JP2010133855A - Magnetic detection circuit element and magnetic sensor - Google Patents

Magnetic detection circuit element and magnetic sensor Download PDF

Info

Publication number
JP2010133855A
JP2010133855A JP2008311059A JP2008311059A JP2010133855A JP 2010133855 A JP2010133855 A JP 2010133855A JP 2008311059 A JP2008311059 A JP 2008311059A JP 2008311059 A JP2008311059 A JP 2008311059A JP 2010133855 A JP2010133855 A JP 2010133855A
Authority
JP
Japan
Prior art keywords
electrode
output voltage
detection circuit
voltage electrode
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008311059A
Other languages
Japanese (ja)
Inventor
Tamotsu Minamitani
保 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008311059A priority Critical patent/JP2010133855A/en
Publication of JP2010133855A publication Critical patent/JP2010133855A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic detection circuit element capable of reducing midpoint voltage deviation and making temperature characteristics of the midpoint voltage satisfactory by using a simple structure and a manufacturing method. <P>SOLUTION: On a semi-insulating substrate 11, a magnetoresistive element MR1 including a semiconductor film 13A and a magnetoresistive element MR2 including a semiconductor film 13B are formed in a long shape, and an input voltage electrode 14, a ground connection electrode 15, and an output voltage electrode 16 are formed. A correction electrode 16' is formed between the adjacent input voltage electrode 14 and the ground connection electrode 15. The correction electrode 16' is connected to the output voltage electrode 16 in a region different from that on a formation surface of the magnetoresistive elements MR1, MR2 of the semi-insulating substrate 11. The correction electrode 16' is set at the installation position and the size such that the leak current generated when the correction electrode 16' is not formed is canceled by a leak current newly generated by the formation of the correction electrode 16'. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、磁束密度の変化により被検出体を検出する磁気検出回路素子、およびこれを用いた磁気センサに関するものである。   The present invention relates to a magnetic detection circuit element that detects an object to be detected based on a change in magnetic flux density, and a magnetic sensor using the same.

現在、各種の回転センサが利用されている中、磁気を利用した回転センサが存在する。そして、このような回転センサは、筐体内に永久磁石を配置し、該永久磁石の被検出体側に磁気抵抗素子を有する磁気検出回路素子を配置した構造を有する。この磁気検出回路素子では、一般的にSi等の半絶縁性基板上に、磁束密度の変化により抵抗値が変化するInSb等の半導体膜を長尺状に形成し、さらに半導体膜の上面に導体からなる短絡電極を長尺方向に沿って複数形成することで磁気抵抗素子を構成する。そして、磁気検出回路素子は、複数(例えば一対)の磁気抵抗素子を直列接続し、当該直列回路に一定値からなる直流電圧を印加し続け、複数の磁気抵抗素子同士の接続点での分圧電圧を検出電圧信号として出力する。したがって、このような磁気検出回路素子は、直流電圧を印加させるための入力電圧用電極、グランドに接続させるためのグランド接続用電極、検出電圧信号を出力するための出力電圧用電極が半絶縁性基板上に形成された構成となる。   Currently, rotation sensors using magnetism exist among various rotation sensors. And such a rotation sensor has the structure which has arrange | positioned the permanent magnet in the housing | casing, and has arrange | positioned the magnetic detection circuit element which has a magnetoresistive element in the to-be-detected body side of this permanent magnet. In this magnetic detection circuit element, a semiconductor film such as InSb whose resistance value changes due to a change in magnetic flux density is generally formed on a semi-insulating substrate such as Si, and a conductor is formed on the upper surface of the semiconductor film. A magnetoresistive element is formed by forming a plurality of short-circuit electrodes made of The magnetic detection circuit element connects a plurality (for example, a pair) of magnetoresistive elements in series, continues to apply a DC voltage having a constant value to the series circuit, and divides the voltage at the connection point of the plurality of magnetoresistive elements. The voltage is output as a detection voltage signal. Therefore, in such a magnetic detection circuit element, an input voltage electrode for applying a DC voltage, a ground connection electrode for connection to the ground, and an output voltage electrode for outputting a detection voltage signal are semi-insulating. The structure is formed on the substrate.

ここで、上述のように半絶縁性基板としてSiを用い、半導体膜としてInSbを用いる場合のように、半絶縁性基板と半導体膜との抵抗値比が小さい場合で、且つ、出力電圧用電極が入力電圧用電極やグランド接続用電極に近接して配置されている場合には、半導体膜に流れるべき電流が半絶縁性基板内を流れてしまいリーク電流が発生する。このため、磁気抵抗素子の接続点(中点)から得られる検出電圧信号の電圧値(以下、「中点電圧」と称する。)の初期値が、リーク電流の発生しない前提からなる設計値に対してズレるという問題が発生する。以下、この問題を、「中点電圧偏差」が大きくなると称する。さらに、半絶縁性基板の抵抗温度特性と半導体膜の抵抗温度特性とが異なることにより、中点電圧が温度により変化するという問題も発生する。   Here, as described above, when Si is used as the semi-insulating substrate and InSb is used as the semiconductor film, the resistance value ratio between the semi-insulating substrate and the semiconductor film is small, and the output voltage electrode Is disposed in the vicinity of the input voltage electrode and the ground connection electrode, the current that should flow through the semiconductor film flows through the semi-insulating substrate and a leak current is generated. For this reason, the initial value of the voltage value (hereinafter referred to as “middle point voltage”) of the detection voltage signal obtained from the connection point (middle point) of the magnetoresistive element is a design value based on the premise that no leakage current occurs. The problem of misalignment occurs. Hereinafter, this problem is referred to as “midpoint voltage deviation” becoming large. Furthermore, since the resistance temperature characteristics of the semi-insulating substrate and the resistance temperature characteristics of the semiconductor film are different, there is a problem that the midpoint voltage varies with temperature.

そこで、従来、「中点電圧偏差」が大きくなる問題を解決するため、特許文献1では、半絶縁性基板であるSi基板の比抵抗や厚みを規制したり、半絶縁性基板とは異なる特性の層を設けたり、半絶縁性基板に溝を設けたりすることで、半絶縁性基板へのリーク電流の流れを防止している。   Therefore, conventionally, in order to solve the problem that the “midpoint voltage deviation” becomes large, in Patent Document 1, the specific resistance and thickness of the Si substrate which is a semi-insulating substrate are regulated, or characteristics different from those of the semi-insulating substrate. By providing this layer or by providing a groove in the semi-insulating substrate, the flow of leak current to the semi-insulating substrate is prevented.

また、中点電圧の温度特性に関する問題を解決するため、特許文献2では、半導体膜に対して意図的に不純物をドーピングして半導体膜の温度による抵抗値の変化が少なくなるようにしている。
特開平9−162459号公報 特開2005−327859号公報
Further, in order to solve the problem relating to the temperature characteristics of the midpoint voltage, in Patent Document 2, impurities are intentionally doped into the semiconductor film so that the change in resistance value due to the temperature of the semiconductor film is reduced.
Japanese Patent Laid-Open No. 9-162459 JP 2005-327859 A

しかしながら、特許文献1,2に示す構成や方法では、半絶縁性基板に対して新たな層を挿入したり、半絶縁性基板に物理的な加工を行なったり、半導体膜の形成時に不純物をドーピングするため、磁気検出回路素子全体として形成が容易でなかったり、複雑な工程を経由しなければ形成できない、という問題が生じる。   However, in the configurations and methods shown in Patent Documents 1 and 2, a new layer is inserted into the semi-insulating substrate, physical processing is performed on the semi-insulating substrate, or impurities are doped during the formation of the semiconductor film. Therefore, there arises a problem that the magnetic detection circuit element as a whole cannot be formed easily or cannot be formed unless it goes through a complicated process.

したがって、本発明の目的は、簡素な構造および製造方法を用いて、中点電圧偏差を小さくするとともに中点電圧の温度特性を良好にすることができる磁気検出回路素子を実現することにある。   Accordingly, an object of the present invention is to realize a magnetic detection circuit element capable of reducing the midpoint voltage deviation and improving the temperature characteristics of the midpoint voltage using a simple structure and manufacturing method.

この発明の磁気検出回路素子は、複数の磁気抵抗素子、接続電極、入力電圧用電極、グランド接続用電極、出力電圧用電極が、半絶縁性基板の一主面上に形成されたものである。磁気抵抗素子は、磁束密度の変化に応じて抵抗値が変化する。接続電極は、これら複数の磁気抵抗素子の直列回路を形成する。入力電圧用電極は、接続電極を介して直列回路に検出用入力電圧を印加する。グランド接続用電極は、接続電極を介して直列回路をグランドに接続する。出力電圧用電極は、複数の磁気抵抗素子同士の接続点に接続し、該複数の磁気抵抗素子による分圧に基づく検出電圧を出力する。そして、この発明の磁気検出回路素子は、半絶縁性基板の一主面上における隣接する入力電圧用電極、グランド接続用電極、出力電圧用電極のいずれか二つの電極の間に、該二つの電極とは異なる入力電圧用電極、グランド接続用電極、出力電圧用電極のいずれかに対して電気的に接続する補正用電極を設けている。この際、補正用電極は、検出用入力電圧の印加により補正用電極と二つの電極のいずれかとの間で半絶縁性基板を介して所定の電流が流れるような位置および形状で設けられている。   In the magnetic detection circuit element of the present invention, a plurality of magnetoresistive elements, connection electrodes, input voltage electrodes, ground connection electrodes, and output voltage electrodes are formed on one main surface of a semi-insulating substrate. . The resistance value of the magnetoresistive element changes according to the change of the magnetic flux density. The connection electrode forms a series circuit of the plurality of magnetoresistive elements. The input voltage electrode applies a detection input voltage to the series circuit via the connection electrode. The ground connection electrode connects the series circuit to the ground via the connection electrode. The output voltage electrode is connected to a connection point between the plurality of magnetoresistive elements, and outputs a detection voltage based on the voltage division by the plurality of magnetoresistive elements. The magnetic detection circuit element according to the present invention includes two input electrodes, a ground connection electrode, and an output voltage electrode adjacent to each other on one main surface of the semi-insulating substrate. A correction electrode that is electrically connected to any of an input voltage electrode, a ground connection electrode, and an output voltage electrode different from the electrodes is provided. At this time, the correction electrode is provided in such a position and shape that a predetermined current flows between the correction electrode and one of the two electrodes through the semi-insulating substrate by applying the detection input voltage. .

