JP2010133187A - 耐震構造、耐震構造を有する建物、及び改修方法。 - Google Patents

耐震構造、耐震構造を有する建物、及び改修方法。 Download PDF

Info

Publication number
JP2010133187A
JP2010133187A JP2008312022A JP2008312022A JP2010133187A JP 2010133187 A JP2010133187 A JP 2010133187A JP 2008312022 A JP2008312022 A JP 2008312022A JP 2008312022 A JP2008312022 A JP 2008312022A JP 2010133187 A JP2010133187 A JP 2010133187A
Authority
JP
Japan
Prior art keywords
steel plate
corrugated steel
earthquake
repair
existing steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008312022A
Other languages
English (en)
Other versions
JP5254767B2 (ja
Inventor
Takeshi Aritake
剛 有竹
Yoshihiro Ota
義弘 太田
Mitsuru Takeuchi
満 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2008312022A priority Critical patent/JP5254767B2/ja
Publication of JP2010133187A publication Critical patent/JP2010133187A/ja
Application granted granted Critical
Publication of JP5254767B2 publication Critical patent/JP5254767B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

【課題】周辺部材の補強を低減できる耐震構造を提供する目的とする。
【解決手段】改修時に、波形鋼板28の上部及び下部の改修領域28Aに補剛用波形鋼板40を接合する。これにより、波形鋼板28にせん断剛性が異なる領域が上下に形成され、補剛用波形鋼板40が接合された改修領域28Aが、補剛用波形鋼板40が接合されていない他の領域28Bよりもせん断剛性が大きくなる。即ち、他の領域28Bのせん断剛性が相対的に小さくなり、当該他の領域28Bが改修前よりも小さい層間変形で降伏する。従って、架構12に層間変形が生じた場合、他の領域28Bが早期に降伏するため、履歴ループによる振動エネルギー吸収容量が大きくなる。
【選択図】図4

