JP4483736B2 - Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element - Google Patents

Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element Download PDF

Info

Publication number
JP4483736B2
JP4483736B2 JP2005234132A JP2005234132A JP4483736B2 JP 4483736 B2 JP4483736 B2 JP 4483736B2 JP 2005234132 A JP2005234132 A JP 2005234132A JP 2005234132 A JP2005234132 A JP 2005234132A JP 4483736 B2 JP4483736 B2 JP 4483736B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
type
light
nanocolumn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005234132A
Other languages
Japanese (ja)
Other versions
JP2007049062A (en
Inventor
隆好 高野
信之 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005234132A priority Critical patent/JP4483736B2/en
Publication of JP2007049062A publication Critical patent/JP2007049062A/en
Application granted granted Critical
Publication of JP4483736B2 publication Critical patent/JP4483736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体内で電子と正孔とを結合させて発光させる半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法に関し、特に前記半導体発光素子としては、ナノコラムと称される柱状結晶構造体を複数有して成るものに関する。   The present invention relates to a semiconductor light-emitting element that emits light by combining electrons and holes in a semiconductor, a lighting device using the same, and a method for manufacturing the semiconductor light-emitting element. In particular, the semiconductor light-emitting element has a columnar shape called a nanocolumn. The present invention relates to a structure having a plurality of crystal structures.

近年、III−N化合物半導体(以下、ナイトライドと呼ぶ)または酸化物半導体を用いて、その中に量子井戸を形成し、外部から電流を流して、この量子井戸で電子と正孔とを結合させて発光させる固体発光素子の発展が目覚しい。しかしながら、これらの固体発光素子の作製においては、以下に述べる課題を有する。   In recent years, a quantum well is formed in a III-N compound semiconductor (hereinafter referred to as a nitride) or an oxide semiconductor, and a current is applied from outside to couple electrons and holes in the quantum well. The development of solid-state light-emitting elements that emit light by making them light is remarkable. However, the fabrication of these solid state light emitting devices has the following problems.

たとえば、ナイトライドに関して言及すると、結晶成長が抱える根本的な課題として、異種材料基板上への結晶成長が主であるということが挙げられる。ナイトライドのヘテロエピタキシャル成長に関する一般的な成長モデルとしては、先ず基板上に薄く堆積された低温バッファ層上に三次元核が形成され、さらに成長が進むと核が大きくなり、隣接する核と結合して平坦な面が形成される。以降、平坦な面を維持しながら2次元成長を継続する。しかしながら、隣接する核が結合する際、それぞれの核が独立して形成されているので、成長面が完全に一致せず、結合後、核界面に多くの欠陥を形成する。欠陥の多くは貫通転位として結晶表面にまで達する。この貫通転位は非発光再結合中心として作用し、固体発光素子の発光効率を著しく減少させる。   For example, when referring to nitride, a fundamental problem that crystal growth has is that crystal growth on a dissimilar material substrate is the main. As a general growth model for nitride heteroepitaxial growth, three-dimensional nuclei are first formed on a low-temperature buffer layer that is thinly deposited on the substrate, and as the growth proceeds further, the nuclei become larger and combine with adjacent nuclei. And a flat surface is formed. Thereafter, the two-dimensional growth is continued while maintaining a flat surface. However, when adjacent nuclei are bonded, the respective nuclei are formed independently, so that the growth planes do not coincide completely, and after bonding, many defects are formed at the nuclear interface. Many of the defects reach the crystal surface as threading dislocations. This threading dislocation acts as a non-radiative recombination center and significantly reduces the luminous efficiency of the solid state light emitting device.

このような課題に対して、従来から、貫通転位を減少させるための様々な取り組みがなされてきた。その結果、当初、ナイトライド結晶内に1010cm−2程度あった転位を、10cm−2程度まで減少させるに至っている。 Conventionally, various efforts have been made to reduce threading dislocations against such problems. As a result, the dislocation that was initially about 10 10 cm −2 in the nitride crystal has been reduced to about 10 5 cm −2 .

さらなる低転位化技術として、柱状結晶構造体(以下、ナノコラムと呼ぶ)が注目され始めている。ナノコラムは、100nm程度の直径を有し、隣接する核が結合することなく、独立して柱状の結晶を形成している。したがって、ナノコラムにはその結晶内にほとんど貫通転位を含まず、非常に高品質な結晶を得ることができる。また、ナノコラムは表面積が薄膜に比べて格段に大きく、円筒形状をしているので、通常の薄膜の発光素子に比べて、光取り出し効率の向上が期待されている。   As a further technique for lowering dislocations, columnar crystal structures (hereinafter referred to as nanocolumns) have begun to attract attention. The nanocolumn has a diameter of about 100 nm and forms columnar crystals independently without bonding adjacent nuclei. Therefore, the nanocolumn hardly contains threading dislocations in the crystal, and a very high quality crystal can be obtained. In addition, since the nanocolumn has a significantly larger surface area than a thin film and has a cylindrical shape, an improvement in light extraction efficiency is expected as compared with a normal thin film light emitting element.