この構成では、補正用電極を入力電圧用電極、グランド接続用電極、出力電圧用電極に接続することで、補正用電極は、これら電極のいずれかと同電位になる。このような補正用電極を半絶縁性基板上の所定位置に新たに形成することで、補正用電極の形成前には存在しなかった、入力電圧用電極と出力電圧用電極との間やグランド接続用電極と出力電圧用電極との間の新たなリーク電流(リーク抵抗)が意図的に発生させられる。このように、補正用電極の形成前に生じるリーク電流に加えて補正用電極の形成によるリーク電流を加えることで、リーク電流全体により中点電圧偏差に与える影響が変化する。ここで、補正用電極の形成に基づくリーク電流による中点電圧偏差への影響を利用して、補正用電極の形成前のリーク電極による中点電圧偏差への影響を相殺する形状の補正用電極を用いることで、中点電圧偏差が小さくなる。さらに、リーク電流同士が相殺されることで、半絶縁性基板と半導体膜との抵抗温度特性の相違による中点電圧の温度特性が安定化される。この際、補正用電極は、他の電極のパターニングと同時に行うことができるので、形成が容易となる。   In this configuration, the correction electrode has the same potential as any of these electrodes by connecting the correction electrode to the input voltage electrode, the ground connection electrode, and the output voltage electrode. By newly forming such a correction electrode at a predetermined position on the semi-insulating substrate, the ground between the input voltage electrode and the output voltage electrode, which has not existed before the formation of the correction electrode, or the ground A new leakage current (leak resistance) between the connection electrode and the output voltage electrode is intentionally generated. In this way, by adding the leakage current due to the formation of the correction electrode in addition to the leakage current generated before the formation of the correction electrode, the influence on the midpoint voltage deviation is changed by the entire leakage current. Here, the correction electrode having a shape that offsets the influence on the midpoint voltage deviation caused by the leak electrode before the correction electrode is formed by using the influence on the midpoint voltage deviation caused by the leak current based on the formation of the correction electrode By using, the midpoint voltage deviation is reduced. Furthermore, since the leak currents are canceled out, the temperature characteristic of the midpoint voltage due to the difference in resistance temperature characteristics between the semi-insulating substrate and the semiconductor film is stabilized. At this time, the correction electrode can be formed at the same time as the patterning of the other electrodes, so that it is easy to form.

また、この発明の磁気検出回路素子の補正用電極は、入力電圧用電極、グランド接続用電極、出力電圧用電極に対して、半絶縁性基板の一主面上とは離間された位置で接続されている。   Further, the correction electrode of the magnetic detection circuit element of the present invention is connected to the input voltage electrode, the ground connection electrode, and the output voltage electrode at a position separated from one main surface of the semi-insulating substrate. Has been.

この構成では、補正用電極に対する接続導体が半絶縁性基板の一主面上以外に形成されるので、当該接続導体による新たなリーク電流の発生が防止される。   In this configuration, since the connection conductor for the correction electrode is formed on a surface other than the one main surface of the semi-insulating substrate, generation of a new leakage current due to the connection conductor is prevented.

また、この発明の磁気センサは、上述の磁気検出回路素子と、筐体と、接続導体とを備える。筐体は、磁気検出回路素子が永久磁石に対する被検出体側で且つ磁気検出回路素子の一主面が被検出体側になるように、磁気検出回路素子および永久磁石を保持する。接続導体は、筐体内に設けられており、磁気検出回路素子の入力電圧用電極、出力電圧用電極、グランド接続用電極のいずれかに接続する。そして、この発明の磁気検出回路素子は、この接続導体により、補正用電極を入力電圧用電極、出力電圧用電極、グランド接続用電極のいずれかに接続する。   A magnetic sensor according to the present invention includes the above-described magnetic detection circuit element, a housing, and a connection conductor. The housing holds the magnetic detection circuit element and the permanent magnet so that the magnetic detection circuit element is on the detected body side with respect to the permanent magnet and one main surface of the magnetic detection circuit element is on the detected body side. The connection conductor is provided in the housing and is connected to any one of the input voltage electrode, the output voltage electrode, and the ground connection electrode of the magnetic detection circuit element. In the magnetic detection circuit element of the present invention, the correction electrode is connected to any one of the input voltage electrode, the output voltage electrode, and the ground connection electrode by the connection conductor.

この構成では、上述の磁気検出回路素子を磁気センサに組み込む際に、補正用電極と補正用電極を入力電圧用電極、出力電圧用電極、グランド接続用電極との接続が、元々、磁気センサに設けられている接続導体により行われる。これにより、補正電極用に対する接続用の電極パターンを新たに設ける必要がない。また、補正用電極に対する接続用の電極パターンを設けることによる、さらなるリーク電流の発生を防止できる。   In this configuration, when the magnetic detection circuit element described above is incorporated into the magnetic sensor, the connection between the correction electrode and the correction electrode with the input voltage electrode, the output voltage electrode, and the ground connection electrode is originally connected to the magnetic sensor. This is done by the connecting conductor provided. This eliminates the need to newly provide an electrode pattern for connection to the correction electrode. Further, it is possible to prevent further leakage current from being generated by providing an electrode pattern for connection to the correction electrode.

この発明によれば、簡素な構造で且つ複雑な製造工程を用いなくても、中点電圧偏差を小さくできるとともに中点電圧の温度による変化を抑制できる磁気検出回路素子を実現することができる。   According to the present invention, it is possible to realize a magnetic detection circuit element having a simple structure and capable of reducing the midpoint voltage deviation and suppressing changes in the midpoint voltage due to temperature without using a complicated manufacturing process.

本発明の第1の実施形態に係る磁気検出回路素子および磁気センサについて図を参照して説明する。   A magnetic detection circuit element and a magnetic sensor according to a first embodiment of the present invention will be described with reference to the drawings.

図1(A)は本実施形態の磁気検出回路素子11の構成を示す平面図であり、図1(B)は当該磁気検出回路素子11の概念を説明するための等価回路図である。なお、図1(A)、(B)に示す点線からなる回路部分は、実際にディスクリート部品や電極パターンのような有形の部材が設置されたものを表しているのではなく、磁気検出回路素子11の特性上、点線で表現される機能が存在することを示している。   FIG. 1A is a plan view showing the configuration of the magnetic detection circuit element 11 of this embodiment, and FIG. 1B is an equivalent circuit diagram for explaining the concept of the magnetic detection circuit element 11. In addition, the circuit part which consists of a dotted line shown to FIG. 1 (A), (B) does not represent the thing in which a tangible member like a discrete component or an electrode pattern was actually installed, but a magnetic detection circuit element 11 indicates that there is a function represented by a dotted line.

磁気検出回路素子11は、Si,GaAs等を基材とする所定厚みを有する半絶縁性基板12を備える。なお、ここでいう半絶縁性基板とは、不純物を含まない基板において高抵抗(比抵抗が数MΩ)を示す半導体基板のことをいう。半絶縁性基板12の一方の主面(本発明の「一主面」に相当する。)には、InSb,GaAs,NiSb,InAs等を材料とする半導体膜13A,13Bが形成されている。半導体膜13A,13Bは、平面視した状態で長尺状に形成されており、長尺方向が平行になるように配置されている。半導体膜13A,13Bの表面には、導電性材料からなる短絡電極が長尺方向に沿って所定の間隔パターンで形成されている。この短絡電極の形成パターンにより半導体膜13A,13Bの磁束密度に対する感度、すなわち、被検体の通過による磁束密度の変化量に応じて抵抗値が変化する割合が設定される。そしてこのように短絡電極が形成された半導体膜13A,13Bにより磁気抵抗素子MR1,MR2が構成される。なお、以下の説明では、特別な記載をしない限り、短絡電極付きの半導体膜を単に半導体膜として取り扱う。   The magnetic detection circuit element 11 includes a semi-insulating substrate 12 having a predetermined thickness with Si, GaAs or the like as a base material. Note that the semi-insulating substrate herein refers to a semiconductor substrate that exhibits high resistance (specific resistance is several MΩ) in a substrate that does not contain impurities. On one main surface (corresponding to “one main surface” of the present invention) of the semi-insulating substrate 12, semiconductor films 13A and 13B made of InSb, GaAs, NiSb, InAs or the like are formed. The semiconductor films 13A and 13B are formed in a long shape in a plan view, and are arranged so that the long direction is parallel. On the surfaces of the semiconductor films 13A and 13B, short-circuit electrodes made of a conductive material are formed in a predetermined interval pattern along the longitudinal direction. The ratio with which the resistance value changes according to the sensitivity to the magnetic flux density of the semiconductor films 13A and 13B, that is, the amount of change in the magnetic flux density due to the passage of the subject, is set by this short-circuit electrode formation pattern. The magnetoresistive elements MR1 and MR2 are constituted by the semiconductor films 13A and 13B on which the short-circuit electrodes are thus formed. In the following description, a semiconductor film with a short-circuit electrode is simply treated as a semiconductor film unless otherwise specified.

入力電圧用電極14、グランド接続用電極15、出力電圧用電極16は、半導体膜13A,13Bの長尺方向に沿って、半絶縁性基板12の一方端(図1(A)を見た左端)から、グランド接続用電極15、入力電圧用電極14、出力電圧用電極16の順で配列して形成されている。   The input voltage electrode 14, the ground connection electrode 15, and the output voltage electrode 16 are arranged at one end of the semi-insulating substrate 12 (the left end as viewed in FIG. 1A) along the longitudinal direction of the semiconductor films 13 </ b> A and 13 </ b> B. ) To the ground connection electrode 15, the input voltage electrode 14, and the output voltage electrode 16 in this order.

入力電圧用電極14は、導電性材料からなる接続電極17により半導体膜13Aの長尺方向の一方端に接続する。グランド接続用電極15は、接続電極17により半導体膜13Bの長尺方向の一方端に接続する。出力電圧用電極16は、接続電極17により半導体膜13Aおよび半導体膜13Bの長尺方向の他方端に接続する。   The input voltage electrode 14 is connected to one end in the longitudinal direction of the semiconductor film 13A by a connection electrode 17 made of a conductive material. The ground connection electrode 15 is connected to one end in the longitudinal direction of the semiconductor film 13 </ b> B by the connection electrode 17. The output voltage electrode 16 is connected to the other end of the semiconductor film 13A and the semiconductor film 13B in the longitudinal direction by the connection electrode 17.

このような構成とすることで、磁気検出回路素子11は、図1(B)の実線で示すように、磁気抵抗素子MR1と磁気抵抗素子MR2とを、入力電圧用電極14(Vin)とグランド接続用電極15(GND)との間に直列接続し、磁気抵抗素子MR1,MR2の接続点を出力電圧用電極16(Vout)へ接続した回路構成を実現している。このような構成の磁気検出回路素子11の入力電圧用電極14へ例えば5.0V等の直流電圧を印加すると、理想的には出力電圧用電極16から、磁気抵抗素子MR1と磁気抵抗素子MR2による分圧比に応じた電圧値の直流電圧が出力される。   With this configuration, the magnetic detection circuit element 11 includes the magnetoresistive element MR1 and the magnetoresistive element MR2, as shown by the solid line in FIG. 1B, the input voltage electrode 14 (Vin) and the ground. A circuit configuration is realized in which the connection points of the magnetoresistive elements MR1 and MR2 are connected to the output voltage electrode 16 (Vout) in series with the connection electrode 15 (GND). When a DC voltage of, for example, 5.0 V is applied to the input voltage electrode 14 of the magnetic detection circuit element 11 having such a configuration, the output voltage electrode 16 ideally causes the magnetoresistive element MR1 and the magnetoresistive element MR2. A DC voltage having a voltage value corresponding to the voltage division ratio is output.

