있는 이유로 낮은 형광효율을 가지고 있는 반면, 본 발명에서 사용되는 소자구조에서는 형광체의 도포 면적을 증가시킬 뿐 아니라 빛이 생성하는 MQW과 가까운 위치에 형광체를 삽입함으로 형광변환효율을 획기적으로 증가시켜, 백색광원 질화갈륨계 발광다이오드를 이용한 고체 조명 시대의 도래를 보다 앞당길 수 있는 에너지 절약 친환경 기술이다.More specifically, the present invention is a device technology made by inserting a phosphor into a pillar-type or hole-type light emitting diode fabricated by dry etching after forming a pattern using a photolithography and nanoimprint method capable of a large area process It is immediately applicable to the manufacturing process of light emitting diodes. In general, the light emitting diode has a low fluorescence efficiency because the phosphor is coated on the periphery of the chip after chip formation, and the phosphor coating area is narrow and is far from the MQW generated by the light. However, in the device structure used in the present invention, the phosphor is coated. Not only does it increase the area, it also dramatically increases the fluorescence conversion efficiency by inserting the phosphor near the MQW generated by the light, and is an energy-saving environment that can accelerate the advent of the solid-state lighting era using the white light source gallium nitride-based light emitting diode. Technology.
도 1은 본 발명의 제1 실시 예에 따른 발광다이오드를 나타낸 도면이다.1 is a view showing a light emitting diode according to a first embodiment of the present invention.
도 2와 도 3은 본 발명의 제1 실시 예의 변형 예를 나타낸 도면이다.2 and 3 are views showing a modification of the first embodiment of the present invention.
도 4는 본 발명의 제2 실시 예에 따른 발광다이오드를 나타낸 도면이다.4 is a view showing a light emitting diode according to a second embodiment of the present invention.
도 5는 본 발명의 제2 실시 예의 변형 예를 나타낸 도면이다.5 is a view showing a modification of the second embodiment of the present invention.
도 6 내지 도 14는 본 발명의 제1 실시 예에 따른 발광다이오드 제조방법을 나타낸 도면이다.6 to 14 illustrate a method of manufacturing a light emitting diode according to a first embodiment of the present invention.
도 15 내지 도 20은 본 발명의 제2 실시 예에 따른 발광다이오드 제조방법을 나타낸 도면이다.15 to 20 illustrate a method of manufacturing a light emitting diode according to a second exemplary embodiment of the present invention.
도 1은 본 발명의 제1 실시 예에 따른 발광다이오드를 나타낸 도면이고, 도 2와 도 3은 본 발명의 제1 실시 예의 변형 예를 나타낸 도면이다.1 is a view showing a light emitting diode according to a first embodiment of the present invention, Figure 2 and Figure 3 is a view showing a modification of the first embodiment of the present invention.
도 1 내지 도 3을 참조하면, 본 발명의 제1 실시 예에 따른 발광다이오드는 도전성 기판(100), p형 전극(110), p형 질화물 반도체층(120), 활성층(130), n형 질화물 반도체층(140), 보호막(150), 형광체(160), 투명전극(170) 및 n형 전극(180)을 포함하여 구성된다.1 to 3, the light emitting diode according to the first embodiment of the present invention is a conductive substrate 100, p-type electrode 110, p-type nitride semiconductor layer 120, active layer 130, n-type The nitride semiconductor layer 140, the passivation layer 150, the phosphor 160, the transparent electrode 170, and the n-type electrode 180 are configured to be included.
도전성 기판(100) 상에는 p형 전극(110)이 형성되어 있다. 이 p형 전극(110)도 도전성을 띠며 후술하는 활성층(130)으로부터 발산되는 광을 반사하는 반사막의 기능도 수행한다.The p-type electrode 110 is formed on the conductive substrate 100. The p-type electrode 110 is also conductive and also functions as a reflective film that reflects light emitted from the active layer 130 described later.
p형 질화물 반도체층(120)은 p형 전극(110) 상에 형성되어 있다. 이 p형 질화물 반도체층(120)은 p형으로 도핑된 GaN일 수 있다.The p-type nitride semiconductor layer 120 is formed on the p-type electrode 110. The p-type nitride semiconductor layer 120 may be GaN doped with a p-type.
활성층(130) 즉, 다중 양자 우물(Multi Quantum Well, MQW)층은 p형 질화물 반도체층(120)과 n형 질화물 반도체층(140) 사이에 형성되어 있으며, p형 전극(110)과 후술하는 n형 전극(180)을 통해 인가되는 전위차에 따른 전자와 정공의 결합에 의해 생성된 엑시톤(exciton)이 바닥상태로 천이하는 과정에서 광을 방출하는 기능을 수행한다.The active layer 130, that is, the multi quantum well (MQW) layer, is formed between the p-type nitride semiconductor layer 120 and the n-type nitride semiconductor layer 140, which will be described later with the p-type electrode 110. The excitons generated by the combination of electrons and holes according to the potential difference applied through the n-type electrode 180 emit light.
n형 질화물 반도체층(140)은 활성층(130) 상에 형성되어 있으며, n형으로 도핑된 GaN일 수 있다.The n-type nitride semiconductor layer 140 is formed on the active layer 130 and may be n-type doped GaN.
이 n형 질화물 반도체층(140)의 일부 영역에는 요철부가 형성되어 있다. 이 요철부는 함몰되어 있는 영역인 요부와 돌출되어 있는 영역인 철부로 구성된다.Uneven portions are formed in some regions of the n-type nitride semiconductor layer 140. This uneven part is comprised by the uneven part which is the recessed area | region, and the convex part which is the protruding area | region.
하나의 예로, 요철부의 요부는 n형 질화물 반도체층(140)을 거의 관통할 정도 즉, 활성층(130)의 바로 위 부분까지 형성될 수 있다.As an example, the recessed portion may be formed to almost penetrate the n-type nitride semiconductor layer 140, that is, the portion directly above the active layer 130.
다른 예로, 도 2와 도 3에 도시된 바와 같이, 요철부의 요부는 n형 질화물 반도체층(141)과 활성층(131)을 관통하여 p형 질화물 반도체층(121)의 일부 영역에까지 형성될 수 있다. 즉, 요부는 p형 전극(110)의 바로 위 부분까지 형성될 수 있다.As another example, as shown in FIGS. 2 and 3, the recessed portion may be formed in a portion of the p-type nitride semiconductor layer 121 through the n-type nitride semiconductor layer 141 and the active layer 131. . That is, the recessed portion may be formed up to the portion directly above the p-type electrode 110.