Description

本発明は、柱と水平部材とから構成された架構に取り付けられた既存鋼板を備える耐震構造に関する。
従来から建物の耐震壁として、鋼板を用いた鋼板耐震壁が知られている。また、鋼板を波形形状に折り曲げ加工した波形鋼板耐震壁が知られている(例えば、特許文献1)。この波形鋼板耐震壁は、鉛直方向にアコーディオンのように伸縮するため鉛直力を負担しないが、水平力に対しては抵抗可能であり、せん断剛性・せん断耐力を確保しつつ優れた変形性能を有している。更に、せん断剛性・せん断耐力については、鋼板の材質強度、板厚、重ね合わせ枚数、波形のピッチ、波高等を変えることにより調整可能であり、設計自由度の高い耐震壁を実現している。
ところで、建物は、用途変更(例えば、住宅からオフィス)による増改築や建築基準法の改正等の要因により、耐震設計用外力が増加することがある。この対策として、上記した鋼板耐震壁や波形鋼板耐震壁等の耐震要素を新たに建物に追加して、建物を増強することが考えられる。しかしながら、耐震要素を設置すると、当該耐震要素が設置された建物の部位の剛性・耐力が相対的に大きくなり、追加部位に作用する外力が増加する結果、耐震要素が設置された周辺の柱や梁に対して補強が必要となる場合がある。一例として、図22(A)に示すように、左右の柱200、202と上下の梁204、206から構成された架構208に波形鋼板耐震壁210を新たに追加した場合、波形鋼板耐震壁210がせん断変形(図20(B)参照)したときに左右の縦フランジ204A、204Bに発生する鉛直力Nが、架構208に作用する外力の増加に伴って大きくなり、柱200、202及び梁204、206に対し補強が必要となる場合がある。これと同様に、一般的な鋼板耐震壁を新たに建物に追加した場合も、柱、梁に対して補強が必要となる場合がある。
特開2005−232760号公報
本発明は、上記の事実を考慮し、周辺部材の補強を低減できる耐震構造を提供する目的とする。
請求項1に記載の耐震構造は、柱と上下の水平部材とから構成された架構に取り付けられた既存鋼板と、改修時に前記既存鋼板に設けられ、改修前よりも前記既存鋼板が小さい層間変形で降伏するように該既存鋼板にせん断剛性が異なる領域を上下に形成するせん断剛性増減手段と、を備えている。
上記の構成によれば、柱と水平部材とから構成された架構に取り付けられた既存鋼板にせん断剛性増減手段が設けられている。せん断剛性増減手段は改修時に設けられ、このせん断剛性増減手段によって既存鋼板に形成された上下のせん断剛性が異なる領域により、既存鋼板が改修前よりも小さい層間変形で降伏するように改修される。即ち、既存鋼板には、せん断剛性増減手段によって相対的にせん断剛性が小さい領域と大きい領域が上下に形成され、この相対的にせん断剛性が小さい領域が改修前よりも小さい層間変形で降伏する。従って、地震等により架構に層間変形が生じた場合、相対的にせん断剛性が小さい領域が早期に降伏するため、履歴ループによる振動エネルギー吸収容量が大きくなる。
このように単に既存鋼板の剛性・耐力を大きくするのではなく、既存鋼板に相対的にせん断剛性が小さい領域を設け、当該領域を改修前よりも小さい層間変形で降伏させることで、改修前の既存鋼板よりも振動エネルギー吸収容量を大きくすることができる。従って、既存鋼板の剛性・耐力の増加を抑えつつ、耐震用設計外力の増加に対応させることが可能となり、架構を構成する柱や水平部材等の補強を低減できる。
請求項2に記載の耐震構造は、請求項1に記載の耐震構造において、前記せん断剛性増減手段が、前記既存鋼板の改修領域のせん断剛性を大きくし又は小さくして、相対的にせん断剛性が小さい領域を前記既存鋼板に形成する。
上記の構成によれば、せん断剛性増減手段が、既存鋼板の改修領域のせん断剛性を大きくし又は小さくして、既存鋼板にせん断剛性が異なる領域を上下に形成する。改修領域のせん断剛性を大きくした場合、他の領域のせん断剛性が相対的に小さくなり、当該他の領域が改修前よりも小さい層間変形で降伏する。他方、改修領域のせん断剛性を小さくした場合、当該改修領域が改修前よりも小さい層間変形で降伏する。従って、既存鋼板の剛性・耐力の増加を抑えつつ、耐震用設計外力の増加に対応させることが可能となり、架構を構成する柱や水平部材等の補強を低減できる。
請求項3に記載の耐震構造は、請求項2に記載の耐震構造において、前記せん断剛性増減手段によって相対的にせん断剛性が小さくされた前記既存鋼板の領域の降伏荷重が、改修前の前記既存鋼板の降伏荷重以下とされている。
上記の構成によれば、せん断剛性増減手段によってせん断剛性が相対的に小さくされた既存鋼板の領域の降伏荷重が、改修前の既存鋼板の降伏荷重以下とされている。ここで、せん断剛性が相対的に小さくされた領域の降伏荷重が、改修前の既存鋼板の降伏荷重よりも大きい場合、当該領域を降伏させるのに必要な外力(荷重)が大きくなる。即ち、改修後の既存鋼板の剛性・耐力が改修前の既存鋼板の剛性・耐力よりも大きくなる。この結果、既存鋼板に作用する外力(既存鋼板に流れる外力)が大きくなると共に、架構を構成する柱、水平部材に作用する外力が大きくなり、これらの柱、水平部材に補強が必要となる場合がある。
これに対して本発明は、せん断剛性増減手段によってせん断剛性が相対的に小さくされた既存鋼板の領域の降伏荷重が、改修前の既存鋼板の降伏荷重以下とされている。従って、既存鋼板に作用する外力が増加せず、架構を構成する柱、水平部材の補強を低減することができる。
請求項4に記載の耐震構造は、請求項1〜3の何れか1項に記載の耐震構造において、前記せん断剛性増減手段が、前記既存鋼板の板面に接合される補剛部材である。
上記の構成によれば、せん断剛性増減手段が補剛部材とされている。補剛部材は、既存鋼板に板面に接合され、これにより当該接合部のせん断剛性が大きくなる。従って、補剛部材が接合されていない他の領域のせん断剛性が相対的に小さくなり、当該領域が改修前よりも小さい層間変形で降伏する。よって、既存鋼板の剛性・耐力の増加を抑えつつ、耐震用設計外力の増加に対応させることが可能となり、架構を構成する柱や水平部材等の補強を低減できる。
請求項5に記載の耐震構造は、請求項1〜3の何れか1項に記載の耐震構造において、前記せん断剛性増減手段が、前記既存鋼板が埋められるセメント系部材である。
上記の構成によれば、せん断剛性増減手段がセメント系部材とされている。セメント系部材は、例えば既存鋼板の周囲に仮設された型枠内にセメント、コンクリート等を流し込み、これを固化させることにより形成され、その内部に既存鋼板が埋められる。これにより、セメント系部材に埋められた既存鋼板のせん断剛性が大きくなるため、セメント系部材に埋められていない既存鋼板の他の領域のせん断剛性が相対的に小さくなり、当該他の領域が改修前よりも小さい層間変形で降伏する。よって、既存鋼板の剛性・耐力の増加を抑えつつ、耐震用設計外力の増加に対応させることが可能となり、架構を構成する柱や水平部材等の補強を低減できる。
請求項6に記載の耐震構造は、請求項1〜3の何れか1項に記載の耐震構造において、前記せん断剛性増減手段が、前記既存鋼板の板面に形成された開口である。
上記の構成によれば、せん断剛性増減手段が開口とされている。開口は、既存鋼板の板面に形成され、この開口によって当該板面のせん断剛性が小さくなるため、当該板面が改修前よりも小さい層間変形で降伏する。従って、改修前の既存鋼板よりも振動エネルギー吸収容量を大きくすることができる。よって、既存鋼板の剛性・耐力の増加を抑えつつ、耐震用設計外力の増加に対応させることが可能となり、架構を構成する柱や水平部材等の補強を低減できる。
請求項7に記載の耐震構造は、請求項1〜6の何れか1項に記載の耐震構造において、前記既存鋼板が波形鋼板である。