しかしながら、上述の従来技術に示したように、入力電圧用電極14、グランド接続用電極15、出力電圧用電極16の内の隣り合う電極間でリーク電流が流れる。すなわち、図1のRr1,Rr2に示すように、隣り合う電極間にリーク抵抗が接続されたような回路構成となる。これにより、等価回路的には、図1(B)の実線部分および点線部分におけるリーク抵抗Rr1,Rr2が接続される回路部に示すように、入力電圧用電極14(Vin)とグランド接続用電極15(GND)との間にリーク抵抗Rr1が接続され、入力電圧用電極14(Vin)と出力電圧用電極16(Vout)との間に、磁気抵抗素子MR1とリーク抵抗Rr2との並列回路が接続され、出力電圧用電極16(Vout)とグランド接続用電極15(GND)との間に、磁気抵抗素子MR2が接続された構成となる。   However, as shown in the prior art described above, a leak current flows between adjacent electrodes of the input voltage electrode 14, the ground connection electrode 15, and the output voltage electrode 16. That is, as shown by Rr1 and Rr2 in FIG. 1, the circuit configuration is such that a leak resistor is connected between adjacent electrodes. Accordingly, in terms of an equivalent circuit, as shown in the circuit portion to which the leakage resistances Rr1 and Rr2 in the solid line portion and the dotted line portion in FIG. 1B are connected, the input voltage electrode 14 (Vin) and the ground connection electrode 15 (GND) is connected to the leak resistor Rr1, and a parallel circuit of the magnetoresistive element MR1 and the leak resistor Rr2 is provided between the input voltage electrode 14 (Vin) and the output voltage electrode 16 (Vout). The magnetoresistive element MR2 is connected between the output voltage electrode 16 (Vout) and the ground connection electrode 15 (GND).

そこで、本実施形態では、さらに、隣り合う入力電圧用電極14とグランド接続用電極15との間に、出力電圧用電極16に電気的に接続する補正用電極16’を配置する。補正用電極16’は、半絶縁性基板12の一方の主面以外領域に形成された接続導体18により出力電圧用電極16に接続される。これにより、補正用電極16’と入力電圧用電極14との間に新たなリーク抵抗Rc1が挿入され、補正用電極16’とグランド接続用電極15との間に新たなリーク抵抗Rc2が挿入された回路構成となる。   Therefore, in the present embodiment, a correction electrode 16 ′ that is electrically connected to the output voltage electrode 16 is disposed between the adjacent input voltage electrode 14 and the ground connection electrode 15. The correction electrode 16 ′ is connected to the output voltage electrode 16 by a connection conductor 18 formed in a region other than one main surface of the semi-insulating substrate 12. As a result, a new leak resistance Rc1 is inserted between the correction electrode 16 ′ and the input voltage electrode 14, and a new leak resistance Rc2 is inserted between the correction electrode 16 ′ and the ground connection electrode 15. Circuit configuration.

すなわち、図1(B)に示すように、入力電圧用電極14(Vin)と出力電圧用電極16(Vout)との間に、磁気抵抗素子MR1とリーク抵抗Rr2,Rc1との並列回路が接続され、出力電圧用電極16(Vout)とグランド接続用電極15(GND)との間に、磁気抵抗素子MR2とリーク抵抗Rc2との並列回路が接続され、入力電圧用電極14(Vin)とグランド接続用電極15(GND)との間にリーク抵抗Rr1が接続された構成となる。   That is, as shown in FIG. 1B, a parallel circuit of a magnetoresistive element MR1 and leak resistors Rr2 and Rc1 is connected between the input voltage electrode 14 (Vin) and the output voltage electrode 16 (Vout). A parallel circuit of the magnetoresistive element MR2 and the leakage resistor Rc2 is connected between the output voltage electrode 16 (Vout) and the ground connection electrode 15 (GND), and the input voltage electrode 14 (Vin) and the ground. A leakage resistor Rr1 is connected to the connection electrode 15 (GND).

ここで、磁気抵抗素子MR1,MR2との分圧比に対して、リーク抵抗Rc1,Rr2の並列回路とリーク抵抗Rc2との分圧比が一致するように、補正用電極16’の形状および形成位置を設定する。例えば、磁気抵抗素子MR1,MR2の抵抗値が一致する場合であれば、リーク抵抗Rc1,Rr2の並列回路の合成抵抗値と、リーク抵抗Rc2の抵抗値とが一致するように、補正用電極16’の形状および形成位置を設定する。なお、形成位置とは、補正用電極16’と他の電極、特にリーク抵抗を決定する入力電圧用電極14やグランド接続用電極15との距離に基づいて設定されるものである。   Here, the shape and position of the correction electrode 16 ′ are set so that the voltage dividing ratio between the parallel circuit of the leakage resistors Rc1 and Rr2 and the leakage resistance Rc2 matches the voltage dividing ratio with the magnetoresistive elements MR1 and MR2. Set. For example, if the resistance values of the magnetoresistive elements MR1 and MR2 are the same, the correction electrode 16 is set so that the combined resistance value of the parallel circuit of the leak resistances Rc1 and Rr2 matches the resistance value of the leak resistance Rc2. Set the shape and position of '. The formation position is set based on the distance between the correction electrode 16 ′ and other electrodes, particularly the input voltage electrode 14 and the ground connection electrode 15 that determine the leakage resistance.

このような構成とすることで、補正用電極16’が形成されていない状態の電極パターンに起因して生じるリーク抵抗Rr2による中点電圧偏差を抑制して小さくすることができる。この際、リーク抵抗Rc1,Rr2の並列回路とリーク抵抗Rc2とによる直列合成抵抗値は、磁気抵抗素子MR1,MR2の直列合成抵抗値に対して、大幅に大きい値(例えば、100倍以上)にするとよい。これにより、入力電圧用電極14から与えられた直流電圧による電流は、主として、磁気抵抗素子MR1,MR2側に流れ、リーク抵抗Rc1,Rr2の並列回路およびリーク抵抗Rc2側には流れない。したがって、検出感度を低下させることがなく、被検出体の通過による磁束密度の変化を検出することができる。   With such a configuration, it is possible to suppress and reduce the midpoint voltage deviation caused by the leak resistance Rr2 caused by the electrode pattern in the state where the correction electrode 16 'is not formed. At this time, the series combined resistance value of the parallel circuit of the leak resistors Rc1 and Rr2 and the leak resistor Rc2 is significantly larger than the series combined resistance value of the magnetoresistive elements MR1 and MR2 (for example, 100 times or more). Good. As a result, the current due to the DC voltage applied from the input voltage electrode 14 mainly flows to the magnetoresistive elements MR1 and MR2, but does not flow to the parallel circuit of the leak resistors Rc1 and Rr2 and the leak resistor Rc2. Therefore, it is possible to detect a change in magnetic flux density due to the passage of the detection object without reducing the detection sensitivity.

このように本実施形態の構成を用いることで、中点電圧偏差を小さく抑えることができるとともに、中点電圧の温度変化を抑制する磁気検出回路素子を実現することができる。この際、補正用電極による各リーク抵抗の抵抗値を適宜大きく設定することで、検出感度を下げることなく検出を行うことができる。さらに、補正用電極は、入力電圧用電極、出力電圧用電極、グランド接続用電極、および接続電極と同じ材料で形成可能であり、半絶縁性基板12の一主面に形成された電極パターンの一部と見なすことができるので、入力電圧用電極、出力電圧用電極、グランド接続用電極、および接続電極と同時にパターニングすることができ、簡素な構造および簡素な製造方法で形成することができる。   Thus, by using the configuration of the present embodiment, it is possible to realize a magnetic detection circuit element that can suppress the midpoint voltage deviation to a small level and suppress the temperature change of the midpoint voltage. At this time, detection can be performed without lowering the detection sensitivity by appropriately setting the resistance value of each leak resistance by the correction electrode. Further, the correction electrode can be formed of the same material as the input voltage electrode, the output voltage electrode, the ground connection electrode, and the connection electrode, and is formed of an electrode pattern formed on one main surface of the semi-insulating substrate 12. Since it can be regarded as a part, it can be patterned simultaneously with the input voltage electrode, the output voltage electrode, the ground connection electrode, and the connection electrode, and can be formed with a simple structure and a simple manufacturing method.

このような磁気検出回路素子11は、図2に示すような磁気センサ1に搭載される。
図2は、磁気センサ1の主要構成を示す側面図であり、構造が分かりやすいように断面図形式で示している。
Such a magnetic detection circuit element 11 is mounted on a magnetic sensor 1 as shown in FIG.
FIG. 2 is a side view showing the main configuration of the magnetic sensor 1 and is shown in a sectional view for easy understanding of the structure.

磁気センサ1は、絶縁性材料からなる略直方体形状の筐体2を備え、当該筐体2内に永久磁石3が設置されている。永久磁石3の被検出体側には、上述の磁気検出回路素子11が配置されている。磁気検出回路素子11は、磁気抵抗素子MR1,MR2が形成される面(一主面)が半絶縁性基板12を基準にして永久磁石3と反対側になるように配置されている。磁気検出回路素子11の入力電圧用電極、出力電圧用電極、グランド接続用電極(図2には図示せず)は、接続導体6により外部接続用端子5にそれぞれ接続されている。   The magnetic sensor 1 includes a substantially rectangular parallelepiped housing 2 made of an insulating material, and a permanent magnet 3 is installed in the housing 2. The above-described magnetic detection circuit element 11 is disposed on the detection target side of the permanent magnet 3. The magnetic detection circuit element 11 is arranged so that the surface (one main surface) on which the magnetoresistive elements MR1 and MR2 are formed is opposite to the permanent magnet 3 with respect to the semi-insulating substrate 12. An input voltage electrode, an output voltage electrode, and a ground connection electrode (not shown in FIG. 2) of the magnetic detection circuit element 11 are connected to the external connection terminal 5 by a connection conductor 6.

磁気検出回路素子11の一主面のさらに上面には、絶縁シート7が設置されており、カバー4から磁気検出回路素子11の一主面上の各部を電気的に絶縁している。カバー4は、磁気センサ1を構成する各部材を覆う形状からなる。   An insulating sheet 7 is provided on the upper surface of one main surface of the magnetic detection circuit element 11 to electrically insulate each part on the main surface of the magnetic detection circuit element 11 from the cover 4. The cover 4 has a shape that covers each member constituting the magnetic sensor 1.

ここで、上述の磁気検出回路素子11の補正用電極16’と出力電圧用電極16とを接続する接続導体18を、磁気センサ1を構成する接続導体6や外部接続用端子5の一部を用いて生成する。このような構成とすることで、接続導体18を磁気検出回路素子11の一主面上に形成する必要が無く、当該接続導体18による新たなリーク抵抗の発生を防止することができる。さらに、磁気センサ1の接続導体6や外部接続用端子5を用いることで、元々磁気センサ1に必要な構成要素により、補正用電極16’と出力電圧用電極16とを接続する接続導体18を形成できるので、容易に設計および形成ができる。   Here, the connection conductor 18 that connects the correction electrode 16 ′ of the magnetic detection circuit element 11 and the output voltage electrode 16 is replaced with the connection conductor 6 that constitutes the magnetic sensor 1 and a part of the external connection terminal 5. Use to generate. With such a configuration, it is not necessary to form the connection conductor 18 on one main surface of the magnetic detection circuit element 11, and generation of a new leak resistance due to the connection conductor 18 can be prevented. Further, by using the connection conductor 6 of the magnetic sensor 1 and the external connection terminal 5, the connection conductor 18 for connecting the correction electrode 16 ′ and the output voltage electrode 16 is originally formed by the components necessary for the magnetic sensor 1. Since it can be formed, it can be easily designed and formed.