형광체(160)는 이러한 n형 질화물 반도체층(140)에 형성되어 있는 요철부의 요부에 채워져 있다. 즉, 앞서 설명한 바와 같이 요철부를 형성하고, 이 요철부의 요부 내에 형광체(160)를 채움으로써, 형광체 도포 면적을 크게 증가시킬 수 있다.The phosphor 160 is filled in the recessed portion of the uneven portion formed in the n-type nitride semiconductor layer 140. That is, by forming the uneven portion as described above and filling the phosphor 160 in the uneven portion of the uneven portion, the phosphor coating area can be greatly increased.
한편, 요철부의 요부에 채워진 형광체는 2종 이상일 수 있다.On the other hand, the phosphor filled in the recessed portion may be two or more kinds.
또한 도 2와 도 3에 도시된 바와 같이, 요철부의 요부는 n형 질화물 반도체층(141)과 활성층(131)을 관통하여 p형 질화물 반도체층(121)의 일부 영역에까지 형성되는 경우, 활성층(131)에 인접하는 요부 영역(A)에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워지는 것이 바람직하다. 이러한 구성에 따르면, 형광체의 형광변환효율이 획기적으로 증가하는 효과가 있다.In addition, as shown in FIGS. 2 and 3, when the recesses and protrusions are formed in some regions of the p-type nitride semiconductor layer 121 through the n-type nitride semiconductor layer 141 and the active layer 131, the active layer ( The recessed portion A adjacent to 131 is preferably filled with a fret phosphor that converts thermal energy into visible light. According to this configuration, there is an effect that the fluorescence conversion efficiency of the phosphor dramatically increases.
투명전극(170)은 n형 질화물 반도체층(140)과 n형 전극(180) 사이에 형성되어 있다. 예를 들어, 이 투명전극(170)은 ITOX, ZnOX, CaOX, WOX, TiOX로 이루어진 군중에서 선택된 하나 이상을 포함하여 구성될 수 있다. 이외에도 광투과성과 전기전도성이 우수한 물질이라면 투명전극(170)의 재료로 채택될 수 있다.The transparent electrode 170 is formed between the n-type nitride semiconductor layer 140 and the n-type electrode 180. For example, the transparent electrode 170 may include one or more selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X. In addition, any material having excellent light transmittance and electrical conductivity may be used as a material of the transparent electrode 170.
투명전극(170)의 두께는 10nm 이상 300nm 이하인 것이 바람직하다. 투명전극(170)의 두께가 10nm 미만이면 전류를 흐르게 하는 전극으로서의 기능을 제대로 수행하지 못하며, 투명전극(170)의 두께가 300nm를 초과하면 광 투과성이 저하된다.The thickness of the transparent electrode 170 is preferably 10 nm or more and 300 nm or less. If the thickness of the transparent electrode 170 is less than 10 nm, it may not function properly as an electrode for flowing current. If the thickness of the transparent electrode 170 exceeds 300 nm, the light transmittance may be deteriorated.
n형 전극(180)은 n형 질화물 반도체층(140)에 형성되어 있으며, 예를 들어 광 투과성을 높이기 위해 요철부의 철부 상에 형성될 수 있다.The n-type electrode 180 is formed on the n-type nitride semiconductor layer 140 and may be formed on, for example, the convex portion of the uneven portion to increase light transmittance.
한편 본 발명의 제1 실시 예는 보호막(150)을 더 포함할 수 있으며, 보호막(150)은 n형 질화물 반도체층(140)에 형성되어 있는 요철부의 요부와 형광체(160) 사이에 형성되어 있으며, n형 질화물 반도체층(140)을 보호하는 기능을 수행한다.Meanwhile, the first embodiment of the present invention may further include a passivation layer 150, and the passivation layer 150 is formed between the recessed portions of the uneven portions formed in the n-type nitride semiconductor layer 140 and the phosphor 160. , to protect the n-type nitride semiconductor layer 140.
이러한 보호막(150)은 SiOX, SiNX, MgOX, AlOX, GaOX로 이루어진 군중에서 선택된 하나 이상을 포함하여 구성될 수 있다.The passivation layer 150 may include one or more selected from the group consisting of SiO X , SiN X , MgO X , AlO X , GaO X.
도 4는 본 발명의 제2 실시 예에 따른 발광다이오드를 나타낸 도면이고, 도 5는 본 발명의 제2 실시 예의 변형 예를 나타낸 도면이다.4 is a view showing a light emitting diode according to a second embodiment of the present invention, Figure 5 is a view showing a modification of a second embodiment of the present invention.
도 4와 도 5를 참조하면, 본 발명의 제2 실시 예에 따른 발광다이오드는 기판(200), n형 질화물 반도체층(210), 활성층(220), p형 질화물 반도체층(230), 투명전극(260), n형 전극(280) 및 p형 전극(270)을 포함하여 구성될 수 있다.4 and 5, the light emitting diode according to the second embodiment of the present invention is a substrate 200, n-type nitride semiconductor layer 210, active layer 220, p-type nitride semiconductor layer 230, transparent The electrode 260 may be configured to include an n-type electrode 280 and a p-type electrode 270.
기판(200)에는 후술하는 활성층(220)으로부터 입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있다. 예를 들어, 이 기판(200)은 사파이어(Al2O3)로 이루어질 수 있다.The substrate 200 is formed with a pattern for scattering and reflecting light incident from the active layer 220 to be described later. For example, the substrate 200 may be made of sapphire (Al 2 O 3).
n형 질화물 반도체층(210)은 기판(200) 상에 형성되어 있으며 제1 영역 및 제2 영역으로 이루어진다.The n-type nitride semiconductor layer 210 is formed on the substrate 200 and includes a first region and a second region.
제1 영역은 후술하는 활성층(220)이 형성되는 영역이다. 제2 영역은 제1 영역과 단차를 가지며 외부로 노출되어 있는 영역이다.The first region is a region where the active layer 220 to be described later is formed. The second region is a region having a step with the first region and exposed to the outside.