そのようなナノコラムを用いた固体発光素子の製作が試みられた一例として、図6に非特許文献1の構造を示す。その従来技術によれば、RF−MBE(高周波分子線エピタキシー)装置によって、シリコン基板51上に、n型GaNナノコラム層52、発光層53を形成し、ナノコラム径を広げながらp型GaNコンタクト層54をエピタキシャル成長させた上に、半透明のp型電極55となるNi(2nm)/Au(3nm)を形成させている。
菊池、野村、岸野「窒化物半導体ナノコラム結晶を用いた新しい機能性デバイス材料の開発」(応用物理学会2004年秋季大会予稿集第1分冊4P−W−1)
FIG. 6 shows the structure of Non-Patent Document 1 as an example of an attempt to manufacture a solid-state light emitting device using such a nanocolumn. According to the prior art, an n-type GaN nanocolumn layer 52 and a light emitting layer 53 are formed on a silicon substrate 51 by an RF-MBE (high frequency molecular beam epitaxy) apparatus, and the p-type GaN contact layer 54 is expanded while increasing the nanocolumn diameter. Is epitaxially grown, and Ni (2 nm) / Au (3 nm) to be a translucent p-type electrode 55 is formed.
Kikuchi, Nomura, Kishino “Development of New Functional Device Materials Using Nitride Semiconductor Nanocolumn Crystals” (Applied Physics Society 2004 Autumn Conference Proceedings Vol. 1 P-W-1)

しかしながら、上述の従来技術では、発光層53で発生した光の内、ナノコラムの軸方向に放射された光は、該発光層53に示すエスケープコーン内に入らずに、シリコン基板51またはp型電極55に吸収されてしまう。したがって、光取り出し効率が期待される程、向上できていないのが実情である。   However, in the above-described conventional technology, the light emitted in the axial direction of the nanocolumn among the light generated in the light emitting layer 53 does not enter the escape cone shown in the light emitting layer 53, but the silicon substrate 51 or the p-type electrode. 55 will be absorbed. Therefore, the situation is that the light extraction efficiency has not been improved as expected.

本発明の目的は、基板や電極での光の吸収を抑え、ナノコラム内に閉込められた光を効率良く外部に取出すことができる半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法を提供することである。   An object of the present invention is to provide a semiconductor light-emitting element that can suppress light absorption by a substrate or an electrode and efficiently extract light confined in a nanocolumn to the outside, a lighting device using the same, and a method for manufacturing the semiconductor light-emitting element Is to provide.

本発明の半導体発光素子は、基板上に、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体を複数有して成る半導体発光素子において、前記柱状結晶構造体における前記発光層以外の領域に、前記発光層から放射された光を吸収して再発光させる吸収・再発光層を有することを特徴とする。   The semiconductor light-emitting device of the present invention has a columnar shape in which an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer or a p-type oxide semiconductor layer are sequentially stacked on a substrate. In a semiconductor light emitting device having a plurality of crystal structures, an absorption / relight emitting layer that absorbs light emitted from the light emitting layer and re-emits light in a region other than the light emitting layer in the columnar crystal structure. It is characterized by that.

また、本発明の半導体発光素子の製造方法は、基板上に、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体を複数有して成る半導体発光素子の製造方法において、前記n型窒化物半導体層またはn型酸化物半導体層と、p型窒化物半導体層またはp型酸化物半導体層との少なくとも一方の成長工程に、前記発光層から放射された光を吸収して再発光させる吸収・再発光層を成長させる工程を有することを特徴とする。   The method for manufacturing a semiconductor light emitting device of the present invention includes an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light-emitting layer, a p-type nitride semiconductor layer or a p-type oxide semiconductor layer on a substrate. In the method for manufacturing a semiconductor light-emitting device having a plurality of columnar crystal structures laminated in order, the n-type nitride semiconductor layer or n-type oxide semiconductor layer and the p-type nitride semiconductor layer or p-type oxide semiconductor The step of growing at least one of the layers includes a step of growing an absorption / re-emission layer that absorbs light emitted from the light-emitting layer to re-emit light.

上記の構成によれば、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体(ナノコラム)を複数有して成る半導体発光素子において、前記ナノコラムは円筒形に近い形状をしている。したがって、エスケープコーンは発光層からナノコラムの周方向にリング状に形成されるので、高い取出し効率が期待される。そこで、エスケープコーンに入らず、前記発光層からナノコラムの軸方向に放射された光に対して、それを吸収して再発光させる吸収・再発光層をナノコラムの発光層(pn接合)以外の領域に設ける。   According to the above configuration, the columnar crystal structure (nanocolumn) in which the n-type nitride semiconductor layer or the n-type oxide semiconductor layer, the light emitting layer, and the p-type nitride semiconductor layer or the p-type oxide semiconductor layer are sequentially stacked. ), The nanocolumn has a shape close to a cylindrical shape. Therefore, since the escape cone is formed in a ring shape from the light emitting layer in the circumferential direction of the nanocolumn, high extraction efficiency is expected. Therefore, an absorption / re-emission layer that absorbs and re-emits light emitted from the light-emitting layer in the axial direction of the nanocolumn without entering the escape cone is a region other than the nano-column light-emitting layer (pn junction). Provided.

前記吸収・再発光層は、比較的薄い井戸層を障壁層で挟むダブルへテロ構造を複数積層した多重量子井戸構造や、比較的厚い井戸層を障壁層で挟むダブルへテロ構造で実現することができ、その吸収・再発光層を、n型窒化物半導体層またはn型酸化物半導体層とp型窒化物半導体層またはp型酸化物半導体層との少なくとも一方に、1または複数箇所設ける。前記ダブルへテロ構造や量子井戸層の材質によって、発光層からの光と同程度の波長の光を再発生させたり、発光層の発光波長より長波長側の異なる波長の光を再発生させたりすることができる。 The absorption and re-emission layer, a multiple quantum well structure in which a plurality stacked terrorism structures to double sandwiching a relatively thin well layer with a barrier layer, achieved by terrorist structure a relatively thick well layers to double sandwiching with a barrier layer One or a plurality of absorption / re-emission layers may be provided on at least one of the n-type nitride semiconductor layer or the n-type oxide semiconductor layer and the p-type nitride semiconductor layer or the p-type oxide semiconductor layer. Provide. The material of the terrorist structure and quantum well layers to the double, or re emit light having a wavelength comparable to the light from the light emitting layer, re-generate light of different wavelengths of longer wavelength side than the emission wavelength of the emission layer Can be.