次に、第2の実施形態に係る磁気検出回路素子について図を参照して説明する。
図3(A)は本実施形態の本実施形態の磁気検出回路素子21の構成を示す平面図であり、図3(B)は当該磁気検出回路素子21の概念を説明するための等価回路図である。
本実施形態の磁気検出回路素子21は、出力電圧を二つ備えるものであり、基本的な構成は、出力電圧が一つである第1の実施形態に類似する。
Next, a magnetic detection circuit element according to a second embodiment will be described with reference to the drawings.
FIG. 3A is a plan view showing the configuration of the magnetic detection circuit element 21 of the present embodiment, and FIG. 3B is an equivalent circuit diagram for explaining the concept of the magnetic detection circuit element 21. It is.
The magnetic detection circuit element 21 of this embodiment has two output voltages, and the basic configuration is similar to that of the first embodiment in which there is one output voltage.

磁気検出回路素子21は、第1の実施形態の半絶縁性基板12と同様の半絶縁性基板22を備える。半絶縁性基板22の一主面には、半導体膜23A〜23Dが形成されている。半導体膜23A〜23Dは、平面視した状態で長尺状に形成されており、長尺方向が平行になるように配置されている。半導体膜23A〜23Dの表面には短絡電極が長尺方向に沿って所定の間隔パターンで形成されている。そして、このように短絡電極が形成された半導体膜23A〜23Dにより磁気抵抗素子MR1〜MR4が構成される。   The magnetic detection circuit element 21 includes a semi-insulating substrate 22 similar to the semi-insulating substrate 12 of the first embodiment. Semiconductor films 23 </ b> A to 23 </ b> D are formed on one main surface of the semi-insulating substrate 22. The semiconductor films 23 </ b> A to 23 </ b> D are formed in a long shape in a plan view, and are arranged so that the long direction is parallel. Short-circuit electrodes are formed on the surfaces of the semiconductor films 23A to 23D in a predetermined interval pattern along the longitudinal direction. The magnetoresistive elements MR1 to MR4 are configured by the semiconductor films 23A to 23D in which the short-circuit electrodes are thus formed.

これら半導体膜23A〜23Dの形成領域の外側で、配列方向の一方端側(図3(A)の上側)には、半導体膜23A〜23Dの長尺方向に沿って、入力電圧用電極24、出力電圧用電極261、出力電圧用電極263が配列して形成されている。また、半導体膜23A〜23Dの形成領域の外側で、配列方向の他方端側(図3(A)の下側)には、半導体膜23A〜23Dの長尺方向に沿って、出力電圧用電極262、出力電圧用電極264、グランド接続用電極25が配列して形成されている。この際、半導体膜23A〜23Dの長尺方向を対称基準として、入力電圧用電極24と出力電圧用電極262とが対向するように配置されている。   Outside the formation region of the semiconductor films 23A to 23D, on one end side in the arrangement direction (upper side in FIG. 3A), along the longitudinal direction of the semiconductor films 23A to 23D, the input voltage electrode 24, An output voltage electrode 261 and an output voltage electrode 263 are formed in an array. Further, outside the formation region of the semiconductor films 23A to 23D, on the other end side in the arrangement direction (the lower side in FIG. 3A), an output voltage electrode along the longitudinal direction of the semiconductor films 23A to 23D. 262, an output voltage electrode 264, and a ground connection electrode 25 are arranged. At this time, the input voltage electrode 24 and the output voltage electrode 262 are arranged to face each other with the longitudinal direction of the semiconductor films 23 </ b> A to 23 </ b> D as the symmetry reference.

入力電圧用電極24は、接続電極271により半導体膜23A,23Bの長尺方向の一方端に接続する。出力電圧用電極261は、接続電極271により半導体膜23Aの長尺方向の他方端に接続する。出力電圧用電極263は、接続電極271により半導体膜23Bの長尺方向の他方端に接続する。   The input voltage electrode 24 is connected to one end of the semiconductor films 23A and 23B in the longitudinal direction by the connection electrode 271. The output voltage electrode 261 is connected to the other end in the longitudinal direction of the semiconductor film 23 </ b> A by the connection electrode 271. The output voltage electrode 263 is connected to the other end in the longitudinal direction of the semiconductor film 23 </ b> B by the connection electrode 271.

出力電圧用電極262は、接続電極272により半導体膜23Cの長尺方向の一方端に接続する。出力電圧用電極264は、接続電極272により半導体膜23Dの長尺方向の一方端に接続する。グランド接続用電極25は、接続電極272により半導体膜23C,23Dの長尺方向の他方端に接続する。   The output voltage electrode 262 is connected to one end in the longitudinal direction of the semiconductor film 23 </ b> C by the connection electrode 272. The output voltage electrode 264 is connected to one end of the semiconductor film 23D in the longitudinal direction by the connection electrode 272. The ground connection electrode 25 is connected to the other end of the semiconductor films 23C and 23D in the longitudinal direction by the connection electrode 272.

さらに、出力電圧用電極261と出力電圧用電極262とは、図示していない電極パターンや接続導体により電気的に接続されており、出力電圧用電極263と出力電圧用電極264とも、図示していない電極パターンや接続導体により電気的に接続されている。例えば、接続導体は、第1の実施形態に示すように、磁気センサを構成する接続導体等により実現することができる。また、電極パターンは、これら半導体膜等が形成された半絶縁性基板22の一主面上に絶縁膜を形成し、当該絶縁膜上に形成した電極パターンにより実現することができる。   Furthermore, the output voltage electrode 261 and the output voltage electrode 262 are electrically connected by an electrode pattern and a connection conductor (not shown), and both the output voltage electrode 263 and the output voltage electrode 264 are illustrated. It is electrically connected by no electrode pattern or connection conductor. For example, the connection conductor can be realized by a connection conductor or the like constituting the magnetic sensor as shown in the first embodiment. The electrode pattern can be realized by forming an insulating film on one main surface of the semi-insulating substrate 22 on which these semiconductor films and the like are formed and forming the electrode pattern on the insulating film.

このような構成とすることで、磁気検出回路素子21は、図2(B)の実線に示すように、磁気抵抗素子MR1と磁気抵抗素子MR3とを、入力電圧用電極24(Vin)とグランド接続用電極25(GND)との間に直列接続し、磁気抵抗素子MR1,MR3の接続点を出力電圧用電極261,262(Vout−A)へ接続した回路構成を実現する。これと同時に、磁気検出回路素子21は、図2(B)の実線に示すように、磁気抵抗素子MR2と磁気抵抗素子MR4とを、入力電圧用電極24(Vin)とグランド接続用電極25(GND)との間に直列接続し、磁気抵抗素子MR2,MR4の接続点を出力電圧用電極263,264(Vout)へ接続した回路構成を実現する。このような構成の磁気検出回路素子21の入力電圧用電極24(Vin)へ例えば5.0V等の直流電圧を印加すると、理想的には出力電圧用電極261,262(Vout−A)から磁気抵抗素子MR1と磁気抵抗素子MR3による分圧比に応じた電圧値の直流電圧が出力されるとともに、出力電圧用電極263,264(Vout−B)から磁気抵抗素子MR2と磁気抵抗素子MR4による分圧比に応じた電圧値の直流電圧が出力される。   With this configuration, the magnetic detection circuit element 21 includes the magnetoresistive element MR1 and the magnetoresistive element MR3, the input voltage electrode 24 (Vin), and the ground as shown by the solid line in FIG. A circuit configuration is realized in which the connection points of the magnetoresistive elements MR1 and MR3 are connected to the output voltage electrodes 261 and 262 (Vout-A) in series with the connection electrode 25 (GND). At the same time, as shown by the solid line in FIG. 2B, the magnetic detection circuit element 21 includes the magnetoresistive element MR2 and the magnetoresistive element MR4, the input voltage electrode 24 (Vin) and the ground connection electrode 25 ( The circuit configuration is realized in which the connection points of the magnetoresistive elements MR2 and MR4 are connected to the output voltage electrodes 263 and 264 (Vout). When a DC voltage such as 5.0 V is applied to the input voltage electrode 24 (Vin) of the magnetic detection circuit element 21 having such a configuration, ideally, the output voltage electrodes 261 and 262 (Vout-A) are magnetized. A DC voltage having a voltage value corresponding to the voltage dividing ratio of the resistive element MR1 and the magnetoresistive element MR3 is output, and the voltage dividing ratio of the magnetoresistive element MR2 and the magnetoresistive element MR4 from the output voltage electrodes 263, 264 (Vout-B). A DC voltage having a voltage value corresponding to the output is output.

しかしながら、入力電圧用電極24、グランド接続用電極25と出力電圧用電極261〜264とにおける隣り合う電極間でリーク電流が流れる。すなわち、図1のRr1〜Rr4に示すように、隣り合う電極間にリーク抵抗が接続されたような回路構成となる。   However, a leakage current flows between adjacent electrodes of the input voltage electrode 24, the ground connection electrode 25, and the output voltage electrodes 261 to 264. That is, as shown by Rr1 to Rr4 in FIG. 1, the circuit configuration is such that a leak resistor is connected between adjacent electrodes.

これにより、等価回路的には、図3(B)の実線部分および点線部分におけるリーク抵抗Rr1〜Rr4(Rr1,Rr2は接続されているものと見なす)が接続される回路部に示すように、入力電圧用電極24(Vin)と出力電圧用電極261,262(Vout−A)との間に磁気抵抗素子MR1とともにリーク抵抗Rr1,Rr2が並列接続され、出力電圧用電極261,262(Vout−A)とグランド接続用電極25(GND)との間に、磁気抵抗素子MR2が接続された構成となる。また、入力電圧用電極24(Vin)と出力電圧用電極263,264(Vout−B)との間に磁気抵抗素子MR3が接続され、出力電圧用電極263,264(Vout−B)とグランド接続用電極25(GND)との間に、磁気抵抗素子MR4とともにリーク抵抗Rr2,Rr4が並列接続された構成となる。   Thereby, in terms of an equivalent circuit, as shown in the circuit portion to which the leak resistances Rr1 to Rr4 (Rr1 and Rr2 are considered to be connected) in the solid line portion and the dotted line portion in FIG. Between the input voltage electrode 24 (Vin) and the output voltage electrodes 261, 262 (Vout-A), leakage resistances Rr1, Rr2 are connected in parallel with the magnetoresistive element MR1, and the output voltage electrodes 261, 262 (Vout− A magnetoresistive element MR2 is connected between A) and the ground connection electrode 25 (GND). Further, the magnetoresistive element MR3 is connected between the input voltage electrode 24 (Vin) and the output voltage electrodes 263, 264 (Vout-B), and is connected to the output voltage electrodes 263, 264 (Vout-B) and the ground. The leakage resistors Rr2 and Rr4 are connected in parallel with the magnetoresistive element MR4 between the electrode 25 (GND).

そこで、本実施形態では、さらに、隣り合う入力電圧用電極24と出力電圧用電極261との間に、出力電圧用電極263,264のいずれかに電気的に接続する補正用電極266’を配置する。補正用電極266’は、半絶縁性基板22の一方の主面以外領域に形成された接続導体により出力電圧用電極263,264のいずれかに接続される。これにより、補正用電極266’と入力電圧用電極24との間に新たなリーク抵抗Rc3が挿入されるとともに、入力電圧用電極24と出力電圧用電極261との間に存在したリーク抵抗Rr1が無くなる回路構成となる。   Therefore, in the present embodiment, a correction electrode 266 ′ that is electrically connected to one of the output voltage electrodes 263 and 264 is further disposed between the adjacent input voltage electrode 24 and the output voltage electrode 261. To do. The correction electrode 266 ′ is connected to one of the output voltage electrodes 263, 264 by a connection conductor formed in a region other than one main surface of the semi-insulating substrate 22. As a result, a new leak resistance Rc3 is inserted between the correction electrode 266 ′ and the input voltage electrode 24, and the leak resistance Rr1 existing between the input voltage electrode 24 and the output voltage electrode 261 is reduced. The circuit configuration is eliminated.