활성층(220)은 n형 질화물 반도체층(210)의 제1 영역 상에 형성되어 있다.The active layer 220 is formed on the first region of the n-type nitride semiconductor layer 210.
p형 질화물 반도체층(230)은 활성층(220) 상에 형성되어 있다.The p-type nitride semiconductor layer 230 is formed on the active layer 220.
투명전극(260)은 p형 질화물 반도체층(230)과 후술하는 p형 전극(270) 사이에 형성되어 있다. 예를 들어, 이 투명전극(260)은 ITOX, ZnOX, CaOX, WOX, TiOX로 이루어진 군중에서 선택된 하나 이상을 포함하여 구성될 수 있다. 이외에도 광투과성과 전기전도성이 우수한 물질이라면 투명전극(260)의 재료로 채택될 수 있다.The transparent electrode 260 is formed between the p-type nitride semiconductor layer 230 and the p-type electrode 270 described later. For example, the transparent electrode 260 may include one or more selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X. In addition, any material having excellent light transmittance and electrical conductivity may be used as a material of the transparent electrode 260.
투명전극(260)의 두께는 10nm 이상 300nm 이하인 것이 바람직하다. 투명전극(260)의 두께가 10nm 미만이면 전류를 흐르게 하는 전극으로서의 기능을 제대로 수행하지 못하며, 투명전극(260)의 두께가 300nm를 초과하면 광 투과성이 저하된다.It is preferable that the thickness of the transparent electrode 260 is 10 nm or more and 300 nm or less. If the thickness of the transparent electrode 260 is less than 10 nm, it does not function properly as an electrode for flowing current. If the thickness of the transparent electrode 260 exceeds 300 nm, the light transmittance is reduced.
n형 전극(280)은 n형 질화물 반도체층(210)의 제2 영역 상에 형성되어 있고, p형 전극(270)은 투명전극(260)을 개재하여 p형 질화물 반도체층(230) 상에 형성되어 있다.The n-type electrode 280 is formed on the second region of the n-type nitride semiconductor layer 210, and the p-type electrode 270 is formed on the p-type nitride semiconductor layer 230 via the transparent electrode 260. Formed.
본 발명의 제2 실시 예의 특징부인 요철부는 p형 질화물 반도체층(230)과 활성층(220)을 관통하여 n형 질화물 반도체층(210)의 일부 영역에까지 형성되어 있으며, 이 요철부의 요부에는 형광체(250)가 채워져 있다.The uneven portion, which is a feature of the second embodiment of the present invention, extends through the p-type nitride semiconductor layer 230 and the active layer 220 to a part of the n-type nitride semiconductor layer 210, and the recessed portion has a phosphor ( 250) is filled.
예를 들어, 도 5에 나타난 바와 같이 요철부의 요부에 채워진 형광체(251)는 2종 이상일 수 있으며, 활성층(220)에 인접하는 요부 영역(B)에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워지는 것이 바람직하다. 이러한 구성에 따르면, 형광체의 형광변환효율이 획기적으로 증가하는 효과가 있다.For example, as illustrated in FIG. 5, there may be two or more kinds of phosphors 251 filled in recesses of the uneven portion, and a fret for converting thermal energy into visible light in the recessed region B adjacent to the active layer 220. It is preferable that the phosphor is filled. According to this configuration, there is an effect that the fluorescence conversion efficiency of the phosphor dramatically increases.
한편 본 발명의 제2 실시 예는 보호막(240)을 더 포함할 수 있으며, 보호막(240)은 n형 질화물 반도체층(210)에 형성되어 있는 요철부의 요부와 형광체(250) 사이에 형성되어 있으며, n형 질화물 반도체층(210)을 보호하는 기능을 수행한다.Meanwhile, the second embodiment of the present invention may further include a passivation layer 240, and the passivation layer 240 is formed between the recessed portion and the phosphor 250 formed in the n-type nitride semiconductor layer 210. , to protect the n-type nitride semiconductor layer 210.
이러한 보호막(240)은 SiOX, SiNX, MgOX, AlOX, GaOX로 이루어진 군중에서 선택된 하나 이상을 포함하여 구성될 수 있다.The passivation layer 240 may include one or more selected from the group consisting of SiO X , SiN X , MgO X , AlO X , GaO X.
도 6 내지 도 14는 본 발명의 제1 실시 예에 따른 발광다이오드 제조방법을 나타낸 도면이다.6 to 14 illustrate a method of manufacturing a light emitting diode according to a first embodiment of the present invention.
도 6 내지 도 14를 참조하면, 본 발명의 제1 실시 예에 따른 발광다이오드 제조방법은 도전성 기판(100) 상에 p형 전극(110), p형 질화물 반도체층(120), 활성층(130), n형 질화물 반도체층(140)을 형성하는 제1 단계, n형 질화물 반도체층(140)의 일부 영역에 요철부를 형성하는 제2 단계, 요철부의 요부에 형광체(160)를 채우는 제3 단계, n형 질화물 반도체층(140)의 철부와 형광체(160) 상에 투명전극(170)을 형성하는 제4 단계 및 n형 질화물 반도체층(140) 상에 n형 전극(180)을 형성하는 제5 단계를 포함하여 구성된다.6 to 14, a light emitting diode manufacturing method according to a first embodiment of the present invention includes a p-type electrode 110, a p-type nitride semiconductor layer 120, and an active layer 130 on a conductive substrate 100. a first step of forming the n-type nitride semiconductor layer 140, a second step of forming an uneven portion in a portion of the n-type nitride semiconductor layer 140, a third step of filling the phosphor 160 in the uneven portion of the uneven portion, a fourth step of forming the transparent electrode 170 on the convex portion of the n-type nitride semiconductor layer 140 and the phosphor 160 and a fifth step of forming the n-type electrode 180 on the n-type nitride semiconductor layer 140. It consists of steps.
먼저 도 6을 참조하면, 제1 단계에서는, 도전성 기판(100) 상에 p형 전극(110), p형 질화물 반도체층(120), 활성층(130), n형 질화물 반도체층(140)을 형성하는 과정이 수행된다.First, referring to FIG. 6, in the first step, the p-type electrode 110, the p-type nitride semiconductor layer 120, the active layer 130, and the n-type nitride semiconductor layer 140 are formed on the conductive substrate 100. The process is performed.
