JP2010132966A - Ni BASED HEAT RESISTANT ALLOY HAVING HIGH TEMPERATURE STRENGTH AND GAS TURBINE BLADE CASTING COMPOSED OF THE ALLOY - Google Patents

Ni BASED HEAT RESISTANT ALLOY HAVING HIGH TEMPERATURE STRENGTH AND GAS TURBINE BLADE CASTING COMPOSED OF THE ALLOY Download PDF

Info

Publication number
JP2010132966A
JP2010132966A JP2008309235A JP2008309235A JP2010132966A JP 2010132966 A JP2010132966 A JP 2010132966A JP 2008309235 A JP2008309235 A JP 2008309235A JP 2008309235 A JP2008309235 A JP 2008309235A JP 2010132966 A JP2010132966 A JP 2010132966A
Authority
JP
Japan
Prior art keywords
resistant alloy
gas turbine
temperature strength
turbine blade
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008309235A
Other languages
Japanese (ja)
Other versions
JP5408768B2 (en
Inventor
Akira Mihashi
章 三橋
Ikuo Okada
郁生 岡田
Hidetaka Oguma
英隆 小熊
Yoshihisa Kamimura
好古 上村
Daisuke Yoshida
大助 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Materials Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008309235A priority Critical patent/JP5408768B2/en
Publication of JP2010132966A publication Critical patent/JP2010132966A/en
Application granted granted Critical
Publication of JP5408768B2 publication Critical patent/JP5408768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Ni based heat resistant alloy having high strength for producing a gas turbine blade casting, to provide an ingot thereof, and to provide a gas turbine blade casting obtained by commonly casting the Ni based heat resistant alloy having high temperature strength. <P>SOLUTION: The Ni based heat resistant alloy having high temperature strength has a componential composition containing 12.1 to 13.0% Cr, 8.5 to 11.0% Co, 0.5 to 2.0% Mo, 5.5 to 7.0% W, 5.0 to 6.0% Ta, 3.6 to 4.6% Al, 2.0 to 2.9% Ti, 0.06 to 0.16% C, 0.005 to 0.035% B, 0.010 to 0.070% Zr and one or two kinds selected from Mg and Ca by 1 to 100 ppm in total and, if required, further comprising one or more kinds selected from 0.02 to 0.5% P, 0.02 to 0.5% Rh and 0.02 to 0.5% Re, and the balance Ni with inevitable impurities. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ガスタービン翼鋳物を作製するための高温強度を有するNi基耐熱合金に関するものであり、この発明の高温強度を有するNi基耐熱合金を普通鋳造して作製したガスタービン翼鋳物に関するものである。   TECHNICAL FIELD The present invention relates to a Ni-base heat-resistant alloy having high-temperature strength for producing a gas turbine blade casting, and relates to a gas-turbine blade casting produced by ordinary casting of a Ni-base heat-resistant alloy having high-temperature strength according to the present invention. It is.

一般に、ガスタービンは、圧縮機吐出空気に燃料を噴霧し、燃焼させてタービン駆動用の高温高圧ガスを生成し、この高温高圧ガスによりガスタービン翼を回転させてシャフトを回転させ、動力を得ている。この圧縮機吐出空気に燃料を噴霧し、燃焼させた直後の高温高圧ガスに接触するガスタービン翼は高温高圧を受けるためにNi基耐熱合金の単結晶組織または一方向凝固組織を有する柱状晶からなる組織を有するガスタービン翼を使用しているが、燃焼領域から離れるにしたがってガス圧は低圧化し、さらに温度が低下しているために燃焼領域から離れた後段側(低圧側)に取付けられるガスタービン翼は、燃焼領域に比べて過酷な条件が緩和されることから普通鋳造組織を有するガスタービン翼でも十分に耐えることができるとされている。しかし、燃焼領域から離れた後段側(低圧側)は広いガス通路が形成されているためにガスタービン翼も大型なものとなる。   In general, a gas turbine sprays fuel on the compressor discharge air and burns it to generate high-temperature and high-pressure gas for driving the turbine. The high-temperature and high-pressure gas rotates gas turbine blades to rotate a shaft to obtain power. ing. The gas turbine blade that comes into contact with the high-temperature and high-pressure gas immediately after the fuel is sprayed and burned to the compressor discharge air is subjected to high-temperature and high-pressure from a single crystal structure of a Ni-base heat-resistant alloy or a columnar crystal having a unidirectionally solidified structure. The gas turbine blades having the structure are used, but the gas pressure decreases as the distance from the combustion region increases, and the gas attached to the downstream side (low pressure side) away from the combustion region because the temperature is further decreased. The turbine blade is said to be able to sufficiently withstand even a gas turbine blade having a normal cast structure because severe conditions are relaxed as compared with the combustion region. However, since a wide gas passage is formed on the rear side (low pressure side) away from the combustion region, the gas turbine blades are also large.