上記の構成によれば、既存鋼板が波形鋼板とされている。波形鋼板は、鋼板を波形形状とすることで、せん断座屈耐力・変形性能を向上することができ、通常の鋼板を用いる場合よりもせん断座屈防止手段としての補剛リブを減らすことができる。また、波形鋼板は、折り筋と直交する方向に剛性が弱いというアコーディオン効果を有するため、上下の水平部材の曲げ変形を阻害しない特性、及び、クリープや積載荷重の変化による水平部材のたわみ増大に起因する軸力変動がない特性を有するため、既存建物の性能を向上させることが容易である。
請求項8に記載の耐震構造は、請求項1〜7の何れか1項に記載の耐震構造において、前記既存鋼板が、上の前記水平部材に設けられた上連結部と、下の前記水平部材に設けられた下連結部と、を連結する。
上記の構成によれば、架構を構成する上の水平部材に上連結部が設けられ、下の水平部材に下連結部が設けられており、これらの上連結部及び下連結部に既存鋼板が連結されている。即ち、本発明は、架構に設けられた耐震間柱に対してせん断剛性増減手段が設けられている。このように、本発明は耐震間柱にも適用することができる。
請求項9に記載の建物は、請求項1〜8の何れか1項に記載の耐震構造を有する。
上記の構成によれば、請求項1〜8の何れか1項に記載の耐震構造を有することで、改修のコストが削減された建物を構築することができる。
請求項10に記載の改修方法は、改修時に、柱と水平部材とから構成された架構に取り付けられた既存鋼板に、改修前よりも前記既存鋼板が小さい層間変形で降伏するように上下にせん断剛性が異なる領域を形成する。
上記の方法によれば、改修時に、既存鋼板にせん断剛性が異なる領域が上下に形成される。これにより、せん断剛性が相対的に小さい領域が、改修前よりも小さい層間変形で降伏するため、履歴ループによる振動エネルギー吸収容量が大きくなる。
このように単に既存鋼板の剛性・耐力を大きくするのではなく、既存鋼板に相対的にせん断剛性が小さい領域を設け、当該領域を改修前よりも小さい層間変形で降伏させることで、改修前の既存鋼板よりも振動エネルギー吸収容量を大きくすることができる。従って、既存鋼板の剛性・耐力の増加を抑えつつ、耐震用設計外力の増加に対応させることが可能となり、架構を構成する柱や水平部材等の補強を低減できる。
本発明は、上記の構成としたので、周辺部材の補強を低減することができる。
以下、図面を参照しながら本発明の第1の実施形態に係る耐震構造10について説明する。図1及び図2には、改修前の架構12が示されており、図3及び図4には、改修後の架構12が示されている。
建物22の構成する架構12は、左右の鉄筋コンクリート(以下、「RC」という)造の柱14、16とRC造の上下の梁18、20(水平部材)によって構成され、ラーメン構造とされている。
耐震構造10は、架構12に設けられた既存の波形鋼板耐震壁26を備えている。波形鋼板耐震壁26は波形鋼板28と枠体30とを備えている。波形鋼板28(既存鋼板)は、鋼板を波形形状に折り曲げ加工して構成されており、その折り筋を横(折り筋の向きを横方向)にして架構12の構面に配置されている。波形鋼板28の材料としては、普通鋼(例えば、SM490、SS400等)や低降伏点鋼(例えば、LY225等)等が用いられる。
波形鋼板28の左右の端部には、縦フランジ32A、32Bがそれぞれ設けられている。この縦フランジ32A、32Bはプレート状に形成されており、波形鋼板28の左右の端部に沿って溶接固定されている。また、波形鋼板28の上下の端部には、鋼製の横フランジ34A、34Bがそれぞれ設けられている。この横フランジ34A、34Bは、プレート状に形成されており、波形鋼板28の上下の端部に沿って溶接固定されている。これらの縦フランジ32A、32B及び横フランジ34A、34Bは、各々の端部同士が溶接等によって接合されており、これによって波形鋼板28の外周部を囲む枠体30が構成されている。
横フランジ34A、34Bには、せん断力伝達要素としてのスタッド36が設けられている。スタッド36は、横フランジ34Aの上面及び横フランジ34Bの下面に溶接等によって立設されており、これらのスタッド36を上下の梁18、20に埋設することにより、波形鋼板耐震壁26が上下の梁18、20に取り付けられている。また、縦フランジ32A、32Bと左右の柱14、16との間には、開口38A、38Bが形成されている。
なお、横フランジ34A、34Bと上下の梁18、20とはせん断力を伝達可能に接合できれば良く、種々の接合方法を採用し得る。例えば、スタッドが立設された接合用プレートを上下の梁18、20に埋設し、この接合用プレートに横フランジ34A、34Bを溶接又はボルト等により接合しても良い。また、エポキシ樹脂等の接着剤により横フランジ34A、34Bと上下の梁18、20とを接着固定しても良い(接着工法)。更に、縦フランジ32A、32B及び横フランジ34A、34Bはプレート状に限らず、H型鋼、L型鋼、チャネル鋼等でも良い。また、波形鋼板28のせん断座屈強度・耐力が小さい場合は、波形鋼板28に上下方向に延びる補剛リブを溶接等により接合してせん断座屈を防止することが望ましい。
図3及び図4に示すように、改修後の波形鋼板28の上部及び下部の改修領域28A(図4参照)には、補剛用波形鋼板40(補剛部材、せん断剛性増減手段)がそれぞれ接合されている。補剛用波形鋼板40は、波形鋼板28と略同一の波形形状とされており、改修時に、波形鋼板28に重ね合わせられ、適宜形成された貫通孔に貫通されるボルト42及びナット44によって波形鋼板28の板面に接合される。補剛用波形鋼板40の上下の端部には、鋼製の横フランジ46A、46Bがそれぞれ設けられている。この横フランジ46A、46Bは、プレート状に形成されており、補剛用波形鋼板40の上下の端部に沿って溶接固定されている。なお、波形鋼板28と補剛用波形鋼板40との接合は、ボルトに限らず溶接等で接合しても良い。
波形鋼板28と、波形鋼板28の上部に設けられた補剛用波形鋼板40とは、対向する横フランジ34A、46Aに貫通されるボルト48によって接合されている。同様に、波形鋼板28と、波形鋼板28の下部に設けられた補剛用波形鋼板40とは、対向する横フランジ34B、46Bに貫通されるボルト48によって接合されている。
以上のように補剛用波形鋼板40が接合された波形鋼板28の改修領域28Aの断面積が他の領域28Bよりも大きくなり、改修領域28Aのせん断剛性が他の領域28Bよりも相対的に大きくされている。即ち、補剛用波形鋼板40によって、波形鋼板28にせん断剛性が異なる領域が上下に形成されている。
なお、波形鋼板28の板面とは、波形鋼板28の平らな面を指し、略鉛直に立てられた頂面部のみならず、傾斜された斜面部もこれに含まれる。従って、図3及び図4に示す構成では、波形鋼板28と補剛用波形鋼板40との頂面部同士をボルト42及びナット44で接合しているが、斜面部同士をボルト及びナットで接合しても良い。また、補剛用波形鋼板40の横フランジ46A、46Bは、横フランジ34A、34Bと同様にプレート状に限らず、H型鋼、L型鋼、チャネル鋼等でも良い。
次に、第1の実施形態に係る耐震構造10の作用について説明する。
図5は、地震時等における架構12及び波形鋼板28の変形状態を示しており、図5(A)は改修前、図5(B)は改修後の波形鋼板28を模式的に示している。なお、図5では、理解を容易にするために架構12及び波形鋼板28の変形状態を誇張して示している。また、図6は、地震時等における架構12の層間変形角θと波形鋼板28に作用する荷重Pの関係を示している。なお、図6中の符号52は、改修前の波形鋼板28の履歴ループを示しており、符号54は、改修後の波形鋼板28の履歴ループを示している。
先ず、図5(A)に示すように、風や地震等によって架構12に水平力F(外力)が作用し、架構12に層間変形が生じると、上下の梁18、20から改修前の波形鋼板28に水平力Fが伝達され、波形鋼板28がせん断変形する(せん断変形角θR1)。これにより、波形鋼板28が水平力Fに抵抗して耐震効果を発揮する。また、水平力Fに対して波形鋼板28が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮する。