다음으로 도 7과 도 8을 참조하면, 제2 단계에서는, n형 질화물 반도체층(140)에 건식 에칭 보호막(M)을 형성한 후, 이 건식 에칭 보호막(M)을 마스크로 이용하여 n형 질화물 반도체층(140)의 일부 영역에 요철부를 형성하는 과정이 수행된다. 이 요철부는 함몰된 영역인 요부와 돌출된 영역인 철부로 이루어진다.Next, referring to FIGS. 7 and 8, in the second step, after the dry etching protective film M is formed on the n-type nitride semiconductor layer 140, the dry etching protective film M is used as a mask to form n-type. A process of forming an uneven portion in a portion of the nitride semiconductor layer 140 is performed. This uneven portion is composed of a recessed area and a recessed area.
예를 들어, 요철부의 요부는 n형 질화물 반도체층(140)을 거의 관통할 정도 즉, 활성층(130)의 바로 위 부분까지 형성될 수 있다.For example, the concave portion of the concave-convex portion may be formed to almost penetrate the n-type nitride semiconductor layer 140, that is, to the portion directly above the active layer 130.
다음으로 도 9와 도 10을 참조하면, 제3 단계에서는, 요철부의 요부에 형광체(160)를 채우는 과정이 수행된다.Next, referring to FIGS. 9 and 10, in the third step, a process of filling the phosphor 160 with recesses of the uneven portion is performed.
먼저 n형 질화물 반도체층(140)을 보호하기 위한 보호막(150)을 요철부의 요부 상에 형성한 이후, 형광체(160)를 채운다. 보호막(150)은 SiOX, SiNX, MgOX, AlOX, GaOX로 이루어진 군중에서 선택된 하나 이상을 포함하여 구성될 수 있다.First, a protective film 150 for protecting the n-type nitride semiconductor layer 140 is formed on the recessed portion, and then the phosphor 160 is filled. The passivation layer 150 may include one or more selected from the group consisting of SiO X , SiN X , MgO X , AlO X , and GaO X.
도 11을 참조하면, n형 질화물 반도체층(140) 상에 바로 n형 전극(180)을 형성할 수도 있으나, 도 12에 도시된 바와 같이, 투명전극(170)을 먼저 형성하는 것이 바람직하다.Referring to FIG. 11, the n-type electrode 180 may be formed directly on the n-type nitride semiconductor layer 140, but as shown in FIG. 12, it is preferable to first form the transparent electrode 170.
즉 도 12를 참조하면, 제4 단계에서는, n형 질화물 반도체층(140)의 철부와 형광체 상에 투명전극(170)을 형성하는 과정이 수행된다.That is, referring to FIG. 12, in the fourth step, a process of forming the transparent electrode 170 on the convex portion and the phosphor of the n-type nitride semiconductor layer 140 is performed.
예를 들어, 이 투명전극(170)은 ITOX, ZnOX, CaOX, WOX, TiOX로 이루어진 군중에서 선택된 하나 이상을 포함하여 구성될 수 있다. 이외에도 광투과성과 전기전도성이 우수한 물질이라면 투명전극(170)의 재료로 채택될 수 있다.For example, the transparent electrode 170 may include one or more selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X. In addition, any material having excellent light transmittance and electrical conductivity may be used as a material of the transparent electrode 170.
투명전극(170)의 두께는 10nm 이상 300nm 이하인 것이 바람직하다. 투명전극(170)의 두께가 10nm 미만이면 전류를 흐르게 하는 전극으로서의 기능을 제대로 수행하지 못하며, 투명전극(170)의 두께가 300nm를 초과하면 광 투과성이 저하된다.The thickness of the transparent electrode 170 is preferably 10 nm or more and 300 nm or less. If the thickness of the transparent electrode 170 is less than 10 nm, it may not function properly as an electrode for flowing current. If the thickness of the transparent electrode 170 exceeds 300 nm, the light transmittance may be deteriorated.
다음으로 도 13을 참조하면, 제5 단계에서는, n형 전극(180)을 투명전극(170)을 개재하여 n형 질화물 반도체층(140) 상에 형성하는 과정이 수행된다. 예를 들어, 이 n형 전극(180)은 광 투과성을 높이기 위해 요철부의 철부 상에 형성될 수 있다.Next, referring to FIG. 13, in the fifth step, a process of forming the n-type electrode 180 on the n-type nitride semiconductor layer 140 via the transparent electrode 170 is performed. For example, the n-type electrode 180 may be formed on the convex portion of the uneven portion to increase light transmittance.
한편 도 13과 도 14에 도시된 바와 같이, 요철부의 요부는 n형 질화물 반도체층(141)과 활성층(131)을 관통하여 p형 질화물 반도체층(121)의 일부 영역에까지 형성될 수 있다. 즉, 요부는 p형 전극(110)의 바로 위 부분까지 형성될 수 있다.As shown in FIGS. 13 and 14, the recessed portion may be formed in a portion of the p-type nitride semiconductor layer 121 through the n-type nitride semiconductor layer 141 and the active layer 131. That is, the recessed portion may be formed up to the portion directly above the p-type electrode 110.
형광체(160)는 이러한 n형 질화물 반도체층(140)에 형성되어 있는 요철부의 요부에 채워져 있다. 즉, 앞서 설명한 바와 같이 요철부를 형성하고, 이 요철부의 요부 내에 형광체(160)를 채움으로써, 형광체 도포 면적을 크게 증가시킬 수 있다.The phosphor 160 is filled in the recessed portion of the uneven portion formed in the n-type nitride semiconductor layer 140. That is, by forming the uneven portion as described above and filling the phosphor 160 in the uneven portion of the uneven portion, the phosphor coating area can be greatly increased.
한편, 요철부의 요부에 채워진 형광체는 2종 이상일 수 있다.On the other hand, the phosphor filled in the recessed portion may be two or more kinds.