このガスタービン翼の材料としては一般にNi基耐熱合金が使用されており、その主流はγ´相{Ni(Al,Ti,Ta)}の析出強化およびMo、W等による固溶強化を兼ね備えるNi基耐熱合金が使用されている。このNi基耐熱合金として、例えば、質量%(以下、%は、質量%を示す)Cr:7〜13%、Co:35%以下、Mo:8%以下、W:14%以下、Ta:6%以下、Al:4〜7%、Ti:0.5〜6%(ただし、Al+Ti:6.5〜10.5%)、V:0.2〜1.5%、Zr:0.2%以下、Hf:0.7〜5%、C:0.02〜0.5%、B:0.002〜0.2%を含有し、残部がNiおよび不可避不純物からなる組成を有する、高温強度、高温耐酸化性および高温耐蝕性に優れたNi基耐熱合金(特許文献1参照)、
Cr:13.1〜15.0%、Co:8.5〜10.5%、Mo:1.0〜3.5%、W:3.5〜4.5%、Ta:3.0〜5.5%、Al:3.5〜4.5%、Ti:2.0〜3.2%、C:0.06〜0.12%、B:0.005〜0.025%、Zr:0.010〜0.050%、Mgおよび/またはCa:1〜100ppmを含有し、さらに必要に応じてHf:0.2〜1.5%を含有し、さらに必要に応じてPt:0.02〜0.5%、Rh:0.02〜0.5%、Re:0.02〜0.5%の内の1種または2種以上を含有し、さらに必要に応じてHf:0.2〜1.5%およびPt:0.02〜0.5%、Rh:0.02〜0.5%、Re:0.02〜0.5%の内の1種または2種以上を含有し、残部がNiおよび不可避不純物からなる組成を有する、高温強度、高温耐酸化性および高温耐蝕性に優れたNi基耐熱合金(特許文献2参照)、
Cr:12.0〜14.3%、Co:8.5〜11.0%、Mo:1.0〜3.5%、W:3.5〜6.2%、Ta:3.0〜5.5%、Al:3.5〜4.5%、Ti:2.0〜3.2%、C:0.04〜0.12%、B:0.005〜0.05%を含有し、さらにMgおよび/またはCa:0.5〜100ppmを含有し、さらに必要に応じてPt:0.02〜0.5%、Rh:0.02〜0.5%、Re:0.02〜0.5%の内の1種または2種以上を含有し、残部がNiおよび不可避不純物からなる組成を有する健全な鋳肌および鋳物内部組織を得ることのできる柱状晶組織を有するガスタービン翼用Ni基耐熱合金(特許文献3参照)、などが知られている。
特公平1−59344号公報 特開平6−57359号公報 特開平10−273747号公報
As a material for the gas turbine blade, a Ni-base heat-resistant alloy is generally used, and the mainstream of the gas turbine blade has precipitation strengthening of the γ ′ phase {Ni 3 (Al, Ti, Ta)} and solid solution strengthening by Mo, W or the like. Ni-base heat-resistant alloy is used. As this Ni-based heat-resistant alloy, for example, mass% (hereinafter,% indicates mass%) Cr: 7 to 13%, Co: 35% or less, Mo: 8% or less, W: 14% or less, Ta: 6 %: Al: 4-7%, Ti: 0.5-6% (Al + Ti: 6.5-10.5%), V: 0.2-1.5%, Zr: 0.2% Hereinafter, Hf: 0.7 to 5%, C: 0.02 to 0.5%, B: 0.002 to 0.2%, with the balance being composed of Ni and inevitable impurities, high temperature strength Ni-based heat-resistant alloy excellent in high-temperature oxidation resistance and high-temperature corrosion resistance (see Patent Document 1),
Cr: 13.1-15.0%, Co: 8.5-10.5%, Mo: 1.0-3.5%, W: 3.5-4.5%, Ta: 3.0- 5.5%, Al: 3.5-4.5%, Ti: 2.0-3.2%, C: 0.06-0.12%, B: 0.005-0.025%, Zr : 0.010 to 0.050%, Mg and / or Ca: 1 to 100 ppm, further containing Hf: 0.2 to 1.5%, if necessary, further Pt: 0 0.02 to 0.5%, Rh: 0.02 to 0.5%, Re: 0.02 to 0.5%, or one or more of them, and if necessary, Hf: 0 One or more of 2-1.5% and Pt: 0.02-0.5%, Rh: 0.02-0.5%, Re: 0.02-0.5% Contains, the balance is Ni and inevitable Having a composition consisting of pure things, high temperature strength, high-temperature oxidation resistance and high temperature corrosion resistance excellent Ni-base heat-resistant alloy (see Patent Document 2),
Cr: 12.0 to 14.3%, Co: 8.5 to 11.0%, Mo: 1.0 to 3.5%, W: 3.5 to 6.2%, Ta: 3.0 to Contains 5.5%, Al: 3.5-4.5%, Ti: 2.0-3.2%, C: 0.04-0.12%, B: 0.005-0.05% Further, Mg and / or Ca: 0.5 to 100 ppm is contained, and if necessary, Pt: 0.02 to 0.5%, Rh: 0.02 to 0.5%, Re: 0.02 A gas turbine blade having a columnar crystal structure capable of obtaining a sound casting surface and a cast internal structure containing one or two or more of -0.5%, the balance being composed of Ni and inevitable impurities Ni-based heat-resistant alloys (see Patent Document 3) are known.
Japanese Patent Publication No. 1-59344 JP-A-6-57359 Japanese Patent Laid-Open No. 10-273747

しかし、近年、ガスタービンの容量は熱効率の向上による排出炭酸ガス量の低減や排出ガス処理を容易にするために大型化し、それに伴ってガスタービン翼の寸法が大きくなっている。さらに多段構造になっているガスタービンにおいて後段側(低圧側)は広いガス通路となっており、ガスタービンの容量が大型化すると一層広いガス通路が必要となり、この大型化したガスタービンの後段側(低圧側)に設けられるガスタービン翼も一層大型化している。
このような大型ガスタービン翼を一方向凝固させて柱状晶組織を有する大型ガスタービン翼鋳物を製造するには熟練と時間がかかり、そのためにコスト高となる。したがって、前記ガスタービンの後段側(低圧側)に設けられる大型ガスタービン翼は一般に普通鋳造により作製されている。しかし、普通鋳造して得られた大型ガスタービン翼であっても一層の高温強度を有するが求められていることには変わりなく、ガスタービン翼が大型化するほど自身の自重を減らさなければならないために一層の高温強度化が求められている。
さらに、一般に、Ni基耐熱合金は融点が高いことから、従来のNi基耐熱合金を溶解し鋳造して大型ガスタービン翼鋳物を作製すると、Ni基耐熱合金溶湯の温度が高いために鋳型のセラミックスと反応して得られた大型ガスタービン翼鋳物の鋳肌が悪くなる。
However, in recent years, the capacity of gas turbines has been increased in order to reduce the amount of discharged carbon dioxide gas by improving thermal efficiency and facilitate the processing of exhaust gas, and the dimensions of gas turbine blades have increased accordingly. Furthermore, in the gas turbine having a multistage structure, the rear stage side (low pressure side) is a wide gas passage. When the capacity of the gas turbine is increased, a wider gas passage is required, and the rear stage side of the enlarged gas turbine. Gas turbine blades provided on the (low pressure side) are also becoming larger.
Producing such a large gas turbine blade having a columnar crystal structure by unidirectionally solidifying such a large gas turbine blade requires skill and time, which increases the cost. Therefore, large gas turbine blades provided on the rear stage side (low pressure side) of the gas turbine are generally manufactured by ordinary casting. However, even a large gas turbine blade obtained by normal casting has a higher high-temperature strength but is still required, and its own weight must be reduced as the gas turbine blade becomes larger. Therefore, further high temperature strength is required.
Furthermore, since Ni-base heat-resistant alloys generally have a high melting point, when a large gas turbine blade casting is produced by melting and casting a conventional Ni-base heat-resistant alloy, the temperature of the Ni-base heat-resistant alloy melt is high, so the ceramics of the mold The casting surface of the large gas turbine blade casting obtained by reacting with the above becomes worse.