また、本実施形態では、さらに、隣り合うグランド接続用電極25と出力電圧用電極264との間に、出力電圧用電極261,262のいずれかに電気的に接続する補正用電極265’を配置する。補正用電極265’は、半絶縁性基板22の一方の主面以外領域に形成された接続導体により出力電圧用電極261,262のいずれかに接続される。これにより、補正用電極265’とグランド接続用電極25との間に新たなリーク抵抗Rc4が挿入されるとともに、グランド接続用電極25と出力電圧用電極264との間に存在したリーク抵抗Rr2が無くなる回路構成となる。   Further, in the present embodiment, a correction electrode 265 ′ that is electrically connected to any one of the output voltage electrodes 261 and 262 is disposed between the adjacent ground connection electrode 25 and the output voltage electrode 264. To do. The correction electrode 265 ′ is connected to one of the output voltage electrodes 261 and 262 by a connection conductor formed in a region other than one main surface of the semi-insulating substrate 22. As a result, a new leak resistance Rc4 is inserted between the correction electrode 265 ′ and the ground connection electrode 25, and the leak resistance Rr2 existing between the ground connection electrode 25 and the output voltage electrode 264 is reduced. The circuit configuration is eliminated.

すなわち、図3(B)に示すように、入力電圧用電極24(Vin)と出力電圧用電極261,262(Vout−A)との間に、磁気抵抗素子MR1とリーク抵抗Rr3との並列回路が接続され、出力電圧用電極261,262(Vout−A)とグランド接続用電極25(GND)との間に、磁気抵抗素子MR3とリーク抵抗Rc4との並列回路が接続された構成となる。さらに、入力電圧用電極24(Vin)と出力電圧用電極263,264(Vout−B)との間に、磁気抵抗素子MR2とリーク抵抗Rc3との並列回路が接続され、出力電圧用電極263,264(Vout−B)とグランド接続用電極25(GND)との間に、磁気抵抗素子MR4とリーク抵抗Rr4との並列回路が接続された構成となる。   That is, as shown in FIG. 3B, a parallel circuit of a magnetoresistive element MR1 and a leak resistor Rr3 between the input voltage electrode 24 (Vin) and the output voltage electrodes 261, 262 (Vout-A). Are connected, and a parallel circuit of the magnetoresistive element MR3 and the leakage resistance Rc4 is connected between the output voltage electrodes 261 and 262 (Vout-A) and the ground connection electrode 25 (GND). Further, a parallel circuit of the magnetoresistive element MR2 and the leakage resistor Rc3 is connected between the input voltage electrode 24 (Vin) and the output voltage electrodes 263, 264 (Vout-B), and the output voltage electrode 263, A parallel circuit of a magnetoresistive element MR4 and a leak resistor Rr4 is connected between H.264 (Vout-B) and the ground connection electrode 25 (GND).

ここで、磁気抵抗素子MR1,MR3の分圧比に対して、リーク抵抗Rr3,Rc4の分圧比が一致するように、補正用電極265’の形状および形成位置を設定するとともに、磁気抵抗素子MR2,MR4の分圧比に対して、リーク抵抗Rc3,Rr4の分圧比が一致するように、補正用電極266’の形状および形成位置を設定する。例えば、磁気抵抗素子MR1〜MR4の抵抗値が一致する場合であれば、リーク抵抗Rc3,Rc4,Rr3,Rr4の抵抗値を同じに設定する。これにより、補正用電極265’、266’が形成されていない状態の電極パターンに起因して生じるリーク抵抗Rr1〜Rr4による中点電圧偏差を抑制して小さくすることができる。この際、リーク抵抗Rr3,Rc4の直列合成抵抗値と、リーク抵抗Rc3,Rr4の直列合成抵抗値とは、磁気抵抗素子MR1,MR3の直列合成抵抗値および磁気抵抗素子MR2,MR4の直列合成抵抗値に対して、大幅に大きい値(例えば、100倍以上)にするとよい。これにより、入力電圧用電極24から与えられた直流電圧による電流は、主として、磁気抵抗素子MR1,MR3の直列回路および磁気抵抗素子MR2,MR4の直列回路に流れる。したがって、検出感度を低下させることがなく、被検出体の通過による磁束密度の変化を検出することができる。   Here, the shape and position of the correction electrode 265 ′ are set so that the voltage dividing ratio of the leakage resistors Rr3, Rc4 matches the voltage dividing ratio of the magnetoresistive elements MR1, MR3, and the magnetoresistive elements MR2, MR2 are set. The shape and formation position of the correction electrode 266 ′ are set so that the voltage division ratio of the leak resistors Rc3, Rr4 matches the voltage division ratio of MR4. For example, if the resistance values of the magnetoresistive elements MR1 to MR4 match, the resistance values of the leak resistances Rc3, Rc4, Rr3, and Rr4 are set to be the same. As a result, the midpoint voltage deviation caused by the leakage resistances Rr1 to Rr4 caused by the electrode pattern in the state where the correction electrodes 265 'and 266' are not formed can be suppressed and reduced. At this time, the series combined resistance value of the leak resistors Rr3 and Rc4 and the series combined resistance value of the leak resistors Rc3 and Rr4 are the series combined resistance value of the magnetoresistive elements MR1 and MR3 and the series combined resistance of the magnetoresistive elements MR2 and MR4. It is preferable that the value be significantly larger than the value (for example, 100 times or more). As a result, the current due to the DC voltage applied from the input voltage electrode 24 mainly flows through the series circuit of the magnetoresistive elements MR1 and MR3 and the series circuit of the magnetoresistive elements MR2 and MR4. Therefore, it is possible to detect a change in magnetic flux density due to the passage of the detection object without reducing the detection sensitivity.

このように本実施形態の構成を用いても、上述の第1の実施形態と同様に、中点電圧偏差を小さく抑えることができるとともに、中点電圧の温度変化を抑制する磁気検出回路素子を実現することができる。   Thus, even when the configuration of the present embodiment is used, a magnetic detection circuit element that can suppress the midpoint voltage deviation and suppress the temperature change of the midpoint voltage, as in the first embodiment described above. Can be realized.

図4は、本実施形態の構成を用いた前後による検知出力電圧の温度特性を示した図である。
図4に示すように、本実施形態の構成を用いなければ、出力電圧用電極261,262(Vout−A)の出力電圧の温度変化が約−20℃から約100℃の間で約11mV生じたが、本実施形態の構成を用いることで、約5mVまで低減することができる。また、出力電圧用電極263,264(Vout−B)の初期電圧値のズレも、約30℃で約3mV改善することができる。
FIG. 4 is a diagram illustrating temperature characteristics of the detected output voltage before and after using the configuration of the present embodiment.
As shown in FIG. 4, if the configuration of this embodiment is not used, the output voltage temperature change of the output voltage electrodes 261 and 262 (Vout-A) is about 11 mV between about −20 ° C. and about 100 ° C. However, by using the configuration of the present embodiment, the voltage can be reduced to about 5 mV. Also, the deviation of the initial voltage value of the output voltage electrodes 263 and 264 (Vout-B) can be improved by about 3 mV at about 30 ° C.

次に、第3の実施形態に係る磁気検出回路素子31の構成について説明する。
図5(A)は、本実施形態の本実施形態の磁気検出回路素子31の構成を示す平面図であり、図5(B)は当該磁気検出回路素子31の概念を説明するための等価回路図である。
Next, the configuration of the magnetic detection circuit element 31 according to the third embodiment will be described.
FIG. 5A is a plan view showing the configuration of the magnetic detection circuit element 31 of the present embodiment, and FIG. 5B is an equivalent circuit for explaining the concept of the magnetic detection circuit element 31. FIG.

本実施形態の磁気検出回路素子31は、補正用電極34’,35’の構成が異なるのみで、他の構成は、第2の実施形態の磁気検出回路素子21と同じである。したがって、補正用電極34’、35’に関する部分のみを説明する。   The magnetic detection circuit element 31 of the present embodiment is the same as the magnetic detection circuit element 21 of the second embodiment except for the configuration of the correction electrodes 34 ′ and 35 ′. Therefore, only the portion related to the correction electrodes 34 'and 35' will be described.

本実施形態では、隣り合う入力電圧用電極24と出力電圧用電極261との間に、グランド接続用電極25に電気的に接続する補正用電極35’を配置する。補正用電極35’は、半絶縁性基板32の一方の主面以外領域に形成された接続導体によりグランド接続用電極25に接続される。これにより、補正用電極35’と出力電圧用電極261との間に新たなリーク抵抗Rc5が挿入されるとともに、入力電圧用電極24と出力電圧用電極261との間に存在したリーク抵抗Rr1が無くなる回路構成となる。   In the present embodiment, a correction electrode 35 ′ that is electrically connected to the ground connection electrode 25 is disposed between the adjacent input voltage electrode 24 and the output voltage electrode 261. The correction electrode 35 ′ is connected to the ground connection electrode 25 by a connection conductor formed in a region other than one main surface of the semi-insulating substrate 32. As a result, a new leak resistance Rc5 is inserted between the correction electrode 35 ′ and the output voltage electrode 261, and the leak resistance Rr1 existing between the input voltage electrode 24 and the output voltage electrode 261 is reduced. The circuit configuration is eliminated.

また、本実施形態では、さらに、隣り合うグランド接続用電極25と出力電圧用電極264との間に、入力電圧用電極24に電気的に接続する補正用電極34’を配置する。補正用電極34’は、半絶縁性基板22の一方の主面以外領域に形成された接続導体により入力電圧用電極24に接続される。これにより、補正用電極34’と出力電圧用電極264との間に新たなリーク抵抗Rc6が挿入されるとともに、グランド接続用電極25と出力電圧用電極264との間に存在したリーク抵抗Rr2が無くなる回路構成となる。   In the present embodiment, a correction electrode 34 ′ that is electrically connected to the input voltage electrode 24 is further disposed between the adjacent ground connection electrode 25 and the output voltage electrode 264. The correction electrode 34 ′ is connected to the input voltage electrode 24 by a connection conductor formed in a region other than one main surface of the semi-insulating substrate 22. As a result, a new leak resistance Rc6 is inserted between the correction electrode 34 ′ and the output voltage electrode 264, and the leak resistance Rr2 existing between the ground connection electrode 25 and the output voltage electrode 264 is reduced. The circuit configuration is eliminated.