또한 도13과 도 14에 도시된 바와 같이, 요철부의 요부가 n형 질화물 반도체층(141)과 활성층(131)을 관통하여 p형 질화물 반도체층(121)의 일부 영역에까지 형성되는 경우, 활성층(131)에 인접하는 요부 영역에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워지는 것이 바람직하다. 이러한 구성에 따르면, 형광체의 형광변환효율이 획기적으로 증가하는 효과가 있다.In addition, as shown in FIGS. 13 and 14, when the concave-convex portion is formed through the n-type nitride semiconductor layer 141 and the active layer 131 to a part of the p-type nitride semiconductor layer 121, the active layer ( The recessed portion adjacent to 131 is preferably filled with a fret phosphor that converts thermal energy into visible light. According to this configuration, there is an effect that the fluorescence conversion efficiency of the phosphor dramatically increases.
도 15 내지 도 20은 본 발명의 제2 실시 예에 따른 발광다이오드 제조방법을 나타낸 도면이다.15 to 20 illustrate a method of manufacturing a light emitting diode according to a second exemplary embodiment of the present invention.
도 15 내지 도 20을 참조하면, 본 발명의 제2 실시 예에 따른 발광다이오드 제조방법은 입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판(200) 상에 n형 질화물 반도체층(210), 발광층 및 p형 질화물 반도체층(230)을 형성하는 제1 단계, p형 질화물 반도체층(230), 발광층 및 n형 질화물 반도체층(210)의 일부를 메사 식각하여 n형 질화물 반도체층(210)의 일부를 노출시키는 제2 단계, p형 질화물 반도체층(230)과 활성층(220)을 관통하여 n형 질화물 반도체층(210)의 일부 영역에까지 요철부를 형성하는 제3 단계, 요철부의 요부에 형광체를 채우는 제4 단계, p형 질화물 반도체층(230)의 철부와 형광체 상에 투명전극(260)을 형성하는 제5 단계 및 투명전극(260) 상에 p형 전극(270)을 형성하고 n형 질화물 반도체층(210)의 노출 영역 상에 n형 전극(280)을 형성하는 제6 단계를 포함하여 구성된다.15 to 20, in the method of manufacturing a light emitting diode according to a second embodiment of the present invention, an n-type nitride semiconductor layer 210 is formed on a substrate 200 on which a pattern for scattering and reflecting incident light is formed. ), A first step of forming the light emitting layer and the p-type nitride semiconductor layer 230, mesa-etched a portion of the p-type nitride semiconductor layer 230, the light emitting layer and the n-type nitride semiconductor layer 210 to n-type nitride semiconductor layer ( The second step of exposing a portion of the 210, the third step of forming the uneven portion through the p-type nitride semiconductor layer 230 and the active layer 220 to the partial region of the n-type nitride semiconductor layer 210, recessed portion Filling the phosphor in the fourth step, forming the transparent electrode 260 on the convex portion of the p-type nitride semiconductor layer 230 and the phosphor, and forming the p-type electrode 270 on the transparent electrode 260. The n-type electrode 280 is formed on the exposed region of the n-type nitride semiconductor layer 210. It is constituted by a sixth step.
먼저 도 15를 참조하면, 제1 단계에서는, 입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판(200) 상에 n형 질화물 반도체층(210), 발광층 및 p형 질화물 반도체층(230)을 형성하는 과정이 수행된다.First, referring to FIG. 15, in the first step, an n-type nitride semiconductor layer 210, a light emitting layer, and a p-type nitride semiconductor layer 230 are formed on a substrate 200 on which a pattern for scattering and reflecting incident light is formed. ) Is carried out.
다음으로 도 16을 참조하면, 제2 단계에서는, p형 질화물 반도체층(230), 활성층(220) 및 n형 질화물 반도체층(210)의 일부를 메사 식각하여 n형 질화물 반도체층(210)의 일부를 외부로 노출시키는 과정이 수행된다.Next, referring to FIG. 16, in the second step, a portion of the p-type nitride semiconductor layer 230, the active layer 220, and the n-type nitride semiconductor layer 210 may be mesa-etched to form the n-type nitride semiconductor layer 210. The process of exposing a part to the outside is performed.
다음으로 도 17을 참조하면, 제3 단계에서는, p형 질화물 반도체층(230)과 활성층(220)을 관통하여 n형 질화물 반도체층(210)의 일부 영역에까지 요철부를 형성하는 과정이 수행된다. 이 요철부는 요부와 철부로 이루어진다. 요부는 함몰된 영역이고, 철부는 돌출된 영역이다. 요철부의 요부는 p형 전극(270)의 바로 위 부분까지 형성될 수 있다.Next, referring to FIG. 17, in the third step, a process of forming the uneven portion through the p-type nitride semiconductor layer 230 and the active layer 220 to a part of the n-type nitride semiconductor layer 210 is performed. This uneven part consists of a uneven part and an uneven part. The recess is the recessed area, and the convex part is the protruding area. The recessed portion may be formed up to a portion directly above the p-type electrode 270.
다음으로 도 18을 참조하면, 제4 단계에서는, 요철부의 요부에 보호막을 형성한 후, 형광체를 채우는 과정이 수행된다.Next, referring to FIG. 18, in the fourth step, after forming a protective film on the concave-convex portion, a process of filling the phosphor is performed.
형광체는 요철부의 요부에 채워져 있다. 즉, 앞서 설명한 바와 같이 요철부를 형성하고, 이 요철부의 요부 내에 형광체를 채움으로써, 형광체 도포 면적을 크게 증가시킬 수 있다.The phosphor is filled in the recessed portion of the uneven portion. That is, by forming the uneven portion as described above, and filling the phosphor in the uneven portion of the uneven portion, the phosphor coating area can be greatly increased.
한편, 요철부의 요부에 채워진 형광체는 2종 이상일 수 있으며, 요철부의 요부가 n형 질화물 반도체층(210)과 활성층(220)을 관통하여 p형 질화물 반도체층(230)의 일부 영역에까지 형성되는 경우, 활성층(220)에 인접하는 요부 영역에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워지는 것이 바람직하다. 이러한 구성에 따르면, 형광체의 형광변환효율이 획기적으로 증가하는 효과가 있다.On the other hand, the phosphor filled in the recessed portion may be two or more kinds, and the recessed portion is formed in the partial region of the p-type nitride semiconductor layer 230 through the n-type nitride semiconductor layer 210 and the active layer 220 In the recess region adjacent to the active layer 220, a fret phosphor for converting thermal energy into visible light is preferably filled. According to this configuration, there is an effect that the fluorescence conversion efficiency of the phosphor dramatically increases.