そこで、本発明者等は、Ni基耐熱合金を溶解し普通鋳造して高温強度および良好な鋳肌を有する大型ガスタービン翼鋳物を作製すべく研究を行った。その結果、
(イ)従来から知られているNi基耐熱合金を溶解し普通鋳造し得られた大型ガスタービン翼鋳物はいずれも高温強度および鋳肌に関して満足のいく結果は得られなかったが、先の特許文献2記載のNi基耐熱合金に比べてCr含有量を少なくしてCr:12.1〜13.0%とし、さらにW量を多くしてW:5.5〜7.0%とし、Mo、Ta、Al、Ti、C、B、Zrをできる限りバランスよく添加してそれらの成分組成をCr:12.1〜13.0%、Co:8.5〜11.0%、Mo:0.5〜2.0%、W:5.5〜7.0%、Ta:5.0〜6.0%、Al:3.6〜4.6%、Ti:2.0〜2.9%、C:0.06〜0.16%、B:0.005〜0.035%、Zr:0.010〜0.070%となるように調整し、さらにMgおよびCaの内の1種または2種を合計で1〜100ppm添加することにより酸素、硫黄等の不純物による悪影響を押えた成分組成を有するNi基耐熱合金鋳塊を作製し、このNi基耐熱合金鋳塊を溶解し普通鋳造して得られる鋳物は鋳肌が良好となり、高温強度が一層向上することから、このNi基耐熱合金鋳塊を溶解し鋳造して一層高温強度を有し良好な鋳肌を有する大型のガスタービン翼鋳物を作製することができる、
(ロ)前記(イ)記載のNi基耐熱合金に、さらにPt、Rh、ReをPt:0.02〜0.5%、Rh:0.02〜0.5%、Re:0.02〜0.5%の内の1種または2種以上を含有せしめると、耐食性が一層向上する、などの研究結果が得られたのである。
Accordingly, the present inventors have studied to produce a large gas turbine blade casting having a high temperature strength and a good casting surface by melting a Ni-base heat-resistant alloy and performing normal casting. as a result,
(B) None of the large-sized gas turbine blade castings obtained by melting and conventionally casting Ni-base heat-resistant alloys that have been known so far have obtained satisfactory results with respect to high-temperature strength and casting surface. Compared to the Ni-base heat-resistant alloy described in Reference 2, the Cr content is reduced to Cr: 12.1 to 13.0%, and the W content is further increased to W: 5.5 to 7.0%. , Ta, Al, Ti, C, B, Zr are added in a balanced manner so that the composition of these components is Cr: 12.1 to 13.0%, Co: 8.5 to 11.0%, Mo: 0 0.5 to 2.0%, W: 5.5 to 7.0%, Ta: 5.0 to 6.0%, Al: 3.6 to 4.6%, Ti: 2.0 to 2.9 %, C: 0.06 to 0.16%, B: 0.005 to 0.035%, Zr: 0.010 to 0.070%. A Ni-based heat-resistant alloy ingot having a component composition that suppresses adverse effects caused by impurities such as oxygen and sulfur by adding one or two of Mg and Ca in total to 1 to 100 ppm is prepared. Castings obtained by melting heat-resistant alloy ingots and performing normal casting have better casting surface and higher high-temperature strength, so this Ni-base heat-resistant alloy ingot is melted and cast to have higher temperature strength. Large-sized gas turbine blade castings with a smooth casting surface can be produced,
(B) To the Ni-base heat-resistant alloy described in (a) above, Pt, Rh, and Re are further changed to Pt: 0.02 to 0.5%, Rh: 0.02 to 0.5%, and Re: 0.02 Research results were obtained such that the inclusion of one or more of 0.5% further improved the corrosion resistance.

この発明は、かかる研究結果に基づいて成されたものであって、
(1)質量%で(以下、%は質量%を示す)、Cr:12.1〜13.0%、Co:8.5〜11.0%、Mo:0.5〜2.0%、W:5.5〜7.0%、Ta:5.0〜6.0%、Al:3.6〜4.6%、Ti:2.0〜2.9%、C:0.06〜0.16%、B:0.005〜0.035%、Zr:0.010〜0.070%、MgおよびCaの内の1種または2種を合計で1〜100ppmを含有し、残りがNiと不可避不純物からなる成分組成を有する高温強度を有するNi基耐熱合金、
(2)Cr:12.1〜13.0%、Co:8.5〜11.0%、Mo:0.5〜2.0%、W:5.5〜7.0%、Ta:5.0〜6.0%、Al:3.6〜4.6%、Ti:2.0〜2.9%、C:0.06〜0.16%、B:0.005〜0.035%、Zr:0.010〜0.070%、MgおよびCaの内の1種または2種を合計で1〜100ppmを含有し、さらにPt:0.02〜0.5%、Rh:0.02〜0.5%、Re:0.02〜0.5%の内の1種または2種以上を含有し、残りがNiと不可避不純物からなる成分組成を有する高温強度を有するNi基耐熱合金、
(3)前記(1)または(2)記載の成分組成を有する高温強度を有するNi基耐熱合金鋳塊、
(4)前記(1)または(2)記載の高温強度を有するNi基耐熱合金からなるガスタービン翼鋳物、に特徴を有するものである。
The present invention has been made based on such research results,
(1) By mass% (hereinafter,% represents mass%), Cr: 12.1 to 13.0%, Co: 8.5 to 11.0%, Mo: 0.5 to 2.0%, W: 5.5-7.0%, Ta: 5.0-6.0%, Al: 3.6-4.6%, Ti: 2.0-2.9%, C: 0.06- 0.16%, B: 0.005 to 0.035%, Zr: 0.010 to 0.070%, one or two of Mg and Ca are contained in a total of 1 to 100 ppm, and the rest Ni-base heat-resistant alloy having a high-temperature strength having a composition composed of Ni and inevitable impurities,
(2) Cr: 12.1 to 13.0%, Co: 8.5 to 11.0%, Mo: 0.5 to 2.0%, W: 5.5 to 7.0%, Ta: 5 0.0-6.0%, Al: 3.6-4.6%, Ti: 2.0-2.9%, C: 0.06-0.16%, B: 0.005-0.035 %, Zr: 0.010 to 0.070%, one or two of Mg and Ca are contained in a total of 1 to 100 ppm, and Pt: 0.02 to 0.5%, Rh: 0.0. Ni-based heat-resistant alloy having high-temperature strength having one or more of 02 to 0.5%, Re: 0.02 to 0.5%, and the remainder comprising Ni and inevitable impurities ,
(3) Ni-base heat-resistant alloy ingot having high-temperature strength having the component composition according to (1) or (2),
(4) It is characterized by the gas turbine blade casting made of the Ni-base heat-resistant alloy having the high temperature strength described in (1) or (2).