ここで、改修前の波形鋼板28が、水平力Fに対して降伏するように設計されている場合であって、波形鋼板28のせん断剛性が全領域で等しく、波形鋼板28が層間変形角θL2で降伏すると仮定する。即ち、架構12の層間変形角がθL2に達すると、波形鋼板28の全領域が同時に降伏し、履歴ループ52(図6参照)を描いて振動エネルギーを吸収するものと仮定する。
次に、改修後の波形鋼板28では、補剛用波形鋼板40が接合された波形鋼板28の改修領域28Aが、補剛用波形鋼板40が接合されていない他の領域28Bと比較してせん断剛性が大きくされており、即ち、他の領域28Bのせん断剛性が相対的に小さくなっている。
ここで、理解を容易にするために、補剛用波形鋼板40が接合された波形鋼板28の上部及び下部を剛体とみなすと、図5(B)に示すように、架構12に水平力Fが作用し、架構12の層間変形角がθL2となった場合、改修領域28Aが変形せずに上下の梁18、20と一体挙動するため、波形鋼板28がクランク状に折れ曲がり、せん断剛性が相対的に小さくされた他の領域28Bのせん断変形(せん断変形角θR2)が改修前よりも大きくなる(θR1<θR2)。換言すると、架構12の層間変形角がθL2になる前に、他の領域28Bのせん断変形角がθR1に達し、改修前よりも小さい層間変形角θL1(図6参照)で降伏する。これは、波形鋼板28に、改修領域28Aと他の領域28Bを上下に形成したことで、これらの改修領域28Aと他の領域28Bが力学的に直列バネとなり、相対的にせん断剛性が小さい他の領域28Bにせん断変形が集中するためである。従って、他の領域28Bが改修前よりも早期に降伏するため、履歴ループによる振動エネルギー吸収容量(図6における履歴ループ54の面積)が大きくなる。
なお、上記の説明では、理解を容易にするために改修領域28Aを剛体とみなしたが、剛体でなくとも改修領域28Aのせん断剛性を他の領域28Bよりも大きくすることで、他の領域28Bを改修前よりも小さい層間変形角で降伏させることができる。
このように本実施形態では、単に波形鋼板28の剛性・耐力を大きくするのではなく、波形鋼板28に相対的にせん断剛性が小さい他の領域28Bを設け、当該他の領域28Bを改修前よりも小さい層間変形で降伏させることで、改修前の波形鋼板28よりも振動エネルギー吸収容量を大きくすることができる。
また、図6から分かるように、他の領域28Bの降伏荷重は、改修前の波形鋼板28の降伏荷重Pと同じである。即ち、改修前と同じ荷重で波形鋼板28の領域28Bを降伏させ、振動エネルギーを吸収させることが可能である。従って、架構12に作用する水平力Fの増加を抑えることができ、また、図22に示す鉛直力N等が増加することがなく、架構12を構成する柱14、16、及び梁18、20の補強を低減することができる。
よって、増築、用途変更、設計基準変更などに伴う耐震設計用外力の増加や、耐震性能向上のニーズに対して充分対応することが可能となる。
更に、波形鋼板28は、鋼板を波形形状とすることで、せん断座屈耐力・変形性能を向上することができ、通常の鋼板を用いる場合よりもせん断座屈防止手段としての補剛リブを減らすことができる。また、波形鋼板28は、折り筋と直交する方向に剛性が弱いというアコーディオン効果を有するため、上下の梁18、20の曲げ変形を阻害しない特性、及び、クリープや積載荷重の変化による梁18、20のたわみ増大に起因する軸力変動がない特性を有するため、建物22の性能を向上させることが容易である。
次に、第1の実施形態の変形例について説明する。
第1の実施形態では、波形鋼板28の上部及び下部の改修領域28Aに補剛用波形鋼板40を接合したがこれに限らない。例えば、図7(A)に示すように、波形鋼板28の上部以外の領域を改修領域28Aとし、この改修領域28Aに補剛用波形鋼板40をボルト42及びナット44で接合しても良い。この場合、補剛用波形鋼板40が接合されていない波形鋼板28の上部の領域28Bのせん断剛性が相対的に小さくなり、当該領域28Bを改修前よりも小さい層間変形角で降伏させることができる。
また、図7(B)に示すように、波形鋼板28の上下方向中央領域を改修領域28Aとし、この改修領域28Aに補剛用波形鋼板40をボルト42及びナット44で接合しても良い。この場合、補剛用波形鋼板40が接合されていない波形鋼板28の上部及び下部の領域28Bのせん断剛性が相対的に小さくなる。
ここで、理解を容易にするために、改修領域28Aが剛体であると仮定すると、図8に示す模試図のように、架構12に水平力Fが作用し、架構12の層間変形角がθL2となった場合、改修領域28Aが変形しないため、波形鋼板28がクランク状に折れ曲がり、せん断剛性が相対的に小さくされた他の領域28Bのせん断変形(せん断変形角θR3)が改修前よりも大きくなる(θR1<θR3、図5(A)参照)。従って、他の領域28Bを改修前よりも小さい層間変形角で降伏させることができるため、履歴ループによる振動エネルギー吸収容量が大きくなる。また、他の領域28Bの降伏荷重は改修前の降伏荷重P(図6参照)と同じとなり、架構12を構成する柱14、16及び梁18、20の補強を低減することができる。
更に、第1の実施形態では、補剛部材としての補剛用波形鋼板40を波形鋼板28に重ね合わせて接合したがこれに限らない。波形鋼板28にせん断剛性の異なる領域を設けることができれば良く、例えば、図9に示すように、補剛用波形鋼板40と波形鋼板28の頂面部同士を突き合わせて、ボルト42及びナット44で接合しても良い。また、補剛用波形鋼板40と波形鋼板28との間に形成された空間56に長ナット58を配置し、この長ナット58の両端部からボルト42を捻じ込んで接合しても良い。この長ナット58により、補剛用波形鋼板40と波形鋼板28とがより一体化され、せん断剛性を確保し易くなる。また、補剛用波形鋼板40の波形形状は、波形鋼板28と同一に限らず、波形鋼板28の波のピッチよりも大きくしても良い。
また、図10に示すように、波形鋼板28の面外方向両側に、鋼、ACL、スパンクリート等からなる板材60を配置し、この板材60を波形鋼板28の板面(頂面部)に沿わせて接合しても良い。この際、板材60と波形鋼板28との間に形成された空間62に長ナット61を配置し、この長ナット61に貫通されるボルト42及びナット44で接合しても良い。なお、板材60は波形鋼板28の片側にのみ設けることができるが、波形鋼板28の面外方向両側に板材60を配置し、これらの板材60で波形鋼板28を挟み込むことで、改修領域28Aの断面2次モーメントが大きくなるとともに、せん断剛性を確保し易くなる。
また、図11に示すように、波形鋼板28の改修領域28Aをセメント系部材64に埋め込んでも良い。このセメント系部材64は、例えば、改修領域28Aの周囲に型枠(不図示)を仮設し、この型枠内にセメント、コンクリート等を流し込み、これを固化させることにより形成される。これにより、セメント系部材64の内部に改修領域28Aが埋め込まれ、改修領域28Aのせん断剛性が大きくなる。従って、セメント系部材64に埋められていない波形鋼板28の他の領域28Bのせん断剛性が相対的に小さくなり、当該他の領域28Bを改修前よりも小さい層間変形で降伏させることができる。よって、波形鋼板28の剛性・耐力の増加を抑えつつ、耐震用設計外力の増加に対応させることが可能となり、架構12を構成する柱14、16及び梁18、20の補強を低減できる。
次に、第2の実施形態に係る耐震構造70ついて説明する。なお、第1の実施形態と同じ構成のものは同符号を付すると共に適宜省略して説明する。
図12及び図13に示すように、耐震構造70は、改修時に、波形鋼板28の改修領域28A(図13参照)の板面に円形の開口72を形成し、当該改修領域28Aのせん断剛性を相対的に小さくする。開口72は、波形鋼板28の上下方向中央部にある改修領域28Aの頂面部(板面)に所定の間隔で複数形成される。隣接する開口72の間には、せん断座屈防止用の補剛リブ74が設けられる。鋼製の補剛リブ74は、プレート状に形成されており、波形鋼板28の波形形状に沿って上下方向に溶接固定されている。なお、補剛リブ74は必要に応じて設ければ良く、適宜省略可能である。
次に、第2の実施形態に係る耐震構造70の作用について説明する。
図14は、地震時等における架構12の層間変形角θと波形鋼板28に作用する荷重Pの関係を示している。なお、図14中の符号52は、改修前の波形鋼板28の履歴ループを示しており、符号76は、改修後の波形鋼板28の履歴ループを示している。また、比較のために、第1の実施形態に係る耐震構造10の履歴ループ54が示されている。
改修時に、波形鋼板28の改修領域28Aの板面に開口72を形成したことにより、当該改修領域28Aの断面積が小さくなり、他の領域28Bと比較してせん断剛性が小さくなると共に、降伏荷重(P)が小さくなる。従って、改修領域28Aが、改修前よりも小さい層間変形角θL3で、且つ、改修前よりも小さい降伏荷重Pで降伏するため、履歴ループ76による振動エネルギー吸収容量(履歴ループ76の面積)が大きくなる。従って、架構12に作用する水平力F(既存鋼板に流れる外力)の増加を抑えることができ、架構12を構成する柱14、16、及び梁18、20の補強を低減することができる。
ここで、本実施形態に係る耐震構造70は、改修前の波形鋼板28が、弾性範囲内において挙動するように設計されている場合に特に有効である。即ち、図14に示す改修前の波形鋼板28は、層間変形角θL2で降伏し、その後履歴ループを描くように設計されている。これに対して、図15に示すように、改修前の波形鋼板28の変形量が層間変形角θL4までしか許容されておらず、波形鋼板28が弾性範囲内において挙動するように設計されている場合、波形鋼板28が降伏しないため振動エネルギーを吸収しない。一方、改修時に、改修領域28Aに開口72を形成し、当該改修領域28Aの降伏荷重を改修前よりも小さくすることで、改修領域28Aを降伏させることが可能となり、履歴ループ76を描かせることができる。従って、改修前の波形鋼板28よりも振動エネルギー吸収容量を大きくすることができ、波形鋼板28の剛性・耐力の増加を抑えつつ、耐震用設計外力の増加に対応させることが可能となり、架構12を構成する柱14、16及び梁18、20の補強を低減できる。
なお、第2の実施形態では、開口72を円形にしたがこれに限らない。開口72は、波形鋼板28の改修領域28Aの断面積を小さくできれば良く、例えば、図16に示すように、スリット状の開口72を形成しても良い。
また、上記第1、第2の実施形態では、波形鋼板耐震壁26の縦フランジ32A、32Bと左右の柱14、16との間に開口38A、38Bを形成したがこれに限らず、図17に示すように、縦フランジ32A、32Bと左右の柱14、16とを接合しても良い。具体的には、横フランジ34A、34Bと上下の梁18、20との接合と同様に、縦フランジ32A、32Bにせん断力伝達要素としてのスタッド36を溶接等によって立設し、これらのスタッド36を左右の柱14、16に埋設することにより、波形鋼板耐震壁26が左右の柱14、16に取り付けられている。これにより、左右の柱14、16と波形鋼板耐震壁26とがせん断力で伝達可能に接合される。
ここで、左右の柱14、16に波形鋼板耐震壁26を接合した場合、柱14、16周辺の波形鋼板28の領域では、柱14、16によって波形鋼板28が拘束されるため、せん断剛性が小さい領域とせん断剛性が大きい領域とのせん断変形量に差異が生じ難く、相対的にせん断剛性が小さい領域が早期に降伏しない傾向にある。しかし、左右の柱14、16から波形鋼板28の水平方向中央部に向かうに従って、柱14、16による拘束力の影響が低下するため、相対的にせん断剛性が小さい領域が改修前よりも小さい層間変形で降伏する。従って、波形鋼板耐震壁26を左右の柱14、16に接合した場合は、波形鋼板28の水平方向中央部付近に、せん断剛性が異なる領域を形成することが効率的である。
次に、第3の実施形態に係る耐震構造78について説明する。
図18に示すように、耐震構造78は、架構12に設けられた既存の耐震間柱80を備えている。耐震間柱80は、上連結部82、下連結部84、及び波形鋼板86(既存鋼板)を備えている。上連結部82は、コンクリート製で梁18の下面から下向きに突出して設けられ、下連結部84は、コンクリート製で梁20の上面から上向きに突出して設けられている。これらの上連結部82及び下連結部84は、波形鋼板86によって連結されている。なお、上連結部82及び下連結部84は、コンクリート製に限らず、例えば、角型鋼管等の鋼製で形成しても良い。
波形鋼板86の左右の端部には、縦フランジ90A、90Bがそれぞれ設けられている。この縦フランジ90A、90Bはプレート状に形成されており、波形鋼板86の左右の端部に沿って溶接固定されている。また、波形鋼板86の上下の端部には、鋼製の横フランジ92A、92Bがそれぞれ設けられている。この横フランジ92A、92Bは、プレート状に形成されており、波形鋼板86の上下の端部に沿って溶接固定されている。これらの縦フランジ90A、90B及び横フランジ92A、92Bは、各々の端部同士が溶接等によって接合されており、これによって波形鋼板86の外周部を囲む枠体88が構成されている。
波形鋼板86は、横フランジ92A、92Bを上連結部82の下面、下連結部84の上面にそれぞれ接着工法等によって接合されており、これにより上連結部82と下連結部84とが波形鋼板86によって連結されている。また、波形鋼板86の上部及び下部の改修領域86Aには、改修時に接合された補剛用波形鋼板94が設けられている。補剛用波形鋼板94は、波形鋼板86と略同一の波形形状とされおり、波形鋼板86に重ね合わせられてボルト96によって波形鋼板86の板面に接合されている。
補剛用波形鋼板94の上下の端部には横フランジ98A、98Bが設けられている。横フランジ98A、98Bは、プレート状に形成されており、波形鋼板86の上下の端部に沿って溶接固定されている。なお、図示を省略するが、波形鋼板86の上部に設けられた補剛用波形鋼板94の横フランジ98Aは、波形鋼板86の横フランジ92Aとボルト又は溶接等によって接合されており、波形鋼板86の下部に設けられた補剛用波形鋼板94の横フランジ98Bは、波形鋼板86の横フランジ92Bとボルト又は溶接等によって接合されている。このように、耐震間柱80を構成する波形鋼板86の上部及び下部の改修領域86Aの板面に補剛用波形鋼板94を接合することで、改修領域86Aのせん断剛性が大きくなる結果、補剛用波形鋼板94が接合されていない波形鋼板86の他の領域86Bのせん断剛性が相対的に小さくされている。
次に、第3の実施形態に係る耐震構造78の作用について説明する。
風や地震等によって架構12に水平力が作用し、架構12の層間変形角が生じると、上連結部82及び下連結部84がそれぞれ梁18、20と一体挙動し、上連結部82及び下連結部84から波形鋼板86に水平力が伝達され、波形鋼板86がせん断変形する。これにより、波形鋼板86が水平力に抵抗して耐震効果を発揮する。また、水平力に対して波形鋼板28が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮する。
なお、上記の説明では、上連結部82及び下連結部84を剛体とみなし、上下の梁18、20と一体挙動するものとして説明したが、上連結部82及び下連結部84は剛体でなくても良い。
ここで、改修時に、波形鋼板86の改修領域86Aの板面に、補剛用波形鋼板94を接合したことにより、当該改修領域86Aのせん断剛性が大きくなる結果、補剛用波形鋼板94が接合されていない波形鋼板86の他の領域86Bのせん断剛性が相対的に小さくされている。従って、他の領域86Bが、改修前よりも小さい層間変形で降伏するため、履歴ループによる振動エネルギー吸収容量が大きくなる。従って、架構12に作用する水平力の増加を抑えることができ、架構12を構成する柱14、16、及び梁18、20の補強を低減することができる。
なお、本実施形態では、波形鋼板86の改修領域86Aに補剛用波形鋼板94を接合したがこれに限らず、図12に示されるような開口72を改修領域86Aの板面に形成しても良い。改修領域86Aに開口72を形成することで、第2の実施形態と同様の作用、効果を得ることができる。
なお、上記第1〜3の実施形態では、既存鋼板として波形鋼板28、86を用いたが、図19及び図20に示すように、平板状の鋼板102を用いることができる。
具体的には、架構12の構面には、既存の鋼板耐震壁100が設けられている。鋼板耐震壁100は、複数(図19では、4つ)の断面C型の鋼板102を備えている。これらの鋼板102はフランジ部を対向させて上下方向に隣接配置され、対向するフランジ部に貫通されるボルト104及びナット106によって接合されている。また、鋼板102の長手方向両端部には、枠部材108が上下方向に延設されている。枠部材108はL型鋼からなり、4つの鋼板102に跨って配置され、各鋼板102とボルト110及びナット112によって接合されている。なお、鋼板102の材料としては、普通鋼(例えば、SM490、SS400等)や低降伏点鋼(例えば、LY225等)等が用いられる。
最上段の鋼板102と梁18との間、及び最下段の鋼板102と梁20との間には、固定部材120がそれぞれ設けられている。鋼製の固定部材120はH型鋼からなり、一方のフランジ部を鋼板102のフランジ部に対向させ、対向するフランジ部に貫通されるボルト104及びナット106によって最上段の鋼板102又は最下段の鋼板102と接合されている。また、固定部材120の他方のフランジ部は、梁18の下面又は梁20の上面にスタッド、ボルト又は接着工法等により固定されている。
図20に示すように、最上段及び最下段の鋼板102は改修領域とされており、補剛用鋼板114(補剛部材)が接合されている。補剛用鋼板114は鋼板102と同一構成とされており、改修時に、ボルト116及びナット118によって鋼板102の裏面に接合される。このように、最上段及び最下段の鋼板102に補剛用鋼板114を接合することで、改修領域のせん断剛性が大きくなる結果、補剛用鋼板114が接合されていない他の鋼板102のせん断剛性が相対的に小さくされている。
ここで、架構12に水平力が作用し、架構12に層間変形角が生じると、上下の梁18、20から鋼板102に水平力が伝達され、各鋼板102がせん断変形する。これにより、鋼板102が水平力に抵抗して耐震効果を発揮する。また、水平力に対して鋼板102が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮する。
また、改修時に、鋼板耐震壁100の最上段及び最下段の鋼板102(改修領域)に、補剛用鋼板114を接合したことにより、当該改修領域のせん断剛性が大きくなる結果、補剛用鋼板114が接合されていない鋼板102のせん断剛性が相対的に小さくされている。従って、補剛用鋼板114が接合されていない鋼板102が、改修前よりも小さい層間変形で降伏するため、履歴ループによる振動エネルギー吸収容量が大きくなる。従って、架構12に作用する水平力の増加を抑えることができ、架構12を構成する柱14、16、及び梁18、20の補強を低減することができる。
なお、図19に示す構成では、複数の鋼板102を積み上げて鋼板耐震壁100を構成したが、一つの鋼板102を架構12に配置し、所望の改修領域に補剛用鋼板114を接合して、せん断剛性が異なる領域を上下に形成することもできる。
また、上記の第1〜3の実施形態では、波形鋼板28、86を、その折り筋を横(折り筋を横方向)にして架構12に配置した場合の例について説明したが、折り筋を縦(折り筋を上下方向)にして架構12に配置しても良い。折り筋を縦にして架構12に配置した場合は、波形鋼板28、86に軸力が導入されないように、波形鋼板28、86を上下の梁18、20に接合する時期を考慮することが望ましい。また、波形鋼板28、86及び補剛用波形鋼板40、94には、図21(A)〜図21(D)に示すような断面形状をした波形鋼板を用いても良い。
また、架構12を構成する柱14、16及び梁18、20は、鉄筋コンクリート造に限らず、鉄骨鉄筋コンクリート造、プレストレスコンクリート造、鉄骨造、CFT構造、更には現場打ち工法、プレキャスト工法等の種々の工法を用いることができる。また、梁18、20に替えてコンクリートスラブ又は小梁等であっても良い。
更に、第1〜第3の実施形態で示した耐震構造10、70、78は、建物22の一部に用いても、全てに用いても良い。これらの耐震構造10、70、78を用いることにより、改修のコストが削減された建物22を構築することができる。また、第1〜第3の実施形態は、新築の建物に対しても適用可能である。
以上、本発明の第1〜第3の実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、第1〜第3の実施形態を組み合わせて用いてもよいし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。
本発明の第1の実施形態に係る改修前の耐震構造を示す正面図である。 本発明の第1の実施形態に係る改修前の耐震構造を示す、図1の1−1線拡大断面図である。 本発明の第1の実施形態に係る改修後の耐震構造を示す正面図である。 本発明の第1の実施形態に係る改修後の耐震構造を示す、図3の3−3線拡大断面図である。 本発明の第1の実施形態に係る耐震構造の変形状態を示す模式図であり、(A)は改修前、(B)改修後の耐震構造を示す正面図である。 本発明の第1の実施形態に係る耐震構造における層間変形角と荷重との関係を示すグラフである。 本発明の第1の実施形態に係る改修後の耐震構造の変形例を示す拡大断面図である。 本発明の第1の実施形態に係る耐震構造の変形例の変形状態を示す正面模式図である。 本発明の第1の実施形態に係る改修後の耐震構造の変形例を示す拡大断面図である。 本発明の第1の実施形態に係る改修後の耐震構造の変形例を示す拡大断面図である。 本発明の第1の実施形態に係る改修後の耐震構造の変形例を示す拡大断面図である。 本発明の第2の実施形態に係る改修後の耐震構造を示す正面図である。 本発明の第2の実施形態に係る改修後の耐震構造を示す図12の4−4線拡大断面図である。 本発明の第2の実施形態に係る耐震構造における層間変形角と荷重との関係を示すグラフである。 本発明の第2の実施形態に係る耐震構造における層間変形角と荷重との関係を示すグラフである。 本発明の第2の実施形態に係る耐震構造の変形例を示す拡大正面図である。 本発明の第1の実施形態に係る耐震構造の変形例を示す正面図である。 本発明の第3の実施形態に係る改修後の耐震構造を示す正面図である。 本発明の第1〜第3の実施形態に係る耐震構造の変形例を示す正面図である。 本発明の第1〜第3の実施形態に係る耐震構造の変形例を示す図19の5−5線断面図である。 本発明の第1〜第3の実施形態に係る波形鋼板の断面形状を示す断面図である。 (A)、(B)は従来の波形鋼板耐震壁を示す正面図である。
符号の説明
10 耐震構造
12 架構
14 柱
16 柱
18 梁(水平部材)
20 梁(水平部材)
22 建物
28 波形鋼板(既存鋼板)
28A 改修領域
40 補剛用波形鋼板(せん断剛性増減手段、補剛部材)
64 セメント系部材
70 耐震構造
72 開口(せん断剛性増減手段)
78 耐震構造
82 上連結部
84 下連結部
86A 改修領域
86 波形鋼板(既存鋼板)
94 補剛用波形鋼板(せん断剛性増減手段、補剛部材)
102 鋼板(既存鋼板)
114 補剛用鋼板(せん断剛性増減手段、補剛部材)

Claims (10)

  1. 柱と上下の水平部材とから構成された架構に取り付けられた既存鋼板と、
    改修時に前記既存鋼板に設けられ、改修前よりも前記既存鋼板が小さい層間変形で降伏するように該既存鋼板にせん断剛性が異なる領域を上下に形成するせん断剛性増減手段と、
    を備える耐震構造。
  2. 前記せん断剛性増減手段が、前記既存鋼板の改修領域のせん断剛性を大きくし又は小さくして、相対的にせん断剛性が小さい領域を前記既存鋼板に形成する請求項1に記載の耐震構造。
  3. 前記せん断剛性増減手段によって相対的にせん断剛性が小さくされた前記既存鋼板の領域の降伏荷重が、改修前の前記既存鋼板の降伏荷重以下とされた請求項2に記載の耐震構造。
  4. 前記せん断剛性増減手段が、前記既存鋼板の板面に接合される補剛部材である請求項1〜3の何れか1項に記載の耐震構造。
  5. 前記せん断剛性増減手段が、前記既存鋼板が埋められるセメント系部材である請求項1〜3の何れか1項に記載の耐震構造。
  6. 前記せん断剛性増減手段が、前記既存鋼板の板面に形成された開口である請求項1〜3の何れか1項に記載の耐震構造。
  7. 前記既存鋼板が波形鋼板である請求項1〜6の何れか1項に記載の耐震構造。
  8. 前記既存鋼板が、上の前記水平部材に設けられた上連結部と、下の前記水平部材に設けられた下連結部と、に連結される請求項1〜7の何れか1項に記載の耐震構造。
  9. 請求項1〜8の何れか1項に記載の耐震構造を有する建物。
  10. 改修時に、柱と水平部材とから構成された架構に取り付けられた既存鋼板に、改修前よりも前記既存鋼板が小さい層間変形で降伏するように上下にせん断剛性が異なる領域を形成する改修方法。
JP2008312022A 2008-12-08 2008-12-08 耐震構造、耐震構造を有する建物、及び改修方法。 Active JP5254767B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312022A JP5254767B2 (ja) 2008-12-08 2008-12-08 耐震構造、耐震構造を有する建物、及び改修方法。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312022A JP5254767B2 (ja) 2008-12-08 2008-12-08 耐震構造、耐震構造を有する建物、及び改修方法。

Publications (2)

Publication Number Publication Date
JP2010133187A true JP2010133187A (ja) 2010-06-17
JP5254767B2 JP5254767B2 (ja) 2013-08-07

Family

ID=42344718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312022A Active JP5254767B2 (ja) 2008-12-08 2008-12-08 耐震構造、耐震構造を有する建物、及び改修方法。

Country Status (1)

Country Link
JP (1) JP5254767B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031615A (ja) * 2010-07-29 2012-02-16 Shimizu Corp 耐震補強構造
JP2013002032A (ja) * 2011-06-10 2013-01-07 Takenaka Komuten Co Ltd 波形鋼板耐震壁、及びこれの初期弾性せん断剛性算出方法
JP2016151110A (ja) * 2015-02-17 2016-08-22 新日鐵住金株式会社 せん断パネル

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424264U (ja) * 1987-07-30 1989-02-09
JPH0893263A (ja) * 1994-09-27 1996-04-09 Fujita Corp 制振装置
JPH0967939A (ja) * 1995-09-01 1997-03-11 Toda Constr Co Ltd 既存建造物の補強構造
JPH09158490A (ja) * 1995-12-12 1997-06-17 Shimizu Corp 既設建物の補強構造
JP2001241206A (ja) * 2000-02-28 2001-09-04 Ohbayashi Corp 制振構造及び制振化方法
JP2006037581A (ja) * 2004-07-29 2006-02-09 Takenaka Komuten Co Ltd 制震間柱
JP2006037628A (ja) * 2004-07-29 2006-02-09 Takenaka Komuten Co Ltd 既存建物の耐震補強方法
JP2008144452A (ja) * 2006-12-08 2008-06-26 Yahagi Construction Co Ltd 既設建築物の耐震補強構造

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424264U (ja) * 1987-07-30 1989-02-09
JPH0893263A (ja) * 1994-09-27 1996-04-09 Fujita Corp 制振装置
JPH0967939A (ja) * 1995-09-01 1997-03-11 Toda Constr Co Ltd 既存建造物の補強構造
JPH09158490A (ja) * 1995-12-12 1997-06-17 Shimizu Corp 既設建物の補強構造
JP2001241206A (ja) * 2000-02-28 2001-09-04 Ohbayashi Corp 制振構造及び制振化方法
JP2006037581A (ja) * 2004-07-29 2006-02-09 Takenaka Komuten Co Ltd 制震間柱
JP2006037628A (ja) * 2004-07-29 2006-02-09 Takenaka Komuten Co Ltd 既存建物の耐震補強方法
JP2008144452A (ja) * 2006-12-08 2008-06-26 Yahagi Construction Co Ltd 既設建築物の耐震補強構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031615A (ja) * 2010-07-29 2012-02-16 Shimizu Corp 耐震補強構造
JP2013002032A (ja) * 2011-06-10 2013-01-07 Takenaka Komuten Co Ltd 波形鋼板耐震壁、及びこれの初期弾性せん断剛性算出方法
JP2016151110A (ja) * 2015-02-17 2016-08-22 新日鐵住金株式会社 せん断パネル

Also Published As

Publication number Publication date
JP5254767B2 (ja) 2013-08-07

Similar Documents

Publication Publication Date Title
KR101263078B1 (ko) 접합 철물 및 이것을 구비한 건축물
JP5486278B2 (ja) 粘弾性ダンパの取付方法
JP2011127278A (ja) 鋼製耐震壁、及び当該鋼製耐震壁を有する建物
JP5601882B2 (ja) 鋼製耐震壁、及びこれを備えた建物
JP5383166B2 (ja) 波形鋼板耐震壁、波形鋼板耐震壁の設計方法、及び建築物
JP2008088758A (ja) 超高強度鋼で製作された波形鋼板を用いた耐震壁
JP2006037628A (ja) 既存建物の耐震補強方法
JP2009047193A (ja) ダンパー装置および構造物
JP5254767B2 (ja) 耐震構造、耐震構造を有する建物、及び改修方法。
JP5132503B2 (ja) 耐震構造、及び建物
JP4563872B2 (ja) 耐震壁
JP5291330B2 (ja) 波形鋼板耐震壁
JP4414832B2 (ja) 開口部を有する波形鋼板を用いた耐震壁
JP5917838B2 (ja) 波形鋼板耐震壁、及びこれの初期せん断剛性算出方法
JP4414833B2 (ja) 波形鋼板を用いた耐震壁
JP2010276080A (ja) エネルギー吸収部材及び該エネルギー吸収部材を設置した構造物
JP4395419B2 (ja) 制震間柱
JP2011006966A (ja) 鋼製耐震壁、及び該鋼製耐震壁を有する建物
JP2010070989A (ja) 耐震構造、耐震構造の設計方法、及び建物
JP5654060B2 (ja) ダンパーブレース及び制震構造
JP5095492B2 (ja) 波形鋼板耐震壁
JP2010121383A (ja) 耐震改修方法、及び建物
JP5627846B2 (ja) 境界梁、境界梁の設計方法、境界梁の施工方法、及び建築物
JP5674338B2 (ja) 鋼製耐震壁
JP6126941B2 (ja) 構造物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Ref document number: 5254767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3