다음으로 도 19를 참조하면, 제5 단계에서는, p형 질화물 반도체층(230)의 철부와 형광체 상에 투명전극(260)을 형성하는 과정이 수행된다.Next, referring to FIG. 19, in the fifth step, a process of forming the transparent electrode 260 on the convex portion and the phosphor of the p-type nitride semiconductor layer 230 is performed.
다음으로 도 20을 참조하면, 제6 단계에서는, 투명전극(260)상에 p형 전극(270)을 형성하고 n형 질화물 반도체층(210)의 노출 영역 상에 n형 전극(280)을 형성하는 과정이 수행된다.Next, referring to FIG. 20, in the sixth step, the p-type electrode 270 is formed on the transparent electrode 260, and the n-type electrode 280 is formed on the exposed region of the n-type nitride semiconductor layer 210. The process is performed.
이상에서 본 발명에 대한 기술 사상을 첨부 도면과 함께 서술하였지만, 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술 분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.Although the technical spirit of the present invention has been described above with reference to the accompanying drawings, the present invention has been described by way of example and is not intended to limit the present invention. In addition, it is obvious that any person skilled in the art can make various modifications and imitations without departing from the scope of the technical idea of the present invention.

Claims (20)

  1. 발광다이오드에 있어서,In the light emitting diode,
    도전성 기판 상에 형성된 p형 전극;A p-type electrode formed on the conductive substrate;
    상기 p형 전극 상에 형성된 p형 질화물 반도체층;A p-type nitride semiconductor layer formed on the p-type electrode;
    상기 p형 질화물 반도체층 상에 형성된 활성층;An active layer formed on the p-type nitride semiconductor layer;
    상기 활성층 상에 형성된 n형 질화물 반도체층; 및An n-type nitride semiconductor layer formed on the active layer; And
    상기 n형 질화물 반도체층 상에 형성된 n형 전극을 포함하고,An n-type electrode formed on the n-type nitride semiconductor layer,
    상기 n형 질화물 반도체층의 일부 영역에 요철부가 형성되어 있고,Uneven portions are formed in some regions of the n-type nitride semiconductor layer,
    상기 n형 전극은 상기 n형 질화물 반도체층에 형성되어 있는 요철부의 철부 상에 형성되어 있고,The n-type electrode is formed on the convex portion of the uneven portion formed in the n-type nitride semiconductor layer,
    상기 n형 질화물 반도체층에 형성되어 있는 요철부의 요부에는 형광체가 채워진 것을 특징으로 하는, 발광다이오드.A recessed portion of the uneven portion formed in the n-type nitride semiconductor layer is filled with a phosphor.
  2. 제1 항에 있어서,According to claim 1,
    상기 n형 질화물 반도체층과 상기 n형 전극 사이에 형성된 투명전극을 더 포함하는 것을 특징으로 하는, 발광다이오드.And a transparent electrode formed between the n-type nitride semiconductor layer and the n-type electrode.
  3. 제2 항에 있어서,The method of claim 2,
    상기 투명전극은 ITOX, ZnOX, CaOX, WOX, TiOX로 이루어진 군중에서 선택된 하나 이상을 포함하는 것을 특징으로 하는, 발광다이오드.The transparent electrode is light emitting diode, characterized in that it comprises at least one selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X.
  4. 제2 항에 있어서,The method of claim 2,
    상기 투명전극의 두께는 10nm 이상 300nm 이하인 것을 특징으로 하는, 발광다이오드.The thickness of the transparent electrode, characterized in that 10nm or more and 300nm or less, the light emitting diode.
  5. 제1 항에 있어서,According to claim 1,
    상기 n형 질화물 반도체층에 형성되어 있는 요철부의 요부와 상기 형광체 사이에 형성된 보호막을 더 포함하는 것을 특징으로 하는, 발광다이오드.A light emitting diode further comprising a protective film formed between the recessed portion of the uneven portion formed in the n-type nitride semiconductor layer and the phosphor.
  6. 제1 항에 있어서,According to claim 1,
    상기 보호막은 SiOX, SiNX, MgOX, AlOX, GaOX로 이루어진 군중에서 선택된 하나 이상을 포함하는 것을 특징으로 하는, 발광다이오드.The passivation layer is characterized in that it comprises at least one selected from the group consisting of SiO X , SiN X , MgO X , AlO X , GaO X.
  7. 제1 항에 있어서,According to claim 1,
    상기 요철부의 요부는 상기 n형 질화물 반도체층과 상기 활성층을 관통하여 상기 p형 질화물 반도체층의 일부 영역에까지 형성되어 있는 것을 특징으로 하는, 발광다이오드.The recessed portion of the concave-convex portion is formed through a portion of the p-type nitride semiconductor layer through the n-type nitride semiconductor layer and the active layer.
  8. 제7 항에 있어서,The method of claim 7, wherein
    상기 요철부의 요부에 채워진 형광체는 2종 이상이고,The phosphor filled in the recessed portion of the uneven portion is two or more kinds,
    상기 활성층에 인접하는 요부 영역에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워진 것을 특징으로 하는, 발광 다이오드.The recessed portion adjacent to the active layer is filled with a fret phosphor for converting thermal energy into visible light.
  9. 발광다이오드에 있어서,In the light emitting diode,
    입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판;A substrate on which a pattern for scattering and reflecting incident light is formed;
    상기 기판 상에 형성되어 있으며 제1 영역 및 상기 제1 영역과 단차를 가지며 외부로 노출되어 있는 제2 영역으로 이루어진 n형 질화물 반도체층;An n-type nitride semiconductor layer formed on the substrate and having a first region and a second region having a step difference from the first region and exposed to the outside;
    상기 n형 질화물 반도체층의 제1 영역 상에 형성된 활성층;An active layer formed on the first region of the n-type nitride semiconductor layer;
    상기 활성층 상에 형성된 p형 질화물 반도체층;A p-type nitride semiconductor layer formed on the active layer;
    상기 n형 질화물 반도체층의 제2 영역 상에 형성된 n형 전극; 및An n-type electrode formed on the second region of the n-type nitride semiconductor layer; And
    상기 p형 질화물 반도체층 상에 형성된 p형 전극을 포함하고,A p-type electrode formed on the p-type nitride semiconductor layer,
    요철부가 상기 p형 질화물 반도체층과 상기 활성층을 관통하여 상기 n형 질화물 반도체층의 일부 영역에까지 형성되어 있고,Uneven portions are formed through the p-type nitride semiconductor layer and the active layer to a part of the n-type nitride semiconductor layer,
    상기 요철부의 요부에는 형광체가 채워진 것을 특징으로 하는, 발광다이오드.A recessed portion of the recessed portion is filled with a phosphor, characterized in that the light emitting diode.