すなわち、図5(B)に示すように、入力電圧用電極24(Vin)と出力電圧用電極261,262(Vout−A)との間に、磁気抵抗素子MR1とリーク抵抗Rr3との並列回路が接続され、出力電圧用電極261,262(Vout−A)とグランド接続用電極25(GND)との間に、磁気抵抗素子MR3とリーク抵抗Rc5との並列回路が接続された構成となる。さらに、入力電圧用電極24(Vin)と出力電圧用電極263,264(Vout−B)との間に、磁気抵抗素子MR2とリーク抵抗Rc6との並列回路が接続され、出力電圧用電極263,264(Vout−B)とグランド接続用電極25(GND)との間に、磁気抵抗素子MR4とリーク抵抗Rr4との並列回路が接続された構成となる。   That is, as shown in FIG. 5B, a parallel circuit of a magnetoresistive element MR1 and a leak resistor Rr3 between the input voltage electrode 24 (Vin) and the output voltage electrodes 261, 262 (Vout-A). Are connected, and a parallel circuit of the magnetoresistive element MR3 and the leak resistor Rc5 is connected between the output voltage electrodes 261 and 262 (Vout-A) and the ground connection electrode 25 (GND). Further, a parallel circuit of the magnetoresistive element MR2 and the leak resistor Rc6 is connected between the input voltage electrode 24 (Vin) and the output voltage electrodes 263, 264 (Vout-B), and the output voltage electrode 263, A parallel circuit of a magnetoresistive element MR4 and a leak resistor Rr4 is connected between H.264 (Vout-B) and the ground connection electrode 25 (GND).

ここで、磁気抵抗素子MR1,MR3の分圧比に対して、リーク抵抗Rr3,Rc5の分圧比が一致するように、補正用電極35’の形状および形成位置を設定するとともに、磁気抵抗素子MR2,MR4の分圧比に対して、リーク抵抗Rc6,Rr4の分圧比が一致するように、補正用電極34’の形状および形成位置を設定する。例えば、磁気抵抗素子MR1〜MR4の抵抗値が一致する場合であれば、リーク抵抗Rc5,Rc6,Rr3,Rr4の抵抗値を同じに設定する。これにより、補正用電極34’、35’が形成されていない状態の電極パターンに起因して生じるリーク抵抗Rr1〜Rr4による中点電圧偏差を抑制して小さくすることができる。この際、リーク抵抗Rr3,Rc5の直列合成抵抗値と、リーク抵抗Rc6,Rr4の直列合成抵抗値とは、磁気抵抗素子MR1,MR3の直列合成抵抗値および磁気抵抗素子MR2,MR4の直列合成抵抗値に対して、大幅に大きい値(例えば、100倍以上)にするとよい。これにより、入力電圧用電極24から与えられた直流電圧による電流は、主として、磁気抵抗素子MR1,MR3の直列回路および磁気抵抗素子MR2,MR4の直列回路に流れる。したがって、検出感度を低下させることがなく、被検出体の通過による磁束密度の変化を検出することができる。   Here, the shape and position of the correction electrode 35 ′ are set so that the voltage dividing ratio of the leakage resistors Rr3, Rc5 matches the voltage dividing ratio of the magnetoresistive elements MR1, MR3, and the magnetoresistive elements MR2, MR2 are set. The shape and formation position of the correction electrode 34 ′ are set so that the voltage division ratio of the leak resistors Rc6 and Rr4 matches the voltage division ratio of MR4. For example, if the resistance values of the magnetoresistive elements MR1 to MR4 match, the resistance values of the leak resistors Rc5, Rc6, Rr3, and Rr4 are set to be the same. Thereby, it is possible to suppress and reduce the midpoint voltage deviation caused by the leakage resistances Rr1 to Rr4 caused by the electrode pattern in the state where the correction electrodes 34 'and 35' are not formed. At this time, the series combined resistance value of the leak resistors Rr3 and Rc5 and the series combined resistance value of the leak resistors Rc6 and Rr4 are the series combined resistance value of the magnetoresistive elements MR1 and MR3 and the series combined resistance of the magnetoresistive elements MR2 and MR4. It is preferable that the value be significantly larger than the value (for example, 100 times or more). As a result, the current due to the DC voltage applied from the input voltage electrode 24 mainly flows through the series circuit of the magnetoresistive elements MR1 and MR3 and the series circuit of the magnetoresistive elements MR2 and MR4. Therefore, it is possible to detect a change in magnetic flux density due to the passage of the detection object without reducing the detection sensitivity.

このように本実施形態の構成を用いても、上述の第1の実施形態と同様に、中点電圧偏差を小さく抑えることができるとともに、中点電圧の温度変化を抑制する磁気検出回路素子を実現することができる。   Thus, even when the configuration of the present embodiment is used, a magnetic detection circuit element that can suppress the midpoint voltage deviation and suppress the temperature change of the midpoint voltage, as in the first embodiment described above. Can be realized.

次に、第4の実施形態に係る磁気検出回路素子について図を参照して説明する。
図6(A)は本実施形態の本実施形態の磁気検出回路素子41の構成を示す平面図であり、図6(B)は当該磁気検出回路素子41の概念を説明するための等価回路図である。
Next, a magnetic detection circuit element according to a fourth embodiment will be described with reference to the drawings.
FIG. 6A is a plan view showing the configuration of the magnetic detection circuit element 41 of the present embodiment, and FIG. 6B is an equivalent circuit diagram for explaining the concept of the magnetic detection circuit element 41. It is.

本実施形態の磁気検出回路素子41は、第2、第3の実施形態対して入力電圧用電極、出力電圧用電極、グランド接続用電極、および補正電極の配置パターンが異なるものであり、磁気抵抗素子MR1〜MR4を構成する半導体膜43A〜43Dの形成パターンは同じである。   The magnetic detection circuit element 41 of the present embodiment is different from the second and third embodiments in the arrangement pattern of the input voltage electrode, the output voltage electrode, the ground connection electrode, and the correction electrode. The formation patterns of the semiconductor films 43A to 43D constituting the elements MR1 to MR4 are the same.

これら半導体膜43A〜43Dの形成領域の外側で、配列方向の一方端側(図6(A)の上側)には、半導体膜43A〜43Dの長尺方向に沿って、入力電圧用電極44、出力電圧用電極461、出力電圧用電極463が配列して形成されている。また、半導体膜43A〜43Dの形成領域の外側で、配列方向の他方端側(図6(A)の下側)には、半導体膜43A〜43Dの長尺方向に沿って、グランド接続用電極45、出力電圧用電極464、出力電圧用電極462が配列して形成されている。この際、半導体膜43A〜43Dの長尺方向を対称基準として、入力電圧用電極44とグランド接続用電極45とが対向するように配置されている。   Outside the formation region of the semiconductor films 43A to 43D, on one end side in the arrangement direction (upper side in FIG. 6A), along the longitudinal direction of the semiconductor films 43A to 43D, the input voltage electrode 44, An output voltage electrode 461 and an output voltage electrode 463 are arranged. Further, outside the formation region of the semiconductor films 43A to 43D, on the other end side in the arrangement direction (the lower side in FIG. 6A), the electrodes for ground connection are provided along the longitudinal direction of the semiconductor films 43A to 43D. 45, an output voltage electrode 464 and an output voltage electrode 462 are arranged. At this time, the input voltage electrode 44 and the ground connection electrode 45 are arranged to face each other with the longitudinal direction of the semiconductor films 43 </ b> A to 43 </ b> D as the symmetry reference.

入力電圧用電極44は、接続電極471により半導体膜43A,43Bの長尺方向の一方端に接続する。出力電圧用電極461は、接続電極471により半導体膜43Aの長尺方向の他方端に接続する。出力電圧用電極463は、接続電極471により半導体膜43Bの長尺方向の他方端に接続する。   The input voltage electrode 44 is connected to one end of the semiconductor films 43A and 43B in the longitudinal direction by the connection electrode 471. The output voltage electrode 461 is connected to the other end in the longitudinal direction of the semiconductor film 43 </ b> A by the connection electrode 471. The output voltage electrode 463 is connected to the other end in the longitudinal direction of the semiconductor film 43B by the connection electrode 471.

グランド接続用電極45は、接続電極472により半導体膜43C,43Dの長尺方向の一方端に接続する。出力電圧用電極464は、接続電極472により半導体膜43Dの長尺方向の他方端に接続する。出力電圧用電極462は、接続電極472により半導体膜43Cの長尺方向の一方端に接続する。   The ground connection electrode 45 is connected to one end of the semiconductor films 43C and 43D in the longitudinal direction by the connection electrode 472. The output voltage electrode 464 is connected to the other end in the longitudinal direction of the semiconductor film 43D by the connection electrode 472. The output voltage electrode 462 is connected to one end of the semiconductor film 43C in the longitudinal direction by the connection electrode 472.

さらに、出力電圧用電極461と出力電圧用電極462は、図示していない電極パターンや接続導体により電気的に接続されており、出力電圧用電極463と出力電圧用電極464も、図示していない電極パターンや接続導体により電気的に接続されている。例えば、接続導体は、第1の実施形態に示すように、磁気センサを構成する接続導体等により実現することができる。また、電極パターンは、これら半導体膜等が形成された半絶縁性基板42の一主面上に絶縁膜を形成し、当該絶縁膜上に形成した電極パターンにより実現することができる。   Further, the output voltage electrode 461 and the output voltage electrode 462 are electrically connected by an electrode pattern and a connection conductor (not shown), and the output voltage electrode 463 and the output voltage electrode 464 are not shown. They are electrically connected by electrode patterns and connecting conductors. For example, the connection conductor can be realized by a connection conductor or the like constituting the magnetic sensor as shown in the first embodiment. The electrode pattern can be realized by forming an insulating film on one main surface of the semi-insulating substrate 42 on which the semiconductor film or the like is formed and forming the electrode pattern on the insulating film.

さらに、隣り合う出力電圧用電極461,463の間に、入力電圧用電極44に電気的に接続する補正用電極44’を配置する。補正用電極44’は、半絶縁性基板42の一方の主面以外領域に形成された接続導体により入力電圧用電極44に接続される。これにより、補正用電極44’と出力電圧用電極461との間に新たなリーク抵抗Rc7が挿入されるとともに、補正用電極44’と出力電圧用電極463との間に新たなリーク抵抗Rc8が挿入される。   Further, a correction electrode 44 ′ electrically connected to the input voltage electrode 44 is disposed between the adjacent output voltage electrodes 461 and 463. The correction electrode 44 ′ is connected to the input voltage electrode 44 by a connection conductor formed in a region other than one main surface of the semi-insulating substrate 42. As a result, a new leak resistance Rc7 is inserted between the correction electrode 44 ′ and the output voltage electrode 461, and a new leak resistance Rc8 is inserted between the correction electrode 44 ′ and the output voltage electrode 463. Inserted.

また、さらに、隣り合う出力電圧用電極462,464の間に、グランド接続用電極45に電気的に接続する補正用電極45’を配置する。補正用電極45’は、半絶縁性基板42の一方の主面以外領域に形成された接続導体により入力電圧用電極45に接続される。これにより、補正用電極45’と出力電圧用電極462との間に新たなリーク抵抗Rc9が挿入されるとともに、補正用電極45’と出力電圧用電極464との間に新たなリーク抵抗Rc10が挿入される。   Further, a correction electrode 45 ′ electrically connected to the ground connection electrode 45 is disposed between the adjacent output voltage electrodes 462 and 464. The correction electrode 45 ′ is connected to the input voltage electrode 45 by a connection conductor formed in a region other than one main surface of the semi-insulating substrate 42. As a result, a new leak resistance Rc9 is inserted between the correction electrode 45 ′ and the output voltage electrode 462, and a new leak resistance Rc10 is added between the correction electrode 45 ′ and the output voltage electrode 464. Inserted.