したがって、吸収・再発光層で発生された光は、そのエスケープコーンからナノコラムの外部へ放出され、こうして発光層からナノコラムの軸方向に放射されてしまった光の一部も取出せるようになり、基板や電極に光を吸収される割合が減少する。これによって、ナノコラム内に閉じ込められた光を効率良く外部に取出すことができ、光取出し効率を一層向上することができる。   Therefore, the light generated in the absorption / re-emission layer is emitted from the escape cone to the outside of the nanocolumn, and thus a part of the light emitted from the emission layer in the axial direction of the nanocolumn can be extracted. The rate at which light is absorbed by the substrate or electrode decreases. Thereby, the light confined in the nanocolumn can be efficiently extracted to the outside, and the light extraction efficiency can be further improved.

さらにまた、本発明の半導体発光素子は、前記p型窒化物半導体層またはp型酸化物半導体層上に、これらとオーミックコンタクトを取ることができる導電性材料を貼合わせて成るp型電極を有することを特徴とする。   Furthermore, the semiconductor light emitting device of the present invention has a p-type electrode formed by laminating a conductive material capable of making ohmic contact with the p-type nitride semiconductor layer or the p-type oxide semiconductor layer. It is characterized by that.

上記の構成によれば、前記のナノコラムを複数有して成る半導体発光素子において、そのナノコラムの先端側に設けるべきp型電極を、前記p型窒化物半導体層またはp型酸化物半導体層とオーミックコンタクトを取ることができる導電性材料の貼合わせで実現する。具体的には、ナノコラム間に絶縁体を埋込んだ後、ナノコラムの先端に金属を蒸着させたり、前記ナノコラムの先端を研磨して高さを揃えて平坦にし、導電性基板を密着させて、加圧および加熱することで貼合せる。   According to the above configuration, in the semiconductor light emitting device having the plurality of nanocolumns, the p-type electrode to be provided on the tip end side of the nanocolumn is connected to the p-type nitride semiconductor layer or the p-type oxide semiconductor layer. Realized by bonding conductive materials that can be contacted. Specifically, after embedding an insulator between the nanocolumns, metal is deposited on the tips of the nanocolumns, or the tips of the nanocolumns are polished and flattened, and the conductive substrate is adhered, Bonding is performed by applying pressure and heating.

したがって、導電性材料から成るp型電極内には、前記p型窒化物半導体層またはp型酸化物半導体層を面方向に成長させて該p型電極とした場合に生じるような貫通転位はなく、ナノコラムが内部に貫通転位を持たないという利点を生かしたさらに高効率な半導体発光素子を実現することができる。   Therefore, in the p-type electrode made of a conductive material, there is no threading dislocation that occurs when the p-type nitride semiconductor layer or the p-type oxide semiconductor layer is grown in the plane direction to form the p-type electrode. Further, it is possible to realize a more efficient semiconductor light-emitting device that takes advantage of the fact that the nanocolumn does not have threading dislocations inside.

また、本発明の照明装置は、前記の半導体発光素子を用いることを特徴とする。   Moreover, the illumination device of the present invention is characterized by using the semiconductor light emitting element.

上記の構成によれば、吸収・再発光層で光取出し効率を向上した高効率な半導体発光素子を用いることで、同じ光束(輝度、照度)を得るにも、小型で低消費電力な照明装置を実現することができる。   According to the above configuration, a highly efficient semiconductor light emitting device with improved light extraction efficiency by the absorption / re-emission layer can be used to obtain the same luminous flux (brightness, illuminance), but with a small size and low power consumption. Can be realized.

本発明の半導体発光素子およびその製造方法は、以上のように、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体(ナノコラム)を複数有して成る半導体発光素子において、前記ナノコラムは円筒形に近い形状をしており、したがってエスケープコーンは発光層からナノコラムの周方向にリング状に形成され、高い取出し効率が期待されるので、エスケープコーンに入らず、前記発光層からナノコラムの軸方向に放射された光に対して、それを吸収して再発光させる吸収・再発光層をナノコラムの発光層(pn接合)以外の領域に設ける。   As described above, the semiconductor light emitting device and the manufacturing method thereof according to the present invention include an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light-emitting layer, a p-type nitride semiconductor layer or a p-type oxide semiconductor layer, In the semiconductor light emitting device having a plurality of columnar crystal structures (nanocolumns) laminated in order, the nanocolumn has a shape close to a cylindrical shape, and therefore the escape cone is formed in a ring shape from the light emitting layer to the circumferential direction of the nanocolumn. Because it is formed and high extraction efficiency is expected, the nanocolumn has an absorption / re-emission layer that does not enter the escape cone and absorbs the light emitted from the light emitting layer in the axial direction of the nanocolumn and re-emits it. Provided in a region other than the light emitting layer (pn junction).

それゆえ、基板や電極に光を吸収される割合が減少し、ナノコラム内に閉じ込められた光を効率良く外部に取出すことができ、光取出し効率を一層向上することができる。   Therefore, the ratio of light absorbed by the substrate and the electrode is reduced, the light confined in the nanocolumn can be efficiently extracted to the outside, and the light extraction efficiency can be further improved.

また、本発明の照明装置は、以上のように、吸収・再発光層で光取出し効率を向上した高効率な前記の半導体発光素子を用いる。   In addition, as described above, the illumination device of the present invention uses the above-described highly efficient semiconductor light emitting element in which the light extraction efficiency is improved by the absorption / re-emission layer.

それゆえ、同じ光束(輝度、照度)を得るにも、小型で低消費電力な照明装置を実現することができる。   Therefore, it is possible to realize a small-sized and low power consumption lighting device for obtaining the same luminous flux (brightness and illuminance).