  10. 제9 항에 있어서,The method of claim 9,
    상기 p형 질화물 반도체층과 상기 p형 전극 사이에 형성된 투명전극을 더 포함하는 것을 특징으로 하는, 발광다이오드.And a transparent electrode formed between the p-type nitride semiconductor layer and the p-type electrode.
  11. 제10 항에 있어서,The method of claim 10,
    상기 투명전극은 ITOX, ZnOX, CaOX, WOX, TiOX로 이루어진 군중에서 선택된 하나 이상을 포함하는 것을 특징으로 하는, 발광다이오드.The transparent electrode is light emitting diode, characterized in that it comprises at least one selected from the group consisting of ITO X , ZnO X , CaO X , WO X , TiO X.
  12. 제11 항에 있어서,The method of claim 11, wherein
    상기 투명전극의 두께는 10nm 이상 300nm 이하인 것을 특징으로 하는, 발광다이오드.The thickness of the transparent electrode, characterized in that 10nm or more and 300nm or less, the light emitting diode.
  13. 제9 항에 있어서,The method of claim 9,
    상기 요철부의 요부와 상기 형광체 사이에 형성된 보호막을 더 포함하는 것을 특징으로 하는, 발광다이오드.A light emitting diode, characterized in that it further comprises a protective film formed between the recessed portion and the phosphor.
  14. 제13 항에 있어서,The method of claim 13,
    상기 보호막은 SiOX, SiNX, MgOX, AlOX, GaOX로 이루어진 군중에서 선택된 하나 이상을 포함하는 것을 특징으로 하는, 발광다이오드.The passivation layer is characterized in that it comprises at least one selected from the group consisting of SiO X , SiN X , MgO X , AlO X , GaO X.
  15. 제9 항에 있어서,The method of claim 9,
    상기 요철부의 요부에 채워진 형광체는 2종 이상이고,The phosphor filled in the recessed portion of the uneven portion is two or more kinds,
    상기 활성층에 인접하는 요부 영역에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워진 것을 특징으로 하는, 발광 다이오드.The recessed portion adjacent to the active layer is filled with a fret phosphor for converting thermal energy into visible light.
  16. 발광다이오드 제조방법에 있어서,In the light emitting diode manufacturing method,
    도전성 기판 상에 p형 전극, p형 질화물 반도체층, 활성층, n형 질화물 반도체층을 형성하는 제1 단계;Forming a p-type electrode, a p-type nitride semiconductor layer, an active layer, and an n-type nitride semiconductor layer on the conductive substrate;
    상기 n형 질화물 반도체층의 일부 영역에 요철부를 형성하는 제2 단계;Forming a concave-convex portion in a portion of the n-type nitride semiconductor layer;
    상기 요철부의 요부에 형광체를 채우는 제3 단계;A third step of filling the recesses in the recesses of the recesses;
    상기 n형 질화물 반도체층의 철부와 상기 형광체 상에 투명전극을 형성하는 제4 단계; 및A fourth step of forming a transparent electrode on the convex portion of the n-type nitride semiconductor layer and the phosphor; And
    상기 n형 질화물 반도체층 상에 n형 전극을 형성하는 제5 단계를 포함하는, 발광다이오드 제조방법.And forming a n-type electrode on the n-type nitride semiconductor layer.
  17. 제16 항에 있어서,The method of claim 16,
    상기 요철부의 요부는 상기 n형 질화물 반도체층과 상기 활성층을 관통하여 상기 p형 질화물 반도체층의 일부 영역에까지 형성되어 있는 것을 특징으로 하는, 발광다이오드 제조방법.The recessed portion of the uneven portion is formed through a portion of the p-type nitride semiconductor layer through the n-type nitride semiconductor layer and the active layer, the light emitting diode manufacturing method.
  18. 제17 항에 있어서,The method of claim 17,
    상기 요철부의 요부에 채워진 형광체는 2종 이상이고,The phosphor filled in the recessed portion of the uneven portion is two or more kinds,
    상기 활성층에 인접하는 요부 영역에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워진 것을 특징으로 하는, 발광다이오드 제조방법.The recessed portion adjacent to the active layer is filled with a fret phosphor for converting thermal energy into visible light.
  19. 발광다이오드 제조방법에 있어서,In the light emitting diode manufacturing method,
    입사되는 광을 산란시켜 반사시키기 위한 패턴이 형성되어 있는 기판 상에 n형 질화물 반도체층, 활성층 및 p형 질화물 반도체층을 형성하는 제1 단계;A first step of forming an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer on a substrate on which a pattern for scattering and reflecting incident light is formed;
    상기 p형 질화물 반도체층, 상기 발광층 및 상기 n형 질화물 반도체층의 일부를 메사 식각하여 상기 n형 질화물 반도체층의 일부를 노출시키는 제2 단계;Mesa etching a portion of the p-type nitride semiconductor layer, the light emitting layer, and the n-type nitride semiconductor layer to expose a portion of the n-type nitride semiconductor layer;
    상기 p형 질화물 반도체층과 상기 활성층을 관통하여 상기 n형 질화물 반도체층의 일부 영역에까지 요철부를 형성하는 제3 단계;Forming a concave-convex portion through a portion of the n-type nitride semiconductor layer through the p-type nitride semiconductor layer and the active layer;
    상기 요철부의 요부에 형광체를 채우는 제4 단계;A fourth step of filling the recesses in the recessed portions;
    상기 p형 질화물 반도체층의 철부와 상기 형광체 상에 투명전극을 형성하는 제5 단계; 및A fifth step of forming a transparent electrode on the convex portion of the p-type nitride semiconductor layer and the phosphor; And
    상기 투명전극상에 p형 전극을 형성하고 상기 n형 질화물 반도체층의 노출 영역 상에 n형 전극을 형성하는 제6 단계를 포함하는, 발광다이오드 제조방법.And forming a p-type electrode on the transparent electrode and forming an n-type electrode on an exposed region of the n-type nitride semiconductor layer.