前述のように成分組成をバランスよく組み合わせて得られたこの発明のNi基耐熱合金鋳塊は、真空溶解して前記(1)または(2)記載の成分組成を有するように成分調整し、この成分調整して得られた溶湯を金型に鋳込むことにより作製する。このようにして得られたこの発明のNi基耐熱合金鋳塊は普通鋳造して得られた鋳物であるから、その組織は樹枝状晶を有している。
この発明のNi基耐熱合金からなるタービン翼鋳物は、先に作製した成分調整されたNi基耐熱合金鋳塊を再び真空溶解し、セラミックス鋳型に直接鋳込むことにより得られ、その組織は樹枝状晶を有し、オーステナイト結晶粒内にγ´相{Ni(Al,Ti,Ta)}が分散析出した組織を有している。
The Ni-base heat-resistant alloy ingot of the present invention obtained by combining the component compositions in a well-balanced manner as described above is vacuum-melted and adjusted to have the component composition described in (1) or (2) above. The molten metal obtained by adjusting the components is produced by casting into a mold. Since the Ni-base heat-resistant alloy ingot of the present invention thus obtained is a casting obtained by ordinary casting, its structure has dendritic crystals.
The turbine blade casting made of the Ni-base heat-resistant alloy of the present invention is obtained by re-dissolving the previously prepared Ni-base heat-resistant alloy ingot prepared in a vacuum and directly casting it into a ceramic mold, and its structure is dendritic. And has a structure in which the γ ′ phase {Ni 3 (Al, Ti, Ta)} is dispersed and precipitated in the austenite crystal grains.

次に、この発明の高温強度を有するNi基耐熱合金の成分組成を上記の通りに限定した理由を説明する。
(a)Cr
産業用ガスタービンでは、燃焼によって生じた酸化性および腐食性物質を含有する燃焼ガスと接触するため、高温における耐酸化性及び耐蝕性が要求されるが、近年、燃料は腐食性の低い天然ガスや良質な軽質油が使用されており、タービン翼に施すコーティングの信頼性が向上したことと合わせて合金に求められる高温における耐酸化性および耐食性は低くなっている。しかし、高温における耐酸化性及び耐蝕性は依然として必要であり、Crはこれらの要求を満たす成分であるので添加するが、その含有量が12.1%未満ではその効果は少なく、一方、この発明の健全な鋳肌および普通鋳造組織を得ることのできるNi基耐熱合金では、他にCo、Mo、W、Ta等も添加されるため、これらとのバランスをとるため13.0%を越えて含有することは好ましくない。よって、Cr含有量は12.1〜13.0%に定めた。
Next, the reason why the component composition of the Ni-base heat resistant alloy having high temperature strength according to the present invention is limited as described above will be described.
(A) Cr
Industrial gas turbines come in contact with combustion gases containing oxidizing and corrosive substances generated by combustion, and therefore, oxidation resistance and corrosion resistance at high temperatures are required. In addition to the improved reliability of the coating applied to the turbine blades, the oxidation resistance and corrosion resistance at high temperatures required for the alloys are low. However, oxidation resistance and corrosion resistance at high temperatures are still necessary, and Cr is added because it is a component that satisfies these requirements. However, if its content is less than 12.1%, its effect is small. In Ni-base heat-resistant alloys that can obtain a healthy casting surface and a normal cast structure, Co, Mo, W, Ta, etc. are also added, so in order to balance with these, it exceeds 13.0% It is not preferable to contain it. Therefore, the Cr content is set to 12.1 to 13.0%.

(b)Co
Coは、Ti、Al等を高温で素地に固溶させる限度(固溶限)を大きくさせ、熱処理によってγ´相{Ni3 (Ti,Al,Ta)}を微細分散析出させて健全な鋳肌および鋳物内部組織を得ることによりNi基耐熱合金の強度を向上させる作用があるので添加するが、この発明に含まれるTi,Al量ではCo量は8.5%以上であることが必要であり、一方、Co含有量が11.0%を越えると、Cr、Mo、W、Ta、Al、Ti等の他の元素とのバランスが崩れ、有害相の析出による延性低下をもたらすことからCo含有量は8.5〜11.0%に定めた。
(B) Co
Co increases the limit (solid solubility limit) for dissolving Ti, Al, etc. in the substrate at a high temperature, and finely precipitates the γ 'phase {Ni 3 (Ti, Al, Ta)} by heat treatment to produce a sound casting. It is added because it has the effect of improving the strength of the Ni-base heat-resistant alloy by obtaining the skin and the internal structure of the casting, but the amount of Co must be 8.5% or more in the amount of Ti and Al included in the present invention. On the other hand, if the Co content exceeds 11.0%, the balance with other elements such as Cr, Mo, W, Ta, Al, and Ti is lost, and this causes a reduction in ductility due to precipitation of harmful phases. The content was set to 8.5 to 11.0%.