[実施の形態1]
図1は、本発明の実施の第1の形態に係る半導体発光素子である発光ダイオードD1の構造を模式的に示す断面図である。この発光ダイオードD1では、RF−MBE(高周波分子線エピタキシー)装置によって、シリコン基板1上に、n型GaNナノコラム層2、発光層3を形成し、ナノコラム径を広げながらp型GaNコンタクト層4をエピタキシャル成長させた上に、半透明のp型電極5となるNi(2nm)/Au(3nm)を形成させている。この後、シリコン基板1のナノコラムとは反対側にn型電極が形成され、前記p型電極5側が光取出し面となる発光ダイオードD1が作製される。以上の点は、前記図6で示す従来技術のナノコラムの作製方法と同様である。
[Embodiment 1]
FIG. 1 is a cross-sectional view schematically showing the structure of a light-emitting diode D1 which is a semiconductor light-emitting element according to the first embodiment of the present invention. In this light emitting diode D1, an n-type GaN nanocolumn layer 2 and a light emitting layer 3 are formed on a silicon substrate 1 by an RF-MBE (high frequency molecular beam epitaxy) apparatus, and a p-type GaN contact layer 4 is formed while increasing the nanocolumn diameter. After epitaxial growth, Ni (2 nm) / Au (3 nm) to be a semitransparent p-type electrode 5 is formed. Thereafter, an n-type electrode is formed on the opposite side of the silicon substrate 1 from the nanocolumn, and a light-emitting diode D1 having the light extraction surface on the p-type electrode 5 side is fabricated. The above points are the same as those of the conventional nanocolumn manufacturing method shown in FIG.

注目すべきは、本発明では、前記n型GaNナノコラム層2に、吸収・再発光層6が設けられていることである。吸収・再発光層6は、柱状構造を維持したまま、図2(a)の吸収・再発光層6aで示すような多重量子井戸構造や、図2(b)の吸収・再発光層6bで示すようなダブルへテロ構造で実現することができる。図2(a)の多重量子井戸構造では、比較的薄い、たとえば2nmの井戸層7a,7b,7cを、n型GaNナノコラム層2a,2bや、5nmの障壁層2c,2dで挟むダブルへテロ構造を複数積層して成る。一方、図2(b)のダブルへテロ構造では、比較的厚い、たとえば20nmの井戸層8を前記n型GaNナノコラム層2a,2bで挟んで構成される。 It should be noted that in the present invention, the n-type GaN nanocolumn layer 2 is provided with an absorption / re-emission layer 6. The absorption / re-emission layer 6 is a multi-quantum well structure as shown by the absorption / re-emission layer 6a in FIG. 2 (a) while maintaining the columnar structure, or the absorption / re-emission layer 6b in FIG. 2 (b). It can be realized with a double heterostructure as shown. In the multiple quantum well structure in FIG. 2 (a), the relatively thin, Te for example 2nm well layers 7a, 7b, the 7c, n-type GaN nanocolumns layer 2a, and 2b, 5 nm of the barrier layer 2c, a double sandwich by 2d It is made up of a plurality of layered structures. On the other hand, the double hetero structure of FIG. 2B is configured by sandwiching a relatively thick, for example, 20 nm well layer 8 between the n-type GaN nanocolumn layers 2a and 2b.

この吸収・再発光層6は、p型GaNコンタクト層4側に設けられてもよく、図3(a)で示すようにn型GaNナノコラム層2との両側に設けられてもよく、図3(b)で示すように複数箇所に設けられてもよい。この吸収・再発光層6の材質によって、発光層3からの光と同程度の波長の光を再発生させたり、発光層3の発光波長より長波長側の異なる波長の光を再発生させたりすることができる。   The absorption / re-emission layer 6 may be provided on the p-type GaN contact layer 4 side, or may be provided on both sides of the n-type GaN nanocolumn layer 2 as shown in FIG. As shown in (b), it may be provided at a plurality of locations. Depending on the material of the absorption / re-emission layer 6, light having the same wavelength as that of the light from the light-emitting layer 3 is regenerated, or light having a different wavelength longer than the emission wavelength of the light-emitting layer 3 is regenerated. can do.

このように構成することで、ナノコラムは円筒形に近い形状をしており、図4で示すようにエスケープコーンC1は発光層3からナノコラムの周方向にリング状に形成され、高い取出し効率が期待されるので、そのエスケープコーンC1に入らず、前記発光層3からナノコラムの軸方向に放射された光9に対して、それを吸収して再発光させる吸収・再発光層6をナノコラムの発光層(pn接合)3以外の領域に設けることで、発光層3からナノコラムの軸方向に放射されてしまった光の一部も取出せるようになり、シリコン基板1やp型電極5に光を吸収される割合が減少する。これによって、ナノコラム内に閉じ込められた光を効率良く外部に取出すことができ、光取出し効率を一層向上することができる。前記発光層3および吸収・再発光層6において、InGaNの多重量子井戸構造から成り、発光波長が460nmの場合、θ=23〜24°程度である。   With such a configuration, the nanocolumn has a shape close to a cylindrical shape, and as shown in FIG. 4, the escape cone C1 is formed in a ring shape from the light emitting layer 3 in the circumferential direction of the nanocolumn, and high extraction efficiency is expected. Therefore, the absorption / re-emission layer 6 that does not enter the escape cone C1 and absorbs the light 9 emitted from the light emitting layer 3 in the axial direction of the nanocolumn and re-emits it is used as the nanocolumn light emitting layer. By providing in a region other than (pn junction) 3, a part of the light emitted from the light emitting layer 3 in the axial direction of the nanocolumn can be extracted, and the silicon substrate 1 and the p-type electrode 5 absorb the light. The rate of being reduced. Thereby, the light confined in the nanocolumn can be efficiently extracted to the outside, and the light extraction efficiency can be further improved. The light emitting layer 3 and the absorption / relight emitting layer 6 have an InGaN multiple quantum well structure, and when the emission wavelength is 460 nm, θ is about 23 to 24 °.