  20. 제19 항에 있어서,The method of claim 19,
    상기 요철부의 요부에 채워진 형광체는 2종 이상이고,The phosphor filled in the recessed portion of the uneven portion is two or more kinds,
    상기 활성층에 인접하는 요부 영역에는 열에너지를 가시광선으로 변환하는 프렛(Fret) 형광체가 채워진 것을 특징으로 하는, 발광다이오드 제조방법.The recessed portion adjacent to the active layer is filled with a fret phosphor for converting thermal energy into visible light.
PCT/KR2011/008243 2010-12-30 2011-11-01 Light-emitting diode and method for manufacturing same WO2012091275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100139624A KR101291153B1 (en) 2010-12-30 2010-12-30 Light emitting diode and manufacturing method thereof
KR10-2010-0139624 2010-12-30

Publications (2)

Publication Number Publication Date
WO2012091275A1 true WO2012091275A1 (en) 2012-07-05
WO2012091275A8 WO2012091275A8 (en) 2012-08-23

Family

ID=46383317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008243 WO2012091275A1 (en) 2010-12-30 2011-11-01 Light-emitting diode and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101291153B1 (en)
WO (1) WO2012091275A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10636940B2 (en) 2015-09-16 2020-04-28 Samsung Electronics Co., Ltd. Semiconductor light-emitting device
US20200412100A1 (en) * 2019-06-28 2020-12-31 Seiko Epson Corporation Light emitting device and projector
US10892298B2 (en) 2018-04-10 2021-01-12 Samsung Electronics Co., Ltd. Light emitting diode display device with separation film and partition aligning to each other

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102131599B1 (en) 2013-12-16 2020-07-09 삼성디스플레이 주식회사 Light emitting diode and manufacturing method thereof
KR20210102741A (en) 2020-02-12 2021-08-20 삼성전자주식회사 Semiconductor light emitting device and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243726A (en) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd Light emitting apparatus and manufacturing method therefor
KR20090032211A (en) * 2007-09-27 2009-04-01 삼성전기주식회사 Vertically structured gan type led device
JP2009076896A (en) * 2007-08-31 2009-04-09 Panasonic Corp Semiconductor light-emitting element
KR20100021242A (en) * 2008-08-14 2010-02-24 전북대학교산학협력단 Light emitting device and method of manufacturing the same
JP2010135858A (en) * 2010-03-17 2010-06-17 Panasonic Electric Works Co Ltd Semiconductor light emitting device and lighting device using the same
US20100264452A1 (en) * 2008-10-17 2010-10-21 Goldeneye, Inc. Methods for high temperature processing of epitaxial chips

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243726A (en) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd Light emitting apparatus and manufacturing method therefor
JP2009076896A (en) * 2007-08-31 2009-04-09 Panasonic Corp Semiconductor light-emitting element
KR20090032211A (en) * 2007-09-27 2009-04-01 삼성전기주식회사 Vertically structured gan type led device
KR20100021242A (en) * 2008-08-14 2010-02-24 전북대학교산학협력단 Light emitting device and method of manufacturing the same
US20100264452A1 (en) * 2008-10-17 2010-10-21 Goldeneye, Inc. Methods for high temperature processing of epitaxial chips
JP2010135858A (en) * 2010-03-17 2010-06-17 Panasonic Electric Works Co Ltd Semiconductor light emitting device and lighting device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10636940B2 (en) 2015-09-16 2020-04-28 Samsung Electronics Co., Ltd. Semiconductor light-emitting device
US10892298B2 (en) 2018-04-10 2021-01-12 Samsung Electronics Co., Ltd. Light emitting diode display device with separation film and partition aligning to each other
US20200412100A1 (en) * 2019-06-28 2020-12-31 Seiko Epson Corporation Light emitting device and projector
US11575247B2 (en) * 2019-06-28 2023-02-07 Seiko Epson Corporation Light emitting device and projector

Also Published As

Publication number Publication date
KR101291153B1 (en) 2013-07-31
WO2012091275A8 (en) 2012-08-23
KR20120077600A (en) 2012-07-10

Similar Documents

Publication Publication Date Title
WO2016153213A1 (en) Light emitting diode package and lighting device
WO2012023662A1 (en) Light emitting diode having multi-cell structure and manufacturing method thereof
WO2009157664A2 (en) Semiconductor device package
WO2016111454A1 (en) Light-emitting device package and light-emitting apparatus comprising same
WO2016153218A1 (en) Light emitting diode, light emitting diode package containing same, and lighting device containing package
WO2016190644A1 (en) Light-emitting device and vehicular lamp comprising same
WO2011002208A2 (en) Light-emitting diode package
WO2014163269A1 (en) Laser light source device
WO2017014512A1 (en) Light-emitting element
WO2011126248A2 (en) Light emitting diode and method of fabricating the same
WO2009154383A2 (en) Semiconductor light emitting device
WO2012091275A1 (en) Light-emitting diode and method for manufacturing same
WO2017057978A1 (en) Light emitting device
WO2016195286A1 (en) Light-emitting diode
WO2016003205A1 (en) Light emitting element
WO2012091270A1 (en) Method for manufacturing nano-imprint mould, method for manufacturing light-emitting diode using the nano imprint mould manufactured thereby, and light-emitting diode manufactured thereby
WO2020204456A1 (en) Light emitting diode chip-scale package and method for manufacturing same
WO2012091271A2 (en) Method for manufacturing nano-imprint mould, method for manufacturing light-emitting diode using the nano imprint mould manufactured thereby, and light-emitting diode manufactured thereby
WO2012091329A2 (en) Method for manufacturing light-emitting device and light-emitting device manufactured thereby
WO2013051906A1 (en) Light-emitting diode package
WO2021134748A1 (en) Light-emitting apparatus and light-emitting device
WO2015111814A1 (en) Light emitting element, light emitting element package, and light unit
WO2010074373A1 (en) Light-emitting device and manufacturing method thereof
WO2019125032A1 (en) Semiconductor device package
WO2016052929A1 (en) Light emitting diode comprising porous transparent electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854384

Country of ref document: EP

Kind code of ref document: A1