これにより、図6(B)に示すように、入力電圧用電極44,44’(Vin)と出力電圧用電極461,462(Vout−A)との間に、磁気抵抗素子MR1とリーク抵抗Rr1とリーク抵抗Rc7の並列回路が接続され、出力電圧用電極461,462(Vout−A)とグランド接続用電極45,45’(GND)との間に、磁気抵抗素子MR3とリーク抵抗Rc9との並列回路が接続された構成となる。さらに、入力電圧用電極44,44’(Vin)と出力電圧用電極463,464(Vout−B)との間に、磁気抵抗素子MR2とリーク抵抗Rc8との並列回路が接続され、出力電圧用電極463,464(Vout−B)とグランド接続用電極45,45’(GND)との間に、磁気抵抗素子MR4とリーク抵抗Rr2とリーク抵抗Rc10の並列回路が接続された構成となる。さらに、入力電圧用電極44,44’とグランド接続用電極45,45’との間に、中点電圧特性に影響を与えないリーク抵抗Rr5が接続された構成となる。   As a result, as shown in FIG. 6B, the magnetoresistive element MR1 and the leakage resistance Rr1 are interposed between the input voltage electrodes 44 and 44 ′ (Vin) and the output voltage electrodes 461 and 462 (Vout-A). Are connected between the output voltage electrodes 461 and 462 (Vout-A) and the ground connection electrodes 45 and 45 ′ (GND), and the magnetoresistive element MR3 and the leak resistor Rc9. A parallel circuit is connected. Further, a parallel circuit of the magnetoresistive element MR2 and the leak resistor Rc8 is connected between the input voltage electrodes 44, 44 ′ (Vin) and the output voltage electrodes 463, 464 (Vout-B), and the output voltage electrodes A parallel circuit of the magnetoresistive element MR4, the leak resistor Rr2, and the leak resistor Rc10 is connected between the electrodes 463 and 464 (Vout-B) and the ground connection electrodes 45 and 45 ′ (GND). Further, a leakage resistance Rr5 that does not affect the midpoint voltage characteristics is connected between the input voltage electrodes 44 and 44 'and the ground connection electrodes 45 and 45'.

ここで、磁気抵抗素子MR1,MR3の分圧比に対して、リーク抵抗Rr1とリーク抵抗Rc7の並列回路とリーク抵抗Rc9の分圧比が一致するとともに、磁気抵抗素子MR2,MR4の分圧比に対して、リーク抵抗Rc8とリーク抵抗Rr2,Rc10の並列回路の分圧比が一致するように、補正用電極44’,45’の形状および形成位置を設定する。これにより、補正用電極44’、45’が形成されていない状態の電極パターンに起因して生じるリーク抵抗Rr1,Rr2による中点電圧偏差を抑制して小さくすることができる。この際、リーク抵抗Rr1,Rc7の並列回路とリーク抵抗Rc9との直列合成抵抗値と、リーク抵抗Rc8とリーク抵抗Rr2,Rc10の並列回路との直列合成抵抗値とは、磁気抵抗素子MR1,MR3の直列合成抵抗値および磁気抵抗素子MR2,MR4の直列合成抵抗値に対して、大幅に大きい値(例えば、100倍以上)にするとよい。これにより、入力電圧用電極44から与えられた直流電圧による電流は、主として、磁気抵抗素子MR1,MR3の直列回路および磁気抵抗素子MR2,MR4の直列回路に流れる。したがって、検出感度を低下させることがなく、被検出体の通過による磁束密度の変化を検出することができる。   Here, with respect to the voltage dividing ratio between the magnetoresistive elements MR1 and MR3, the voltage dividing ratio between the parallel circuit of the leakage resistance Rr1 and the leakage resistance Rc7 and the leakage resistance Rc9 coincides, and the voltage dividing ratio between the magnetoresistive elements MR2 and MR4. The shape and the formation position of the correction electrodes 44 ′ and 45 ′ are set so that the voltage dividing ratio of the parallel circuit of the leak resistor Rc8 and the leak resistors Rr2 and Rc10 matches. Thereby, it is possible to suppress and reduce the midpoint voltage deviation caused by the leakage resistances Rr1 and Rr2 caused by the electrode pattern in the state where the correction electrodes 44 'and 45' are not formed. At this time, the series combined resistance value of the parallel circuit of the leak resistors Rr1 and Rc7 and the leak resistor Rc9 and the series combined resistance value of the parallel circuit of the leak resistor Rc8 and the leak resistors Rr2 and Rc10 are the magnetoresistive elements MR1, MR3. It is preferable to make the value significantly larger (for example, 100 times or more) than the series combined resistance value of the magnetoresistive elements MR2 and MR4. As a result, the current due to the DC voltage applied from the input voltage electrode 44 mainly flows through the series circuit of the magnetoresistive elements MR1 and MR3 and the series circuit of the magnetoresistive elements MR2 and MR4. Therefore, it is possible to detect a change in magnetic flux density due to the passage of the detection object without reducing the detection sensitivity.

このように本実施形態の構成を用いても、上述の各実施形態と同様に、中点電圧偏差を小さく抑えることができるとともに、中点電圧の温度変化を抑制する磁気検出回路素子を実現することができる。   As described above, even when the configuration of the present embodiment is used, a magnetic detection circuit element that can suppress the midpoint voltage deviation to a small level and suppress the temperature change of the midpoint voltage is realized as in the above-described embodiments. be able to.

次に、第5の実施形態に係る磁気検出回路素子について図を参照して説明する。
図7(A)は、本実施形態の本実施形態の磁気検出回路素子51の構成を示す平面図であり、図7(B)は当該磁気検出回路素子51の概念を説明するための等価回路図である。
Next, a magnetic detection circuit element according to a fifth embodiment will be described with reference to the drawings.
FIG. 7A is a plan view showing the configuration of the magnetic detection circuit element 51 of the present embodiment, and FIG. 7B is an equivalent circuit for explaining the concept of the magnetic detection circuit element 51. FIG.

本実施形態の磁気検出回路素子51は、補正用電極54’,55’の構成が異なるのみで、他の構成は、第4の実施形態の磁気検出回路素子41と同じである。したがって、補正用電極54’、55’に関する部分のみを説明する。   The magnetic detection circuit element 51 of the present embodiment is the same as the magnetic detection circuit element 41 of the fourth embodiment except for the configuration of the correction electrodes 54 ′ and 55 ′. Therefore, only the portion related to the correction electrodes 54 'and 55' will be described.

本実施形態では、隣り合う出力電圧用電極461,463との間に、グランド接続用電極45に電気的に接続する補正用電極55’を配置する。補正用電極55’は、半絶縁性基板42の一方の主面以外領域に形成された接続導体によりグランド接続用電極45に接続される。これにより、補正用電極55’と出力電圧用電極461との間に新たなリーク抵抗Rc11が挿入される。また、補正用電極55’と出力電圧用電極463との間に新たなリーク抵抗Rc12が挿入される。   In the present embodiment, a correction electrode 55 ′ that is electrically connected to the ground connection electrode 45 is disposed between the adjacent output voltage electrodes 461 and 463. The correction electrode 55 ′ is connected to the ground connection electrode 45 by a connection conductor formed in a region other than one main surface of the semi-insulating substrate 42. As a result, a new leak resistance Rc11 is inserted between the correction electrode 55 'and the output voltage electrode 461. Further, a new leak resistor Rc12 is inserted between the correction electrode 55 'and the output voltage electrode 463.

また、本実施形態では、さらに、隣り合う出力電圧用電極462,464との間に、入力電圧用電極44に電気的に接続する補正用電極54’を配置する。補正用電極54’は、半絶縁性基板52の一方の主面以外領域に形成された接続導体により入力電圧用電極44に接続される。これにより、補正用電極54’と出力電圧用電極464との間に新たなリーク抵抗Rc13が挿入される。また、補正用電極54’と出力電圧用電極462との間に新たなリーク抵抗Rc14が挿入される。   In this embodiment, a correction electrode 54 ′ that is electrically connected to the input voltage electrode 44 is further disposed between the adjacent output voltage electrodes 462 and 464. The correction electrode 54 ′ is connected to the input voltage electrode 44 by a connection conductor formed in a region other than one main surface of the semi-insulating substrate 52. As a result, a new leak resistor Rc13 is inserted between the correction electrode 54 'and the output voltage electrode 464. Further, a new leak resistance Rc14 is inserted between the correction electrode 54 'and the output voltage electrode 462.

すなわち、図7(B)に示すように、入力電圧用電極44(Vin)と出力電圧用電極461,462(Vout−A)との間に、磁気抵抗素子MR1とリーク抵抗Rr1,Rc14との並列回路が接続され、出力電圧用電極461,462(Vout−A)とグランド接続用電極45(GND)との間に、磁気抵抗素子MR3とリーク抵抗Rc11との並列回路が接続された構成となる。さらに、入力電圧用電極44(Vin)と出力電圧用電極463,464(Vout−B)との間に、磁気抵抗素子MR2とリーク抵抗Rc13との並列回路が接続され、出力電圧用電極463,464(Vout−B)とグランド接続用電極45(GND)との間に、磁気抵抗素子MR4とリーク抵抗Rr2,Rc12との並列回路が接続された構成となる。   That is, as shown in FIG. 7B, between the input voltage electrode 44 (Vin) and the output voltage electrodes 461, 462 (Vout-A), the magnetoresistive element MR1 and the leakage resistances Rr1, Rc14 A configuration in which a parallel circuit is connected, and a parallel circuit of a magnetoresistive element MR3 and a leakage resistor Rc11 is connected between the output voltage electrodes 461 and 462 (Vout-A) and the ground connection electrode 45 (GND). Become. Further, a parallel circuit of the magnetoresistive element MR2 and the leakage resistor Rc13 is connected between the input voltage electrode 44 (Vin) and the output voltage electrodes 463, 464 (Vout-B), and the output voltage electrode 463, A parallel circuit of a magnetoresistive element MR4 and leak resistors Rr2 and Rc12 is connected between 464 (Vout-B) and the ground connection electrode 45 (GND).

ここで、磁気抵抗素子MR1,MR3の分圧比に対して、リーク抵抗Rr1,Rc14の並列回路とリーク抵抗Rc11の分圧比が一致するとともに、磁気抵抗素子MR2,MR4の分圧比に対して、リーク抵抗Rc13とリーク抵抗Rr2,Rc12の並列回路の分圧比が一致するように、補正用電極54’,55’の形状および形成位置を設定する。これにより、補正用電極54’、55’が形成されていない状態の電極パターンに起因して生じるリーク抵抗Rr1,Rr2による中点電圧偏差を抑制して小さくすることができる。この際、リーク抵抗Rr1,Rc14の並列回路とリーク抵抗Rc11との直列合成抵抗値と、リーク抵抗Rc13とリーク抵抗Rr2,Rc12の並列回路との直列合成抵抗値とは、磁気抵抗素子MR1,MR3の直列合成抵抗値および磁気抵抗素子MR2,MR4の直列合成抵抗値に対して、大幅に大きい値(例えば、100倍以上)にするとよい。これにより、入力電圧用電極44から与えられた直流電圧による電流は、主として、磁気抵抗素子MR1,MR3の直列回路および磁気抵抗素子MR2,MR4の直列回路に流れる。したがって、検出感度を低下させることがなく、被検出体の通過による磁束密度の変化を検出することができる。   Here, with respect to the voltage dividing ratio of the magnetoresistive elements MR1 and MR3, the parallel circuit of the leak resistors Rr1 and Rc14 and the voltage dividing ratio of the leak resistor Rc11 coincide with each other, and with respect to the voltage dividing ratio of the magnetoresistive elements MR2 and MR4, The shapes and formation positions of the correction electrodes 54 ′ and 55 ′ are set so that the voltage dividing ratio of the parallel circuit of the resistor Rc13 and the leak resistors Rr2 and Rc12 matches. Thereby, it is possible to suppress and reduce the midpoint voltage deviation caused by the leak resistances Rr1 and Rr2 caused by the electrode pattern in which the correction electrodes 54 'and 55' are not formed. At this time, the series combined resistance value of the parallel circuit of the leak resistors Rr1 and Rc14 and the leak resistor Rc11 and the series combined resistance value of the parallel circuit of the leak resistor Rc13 and the leak resistors Rr2 and Rc12 are the magnetoresistive elements MR1 and MR3. It is preferable to make the value significantly larger (for example, 100 times or more) than the series combined resistance value of the magnetoresistive elements MR2 and MR4. As a result, the current due to the DC voltage applied from the input voltage electrode 44 mainly flows through the series circuit of the magnetoresistive elements MR1 and MR3 and the series circuit of the magnetoresistive elements MR2 and MR4. Therefore, it is possible to detect a change in magnetic flux density due to the passage of the detection object without reducing the detection sensitivity.

このように本実施形態の構成を用いても、上述の各実施形態と同様に、中点電圧偏差を小さく抑えることができるとともに、中点電圧の温度変化を抑制する磁気検出回路素子を実現することができる。   As described above, even when the configuration of the present embodiment is used, a magnetic detection circuit element that can suppress the midpoint voltage deviation to a small level and suppress the temperature change of the midpoint voltage is realized as in the above-described embodiments. be able to.

なお、上述の各実施形態に示した構成のみでなく、出力電圧用電極の電位が入力電圧用電極の電位もしくはグランド接続用電極の電位に影響されることを相殺するように、出力電圧用電極、入力電圧用電極、グランド接続用電極の少なくとも一つに接続する補正用電極を形成する構成であれば、上述の作用、効果を奏することができる。   In addition to the configuration shown in each of the embodiments described above, the output voltage electrode may be offset so that the potential of the output voltage electrode is affected by the potential of the input voltage electrode or the potential of the ground connection electrode. The above-described operations and effects can be achieved if the correction electrode connected to at least one of the input voltage electrode and the ground connection electrode is formed.

第1の実施形態の磁気検出回路素子11の構成を示す平面図、および、当該磁気検出回路素子11の概念を説明するための等価回路図である。FIG. 2 is a plan view showing the configuration of the magnetic detection circuit element 11 of the first embodiment and an equivalent circuit diagram for explaining the concept of the magnetic detection circuit element 11. 磁気センサ1の主要構成を示す側面図である。1 is a side view showing a main configuration of a magnetic sensor 1. FIG. 第2の実施形態の磁気検出回路素子21の構成を示す平面図、および、当該磁気検出回路素子21の概念を説明するための等価回路図である。FIG. 6 is a plan view showing a configuration of a magnetic detection circuit element 21 according to a second embodiment and an equivalent circuit diagram for explaining the concept of the magnetic detection circuit element 21. 第2の実施形態の構成を用いた前後による検知出力電圧の温度特性を示した図である。It is the figure which showed the temperature characteristic of the detection output voltage by before and after using the structure of 2nd Embodiment. 第3の実施形態の磁気検出回路素子31の構成を示す平面図、および、当該磁気検出回路素子31の概念を説明するための等価回路図である。FIG. 6 is a plan view showing a configuration of a magnetic detection circuit element 31 according to a third embodiment and an equivalent circuit diagram for explaining the concept of the magnetic detection circuit element 31. 第4の実施形態の磁気検出回路素子41の構成を示す平面図、および、当該磁気検出回路素子41の概念を説明するための等価回路図である。FIG. 6 is a plan view showing a configuration of a magnetic detection circuit element 41 according to a fourth embodiment and an equivalent circuit diagram for explaining the concept of the magnetic detection circuit element 41. 第5の実施形態の磁気検出回路素子51の構成を示す平面図、および、当該磁気検出回路素子51の概念を説明するための等価回路図である。FIG. 9 is a plan view showing a configuration of a magnetic detection circuit element 51 of a fifth embodiment and an equivalent circuit diagram for explaining the concept of the magnetic detection circuit element 51.

符号の説明Explanation of symbols

1−磁気センサ、2−筐体、3−永久磁石、4−カバー、5−外部接続用端子、6−接続導体、7−絶縁シート、
11,21、31,41,51−磁気検出回路素子、12,22,42−半絶縁性基板、13A,13B,23A〜23D,43A〜43D−半導体膜、14,24,44−入力電圧用電極、15,25,45−グランド接続用電極、16,261〜264,461〜464−出力電圧用電極、17,271,272,471,472−接続電極、18−接続導体、
16’,265’,266’,34’,35’,44’,45’,54’,55’−補正用電極
1-magnetic sensor, 2-housing, 3-permanent magnet, 4-cover, 5-terminal for external connection, 6-connection conductor, 7-insulating sheet,
11, 21, 31, 41, 51-magnetic detection circuit element, 12, 22, 42-semi-insulating substrate, 13A, 13B, 23A-23D, 43A-43D-semiconductor film, 14, 24, 44-for input voltage Electrode, 15, 25, 45-ground connection electrode, 16, 261-264, 461-464-output voltage electrode, 17, 271, 272, 471, 472-connection electrode, 18-connection conductor,
16 ', 265', 266 ', 34', 35 ', 44', 45 ', 54', 55'-correction electrodes

Claims (3)

磁束密度の変化に応じて抵抗値が変化する複数の磁気抵抗素子と、該複数の磁気抵抗素子の直列回路を形成する接続電極と、該接続電極を介して前記直列回路に検出用入力電圧を印加するための入力電圧用電極と、前記接続電極を介して前記直列回路をグランドに接続するためのグランド接続用電極と、前記複数の磁気抵抗素子同士の接続点に接続し、該複数の磁気抵抗素子による分圧に基づく検出電圧を出力するための出力電圧用電極と、が半絶縁性基板の一主面上に形成されてなる磁気検出回路素子であって、
前記半絶縁性基板の一主面上における隣接する前記入力電圧用電極、前記グランド接続用電極、前記出力電圧用電極、のいずれか二つの電極の間に、該二つの電極とは異なる前記入力電圧用電極、前記グランド接続用電極、前記出力電圧用電極のいずれかに対して電気的に接続する補正用電極を、前記検出用入力電圧の印加により前記補正用電極と前記二つの電極のいずれかとの間で前記半絶縁性基板を介して所定の電流が流れるような位置および形状で設けた磁気検出回路。
A plurality of magnetoresistive elements whose resistance values change according to a change in magnetic flux density, a connection electrode forming a series circuit of the plurality of magnetoresistive elements, and an input voltage for detection to the series circuit via the connection electrode An input voltage electrode for applying, a ground connection electrode for connecting the series circuit to the ground via the connection electrode, and a connection point between the plurality of magnetoresistive elements, and An output voltage electrode for outputting a detection voltage based on voltage division by a resistive element, and a magnetic detection circuit element formed on one main surface of a semi-insulating substrate,
The input different from the two electrodes between the two electrodes of the input voltage electrode, the ground connection electrode, and the output voltage electrode adjacent to each other on one main surface of the semi-insulating substrate A correction electrode that is electrically connected to any one of the voltage electrode, the ground connection electrode, and the output voltage electrode is selected from the correction electrode and the two electrodes by applying the detection input voltage. A magnetic detection circuit provided in a position and shape so that a predetermined current flows between the heels through the semi-insulating substrate.
前記補正用電極は、前記入力電圧用電極、前記グランド接続用電極、前記出力電圧用電極に対して、前記半絶縁性基板の一主面上とは離間された位置で接続されている、請求項1に記載の磁気検出回路素子。   The correction electrode is connected to the input voltage electrode, the ground connection electrode, and the output voltage electrode at a position separated from one main surface of the semi-insulating substrate. Item 2. The magnetic detection circuit element according to Item 1. 請求項2に記載の磁気検出回路素子を備えるとともに、
該磁気検出回路素子を永久磁石に対する被検出体側で且つ前記一主面が被検出体側になるように配置する筐体と、
該筐体内に設けられ、前記磁気検出回路素子の前記入力電圧用電極、前記出力電圧用電極、前記グランド接続用電極のいずれかに接続する接続導体と、を備え、
該接続導体により、前記補正用電極を前記入力電圧用電極、前記出力電圧用電極、前記グランド接続用電極のいずれかに接続する、磁気センサ。
While comprising the magnetic detection circuit element according to claim 2,
A case in which the magnetic detection circuit element is disposed on the detected object side with respect to the permanent magnet so that the one main surface is on the detected object side;
A connection conductor provided in the housing and connected to any one of the input voltage electrode, the output voltage electrode, and the ground connection electrode of the magnetic detection circuit element;
A magnetic sensor that connects the correction electrode to any one of the input voltage electrode, the output voltage electrode, and the ground connection electrode by the connection conductor.
JP2008311059A 2008-12-05 2008-12-05 Magnetic detection circuit element and magnetic sensor Pending JP2010133855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311059A JP2010133855A (en) 2008-12-05 2008-12-05 Magnetic detection circuit element and magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311059A JP2010133855A (en) 2008-12-05 2008-12-05 Magnetic detection circuit element and magnetic sensor

Publications (1)

Publication Number Publication Date
JP2010133855A true JP2010133855A (en) 2010-06-17

Family

ID=42345287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311059A Pending JP2010133855A (en) 2008-12-05 2008-12-05 Magnetic detection circuit element and magnetic sensor

Country Status (1)

Country Link
JP (1) JP2010133855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685272A4 (en) * 2011-03-11 2016-01-06 Qu Bingjun Magnetic sensor chip and magnetic sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685272A4 (en) * 2011-03-11 2016-01-06 Qu Bingjun Magnetic sensor chip and magnetic sensor

Similar Documents

Publication Publication Date Title
US7355382B2 (en) Current sensor and mounting method thereof
US20100123458A1 (en) Twin vertical hall sensor
US6998839B2 (en) Magnetoresistive sensor having a strip-shaped conductor and a screening strip
WO2014111976A1 (en) Magnetic sensor and production method therefor
JP2008298761A (en) Current sensor
JP5494591B2 (en) Long magnetic sensor
JP5853169B2 (en) Semiconductor pressure sensor
JP5234459B2 (en) Current sensor
JP4853807B2 (en) Current sensing device
CN110857952B (en) Current sensor
JP2008216230A (en) Current sensor
JP2007147460A (en) Magnetic balance type electric current sensor
CN107192969A (en) Magnetic Sensor and its manufacture method
JP6070460B2 (en) Current detection circuit and magnetic detection device including the same
JP2009168790A (en) Current sensor
US11099244B2 (en) Semiconductor device
US11243275B2 (en) Magnetic field sensing device
JP2010133855A (en) Magnetic detection circuit element and magnetic sensor
JP5866496B2 (en) Semiconductor pressure sensor
JP2006047004A (en) Temperature sensor and sensor using magnetoresistive element
JP2018044789A (en) Magnetic field detector
US20180172780A1 (en) Calibration method for a hall effect sensor
KR20200065679A (en) Hall Sensor of using Anomalous Hall Effect and Method of manufacturing the same
JP2019219294A (en) Magnetic sensor
JP2010133854A (en) Magnetic detection circuit element and magnetic sensor