[実施の形態2]
図5は、本発明の実施の第2の形態に係る半導体発光素子である発光ダイオードD2の構造を模式的に示す断面図である。本実施の形態では、有機金属気相成長(MOCVD)によって作製を行うことを前提としているが、ナノコラムの成長方法はこれに限定されるものではなく、分子線エピタキシー(MBE)やハイドライド気相成長(HVPE)等の装置を用いてもナノコラムが作製可能であることは公知である。また、発光波長が460nmの窒化物半導体を作製する場合について述べるけれども、発光波長は限定されず、また酸化物半導体であってもよい。さらにまた、基板11は、サファイアに限定されず、炭化珪素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、珪素(Si)、ガラス(SiO)、硼化ジルコニウム(ZrB)、酸化亜鉛(ZnO)等も候補として挙げられる。
[Embodiment 2]
FIG. 5 is a cross-sectional view schematically showing the structure of a light-emitting diode D2 which is a semiconductor light-emitting element according to the second embodiment of the present invention. In the present embodiment, it is assumed that fabrication is performed by metal organic chemical vapor deposition (MOCVD). However, the nanocolumn growth method is not limited to this, and molecular beam epitaxy (MBE) or hydride vapor phase growth is possible. It is publicly known that nanocolumns can be produced using an apparatus such as (HVPE). Although a case where a nitride semiconductor with an emission wavelength of 460 nm is manufactured is described, the emission wavelength is not limited and may be an oxide semiconductor. Furthermore, the substrate 11 is not limited to sapphire, but silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), silicon (Si), glass (SiO 2 ), zirconium boride (ZrB). 2 ), zinc oxide (ZnO), and the like are also listed as candidates.

先ず、サファイア基板11上に、低温AlNバッファ層を周知となっている手法にて堆積させた後、Siを添加し、n型としたAlGaN下地層12を2μm形成する。ここでn型AlGaN下地層12の形成条件は、成長温度を1100℃とし、成長圧力を76Torrとした。このn型AlGaN下地層12は、発光層16で生じた光を吸収せず、かつ導電性を持たせることができる層であればよい。したがって、用いられる材料は、前記AlGaNに限らず、GaN、InGaN、AlN、ZnO、MgZnO等も候補として挙げられる。また、n型AlGaN下地層12は複数の層から構成されてもよい。このn型AlGaN下地層12上に、基板11が発光層16の光を吸収する場合、分布型ブラッグ反射鏡や、ロジウム等の金属膜を形成してもよい。   First, a low temperature AlN buffer layer is deposited on the sapphire substrate 11 by a well-known method, and then Si is added to form an n-type AlGaN underlayer 12 having a thickness of 2 μm. Here, the formation conditions of the n-type AlGaN underlayer 12 were a growth temperature of 1100 ° C. and a growth pressure of 76 Torr. The n-type AlGaN underlayer 12 may be any layer that does not absorb the light generated in the light emitting layer 16 and can have conductivity. Therefore, the material to be used is not limited to the AlGaN, but GaN, InGaN, AlN, ZnO, MgZnO, and the like are also candidates. The n-type AlGaN underlayer 12 may be composed of a plurality of layers. When the substrate 11 absorbs the light of the light emitting layer 16 on the n-type AlGaN underlayer 12, a distributed Bragg reflector or a metal film such as rhodium may be formed.

続いて、ナノコラムの成長に移り、先ずn型AlGaN下地層12上に核成長部13を形成する。このときの条件は、成長温度500℃、成長圧力76Torrにて、Ga原料であるトリメチルガリウム(TMGa;Ga(CH)および窒素原料であるアンモニア(NH)を供給することで、非晶質GaNを形成する。その後、温度を1050℃程度まで加熱し、非晶質GaNを多結晶化する。この時、核成長部13の高さは、20nm程度とした。 Subsequently, the process proceeds to nanocolumn growth. First, a nucleus growth portion 13 is formed on the n-type AlGaN underlayer 12. The conditions at this time are as follows: trimethylgallium (TMGa; Ga (CH 3 ) 3 ) as a Ga source and ammonia (NH 3 ) as a nitrogen source at a growth temperature of 500 ° C. and a growth pressure of 76 Torr. Crystalline GaN is formed. Thereafter, the temperature is heated to about 1050 ° C. to polycrystallize amorphous GaN. At this time, the height of the nucleus growth part 13 was about 20 nm.

次に、成長温度を1070℃として、n型ナノコラムGaN層14aの成長を行う。このn型ナノコラムGaN層14aは、ナノコラムGaNの成長中、Siを不純物として添加することで、n型伝導性を確保させることで作製可能である。また、n型ナノコラムGaN層14aの高さは、2μmとした。ただし、ナノコラムの材料は、GaNに限定されるものではなく、たとえばInN、InGaN,AlGaN、AlN、ZnO、MgZnO等も候補に挙げられる。   Next, the n-type nanocolumn GaN layer 14a is grown at a growth temperature of 1070 ° C. The n-type nanocolumn GaN layer 14a can be produced by ensuring n-type conductivity by adding Si as an impurity during the growth of the nanocolumn GaN. The height of the n-type nanocolumn GaN layer 14a was 2 μm. However, the material of the nanocolumn is not limited to GaN, and for example, InN, InGaN, AlGaN, AlN, ZnO, MgZnO, and the like can be listed as candidates.

続いて、成長温度を700℃まで下げ、柱状構造を維持したまま、InGaN/GaN多重量子井戸構造を成長させることで、吸収・再発光層15aを形成する。本実施の形態では、前記図2(a)で示すような、井戸層7a,7b,7cの厚さを2nm、障壁層2c,2dの厚さを5nmとして、3つの井戸を有する構造を採用した。井戸層7a,7b,7cのInGaNのIn組成は17%とした。   Subsequently, the absorption / re-emission layer 15a is formed by lowering the growth temperature to 700 ° C. and growing the InGaN / GaN multiple quantum well structure while maintaining the columnar structure. In the present embodiment, as shown in FIG. 2A, the well layers 7a, 7b, 7c have a thickness of 2 nm, the barrier layers 2c, 2d have a thickness of 5 nm, and a structure having three wells is employed. did. The In composition of InGaN in the well layers 7a, 7b, and 7c was 17%.