(c)Mo
Moは、素地中に固溶して、Wとの相乗作用によって高温強度を上昇させる作用があるので添加するが、その含有量が、0.5%未満では不十分であり、一方、2.0%を越えて添加すると有害相の析出により延性が阻害されるのでMo:0.5〜2.0%に定めた。
(C) Mo
Mo is dissolved in the substrate and added because it has the effect of increasing the high-temperature strength by synergistic action with W. However, if its content is less than 0.5%, it is insufficient. If added over 0%, the ductility is hindered by the precipitation of the harmful phase, so the Mo content was set to 0.5 to 2.0%.

(d) W
WはMoと同様に主として固溶強化の作用があり、高温強度の付与に寄与する効果があるが、他の添加成分とのバランスにより添加量が制限され、その量は5.5%以上必要である。しかし、あまり多く含有し過ぎると、有害相を析出するとともにW自身比重が大きい元素であるため合金全体の比重が大きくなり、遠心力の働くタービン翼では不利であるところから、その上限を7.0%にした。したがって、この発明のNi基耐熱合金に含まれるW含有量を5.5〜7.0%とした。この発明のNi基耐熱合金に含まれるW含有量は6.2〜6.8%であることが一層好ましい。
(D) W
W has the effect of solid solution strengthening like Mo, and has the effect of contributing to imparting high temperature strength, but the amount added is limited by the balance with other additive components, and the amount needs to be 5.5% or more. It is. However, if the content is too large, the harmful phase is precipitated and W itself has a large specific gravity. Therefore, the specific gravity of the entire alloy increases, which is disadvantageous for a turbine blade with centrifugal force. 0%. Therefore, the W content contained in the Ni-base heat-resistant alloy of the present invention is set to 5.5 to 7.0%. The W content contained in the Ni-base heat-resistant alloy of this invention is more preferably 6.2 to 6.8%.

(e) Ta
Taは固溶強化及びγ´相析出強化により高温強度の向上に寄与し、所望の強度を得るためには5.0%以上含まれることが必要である。しかし多く添加し過ぎると延性を低下するのでその上限を6.0%とした。従って、この発明のNi基耐熱合金に含まれるTa含有量は5.0〜6.0%に定めた。
(E) Ta
Ta contributes to the improvement of high-temperature strength by solid solution strengthening and γ ′ phase precipitation strengthening, and 5.0% or more is required to obtain a desired strength. However, if too much is added, the ductility is lowered, so the upper limit was made 6.0%. Therefore, the Ta content contained in the Ni-base heat resistant alloy of the present invention is set to 5.0 to 6.0%.

(f) Al
AlはTiと同様にγ´相を生成する元素であり、析出強化によって合金の高温強度を上げると共に、高温での耐酸化性、耐蝕性の付与に寄与する作用を有し、その作用はCrとの相乗効果による。そのためにこの発明のNi基耐熱合金に含まれるAl量は3.6%以上であることが必要であるが、一方、4.6%を越えて多量に添加し過ぎると延性を阻害するようになる。したがって、Al含有量は3.6〜4.6%に定めた。
(F) Al
Al, like Ti, is an element that produces a γ 'phase, and has the effect of increasing the high-temperature strength of the alloy by precipitation strengthening and contributing to the provision of oxidation resistance and corrosion resistance at high temperatures. With the synergistic effect. Therefore, it is necessary that the amount of Al contained in the Ni-base heat-resistant alloy of the present invention is 3.6% or more. On the other hand, if it is excessively added exceeding 4.6%, the ductility is inhibited. Become. Therefore, the Al content is determined to be 3.6 to 4.6%.

(g) Ti
Tiはγ´析出強化型Ni基合金の高温強度を上げるためのγ´相の析出に必要な元素であるので添加するが、その含有量は2.0%未満ではγ´相の析出が不十分で、要求強度を満足することができず、一方、2.9%よりも多量に添加すると析出量が多くなり過ぎて延性を阻害するので好ましくない。従って、Ti含有量は2.0〜2.9%に定めた。
(G) Ti
Ti is added because it is an element necessary for precipitation of the γ 'phase for increasing the high temperature strength of the γ' precipitation strengthened Ni-base alloy. However, if its content is less than 2.0%, precipitation of the γ 'phase is not possible. It is sufficient, and the required strength cannot be satisfied. On the other hand, if it is added in a larger amount than 2.9%, the amount of precipitation becomes excessive and the ductility is hindered. Therefore, the Ti content is set to 2.0 to 2.9%.

(h) C
Cは炭化物を形成し、特に結晶粒界、樹枝状晶境界に析出して粒界や樹枝状晶境界を強化し、高温強度の向上に寄与するので0.06%以上添加することが必要であるが、一方、0.16%を越えて添加すると延性を阻害するので大型ガスタービン翼の鋳造を考慮すると好ましくない。したがって、Cの含有量を0.06〜0.16%とした。
(H) C
C forms carbides, in particular, precipitates at grain boundaries and dendritic boundaries, strengthens the grain boundaries and dendritic boundaries, and contributes to the improvement of high-temperature strength, so it is necessary to add 0.06% or more. On the other hand, if it exceeds 0.16%, the ductility is hindered, which is not preferable in consideration of casting of a large gas turbine blade. Therefore, the content of C is set to 0.06 to 0.16%.

(i) B
B成分は、結晶粒界における結合力を増して素地を強化し、高温強度を向上させる作用を有するので添加するが、その含有量が0.005%未満では所望の効果が得られず、一方、0.035%を越えて含有すると延性を阻害する恐れがあるので大型ガスタービン翼の鋳造による製造を考慮すると好ましくない。したがって、Bの含有量を0.001〜0.035%と定めた。
(I) B
The B component is added because it has a function of increasing the bonding strength at the grain boundaries to strengthen the substrate and improving the high temperature strength, but if the content is less than 0.005%, the desired effect cannot be obtained. If the content exceeds 0.035%, the ductility may be hindered. Therefore, it is not preferable in consideration of the production by casting a large gas turbine blade. Therefore, the content of B is set to 0.001 to 0.035%.

(j) Zr
Zrも結晶粒界における結合力を増して素地を強化し、高温強度を上昇させるので必要な成分であるが、その含有量が0.010%未満では所望の効果が得られず、一方、あまり多く添加すると延性を阻害する恐れがあるため大型ガスタービン翼の鋳造を考慮するとZr含有量を0.070%を越えて含有させることは好ましくない。したがって、Zrの含有量を0.010〜0.070%とした。
(J) Zr
Zr is also a necessary component because it increases the bonding strength at the grain boundaries to strengthen the substrate and raises the high-temperature strength. However, if its content is less than 0.010%, the desired effect cannot be obtained. If a large amount is added, the ductility may be hindered. Therefore, considering the casting of a large gas turbine blade, it is not preferable to contain the Zr content exceeding 0.070%. Therefore, the content of Zr is set to 0.010 to 0.070%.

(k) Mg、Ca
これら成分は酸素、硫黄等の不純物との結合力が強く、さらに酸素、硫黄等の不純物による延性低下を防止する作用があるが、その含有量が1ppm未満では十分な作用が得られず、一方、100ppmを越えて含有するとかえって結晶粒界の結合を弱めて割れの原因になるので好ましくない。したがって、Mgおよび/またはCaの含有量は1〜100ppmと定めた。
(K) Mg, Ca
These components have a strong binding force with impurities such as oxygen and sulfur, and further have an effect of preventing ductility deterioration due to impurities such as oxygen and sulfur. However, when the content is less than 1 ppm, sufficient effects cannot be obtained. If the content exceeds 100 ppm, the crystal grain boundary bond is weakened and cracks are caused. Therefore, the content of Mg and / or Ca is set to 1 to 100 ppm.

(l) Pt、Rh、Re
Pt、Rh、Reは耐食性向上作用があるので必要に応じて添加するが、その含有量がそれぞれ0.02%未満では所望の効果が得られず、一方、その含有量がそれぞれ0.5%を越えて含有すると、なお一層の効果が望めないほか、貴金属であるために価格が高くなるので好ましくない。したがって、Pt、Rh、Reの内の1種または2種以上はそれぞれ0.02〜0.5%に定めた。
(L) Pt, Rh, Re
Pt, Rh, and Re are added as necessary because they have an effect of improving corrosion resistance. However, if their contents are less than 0.02%, the desired effects cannot be obtained, while their contents are 0.5% each. If it exceeds V, it is not preferable because a further effect cannot be expected and the price is increased because it is a noble metal. Accordingly, one or more of Pt, Rh, and Re are set to 0.02 to 0.5%, respectively.

この発明のNi基耐熱合金は、普通鋳造して鋳肌の良好な高温強度の優れた大型のガスタービン翼鋳物を得ることができるので安価に高温強度に優れたガスタービン翼を提供することができ、各種産業の発展に大いに貢献できるものである。   Since the Ni-base heat-resistant alloy of the present invention can be cast normally to obtain a large-sized gas turbine blade casting having a good casting surface and excellent high temperature strength, it is possible to provide a gas turbine blade excellent in high temperature strength at low cost. Can contribute greatly to the development of various industries.

つぎに、この発明のNi基耐熱合金を実施例により具体的に説明する
通常の高周波真空溶解炉を用い、それぞれ表1〜3に示される成分組成をもった本発明Ni基耐熱合金1〜17、比較Ni基耐熱合金1〜20および従来Ni基耐熱合金1からなるNi基合金溶湯を溶製し、これを金型に鋳造して鋳塊を作製した。この鋳塊の一部を再び高周波真空溶解して温度:1570℃に保持された溶湯を作製し、これをアルミナ鋳型に鋳造して直径:30mm、長さ:150mmの試験片鋳物を作製した。
Next, the Ni-base heat-resistant alloy of the present invention will be described in detail with reference to examples. The present invention Ni-base heat-resistant alloys 1 to 17 having the component compositions shown in Tables 1 to 3, respectively, using ordinary high-frequency vacuum melting furnaces. The molten Ni-base alloy made of comparative Ni-base heat-resistant alloys 1 to 20 and the conventional Ni-base heat-resistant alloy 1 was melted and cast into a mold to produce an ingot. A part of this ingot was again melted by high-frequency vacuum to produce a molten metal maintained at a temperature of 1570 ° C., and this was cast into an alumina mold to produce a test piece casting having a diameter of 30 mm and a length of 150 mm.

得られた本発明Ni基耐熱合金1〜17、比較Ni基耐熱合金1〜20および従来Ni基耐熱合金1からなる試験片鋳物の外表面の蛍光探傷試験を行って直径:0.2mm以上の凹欠陥の数を測定し、その結果を表4に示すことにより鋳肌を評価した。
さらに得られた試験片鋳物を1200℃、2時間保持の溶体化処理し、さらに830℃で24時間保持の時効処理を行ったのち、前記試験片鋳物を大気中、温度:870℃に負荷:300MPaをかけて保持し、破断に至るまでの寿命(時間)を測定し、従来Ni基耐熱合金1からなる試験片鋳物の寿命を1として本発明Ni基耐熱合金1〜17、比較Ni基耐熱合金1〜20からなる試験片鋳物の破断寿命の比を測定し、高温クリープ破断強度を評価した。
A fluorescent flaw detection test was carried out on the outer surface of a test piece casting made of the obtained Ni-base heat-resistant alloys 1-17 of the present invention, comparative Ni-base heat-resistant alloys 1-20, and conventional Ni-base heat-resistant alloy 1, and the diameter was 0.2 mm or more The number of concave defects was measured, and the results were shown in Table 4 to evaluate the casting surface.
Further, the obtained test piece casting was subjected to a solution treatment at 1200 ° C. for 2 hours, and further subjected to an aging treatment at 830 ° C. for 24 hours, and then the test piece casting was loaded in the atmosphere at a temperature of 870 ° C .: Holding over 300 MPa, measuring the life (time) until rupture, and assuming that the life of the test piece casting made of the conventional Ni-base heat-resistant alloy 1 is 1, the Ni-base heat-resistant alloys 1 to 17 of the present invention, comparative Ni-base heat resistance The ratio of the rupture life of the test piece castings made of the alloys 1 to 20 was measured to evaluate the high temperature creep rupture strength.

Figure 2010132966
Figure 2010132966

Figure 2010132966
Figure 2010132966

Figure 2010132966
Figure 2010132966


Figure 2010132966
Figure 2010132966

表1〜4に示される結果から、本発明Ni基耐熱合金1〜17からなる試験片鋳物は、いずれも従来Ni基耐熱合金1からなる試験片鋳物に比べて凹欠陥数が少ないことから鋳肌の荒れが小さく、さらに高温クリープ破断強度が優れていることが分かる。また、この発明の範囲から外れている成分組成の比較Ni基耐熱合金1〜20からなる溶体化処理した試験片鋳物は凹欠陥数が多い値を示して鋳肌の荒れが激しかったり、高温クリープ破断強度が低下するなど何らかの好ましくない特性を示すことがわかる。 From the results shown in Tables 1 to 4, since the test piece castings made of the Ni-base heat-resistant alloys 1 to 17 of the present invention have fewer concave defects than the conventional test piece castings made of the Ni-base heat-resistant alloy 1, It can be seen that the roughness of the skin is small and the high-temperature creep rupture strength is excellent. In addition, comparison of component compositions outside the scope of the present invention. Solution-cast test piece castings made of Ni-based heat-resistant alloys 1 to 20 have a large number of concave defects, resulting in severe roughness of the casting surface, high temperature creep. It can be seen that it exhibits some unfavorable characteristics such as a decrease in breaking strength.

Claims (4)

質量%で(以下、%は質量%を示す)、Cr:12.1〜13.0%、Co:8.5〜11.0%、Mo:0.5〜2.0%、W:5.5〜7.0%、Ta:5.0〜6.0%、Al:3.6〜4.6%、Ti:2.0〜2.9%、C:0.06〜0.16%、B:0.005〜0.035%、Zr:0.010〜0.070%、MgおよびCaの内の1種または2種を合計で1〜100ppmを含有し、残りがNiと不可避不純物からなる成分組成を有することを特徴とする高温強度を有するNi基耐熱合金。 In mass% (hereinafter,% represents mass%), Cr: 12.1 to 13.0%, Co: 8.5 to 11.0%, Mo: 0.5 to 2.0%, W: 5 5-7.0%, Ta: 5.0-6.0%, Al: 3.6-4.6%, Ti: 2.0-2.9%, C: 0.06-0.16 %, B: 0.005 to 0.035%, Zr: 0.010 to 0.070%, one or two of Mg and Ca are contained in a total of 1 to 100 ppm, and the rest is inevitable with Ni A Ni-base heat-resistant alloy having high temperature strength, characterized by having a component composition comprising impurities. 質量%で(以下、%は質量%を示す)、Cr:12.1〜13.0%、Co:8.5〜11.0%、Mo:0.5〜2.0%、W:5.5〜7.0%、Ta:5.0〜6.0%、Al:3.6〜4.6%、Ti:2.0〜2.9%、C:0.06〜0.16%、B:0.005〜0.035%、Zr:0.010〜0.070%、MgおよびCaの内の1種または2種を合計で1〜100ppmを含有し、さらにPt:0.02〜0.5%、Rh:0.02〜0.5%、Re:0.02〜0.5%の内の1種または2種以上を含有し、残りがNiと不可避不純物からなる成分組成を有することを特徴とする高温強度を有するNi基耐熱合金。 In mass% (hereinafter,% represents mass%), Cr: 12.1 to 13.0%, Co: 8.5 to 11.0%, Mo: 0.5 to 2.0%, W: 5 5-7.0%, Ta: 5.0-6.0%, Al: 3.6-4.6%, Ti: 2.0-2.9%, C: 0.06-0.16 %, B: 0.005 to 0.035%, Zr: 0.010 to 0.070%, one or two of Mg and Ca are contained in a total of 1 to 100 ppm, and Pt: 0.0. Components containing one or more of 02 to 0.5%, Rh: 0.02 to 0.5%, Re: 0.02 to 0.5%, and the remainder consisting of Ni and inevitable impurities A Ni-based heat-resistant alloy having a high temperature strength characterized by having a composition. 請求項1または2記載の成分組成を有することを特徴とする高温強度を有するNi基耐熱合金鋳塊。 A Ni-base heat-resistant alloy ingot having high-temperature strength having the component composition according to claim 1 or 2. 請求項1または2記載の高温強度を有するNi基耐熱合金からなることを特徴とするガスタービン翼鋳物。 A gas turbine blade casting comprising the Ni-base heat-resistant alloy having high-temperature strength according to claim 1 or 2.
JP2008309235A 2008-12-04 2008-12-04 Ni-base heat-resistant alloy ingot having high-temperature strength and dendritic structure and gas turbine blade casting comprising the same Active JP5408768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008309235A JP5408768B2 (en) 2008-12-04 2008-12-04 Ni-base heat-resistant alloy ingot having high-temperature strength and dendritic structure and gas turbine blade casting comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008309235A JP5408768B2 (en) 2008-12-04 2008-12-04 Ni-base heat-resistant alloy ingot having high-temperature strength and dendritic structure and gas turbine blade casting comprising the same

Publications (2)

Publication Number Publication Date
JP2010132966A true JP2010132966A (en) 2010-06-17
JP5408768B2 JP5408768B2 (en) 2014-02-05

Family

ID=42344517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309235A Active JP5408768B2 (en) 2008-12-04 2008-12-04 Ni-base heat-resistant alloy ingot having high-temperature strength and dendritic structure and gas turbine blade casting comprising the same

Country Status (1)

Country Link
JP (1) JP5408768B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146931A1 (en) * 2014-03-28 2015-10-01 田中貴金属工業株式会社 Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME
CN108866387A (en) * 2017-05-16 2018-11-23 中国科学院金属研究所 A kind of gas turbine high-strength corrosion and heat resistant nickel base superalloy and its preparation process and application
US11155910B2 (en) 2015-07-09 2021-10-26 Mitsubishi Power, Ltd. High-strength, heat-resistant Ni-base alloy, method for producing same, and gas turbine blade

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186845A (en) * 1987-01-27 1988-08-02 Mitsubishi Metal Corp Ni group heat-resisting alloy having excellent thermal shock resistance
JPH09157777A (en) * 1995-12-12 1997-06-17 Mitsubishi Materials Corp Nickel base alloy excellent in thermal fatigue resistance, high temperature creep resistance and high temperature corrosion resistance
JPH1046277A (en) * 1996-05-31 1998-02-17 Mitsubishi Materials Corp Columnar ni base heat resistant alloy casting and turbine blade made of the same
JPH10273747A (en) * 1997-03-31 1998-10-13 Mitsubishi Materials Corp Ni-base heat resistant alloy capable of providing sound casting surface and internal structure of casting
JP2004332061A (en) * 2003-05-09 2004-11-25 Hitachi Ltd HIGHLY OXIDATION RESISTANT Ni BASED SUPERALLOY, AND GAS TURBINE COMPONENT
JP2006045654A (en) * 2004-08-09 2006-02-16 Hitachi Ltd Ni-BASED SUPERALLOY FOR UNIDIRECTIONAL SOLIDIFICATION HAVING SUPERIOR STRENGTHS IN SOLIDIFICATION DIRECTION AND OF GRAIN BOUNDARY, CASTING, AND HOT PARTS FOR GAS TURBINE
JP2008525634A (en) * 2004-12-23 2008-07-17 シーメンス アクチエンゲゼルシヤフト Ni-based alloys, components, gas turbine equipment and use of Pd in connection with the alloys
JP2009534539A (en) * 2006-04-26 2009-09-24 シーメンス アクチエンゲゼルシヤフト Swing heat treatment method for superalloys

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186845A (en) * 1987-01-27 1988-08-02 Mitsubishi Metal Corp Ni group heat-resisting alloy having excellent thermal shock resistance
JPH09157777A (en) * 1995-12-12 1997-06-17 Mitsubishi Materials Corp Nickel base alloy excellent in thermal fatigue resistance, high temperature creep resistance and high temperature corrosion resistance
JPH1046277A (en) * 1996-05-31 1998-02-17 Mitsubishi Materials Corp Columnar ni base heat resistant alloy casting and turbine blade made of the same
JPH10273747A (en) * 1997-03-31 1998-10-13 Mitsubishi Materials Corp Ni-base heat resistant alloy capable of providing sound casting surface and internal structure of casting
JP2004332061A (en) * 2003-05-09 2004-11-25 Hitachi Ltd HIGHLY OXIDATION RESISTANT Ni BASED SUPERALLOY, AND GAS TURBINE COMPONENT
JP2006045654A (en) * 2004-08-09 2006-02-16 Hitachi Ltd Ni-BASED SUPERALLOY FOR UNIDIRECTIONAL SOLIDIFICATION HAVING SUPERIOR STRENGTHS IN SOLIDIFICATION DIRECTION AND OF GRAIN BOUNDARY, CASTING, AND HOT PARTS FOR GAS TURBINE
JP2008525634A (en) * 2004-12-23 2008-07-17 シーメンス アクチエンゲゼルシヤフト Ni-based alloys, components, gas turbine equipment and use of Pd in connection with the alloys
JP2009534539A (en) * 2006-04-26 2009-09-24 シーメンス アクチエンゲゼルシヤフト Swing heat treatment method for superalloys

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146931A1 (en) * 2014-03-28 2015-10-01 田中貴金属工業株式会社 Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME
CN106164307A (en) * 2014-03-28 2016-11-23 田中贵金属工业株式会社 NiIr based heat resistant alloy and manufacture method thereof
KR101832654B1 (en) 2014-03-28 2018-02-26 다나카 기킨조쿠 고교 가부시키가이샤 Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME
US10094012B2 (en) 2014-03-28 2018-10-09 Tanaka Kikinzoku Kogyo K.K. Ni-Ir-based heat-resistant alloy and process for producing same
US11155910B2 (en) 2015-07-09 2021-10-26 Mitsubishi Power, Ltd. High-strength, heat-resistant Ni-base alloy, method for producing same, and gas turbine blade
CN108866387A (en) * 2017-05-16 2018-11-23 中国科学院金属研究所 A kind of gas turbine high-strength corrosion and heat resistant nickel base superalloy and its preparation process and application

Also Published As

Publication number Publication date
JP5408768B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
JP5663530B2 (en) Rhenium-free single crystal superalloy for turbine blade and vane applications
JP6460336B2 (en) Ni-based high-strength heat-resistant alloy member, method for producing the same, and gas turbine blade
JP5186215B2 (en) Nickel-based superalloy
JP5235383B2 (en) Ni-based single crystal alloy and casting
JPWO2008111585A1 (en) Ni-based single crystal superalloy and turbine blade using the same
US6740292B2 (en) Nickel-base superalloy
JP4719583B2 (en) Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy
JP5626920B2 (en) Nickel-base alloy castings, gas turbine blades and gas turbines
JP2006083447A (en) Nickel-base superalloy with excellent strength, corrosion resistance and oxidation resistance
JP5597598B2 (en) Ni-base superalloy and gas turbine using it
JP5408768B2 (en) Ni-base heat-resistant alloy ingot having high-temperature strength and dendritic structure and gas turbine blade casting comprising the same
EP2169087B1 (en) Nickel-based superalloy and gas turbine blade using the same
JP5787535B2 (en) Nickel-base superalloy with improved degradation behavior
JP3679973B2 (en) Single crystal Ni-base heat-resistant alloy, turbine blade and gas turbine
JP4583894B2 (en) Heat resistant superalloy and use thereof
JP6084802B2 (en) High-strength Ni-base superalloy and gas turbine using the same
JP5427642B2 (en) Nickel-based alloy and land gas turbine parts using the same
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
JPH0657359A (en) Ni-base heat resistant alloy
JP2002294374A (en) Ni BASED CAST HEAT RESISTANT SUPERALLOY AND TURBINE WHEEL MADE OF THE Ni BASED SUPERALLOY
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy
JP4773303B2 (en) Nickel-based single crystal superalloy excellent in strength, corrosion resistance, and oxidation resistance and method for producing the same
JP3246377B2 (en) Manufacturing method of columnar crystal Ni-base heat-resistant alloy large casting or turbine blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

R150 Certificate of patent or registration of utility model

Ref document number: 5408768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250