次に、n型ナノコラムGaN層14bを形成する。この時の製作条件は、吸収・再発光層15aの下に用いたn型ナノコラムGaN層14aの製作条件と同じである。ただし、厚さを300nmとした。   Next, the n-type nanocolumn GaN layer 14b is formed. The manufacturing conditions at this time are the same as the manufacturing conditions of the n-type nanocolumn GaN layer 14a used under the absorption / re-emission layer 15a. However, the thickness was 300 nm.

続いて、発光層16を形成する。この時の製作条件は、吸収・再発光層15aと同様である。ただし、発光層16の発光波長は、上記量子井戸の場合、In組成を変更することで変化させることができる。ただし、発光層16の材料は、InGaNに限定されるものではなく、前記InN、GaN、AlGaN、AlN、ZnO等も候補に挙げられる。   Subsequently, the light emitting layer 16 is formed. The manufacturing conditions at this time are the same as those of the absorption / re-emission layer 15a. However, in the case of the quantum well, the emission wavelength of the light emitting layer 16 can be changed by changing the In composition. However, the material of the light emitting layer 16 is not limited to InGaN, and the above-mentioned InN, GaN, AlGaN, AlN, ZnO and the like are also candidates.

次に、p型ナノコラムGaN層17aを形成する。今回の成長条件は、前記n型ナノコラムGaN層14a,14bを形成する条件と同じにした。n型ナノコラムGaN層14a,14b同様、p型ナノコラムGaN層17aの材料は、GaNに限定されるものではない。厚さは、30nmとした。続いて、吸収・再発光層15bを形成する。製作条件は、前記吸収・再発光層15aと同様である。次に、p型ナノコラムGaN層17bを形成する。製作条件は、前記p型ナノコラムGaN層17aと同様である。ただし、厚さを20nmとした。上記工程を行うことで、n型ナノコラムGaN層14およびp型ナノコラムGaN層17のそれぞれに、吸収・再発光層15a,15bを導入することができる。   Next, the p-type nanocolumn GaN layer 17a is formed. The growth conditions this time were the same as the conditions for forming the n-type nanocolumn GaN layers 14a and 14b. Similar to the n-type nanocolumn GaN layers 14a and 14b, the material of the p-type nanocolumn GaN layer 17a is not limited to GaN. The thickness was 30 nm. Subsequently, the absorption / re-emission layer 15b is formed. The manufacturing conditions are the same as those of the absorption / re-emission layer 15a. Next, the p-type nanocolumn GaN layer 17b is formed. The manufacturing conditions are the same as those of the p-type nanocolumn GaN layer 17a. However, the thickness was 20 nm. By performing the above process, the absorption / re-emission layers 15a and 15b can be introduced into the n-type nanocolumn GaN layer 14 and the p-type nanocolumn GaN layer 17, respectively.

続いて、回転塗布によって、絶縁体であるSOG(Spin on Glass)を塗布し、ナノコラム間の隙間に絶縁体18を充填させる。前記SOGは、液状であるので、ナノコラム間の隙間に侵入する。ナノコラム間隔、SOGの粘性などを制御することによって、p型ナノコラムGaN層17bより基板11側へ侵入させることは容易である。この後、SOGを400℃で焼成して固化し、バッファードフッ酸を用いて、p型ナノコラムGaN層17bの先端が露出するようにSOGを全面エッチングすると、少なくともp型ナノコラムGaN層17bと、吸収・再発光層15bと、発光層16とをカバーする形で、絶縁体18であるSOGが埋め込まれる。そして、この上に、たとえばNi/Auの透明電極を蒸着し、p型電極19とする。サファイア基板11側から光を取出す場合には、このp型電極19に、ロジウム、銀、Al等の可視域で反射率の高い金属を用いることも可能である。   Subsequently, SOG (Spin on Glass) which is an insulator is applied by spin coating, and the insulator 18 is filled in the gaps between the nanocolumns. Since the SOG is liquid, it penetrates into the gaps between the nanocolumns. By controlling the nanocolumn spacing, the viscosity of the SOG, etc., it is easy to penetrate from the p-type nanocolumn GaN layer 17b to the substrate 11 side. Thereafter, SOG is baked and solidified at 400 ° C., and the entire surface of SOG is etched using buffered hydrofluoric acid so that the tip of the p-type nanocolumn GaN layer 17b is exposed. At least the p-type nanocolumn GaN layer 17b, SOG that is an insulator 18 is embedded so as to cover the absorption / re-emission layer 15 b and the light emitting layer 16. Then, for example, a Ni / Au transparent electrode is vapor-deposited to form a p-type electrode 19. In the case where light is extracted from the sapphire substrate 11 side, it is possible to use a metal having a high reflectance in the visible region, such as rhodium, silver, or Al, for the p-type electrode 19.

さらに、通常のフォトリソグラフィ技術を用いてパターン形成し、ナノコラムの一部をドライエッチングして、n型AlGaN下地層12が露出するまで除去し、たとえばTi/AuまたはAl/Au(Al/Auの方が反射率が高く有望)のn型電極20を形成する。このようにして、本実施の形態の発光ダイオードD2を作製する。   Further, pattern formation is performed using a normal photolithography technique, and a part of the nanocolumn is dry-etched and removed until the n-type AlGaN underlayer 12 is exposed. For example, Ti / Au or Al / Au (Al / Au) The n-type electrode 20 having higher reflectivity and promising) is formed. In this manner, the light emitting diode D2 of the present embodiment is manufactured.

このように構成することで、前述の図6で示す非特許文献1では、p型電極55を形成するためのp型GaNコンタクト層54に面方位の異なる結晶が混在して成長し、たとえナノコラム内に貫通転位が無くとも、該p型GaNコンタクト層54に多数の貫通転位が発生してしまい、発光層53で発生した光の多くが吸収されてしまうのに対して、本実施の形態のようにナノコラムの先端側に設けるべきp型電極19を、p型ナノコラムGaN層17bとオーミックコンタクトを取ることができる透明電極の貼合わせで実現することで、そのような問題を解消し、ナノコラムが内部に貫通転位を持たないという利点を生かしたさらに高効率な発光ダイオードを実現することができる。   With this configuration, in Non-Patent Document 1 shown in FIG. 6 described above, crystals with different plane orientations grow in the p-type GaN contact layer 54 for forming the p-type electrode 55, even if nanocolumns are grown. Even if there are no threading dislocations, a large number of threading dislocations are generated in the p-type GaN contact layer 54, and much of the light generated in the light emitting layer 53 is absorbed. In this way, the p-type electrode 19 to be provided on the tip side of the nanocolumn is realized by laminating a transparent electrode capable of making ohmic contact with the p-type nanocolumn GaN layer 17b. A more efficient light-emitting diode can be realized that takes advantage of no threading dislocations inside.

上述の発光ダイオードD2では、前記p型電極19は、SOGによる絶縁体18を埋込んで、発光層16を挟んでn型ナノコラムGaN層14bとp型ナノコラムGaN層17aとが短絡しないようにした後、蒸着によって形成されているけれども、吸収・再発光層15bからp型ナノコラムGaN層17bを形成した後、該p型ナノコラムGaN層17bの先端を、多層半導体を作製する際に広く用いられるシリコンCMP技術を用い、回転研磨によって均一な高さに揃えた後、同様に研磨によって表面を平坦にしたp型GaN基板を積層し、加熱・加圧することで、p型電極が作製されてもよい。   In the above-described light emitting diode D2, the p-type electrode 19 is embedded with an insulator 18 made of SOG so that the n-type nanocolumn GaN layer 14b and the p-type nanocolumn GaN layer 17a are not short-circuited with the light emitting layer 16 interposed therebetween. Thereafter, although formed by vapor deposition, after forming the p-type nanocolumn GaN layer 17b from the absorption / re-emission layer 15b, the tip of the p-type nanocolumn GaN layer 17b is used widely for manufacturing a multilayer semiconductor. A p-type electrode may be fabricated by stacking a p-type GaN substrate that has been flattened by polishing in the same manner, and then heating and pressurizing after the CMP technique is used to achieve uniform height by rotational polishing. .

上述のように構成される発光ダイオードD1,D2を照明装置に用いることで、同じ光束(輝度、照度)を得るにも、小型で低消費電力な照明装置を実現することができる。   By using the light emitting diodes D1 and D2 configured as described above for the lighting device, it is possible to realize a small lighting device with low power consumption even when the same luminous flux (luminance, illuminance) is obtained.

本発明の実施の第1の形態に係る半導体発光素子である発光ダイオードの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the light emitting diode which is a semiconductor light emitting element concerning the 1st Embodiment of this invention. 本発明のナノコラムに設ける吸収・再発光層の構造例を示す断面図である。It is sectional drawing which shows the structural example of the absorption and re-emission layer provided in the nanocolumn of this invention. 前記吸収・再発光層の配置例を示す断面図である。It is sectional drawing which shows the example of arrangement | positioning of the said absorption and re-emission layer. ナノコラムにおけるエスケープコーンによる光取出し角を説明するための図である。It is a figure for demonstrating the light extraction angle | corner by the escape cone in a nanocolumn. 本発明の実施の第2の形態に係る半導体発光素子である発光ダイオードの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the light emitting diode which is a semiconductor light-emitting device based on the 2nd Embodiment of this invention. 典型的な従来技術の半導体発光素子の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the typical prior art semiconductor light-emitting device.

符号の説明Explanation of symbols

1 シリコン基板
2,2a,2b n型GaNナノコラム層
2c,2d 障壁層
3 発光層
4 p型GaNコンタクト層
5 p型電極
6,6a,6b 吸収・再発光層
7a,7b,7c 井戸層
8 井戸層
11 サファイア基板
12 AlGaN下地層
13 核成長部
14,14a,14b n型ナノコラムGaN層
15a,15b 吸収・再発光層
16 発光層
17,17a,17b p型ナノコラムGaN層
18 絶縁体
19 p型電極
20 n型電極
C1,C2 エスケープコーン
D1,D2 発光ダイオード
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2, 2a, 2b N-type GaN nanocolumn layer 2c, 2d Barrier layer 3 Light emitting layer 4 p-type GaN contact layer 5 p-type electrode 6, 6a, 6b Absorption / re-light emitting layer 7a, 7b, 7c Well layer 8 Well Layer 11 Sapphire substrate 12 AlGaN underlayer 13 Nucleus growth part 14, 14a, 14b N-type nanocolumn GaN layer 15a, 15b Absorption / re-emission layer 16 Light-emitting layer 17, 17a, 17b P-type nanocolumn GaN layer 18 Insulator 19 P-type electrode 20 n-type electrode C1, C2 escape cone D1, D2 light emitting diode

Claims (6)

基板上に、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体を複数有して成る半導体発光素子において、
前記柱状結晶構造体における前記発光層以外の領域に、前記発光層から放射された光を吸収して再発光させる吸収・再発光層を有することを特徴とする半導体発光素子。
A plurality of columnar crystal structures in which an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer or a p-type oxide semiconductor layer are sequentially stacked on a substrate; In a semiconductor light emitting device comprising:
A semiconductor light-emitting element comprising an absorption / re-emission layer that absorbs light emitted from the light-emitting layer and re-emits light in a region other than the light-emitting layer in the columnar crystal structure.
前記吸収・再発光層は、多重量子井戸構造から成ることを特徴とする請求項1記載の半導体発光素子。   2. The semiconductor light emitting device according to claim 1, wherein the absorption / re-emission layer has a multiple quantum well structure. 前記吸収・再発光層は、ダブルへテロ構造から成ることを特徴とする請求項1記載の半導体発光素子。 The absorption and re-emission layer, a semiconductor light emitting device according to claim 1, characterized in that it consists of terrorism structures to double. 前記p型窒化物半導体層またはp型酸化物半導体層上に、これらとオーミックコンタクトを取ることができる導電性材料を貼合わせて成るp型電極を有することを特徴とする請求項1〜3のいずれか1項に記載の半導体発光素子。   4. The p-type electrode according to claim 1, wherein a p-type electrode is formed on the p-type nitride semiconductor layer or the p-type oxide semiconductor layer by bonding a conductive material capable of making ohmic contact therewith. The semiconductor light emitting element of any one of Claims. 前記請求項1〜4のいずれか1項に記載の半導体発光素子を用いることを特徴とする照明装置。   An illumination device using the semiconductor light emitting element according to claim 1. 基板上に、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体を複数有して成る半導体発光素子の製造方法において、
前記n型窒化物半導体層またはn型酸化物半導体層と、p型窒化物半導体層またはp型酸化物半導体層との少なくとも一方の成長工程に、前記発光層から放射された光を吸収して再発光させる吸収・再発光層を成長させる工程を有することを特徴とする半導体発光素子の製造方法。
A plurality of columnar crystal structures in which an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer or a p-type oxide semiconductor layer are sequentially stacked on a substrate; In a method for manufacturing a semiconductor light emitting device comprising:
At least one growth step of the n-type nitride semiconductor layer or n-type oxide semiconductor layer and the p-type nitride semiconductor layer or p-type oxide semiconductor layer absorbs light emitted from the light emitting layer. A method for producing a semiconductor light emitting device, comprising a step of growing an absorption / relight emission layer for re-emission.
JP2005234132A 2005-08-12 2005-08-12 Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element Expired - Fee Related JP4483736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005234132A JP4483736B2 (en) 2005-08-12 2005-08-12 Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005234132A JP4483736B2 (en) 2005-08-12 2005-08-12 Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JP2007049062A JP2007049062A (en) 2007-02-22
JP4483736B2 true JP4483736B2 (en) 2010-06-16

Family

ID=37851620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005234132A Expired - Fee Related JP4483736B2 (en) 2005-08-12 2005-08-12 Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP4483736B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI351717B (en) * 2007-10-15 2011-11-01 Univ Nat Chiao Tung Method for forming group-iii nitride semiconductor
EP2618388B1 (en) * 2012-01-20 2019-10-02 OSRAM Opto Semiconductors GmbH Light-emitting diode chip
JP2019040982A (en) 2017-08-24 2019-03-14 セイコーエプソン株式会社 Light-emitting device and manufacturing method thereof, and projector
JP7110580B2 (en) 2017-10-27 2022-08-02 セイコーエプソン株式会社 Light-emitting device, manufacturing method thereof, and projector
JP7017761B2 (en) 2019-10-29 2022-02-09 セイコーエプソン株式会社 Luminous device, projector, and display
JP2021136326A (en) 2020-02-27 2021-09-13 セイコーエプソン株式会社 Light emitting device and projector
JP2022073095A (en) * 2020-10-30 2022-05-17 セイコーエプソン株式会社 Light emitting device and projector
DE102021113695A1 (en) * 2021-05-27 2022-12-01 Ams-Osram International Gmbh IMPROVED µ-LED PROJECTION DEVICE AND METHOD OF PRODUCTION THEREOF

Also Published As

Publication number Publication date
JP2007049062A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4591276B2 (en) Manufacturing method of semiconductor light emitting device
JP4525500B2 (en) Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element
JP6025933B2 (en) Manufacturing method of light emitting diode
JP4177097B2 (en) Method of manufacturing a semiconductor chip emitting radiation based on III-V nitride semiconductor and semiconductor chip emitting radiation
JP4483736B2 (en) Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element
CN102341887B (en) Comprise the group III-nitride luminescent device of boron
US8525200B2 (en) Light-emitting diode with non-metallic reflector
KR102071163B1 (en) Iii-v light emitting device including a light extracting structure
JP2008047860A (en) Method of forming rugged surface and method of manufacturing gallium nitride light-emitting diode device using the same
JP5674806B2 (en) III-V light emitting device having thin n-type region
US10886429B2 (en) Method of manufacturing an optoelectronic device by transferring a conversion structure onto an emission structure
JP5872154B2 (en) Light emitting device and manufacturing method thereof
KR102094471B1 (en) Method for growing nitride semiconductor layer and Nitride semiconductor formed therefrom
US7772600B2 (en) Light emitting device having zener diode therein and method of fabricating the same
JP4995053B2 (en) Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element
JP4586934B2 (en) Semiconductor light emitting element and lighting device using the same
JP2009129941A (en) Light-emitting device
JP4586935B2 (en) Manufacturing method of semiconductor light emitting device
JP4508021B2 (en) Manufacturing method of semiconductor light emitting device
JP2008066590A (en) Compound semiconductor light emitting device, illumination apparatus employing the same and manufacturing method of compound semiconductor device
JP2008066591A (en) Compound semiconductor light emitting device, illumination apparatus employing the same and manufacturing method of compound semiconductor device
KR101264159B1 (en) Gallium nitride-based nanowire light emitting diode device array and fabricating method thereof
KR101241331B1 (en) Nitride based LED and method of manufacturing the same
US8536585B2 (en) Semiconductor light emitting device including anode and cathode having the same metal structure
WO2022104770A1 (en) Method for manufacturing vertical cavity surface emitting laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees