JP2002294374A - Ni BASED CAST HEAT RESISTANT SUPERALLOY AND TURBINE WHEEL MADE OF THE Ni BASED SUPERALLOY - Google Patents

Ni BASED CAST HEAT RESISTANT SUPERALLOY AND TURBINE WHEEL MADE OF THE Ni BASED SUPERALLOY

Info

Publication number
JP2002294374A
JP2002294374A JP2001105376A JP2001105376A JP2002294374A JP 2002294374 A JP2002294374 A JP 2002294374A JP 2001105376 A JP2001105376 A JP 2001105376A JP 2001105376 A JP2001105376 A JP 2001105376A JP 2002294374 A JP2002294374 A JP 2002294374A
Authority
JP
Japan
Prior art keywords
alloy
phase
less
turbine wheel
superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001105376A
Other languages
Japanese (ja)
Other versions
JP4811841B2 (en
Inventor
Koji Masuda
孝司 升田
Takehiro Ono
丈博 大野
Toshihiro Uehara
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HMY Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
HMY Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, HMY Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001105376A priority Critical patent/JP4811841B2/en
Publication of JP2002294374A publication Critical patent/JP2002294374A/en
Application granted granted Critical
Publication of JP4811841B2 publication Critical patent/JP4811841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an Ni based cast heat resistant superalloy which has excellent durability by improving its mechanical properties at high temperatures, particularly, in elongation. SOLUTION: The Ni based cast heat resistant superalloy has a composition containing, by mass, 7.0 to 9.5% Cr, 2.5 to 5.5% Al, 8.0 to 13.0% W, 1.0 to 5.0% Mo (wherein, the content of W+2Mo lies in the range of 14 to 19), 0.5 to 3.5% Nb, <=3.0% Ti, 0.02 to 0.2% C, 0.01 to 0.35% B, <=0.02% (not inclusive of 0%) Mg (wherein, the content of Mg is 0.004 to 0.02% in the range where the content of B is 0.01 to 0.05%), <=0.1% Zr, <=1.0% Si and <=1.0% Mn, and, if required, containing <=3.0% Ti, and in which 2Mo/(W+2Mo) satisfies 0.20 to 0.55, and (W+2Mo)/Nb or (W+2Mo)/(Nb+2Ti) satisfies 1 to 10, and the balance Ni with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動車用のターボチ
ャージャーを構成する部品であるタービンホイール等に
適した高強度Ni基超耐熱合金およびNi基超耐熱合金
製タービンホイールに関する。
The present invention relates to a high-strength Ni-base super-heat-resistant alloy and a turbine wheel made of a Ni-base super-heat-resistant alloy suitable for a turbine wheel or the like which is a component of a turbocharger for an automobile.

【0002】[0002]

【従来の技術】ターボチャージャーは排出ガスのエネル
ギーを利用してエンジンの出力性能を向上させるための
自動車部品であり、これを搭載することにより未搭載の
場合に比べ中速域から高速域にかけて圧倒的な高加速度
を得ることができる。このターボチャージャーを構成す
る部品のタービンホイールはターボチャージャーに送ら
れた排出ガスのエネルギーにより10万rpm以上の高速
回転をして、その回転軸と同軸上に結合されたコンプレ
ッサーを駆動させる働きをするものである。
2. Description of the Related Art A turbocharger is an automobile part for improving the output performance of an engine by utilizing the energy of exhaust gas. By mounting the turbocharger, it is overwhelmed from a middle speed range to a high speed range as compared with a case where it is not mounted. High acceleration can be obtained. The turbine wheel, which is a component of this turbocharger, rotates at a high speed of 100,000 rpm or more by the energy of the exhaust gas sent to the turbocharger, and serves to drive a compressor coaxially coupled with the rotation axis. Things.

【0003】タービンホイールは約1000℃にもなる
排出ガスに晒されながら高速回転をするため、その材料
には優れた耐熱性を有していることが必要不可欠であ
り、代表的なものとしてはAlloy713C、Mar
−M247などのNi基超耐熱合金が知られている。A
lloy713Cはタービンホイール材料の中では比較
的安価で、汎用として広く使用されており、またMar
−M247はコスト的にはAlloy713Cの数倍と
高価な材料ではあるが、特にクリープ破断強度に優れて
いるためラリー用などの特殊な車両に使用されている。
また近年では軽量化による効率向上を目的としたTi−
Al基合金などの材料も注目されている。
[0003] Since the turbine wheel rotates at high speed while being exposed to exhaust gas of about 1000 ° C, it is essential that the material has excellent heat resistance. Alloy713C, Mar
Ni-based super heat-resistant alloys such as -M247 are known. A
lloy713C is relatively inexpensive among turbine wheel materials, is widely used for general purposes, and
-M247 is a material that is several times as expensive as Alloy713C in terms of cost, but is used for special vehicles such as rallies because of its excellent creep rupture strength.
In recent years, Ti-
Materials such as Al-based alloys have also attracted attention.

【0004】また近年では希薄な混合気を効率良く燃焼
させることで燃費の向上を図ることを目的としたエンジ
ンのリーンバーン(希薄燃焼)化が進められており、リ
ーンバーンエンジンは最近では一般車にも搭載されるよ
うになり、今後更に普及していく傾向にある。しかしリ
ーンバーン化することにより、排気温度は通常のエンジ
ンよりも更に上昇し、タービンホイールは更に過酷な環
境で使用されることになる。
In recent years, lean burn (lean burn) engines have been promoted for the purpose of improving fuel efficiency by efficiently burning a lean air-fuel mixture. , And tend to spread further in the future. However, lean burn raises the exhaust temperature further than a normal engine, and the turbine wheel is used in a more severe environment.

【0005】高温での諸特性を改善したNi基超耐熱合
金鋳物の開発例として、特公昭57−15654号では
従来合金に希土類元素のうちのCe、LaおよびNdか
らなる群の1種または2種以上を0.001〜0.03
0質量%含有させることによって、航空機用ジェットエ
ンジンや発電用ガスタービン鋳物の高温延性の向上を図
ることができる旨を開示している。また、特公昭51−
10574号では耐衝撃性および延性に優れたガスター
ビン用タービン翼用Ni基合金を開示している。
As an example of the development of a Ni-base super-heat-resistant alloy casting having improved properties at high temperatures, Japanese Patent Publication No. 57-15654 discloses a conventional alloy containing one or two members selected from the group consisting of Ce, La and Nd among rare earth elements. 0.001 to 0.03 for seeds or more
It is disclosed that by containing 0% by mass, the high-temperature ductility of an aircraft jet engine or a gas turbine casting for power generation can be improved. In addition,
No. 10574 discloses a Ni-base alloy for gas turbine blades having excellent impact resistance and ductility.

【0006】[0006]

【発明が解決しようとする課題】Alloy713C製
のタービンホイールは、通常の一般車用エンジンに搭載
するには十分なクリープ破断強度を有している。しか
し、前述したリーンバーンエンジンは排気温度が通常の
エンジンより更に上昇するため、Alloy713Cで
はその過酷な環境に耐えることができなくなる。また、
Mar−M247や特公昭57−15654号、特公昭
51−10574号に開示される合金は希土類元素やC
o、Ta、Hf等の高価な合金元素を含有しており、材
料コストはAlloy713Cの数倍にもなる。更にM
ar−M247は鋳造後の凝固収縮によって鋳物内部に
引巣が発生し易いので、HIP処理等を施して引け巣を
消去する必要があるため、Alloy713Cと比較す
ると非常に高価である。このためこれらの合金では生産
コストが上昇してしまい、一般車用リーンバーンエンジ
ンには不向きである。
The turbine wheel made of Alloy 713C has a sufficient creep rupture strength to be mounted on an ordinary engine for ordinary vehicles. However, the exhaust temperature of the above-described lean burn engine further rises more than that of a normal engine, so that the Alloy 713C cannot withstand the severe environment. Also,
The alloys disclosed in Mar-M247, JP-B-57-15654, and JP-B-51-10574 include rare earth elements and C
It contains expensive alloy elements such as o, Ta, and Hf, and the material cost is several times that of Alloy713C. Further M
Since ar-M247 is liable to generate shrinkage cavities inside the casting due to solidification shrinkage after casting, it is necessary to perform HIP processing or the like to eliminate shrinkage cavities. Therefore, ar-M247 is much more expensive than Alloy 713C. For this reason, these alloys increase the production cost and are not suitable for lean burn engines for general vehicles.

【0007】上述の問題点を解消するために、Allo
y713C以上のクリープ破断強度を有し、安価な耐熱
性合金材料として、特開平11−131162号が提案
されているが、耐久性の面で上述のMar−M247や
特公昭57−15654号、特公昭51−10574号
に開示される合金に劣ることから、やはりリーンバーン
エンジンへの適用には問題がある。本発明の目的は、高
温での機械特性、特に伸びを改善することで優れた耐久
性を有するNi基超耐熱鋳造合金およびNi基超耐熱鋳
造合金製タービンホイールを提供することである。
In order to solve the above problems, Allo
Japanese Patent Application Laid-Open No. H11-131162 has been proposed as an inexpensive heat-resistant alloy material having a creep rupture strength of y713C or more, but in terms of durability, the above-mentioned Mar-M247, Japanese Patent Publication No. 57-15654, and Since it is inferior to the alloy disclosed in JP-B-51-10574, there is still a problem in application to a lean burn engine. An object of the present invention is to provide a Ni-based super-heat-resistant cast alloy and a turbine wheel made of a Ni-based super-heat-resistant cast alloy having excellent durability by improving mechanical properties at high temperatures, particularly, elongation.

【0008】[0008]

【課題を解決するための手段】本発明者はかかる問題を
解決するため、Mar−M247に代表されるクリープ
破断強度に特に優れた合金からCo、Ta、Hfなどの
高価な元素を取り除き、材料単価を低減させることを考
えた。しかし、Co、Taにはクリープ破断強度を向上
させる効果が大きいので、これらを単に除去しただけで
はクリープ破断強度が大きく低下する。
In order to solve this problem, the present inventor removes expensive elements such as Co, Ta, and Hf from an alloy particularly excellent in creep rupture strength represented by Mar-M247, and removes the material. We thought about reducing the unit price. However, since Co and Ta have a great effect of improving the creep rupture strength, the mere removal of them greatly reduces the creep rupture strength.

【0009】そのため、本発明者は合金のクリープ破断
強度特性を左右するNiAlを基本とするγ’相への
各合金元素の固溶量およびγ相(母相)とγ’相の格子
定数の差を調整するために種々の合金元素と、その適正
添加量について鋭意検討した結果、Co、Ta、Hf等
の高価な元素を添加しなくても、W、MoおよびTi、
Nb等の元素の添加量を調整することでAlloy71
3Cを上回る優れたクリープ破断強度を有し、さらに、
BおよびMgの添加量を調整することで、特開平11−
131162号に開示される合金以上の耐久性が得られ
ることを見出し、本発明を完成するに至った。その基本
的な考え方は以下の通りである。
Therefore, the present inventor has determined that the amount of each alloy element in the γ 'phase based on Ni 3 Al, which determines the creep rupture strength characteristics of the alloy, and the lattice of γ phase (mother phase) and γ' phase As a result of intensive studies on various alloying elements and their proper addition amounts in order to adjust the difference between the constants, it was found that W, Mo and Ti, even without adding expensive elements such as Co, Ta and Hf.
Adjusting the addition amount of elements such as Nb allows Alloy 71
It has excellent creep rupture strength exceeding 3C,
By adjusting the addition amounts of B and Mg, the method disclosed in
The inventors have found that durability higher than that of the alloy disclosed in Japanese Patent No. 131162 can be obtained, and completed the present invention. The basic idea is as follows.

【0010】まず、Alloy713C等の合金はNi
3Alを基本とする金属間化合物γ’相の析出によって
強化される。γ’相中にはAl以外にTi、Nb、ある
いはW,Mo等が固溶することで更に強度が向上する
が、過度に添加すると異相が析出し却って強度を低下さ
せる。またγ’相は高温で長時間加熱中に粗大化してゆ
くが、その挙動は母相(γ相)と析出強化相(γ’相)
の格子定数の差に影響される。以上のことを考慮して本
発明者は、γ’相への固溶量およびγ相、γ’相の格子
定数の差を調整することによりCo、Ta、Hf等の高
価な合金元素を含まない合金でAlloy713Cを上
回るクリープ破断強度を得ることができた。
First, an alloy such as Alloy713C is made of Ni.
It is strengthened by precipitation of an intermetallic compound γ ′ phase based on 3Al. In the γ ′ phase, in addition to Al, Ti, Nb, or W, Mo, or the like, forms a solid solution, thereby further improving the strength. However, when added excessively, a hetero phase is precipitated to reduce the strength. The γ 'phase becomes coarse during long-time heating at a high temperature, but its behavior depends on the parent phase (γ phase) and the precipitation strengthening phase (γ' phase).
Is affected by the difference in the lattice constant of In consideration of the above, the present inventor included expensive alloy elements such as Co, Ta, and Hf by adjusting the amount of solid solution in the γ ′ phase and the difference between the lattice constants of the γ phase and the γ ′ phase. It was possible to obtain a creep rupture strength exceeding Alloy713C with no alloy.

【0011】具体的には、ある合金元素Xのγ’相中の
濃度(mol%)をγ’(X)、元素Xが単独で単純γ’
相(Ni3Al)へ固溶した場合の固溶限(mol%)を
L(X)としたとき、数式(1)で定義される固溶率S
I(X)において、SI(Cr)、SI(W)、SI
(Mo)、SI(Nb)、SI(Ti)、SI(Ta)
の合計(以下、この合計を固溶指数と称する)が、Ma
r−M247のような高強度材は1.2〜1.35であ
ることが判明したので、Co、Ta、Hf等を含まない
Ni基超耐熱合金において固溶指数がこの範囲になるよ
うに合金成分を調節することによってクリープ破断強度
を向上させることができることを見出した。 SI(X)=γ’(X)/L(X)・・・・・(1) ただし、L(Cr)=10、L(W)=5、L(Mo)
=5、L(Nb)=8、L(Ti)=15、L(Ta)
=8である。
Specifically, the concentration (mol%) of a certain alloying element X in the γ ′ phase is γ ′ (X), and the element X alone is simply γ ′
When the solid solubility limit (mol%) in the case of solid solution in the phase (Ni3Al) is L (X), the solid solution rate S defined by the equation (1)
In I (X), SI (Cr), SI (W), SI
(Mo), SI (Nb), SI (Ti), SI (Ta)
(Hereinafter, this total is referred to as a solid solution index) is Ma
Since it was found that the high-strength material such as r-M247 was 1.2 to 1.35, the solid solution index of the Ni-based super heat-resistant alloy containing no Co, Ta, Hf or the like was set to fall within this range. It has been found that the creep rupture strength can be improved by adjusting the alloy components. SI (X) = γ ′ (X) / L (X) (1) where L (Cr) = 10, L (W) = 5, L (Mo)
= 5, L (Nb) = 8, L (Ti) = 15, L (Ta)
= 8.

【0012】更に、数式(2)で定義される合金の格子
定数ミスマッチ率LM(%)の絶対値が小さいほどγ’
相とγ相の整合性が高まり、γ’相の粗大化が防げるた
め、高温強度が向上する傾向にあることは一般的に知ら
れている。また、高温でNi基超耐熱合金に応力が発生
すると、γ’相が波状に変形したラフト組織が生じ、こ
の組織が細長い波状であるほどクリープ破断強度を高め
るには有効であるが、LM(%)が若干マイナス側の場
合には、細長く良好なラフト組織が得られ易いことも知
られている。本発明者はCo、Ta、Hf等を含まず、
かつ固溶指数が1.2〜1.35を満足するNi基超耐
熱合金において、LM(%)が−0.2〜0.12の範
囲になるように合金成分を調整することによって、目標
であるAlloy713C以上のクリープ破断強度が得
られることを知見した。
Further, as the absolute value of the lattice constant mismatch ratio LM (%) of the alloy defined by the equation (2) becomes smaller, γ ′
It is generally known that high-temperature strength tends to be improved because the consistency between the phase and the γ phase is enhanced and the γ ′ phase is prevented from becoming coarse. Further, when stress is generated in the Ni-base superalloy at a high temperature, a raft structure in which the γ ′ phase is deformed in a wavy form is formed. The more the structure is elongated, the more effective the creep rupture strength is. %) On the slightly negative side, it is also known that an elongated and good raft structure is easily obtained. The inventor does not include Co, Ta, Hf, etc.
In a Ni-based super heat-resistant alloy satisfying a solid solution index of 1.2 to 1.35, the alloy component is adjusted so that LM (%) is in a range of -0.2 to 0.12. It has been found that a creep rupture strength of Alloy713C or higher can be obtained.

【0013】 LM(%)=(A(γ’)−A(γ))/((A(γ’)+A(γ))/2)・・・・ (2) ただし、A(γ’)、A(γ)はそれぞれγ’相および
γ相の格子定数を表しており、ある合金元素Xのγ’相
中の濃度をγ’(X)(mol%)、γ相中の濃度をγ
(X)(mol%)としたとき、数式(3)および数式
(4)より算出したものを示す。 A(γ’)=3.5208+0.0012γ’(Cr)+0.00185γ’ (Al)+0.00412γ’(W)+0.00435γ’(Mo)+0.00 645γ’(Nb)+0.0034γ’(Ti)・・・・・(3) A(γ)=3.524+0.0012γ(Cr)+0.00185γ(Al) +0.00412γ(W)+0.00435γ(Mo)+0.00645γ(N b)+0.0034γ(Ti)・・・・・(4)
LM (%) = (A (γ ′) − A (γ)) / ((A (γ ′) + A (γ)) / 2) (2) where A (γ ′) , A (γ) represent the lattice constants of the γ ′ phase and the γ phase, respectively. The concentration of a certain alloying element X in the γ ′ phase is γ ′ (X) (mol%), and the concentration in the γ phase is γ.
When (X) (mol%) is used, the values calculated from Expressions (3) and (4) are shown. A (γ ′) = 3.5208 + 0.0012γ ′ (Cr) + 0.00185γ ′ (Al) + 0.00412γ ′ (W) + 0.00435γ ′ (Mo) +0.00 645γ ′ (Nb) + 0.0034γ ′ (Ti (3) A (γ) = 3.524 + 0.0012γ (Cr) + 0.00185γ (Al) + 0.00412γ (W) + 0.00435γ (Mo) + 0.00645γ (Nb) + 0.0034γ (Ti) ... (4)

【0014】上記のように固溶指数、γ相、γ’相の格
子定数ミスマッチ率を計算するにはγ相、γ’相の組成
を知ることが必要である。これは計算あるいはγ相、
γ’相の分析により得ることができ、本発明者は計算に
よる方法を用いた。しかしながらその計算式は複雑であ
るので、ここで示すことは困難であり、また分析による
方法も若干の誤差がつきまとうことは避けられない。そ
のため、ここでは固溶指数の制限、および格子定数ミス
マッチ率の制限を本合金において具体的な成分組成での
限定に置き換えた。
As described above, in order to calculate the solid solution index, the lattice constant mismatch ratio of the γ phase and the γ ′ phase, it is necessary to know the composition of the γ phase and the γ ′ phase. This is the calculation or gamma phase,
It can be obtained by analysis of the γ 'phase, and the inventor has used a computational method. However, since the calculation formula is complicated, it is difficult to show here, and the analysis method is inevitably accompanied by some errors. Therefore, here, the limitation of the solid solution index and the limitation of the lattice constant mismatch ratio were replaced with the limitation of the specific component composition in the present alloy.

【0015】即ち、固溶指数が1.2〜1.35で且つ
LM(%)が−0.2〜0.12である条件を具現化す
るための好適なNi基超耐熱合金の化学組成は、重量比
でCr:7.0〜9.5%、Al:2.5〜5.5%、
W:8.0〜13.0%、Mo:1.0〜5.0%(た
だし、W+2Moは14〜19の範囲)、Nb:0.5
〜3.5%、C:0.02〜0.2%、Zr:0.1%
以下、Si:1.0%以下、Mn:1.0%以下を含有
し、かつ2Mo/(W+2Mo)が0.20〜0.5
5、かつ(W+2Mo)/Nbが1〜10を満足し、残
部はNiおよび不可避不純物からなる成分であるか、ま
たは必要であれば重量比でTiを3.0%以下を含有さ
せることができ、この場合重量比で計算したW+2Mo
が14〜19、且つ2Mo/(W+2Mo)が0.20
〜0.55、且つ(W+2Mo)/(Nb+2Ti)が
1〜10を満足する合金も上記の条件を具現化すること
ができる。さらに、このような基本組成の合金のもと
で、耐久特性を増すために、BおよびMgを調整し実験
的に、高温延びを向上させる最適な添加量を求め成分範
囲とした。
That is, the chemical composition of a suitable Ni-base superalloy for realizing the condition that the solid solution index is 1.2 to 1.35 and the LM (%) is -0.2 to 0.12. Is Cr: 7.0 to 9.5%, Al: 2.5 to 5.5% by weight ratio,
W: 8.0 to 13.0%, Mo: 1.0 to 5.0% (W + 2Mo ranges from 14 to 19), Nb: 0.5
-3.5%, C: 0.02-0.2%, Zr: 0.1%
Hereinafter, Si: 1.0% or less, Mn: 1.0% or less, and 2Mo / (W + 2Mo) is 0.20 to 0.5.
5, and (W + 2Mo) / Nb satisfy 1 to 10, and the balance is a component consisting of Ni and unavoidable impurities, or, if necessary, can contain 3.0% or less by weight of Ti. In this case, W + 2Mo calculated by weight ratio
14 to 19 and 2Mo / (W + 2Mo) is 0.20
An alloy satisfying W0.55 and (W + 2Mo) / (Nb + 2Ti) satisfies 11〜10 can also realize the above conditions. Further, in order to increase the durability characteristics of the alloy having such a basic composition, B and Mg were adjusted, and the optimum amount of addition for improving the high-temperature elongation was determined experimentally to be the component range.

【0016】即ち本発明は、質量比でCr:7.0〜
9.5%、Al:2.5〜5.5%、W:8.0〜1
3.0%、Mo:1.0〜5.0%(ただし、W+2M
oは14〜19の範囲)、Nb:0.5〜3.5%、
C:0.02〜0.2%、B:0.05〜0.35%、
Mg:0.02%以下、Zr:0.1%以下、Si:
1.0%以下、Mn:1.0%以下を含有し、かつ2M
o/(W+2Mo)は0.20〜0.55、かつ(W+
2Mo)/Nbは1〜10を満足し、残部はNiおよび
不可避不純物からなるNi基超耐熱鋳造合金である。
That is, according to the present invention, the mass ratio of Cr is 7.0 to 7.0.
9.5%, Al: 2.5 to 5.5%, W: 8.0 to 1
3.0%, Mo: 1.0 to 5.0% (however, W + 2M
o ranges from 14 to 19), Nb: 0.5 to 3.5%,
C: 0.02-0.2%, B: 0.05-0.35%,
Mg: 0.02% or less, Zr: 0.1% or less, Si:
1.0% or less, Mn: 1.0% or less, and 2M
o / (W + 2Mo) is 0.20 to 0.55 and (W +
2Mo) / Nb satisfies 1 to 10, and the balance is a Ni-based super heat-resistant cast alloy comprising Ni and unavoidable impurities.

【0017】また本発明は、質量比でCr:7.0〜
9.5%、Al:2.5〜5.5%、W:8.0〜1
3.0%、Mo:1.0〜5.0%(ただし、W+2M
oは14〜19の範囲)、Nb:0.5〜3.5%、
C:0.02〜0.2%、B:0.05〜0.35%、
Mg:0.02%以下、Ti:3.0%以下、Zr:
0.1%以下、Si:1.0%以下、Mn:1.0%以
下を含有し、かつ2Mo/(W+2Mo)は0.20〜
0.55、かつ(W+2Mo)/(Nb+2Ti)が1
〜10を満足し、残部はNiおよび不可避不純物からな
るNi基超耐熱鋳造合金である。
The present invention also relates to the present invention, wherein the mass ratio of Cr is 7.0 to 7.0.
9.5%, Al: 2.5 to 5.5%, W: 8.0 to 1
3.0%, Mo: 1.0 to 5.0% (however, W + 2M
o ranges from 14 to 19), Nb: 0.5 to 3.5%,
C: 0.02-0.2%, B: 0.05-0.35%,
Mg: 0.02% or less, Ti: 3.0% or less, Zr:
0.1% or less, Si: 1.0% or less, Mn: 1.0% or less, and 2Mo / (W + 2Mo) is 0.20 to 0.20.
0.55 and (W + 2Mo) / (Nb + 2Ti) is 1
-10 are satisfied, and the balance is a Ni-based super heat-resistant cast alloy composed of Ni and unavoidable impurities.

【0018】また本発明は、質量比でCr:7.0〜
9.5%、Al:2.5〜5.5%、W:8.0〜1
3.0%、Mo:1.0〜5.0%(ただし、W+2M
oは14〜19の範囲)、Nb:0.5〜3.5%、
C:0.02〜0.2%、B:0.01〜0.05%、
Mg:0.004〜0.02%、Zr:0.1%以下、
Si:1.0%以下、Mn:1.0%以下を含有し、か
つ2Mo/(W+2Mo)は0.20〜0.55、かつ
(W+2Mo)/Nbは1〜10を満足し、残部はNi
および不可避不純物からなるNi基超耐熱鋳造合金であ
る。
The present invention also relates to the present invention, wherein the mass ratio of Cr is 7.0 to 7.0.
9.5%, Al: 2.5 to 5.5%, W: 8.0 to 1
3.0%, Mo: 1.0 to 5.0% (however, W + 2M
o ranges from 14 to 19), Nb: 0.5 to 3.5%,
C: 0.02-0.2%, B: 0.01-0.05%,
Mg: 0.004 to 0.02%, Zr: 0.1% or less,
Si: 1.0% or less, Mn: 1.0% or less, 2Mo / (W + 2Mo) satisfies 0.20 to 0.55, and (W + 2Mo) / Nb satisfies 1 to 10, the balance being Ni
And a Ni-based super heat-resistant cast alloy comprising unavoidable impurities.

【0019】また本発明は、質量比でCr:7.0〜
9.5%、Al:2.5〜5.5%、W:8.0〜1
3.0%、Mo:1.0〜5.0%(ただし、W+2M
oは14〜19の範囲)、Nb:0.5〜3.5%、
C:0.02〜0.2%、B:0.01〜0.05%、
Mg:0.004〜0.02%、Ti:3.0%以下、
Zr:0.1%以下、Si:1.0%以下、Mn:1.
0%以下を含有し、かつ2Mo/(W+2Mo)は0.
20〜0.55、かつ(W+2Mo)/(Nb+2T
i)が1〜10を満足し、残部はNiおよび不可避不純
物からなるNi基超耐熱鋳造合金である。
The present invention also relates to the present invention, wherein the mass ratio of Cr is 7.0 to 7.0.
9.5%, Al: 2.5 to 5.5%, W: 8.0 to 1
3.0%, Mo: 1.0 to 5.0% (however, W + 2M
o ranges from 14 to 19), Nb: 0.5 to 3.5%,
C: 0.02-0.2%, B: 0.01-0.05%,
Mg: 0.004 to 0.02%, Ti: 3.0% or less,
Zr: 0.1% or less, Si: 1.0% or less, Mn: 1.
0% or less, and 2Mo / (W + 2Mo) is 0.1%.
20 to 0.55, and (W + 2Mo) / (Nb + 2T)
i) satisfies 1 to 10, and the balance is a Ni-based super heat resistant cast alloy comprising Ni and unavoidable impurities.

【0020】また本発明は、上述のNi基超耐熱鋳造合
金からなるNi基超耐熱合金製タービンホイールであ
る。
Further, the present invention is a turbine wheel made of a Ni-base super-heat-resistant alloy comprising the above-mentioned Ni-base super-heat-resistant cast alloy.

【0021】[0021]

【発明の実施の形態】以下に上記の条件を具現化するた
めの本発明のNi基超耐熱合金の各元素の限定理由を述
べる。Crは、高温加熱中に合金の表面に密着性の高い
酸化皮膜を形成し、耐酸化性を高める。タービンホイー
ル用としての耐酸化性を保証するために質量比で最低
7.0%は必要であるが、9.5%を越えると組織が不
安定となり、硬くて脆いσ相などの有害相を生成し、ク
リープ破断強度と常温延性の低下を招くので、Cr量は
質量比で7.0〜9.5%の範囲とする。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting each element of the Ni-base superalloy of the present invention for realizing the above conditions will be described below. Cr forms an oxide film having high adhesion on the surface of the alloy during high-temperature heating, and enhances oxidation resistance. At least 7.0% by mass is necessary to guarantee oxidation resistance for turbine wheels, but if it exceeds 9.5%, the structure becomes unstable and hard and brittle harmful phases such as σ phase are eliminated. The Cr content is in the range of 7.0 to 9.5% by mass ratio because it is formed and causes a decrease in creep rupture strength and room temperature ductility.

【0022】γ’相はNiAlを主体とする金属間化
合物であり、それ自身の高温強度が大きく、金属間化合
物の中では延性が大きいため、多くの超耐熱合金の強化
に用いられているが、Alは安定なγ’相を析出させて
所望のクリープ破断強度を得るために不可欠な元素であ
り、質量比で最低2.5%を必要とする。ただし5.5
%を超えてあまり多量に添加しすぎると、粗大な共晶
γ’相を生じて逆にクリープ破断強度は低下するためA
l量は質量比で2.5〜5.5%の範囲とする。
The γ ′ phase is an intermetallic compound mainly composed of Ni 3 Al, and has a high high-temperature strength of itself and a high ductility among the intermetallic compounds. Therefore, the γ ′ phase is used for strengthening many super heat-resistant alloys. However, Al is an indispensable element for precipitating a stable γ 'phase and obtaining a desired creep rupture strength, and requires at least 2.5% by mass. However, 5.5
%, An excessively large amount is added, so that a coarse eutectic γ 'phase is formed and conversely, the creep rupture strength is lowered.
The amount of l is in the range of 2.5 to 5.5% by mass ratio.

【0023】Wはγ相およびγ’相に固溶して両相を強
化し、クリープ破断強度を著しく高める効果を持つ元素
であり、この効果を得るために質量比で最低8.0%は
必要である。しかしながら13.0%を越えて含有する
とσ相などの有害相の析出を生じるために、常温延性の
低下を招き、また、耐酸化性、酸化皮膜の密着性の低下
を招くので、W量は質量比で8.0〜13.0%の範囲
とする。
W is an element that forms a solid solution in the γ phase and the γ ′ phase, strengthens both phases, and has an effect of significantly increasing the creep rupture strength. To obtain this effect, at least 8.0% by mass is required. is necessary. However, when the content exceeds 13.0%, a harmful phase such as a σ phase is precipitated, which causes a decrease in ductility at room temperature, and also causes a decrease in oxidation resistance and adhesion of an oxide film. The mass ratio is in the range of 8.0 to 13.0%.

【0024】Moは一部γ’相にも固溶するが、主とし
てγ相に固溶して高温強度を上昇させる作用がある。こ
のためMoは質量比で最低1.0%必要であるが、過度
の添加はσ相などの有害相の析出を生じて、常温延性の
低下を招くため、上限は5.0%とする。ここでWとM
oは同族元素であり類似の作用を有するので、合金の強
度ならびに組織安定性を高めるためには、原子量を加味
した両元素の合計量、すなわち質量比で計算したW+2
Moの値を制限する必要がある。W+2Moが14より
少ないとクリープ破断強度が十分得られず、また19よ
り多いとσ相等の有害相の析出を生じる。従ってW+2
Moの値は14〜19に制限する必要があり、好ましく
は15〜18である。
Mo partially forms a solid solution in the γ ′ phase, but mainly forms a solid solution in the γ phase to increase the high-temperature strength. For this reason, Mo needs to be at least 1.0% by mass, but excessive addition causes precipitation of a harmful phase such as a σ phase, resulting in a decrease in room-temperature ductility. Therefore, the upper limit is set to 5.0%. Where W and M
Since o is a homologous element and has a similar effect, in order to enhance the strength and structure stability of the alloy, W + 2 calculated by the total amount of both elements taking into account the atomic weight, that is, the mass ratio
It is necessary to limit the value of Mo. When W + 2Mo is less than 14, sufficient creep rupture strength cannot be obtained, and when W + 2Mo is more than 19, harmful phases such as σ phase are precipitated. Therefore, W + 2
The value of Mo must be limited to 14-19, preferably 15-18.

【0025】Nbはγ’相に固溶し、γ’相を固溶強化
して高温強度向上に役立つ。そのためにはNbは質量比
で0.5%以上の添加を必要とするが、3.5%を越え
ると組織を不安定化させ、合金の延性および靭性が低下
する。よってNb量は質量比で0.5〜3.5%とす
る。
Nb forms a solid solution in the γ ′ phase and strengthens the γ ′ phase by solid solution to help improve the high-temperature strength. For this purpose, Nb needs to be added in a mass ratio of 0.5% or more. However, if it exceeds 3.5%, the structure becomes unstable, and the ductility and toughness of the alloy decrease. Therefore, the Nb content is set to 0.5 to 3.5% by mass.

【0026】TiはNbと同様γ’相に固溶し、γ’相
を固溶強化してクリープ破断強度の向上に役立つので必
要に応じて添加する。しかしながら3.0%を越える過
度の添加はγ’相を不安定化して、高温長時間使用後の
強度の低下を招き、また延性をも阻害するので、Tiを
添加する場合は質量比で3.0%以下とする。
Ti forms a solid solution in the γ ′ phase similarly to Nb, and strengthens the γ ′ phase to improve the creep rupture strength, so that Ti is added as necessary. However, excessive addition exceeding 3.0% destabilizes the γ 'phase, causing a decrease in strength after long-time use at high temperatures and also impairs ductility. 0.0% or less.

【0027】合金の格子定数ミスマッチ率(LM%)は
主にW、Mo、Ti、Nb等の元素により影響を受ける
ので、これらの元素のバランスを調整する必要がある。
先ず、主としてγ相に固溶する元素であるW、Moと、
主としてγ’相に固溶する元素であるTi、Nbの割合
を原子量を加味した値として(W+2Mo)/(Nb+
2Ti)で表わすと、この値が1以下ではLM%が大き
すぎ、10以上ではLM%が小さすぎるため、Tiを添
加する場合は(W+2Mo)/(Nb+2Ti)の値を
1〜10に制限し、Ti無添加の場合は(W+2Mo)
/Nbの値を1〜10に制限する必要がある。
Since the lattice constant mismatch rate (LM%) of the alloy is mainly affected by elements such as W, Mo, Ti, and Nb, it is necessary to adjust the balance of these elements.
First, W and Mo, which are elements that mainly dissolve in the γ phase,
The ratio of the elements Ti and Nb, which are mainly dissolved in the γ 'phase, is defined as a value in consideration of the atomic weight, and is expressed as (W + 2Mo) / (Nb +
If this value is 1 or less, the LM% is too large, and if it is 10 or more, the LM% is too small. When Ti is added, the value of (W + 2Mo) / (Nb + 2Ti) is limited to 1 to 10. , Ti-free (W + 2Mo)
It is necessary to limit the value of / Nb to 1 to 10.

【0028】次にWとMoは主としてγ相に固溶し類似
の作用を有するが、γ相、γ’相に固溶する割合が異な
っている。そのため格子定数ミスマッチ率を更に厳密に
制限するためには2Mo/(W+2Mo)の値も制限す
る必要がある。この値が0.20より小さいと格子定数
ミスマッチ率が大きくなりすぎ、0.55より大きいと
格子定数ミスマッチ率が小さくなりすぎる。従って2M
o/(W+2Mo)の値を0.20〜0.55に制限す
る必要がある。
Next, W and Mo mainly dissolve in the γ phase and have a similar effect, but differ in the proportion of solid solution in the γ phase and the γ ′ phase. Therefore, in order to more strictly limit the lattice constant mismatch rate, it is necessary to limit the value of 2Mo / (W + 2Mo). If this value is smaller than 0.20, the lattice constant mismatch ratio becomes too large, and if it is larger than 0.55, the lattice constant mismatch ratio becomes too small. Therefore 2M
It is necessary to limit the value of o / (W + 2Mo) to 0.20 to 0.55.

【0029】Cは炭化物を形成し、特に結晶粒界、樹枝
状晶境界に析出して粒界や樹枝状晶境界を強化し、高温
強度の向上に寄与するため質量比で0.02%以上必要
であるが、0.2%を越えて添加すると延性を阻害する
恐れがあるため、C量は質量比で0.02〜0.2%の
範囲とする。Zrは結晶粒界強化作用により高温強度の
向上に寄与するが、0.1%を越えて添加すると延性を
阻害する恐れがあるため、Zr量は質量比で0.1%以
下の範囲とする。
C forms carbides, and precipitates particularly at grain boundaries and dendrite boundaries to strengthen grain boundaries and dendrite boundaries, and contributes to improvement in high-temperature strength. Although it is necessary, if added in excess of 0.2%, ductility may be impaired, so the C content is set in the range of 0.02 to 0.2% by mass. Zr contributes to the improvement of high-temperature strength by the action of strengthening the crystal grain boundary, but if added in excess of 0.1%, ductility may be impaired. Therefore, the Zr content is set to a range of 0.1% or less by mass ratio. .

【0030】Bは質量比で0.01%以上添加すると結
晶粒界強化作用により高温強度の向上に寄与し、さらに
本発明合金の成分系においては質量比で0.05以上添
加することにより特に800℃以上の高温域での延性が
向上することが実験の結果判明したが、0.35%以上
添加するとかえって高温強度が低下する。また、Mgは
炭化物を微細化し、延性の向上に寄与するが、質量比で
0.004%以上添加することでその効果は顕著にな
る。しかしながら、0.02%を超えて添加すると粒界
に低融点化合物を形成して粒界強度を低下させる。従っ
て高温延性と強度を併せ持つ為には、B量が延性向上の
効果が比較的少ない0.01〜0.05質量%の場合は
Mg量は質量比で0.004〜0.02%とするが、B
量が0.05〜0.35質量%の場合はBが高温延性向
上に寄与するため、Mgは0.004質量%未満の添加
でも延性を向上させる効果を得ることができ、本発明で
は必須で添加する元素である。
When B is added in an amount of 0.01% or more by mass, it contributes to the enhancement of high-temperature strength due to the action of strengthening the crystal grain boundaries. In the component system of the alloy of the present invention, B is particularly added when added in a mass ratio of 0.05 or more. Experiments have shown that the ductility in the high-temperature range of 800 ° C. or higher is improved. However, the addition of 0.35% or more lowers the high-temperature strength. Mg contributes to refinement of carbides and improvement of ductility, but the effect becomes remarkable by adding 0.004% or more by mass ratio. However, if it is added in excess of 0.02%, a low melting point compound is formed at the grain boundary to lower the grain boundary strength. Therefore, in order to have both high temperature ductility and strength, when the amount of B is 0.01 to 0.05% by mass, which has a relatively small effect of improving ductility, the amount of Mg is 0.004 to 0.02% by mass. But B
When the amount is 0.05 to 0.35% by mass, B contributes to the improvement of the high-temperature ductility. Therefore, even if the addition of Mg is less than 0.004% by mass, the effect of improving the ductility can be obtained. Is an element to be added.

【0031】Si、Mnは共に脱酸剤として添加される
が、Siを1.0%を超えて添加すると延性の低下を招
き、Mnは1.0%を超えて添加すると高温強度の低下
を招くので、共に質量比で1.0%以下とする。なお、
以下の元素は不純物として下記の範囲内(質量比)で本
発明合金に含まれてもよい。P≦0.04%、S≦0.
03%、Cu≦0.30%、V≦0.3%、Ta≦0.
5%、Ca≦0.02%、Co≦2%、Fe≦3%、H
f≦0.2%
Both Si and Mn are added as deoxidizers. However, if Si exceeds 1.0%, ductility decreases, and if Mn exceeds 1.0%, high-temperature strength decreases. Therefore, both are set to 1.0% or less by mass ratio. In addition,
The following elements may be contained as impurities in the alloy of the present invention within the following range (mass ratio). P ≦ 0.04%, S ≦ 0.
03%, Cu ≦ 0.30%, V ≦ 0.3%, Ta ≦ 0.
5%, Ca ≦ 0.02%, Co ≦ 2%, Fe ≦ 3%, H
f ≦ 0.2%

【0032】タービンホイールが必要とするクリープ破
断強度を得る為には固溶指数は1.2〜1.35の範囲
が望ましく、本発明合金の成分範囲はこの値を満足する
ことができる。以上に説明する本発明合金からなるター
ビンホイールはクリープ破断強度および高温延性に優れ
ており、リーンバーンエンジンにも耐用できる耐久性も
備えることができる。
In order to obtain the creep rupture strength required for the turbine wheel, the solid solution index is preferably in the range of 1.2 to 1.35, and the component range of the alloy of the present invention can satisfy this value. The turbine wheel made of the alloy of the present invention described above has excellent creep rupture strength and high-temperature ductility, and can have durability that can be used in a lean burn engine.

【0033】[0033]

【実施例】表1に示したNo.1は比較合金で、特開平
11−131162号に記載してある代表的な合金で、
No.2からNo.10は本発明合金、No.11につ
いては従来型比較合金のAlloy713Cである。ま
た、表2に示したNo.12からNo.17はB量を本
発明範囲である質量比で0.2%に固定し、その他の元
素については、Cr、Al,Ti、Mo、W、Nb、M
g等の合金元素を変化させた本発明合金である。さら
に、これらの合金についてクリープラプチャー試験を実
施し、その特性を比較した。なお、表1中に示す−印は
無添加(0%)である。
EXAMPLE No. 1 shown in Table 1 was used. 1 is a comparative alloy, a typical alloy described in JP-A-11-131162,
No. 2 to No. 2 No. 10 is the alloy of the present invention. 11 is Alloy713C of a conventional comparative alloy. In addition, as shown in Table 2, 12 to No. 12 No. 17 fixes the amount of B to 0.2% in a mass ratio within the range of the present invention, and for other elements, Cr, Al, Ti, Mo, W, Nb, M
This is an alloy of the present invention in which alloy elements such as g are changed. Furthermore, creep rupture tests were performed on these alloys, and their properties were compared. In addition,-mark shown in Table 1 is no addition (0%).

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】先ずNo.1〜No.11について各合金
を真空炉内で溶解し、同炉内に設置したロストワックス
用セラミック鋳型に鋳造して、φ12mm×82mmの棒材
を作製した。次に鋳造ままの棒材を平行部がφ5.0mm
およびφ6.4mmのクリープラプチャー試験用試験片に
機械加工した後、φ5.0mmの試験片は720℃雰囲気
中で負荷応力700MPaおよび820℃雰囲気中で負
荷応力500MPa、φ6.4mmの試験片は1000℃雰
囲気中で負荷応力180MPaの3条件でクリープラプチ
ャー試験を行ない、破断寿命、伸びについて測定した。
First, No. 1 to No. Each alloy of No. 11 was melted in a vacuum furnace and cast into a lost wax ceramic mold set in the furnace to produce a rod of φ12 mm × 82 mm. Next, the as-cast bar is parallel part with φ5.0mm.
After machining into a creep rupture test specimen of φ6.4 mm and φ6.4 mm, a specimen of φ5.0 mm was subjected to a load stress of 700 MPa in a 720 ° C. atmosphere, and a specimen of a load stress of 500 MPa in an atmosphere of 820 ° C. and a specimen of φ6.4 mm were subjected to 1000. A creep rupture test was performed in an atmosphere at a load stress of 180 MPa in an atmosphere at a temperature of ° C., and the rupture life and elongation were measured.

【0037】[0037]

【表3】 [Table 3]

【0038】今回の発明の目標として、リーンバーンエ
ンジンに対応できるタービンホイールを提供するには、
タービンホイールを構成する材料の720℃−700M
Paにおける破断寿命が100hr以上、820℃−5
00MPaにおける破断寿命が50hr以上、1000
℃−180MPaにおける破断寿命が10hr以上であ
り、720℃における破断伸びが3.0%以上、820
℃おける破断伸びが4.0%以上を必要とする。表3に
示すように、本発明合金および比較合金は破断寿命にお
いて従来合金を大きく上回っており、本発明合金の伸び
は比較合金を上回っていることが顕著に表れている。ま
たこの場合、Mg添加により720℃における伸びが、
Bの添加により820℃以上の温度域における伸びが特
に向上していることが判る。
As a goal of the present invention, in order to provide a turbine wheel that can support a lean burn engine,
720 ° C-700M of the material constituting the turbine wheel
Break life at Pa is 100 hr or more, 820 ° C-5
The breaking life at 00 MPa is 50 hours or more and 1000
The breaking life at -180 MPa is 10 hr or more, and the breaking elongation at 720 ° C is 3.0% or more, 820
The elongation at break in ° C. needs to be 4.0% or more. As shown in Table 3, the alloys of the present invention and the comparative alloys greatly exceeded the conventional alloys in the rupture life, and the elongation of the alloys of the present invention was significantly higher than that of the comparative alloy. In this case, the elongation at 720 ° C. by adding Mg is
It can be seen that the elongation in the temperature range of 820 ° C. or more is particularly improved by the addition of B.

【0039】また、本発明合金および比較合金は何れも
固溶指数が望ましい範囲である1.2〜1.35の範囲
に入っており、目標の破断寿命が得られているが、従来
合金は固溶指数が1.11であり、破断寿命が得られな
い結果となった。次に、No.12〜No.17につい
て前述のNo.1〜No.11と同様の条件でクリープ
ラプチャー試験を行ない、その伸びについて表4に示
す。
The alloy of the present invention and the comparative alloy both have a solid solution index within a desirable range of 1.2 to 1.35, and a target rupture life is obtained. The solid solution index was 1.11, which resulted in failure to obtain a rupture life. Next, No. 12-No. No. 17 described above. 1 to No. A creep rupture test was performed under the same conditions as in Example 11, and the elongation is shown in Table 4.

【0040】[0040]

【表4】 [Table 4]

【0041】表4から、Bを質量比で0.2%にするこ
とで、その合金の伸びはCr、Al,Ti、Mo、W、
Nb、Mg等の元素を変化させても比較合金以上の値を
示しており、破断寿命についても目標値を満足する結果
となった。
From Table 4, it can be seen that by setting B to 0.2% by mass, the elongation of the alloy is Cr, Al, Ti, Mo, W,
Even when the elements such as Nb and Mg were changed, the values were higher than those of the comparative alloy, and the results also showed that the fracture life satisfied the target value.

【0042】以上の通り、本発明合金はクリープラプチ
ャー特性において破断寿命、破断伸びともに目標値を満
足しており、本発明材料で成形されたタービンホイール
はリーンバーンエンジンの使用環境に耐え得る材料であ
ることが判る。なお、上述の通り、本発明合金は過酷な
環境下で用いられるリーンバーンエンジンにも適用可能
であるため、当然ことながら一般的なターボチャージャ
ーを構成する部品のタービンホイールに用いても十分な
耐久性が得られることは言うまでもない。
As described above, the alloy of the present invention satisfies the target values in both the rupture life and the elongation at break in creep rupture characteristics. It turns out there is. As described above, since the alloy of the present invention can be applied to a lean burn engine used in a severe environment, it is natural that the alloy of the present invention has sufficient durability even when used for a turbine wheel as a component of a general turbocharger. Needless to say, the sex is obtained.

【0043】[0043]

【発明の効果】本発明合金は、Co、Ta、Hfなど高
価な合金元素を含まないため、材料単価は従来のAll
oy713C並みの安価であるが、固溶指数およびLM
%を調整することによってそのクリープ破断特性をAl
loy713C以上に向上させ、更にBまたはMgの添
加でその延性を向上させ更にタービンホイールとしての
耐久性を向上させることができ、リーンバーンエンジン
にも適用が可能となる。
The alloy of the present invention does not contain expensive alloying elements such as Co, Ta, Hf, etc.
oy713C is as inexpensive, but has a solid solution index and LM
% By adjusting its creep rupture characteristics to Al
loy 713C or more, and further the addition of B or Mg can improve its ductility and further improve the durability as a turbine wheel, and can be applied to lean burn engines.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上原 利弘 島根県安来市安来町2107番地2 日立金属 株式会社冶金研究所内 Fターム(参考) 3G002 EA06 3G005 EA04 EA16 FA13 GB79 GB81 KA00 KA07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshihiro Uehara 2107-2 Yasugi-cho, Yasugi-shi, Shimane F-term in the Metallurgical Research Laboratory, Hitachi Metals, Ltd. 3G002 EA06 3G005 EA04 EA16 FA13 GB79 GB81 KA00 KA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量比でCr:7.0〜9.5%、A
l:2.5〜5.5%、W:8.0〜13.0%、M
o:1.0〜5.0%(ただし、W+2Moは14〜1
9の範囲)、Nb:0.5〜3.5%、C:0.02〜
0.2%、B:0.05〜0.35%、Mg:0.02
%以下(但し0%は含まない)、Zr:0.1%以下、
Si:1.0%以下、Mn:1.0%以下を含有し、か
つ2Mo/(W+2Mo)は0.20〜0.55、かつ
(W+2Mo)/Nbは1〜10を満足し、残部はNi
および不可避不純物からなることを特徴とするNi基超
耐熱鋳造合金。
1. Cr: 7.0 to 9.5% by mass ratio, A
l: 2.5 to 5.5%, W: 8.0 to 13.0%, M
o: 1.0 to 5.0% (W + 2Mo is 14 to 1
9), Nb: 0.5-3.5%, C: 0.02-
0.2%, B: 0.05-0.35%, Mg: 0.02
% Or less (excluding 0%), Zr: 0.1% or less,
Si: 1.0% or less, Mn: 1.0% or less, 2Mo / (W + 2Mo) satisfies 0.20 to 0.55, and (W + 2Mo) / Nb satisfies 1 to 10, the balance being Ni
And a Ni-based super heat-resistant cast alloy comprising an unavoidable impurity.
【請求項2】 質量比でCr:7.0〜9.5%、A
l:2.5〜5.5%、W:8.0〜13.0%、M
o:1.0〜5.0%(ただし、W+2Moは14〜1
9の範囲)、Nb:0.5〜3.5%、C:0.02〜
0.2%、B:0.05〜0.35%、Mg:0.02
%以下(但し0%は含まない)、Ti:3.0%以下、
Zr:0.1%以下、Si:1.0%以下、Mn:1.
0%以下を含有し、かつ2Mo/(W+2Mo)は0.
20〜0.55、かつ(W+2Mo)/(Nb+2T
i)が1〜10を満足し、残部はNiおよび不可避不純
物からなることを特徴とするNi基超耐熱鋳造合金。
2. Cr: 7.0 to 9.5% by mass ratio, A
l: 2.5 to 5.5%, W: 8.0 to 13.0%, M
o: 1.0 to 5.0% (W + 2Mo is 14 to 1
9), Nb: 0.5-3.5%, C: 0.02-
0.2%, B: 0.05-0.35%, Mg: 0.02
% (But not including 0%), Ti: 3.0% or less,
Zr: 0.1% or less, Si: 1.0% or less, Mn: 1.
0% or less, and 2Mo / (W + 2Mo) is 0.1%.
20 to 0.55, and (W + 2Mo) / (Nb + 2T)
i) satisfying 1 to 10, with the balance being Ni and unavoidable impurities.
【請求項3】 質量比でCr:7.0〜9.5%、A
l:2.5〜5.5%、W:8.0〜13.0%、M
o:1.0〜5.0%(ただし、W+2Moは14〜1
9の範囲)、Nb:0.5〜3.5%、C:0.02〜
0.2%、B:0.01〜0.05%、Mg:0.00
4〜0.02%、Zr:0.1%以下、Si:1.0%
以下、Mn:1.0%以下を含有し、かつ2Mo/(W
+2Mo)は0.20〜0.55、かつ(W+2Mo)
/Nbは1〜10を満足し、残部はNiおよび不可避不
純物からなることを特徴とするNi基超耐熱鋳造合金。
3. Cr: 7.0 to 9.5% by mass ratio, A
l: 2.5 to 5.5%, W: 8.0 to 13.0%, M
o: 1.0 to 5.0% (W + 2Mo is 14 to 1
9), Nb: 0.5-3.5%, C: 0.02-
0.2%, B: 0.01-0.05%, Mg: 0.00
4 to 0.02%, Zr: 0.1% or less, Si: 1.0%
Hereinafter, Mn: 1.0% or less, and 2Mo / (W
+ 2Mo) is 0.20 to 0.55, and (W + 2Mo)
/ Nb satisfies 1 to 10, with the balance being Ni and unavoidable impurities.
【請求項4】 質量比でCr:7.0〜9.5%、A
l:2.5〜5.5%、W:8.0〜13.0%、M
o:1.0〜5.0%(ただし、W+2Moは14〜1
9の範囲)、Nb:0.5〜3.5%、C:0.02〜
0.2%、B:0.01〜0.05%、Mg:0.00
4〜0.02%、Ti:3.0%以下、Zr:0.1%
以下、Si:1.0%以下、Mn:1.0%以下を含有
し、かつ2Mo/(W+2Mo)は0.20〜0.5
5、かつ(W+2Mo)/(Nb+2Ti)が1〜10
を満足し、残部はNiおよび不可避不純物からなること
を特徴とするNi基超耐熱鋳造合金。
4. Cr: 7.0 to 9.5% by mass ratio, A
l: 2.5 to 5.5%, W: 8.0 to 13.0%, M
o: 1.0 to 5.0% (W + 2Mo is 14 to 1
9), Nb: 0.5-3.5%, C: 0.02-
0.2%, B: 0.01-0.05%, Mg: 0.00
4 to 0.02%, Ti: 3.0% or less, Zr: 0.1%
Hereinafter, Si: 1.0% or less, Mn: 1.0% or less, and 2Mo / (W + 2Mo) is 0.20 to 0.5.
5, and (W + 2Mo) / (Nb + 2Ti) is 1 to 10
And a balance consisting of Ni and inevitable impurities.
【請求項5】 請求項1から請求項4の何れかに記載の
Ni基超耐熱鋳造合金からなることを特徴とするNi基
超耐熱合金製タービンホイール。
5. A turbine wheel made of a Ni-base super heat-resistant alloy, comprising the Ni-base super heat-resistant cast alloy according to any one of claims 1 to 4.
JP2001105376A 2001-04-04 2001-04-04 Ni-base super heat-resistant cast alloy and Ni-base super heat-resistant alloy turbine wheel Expired - Fee Related JP4811841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001105376A JP4811841B2 (en) 2001-04-04 2001-04-04 Ni-base super heat-resistant cast alloy and Ni-base super heat-resistant alloy turbine wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001105376A JP4811841B2 (en) 2001-04-04 2001-04-04 Ni-base super heat-resistant cast alloy and Ni-base super heat-resistant alloy turbine wheel

Publications (2)

Publication Number Publication Date
JP2002294374A true JP2002294374A (en) 2002-10-09
JP4811841B2 JP4811841B2 (en) 2011-11-09

Family

ID=18958078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105376A Expired - Fee Related JP4811841B2 (en) 2001-04-04 2001-04-04 Ni-base super heat-resistant cast alloy and Ni-base super heat-resistant alloy turbine wheel

Country Status (1)

Country Link
JP (1) JP4811841B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1568795A1 (en) * 2003-11-20 2005-08-31 BorgWarner Inc. Heat resistant superalloy and its use
CN100494641C (en) * 2003-07-30 2009-06-03 株式会社东芝 Steam turbine power plant
KR101829292B1 (en) * 2009-07-20 2018-03-29 보르그워너 인코퍼레이티드 Turbocharger and compressor wheel therefor
WO2018069666A1 (en) * 2016-10-12 2018-04-19 Oxford University Innovation Limited A nickel-based alloy
CN110343907A (en) * 2019-07-17 2019-10-18 浙江大学 High-strength casting Ni containing W3Al based high-temperature alloy and preparation method thereof
CN112760525A (en) * 2019-11-01 2021-05-07 利宝地工程有限公司 High gamma prime nickel-based superalloy, use thereof and method of manufacturing a turbine engine component
US11761060B2 (en) 2018-12-04 2023-09-19 Alloyed Limited Nickel-based alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234938A (en) * 1984-05-02 1985-11-21 Aichi Steel Works Ltd Alloy for exhaust valve excellent in high temperature characteristics
JPH07216482A (en) * 1994-01-25 1995-08-15 Daido Steel Co Ltd Alloy for exhaust valve
JPH11131162A (en) * 1997-10-27 1999-05-18 Hitachi Metals Ltd Ni base super cast alloy and turbine wheel made of ni base super alloy
JP2000042755A (en) * 1998-07-30 2000-02-15 Sumitomo Metal Ind Ltd WELDING METHOD FOR HEAT RESISTANT Ni BASE ALLOY
JP2001062594A (en) * 1999-08-26 2001-03-13 Toshiba Corp Alloy for pressurization molding die

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234938A (en) * 1984-05-02 1985-11-21 Aichi Steel Works Ltd Alloy for exhaust valve excellent in high temperature characteristics
JPH07216482A (en) * 1994-01-25 1995-08-15 Daido Steel Co Ltd Alloy for exhaust valve
JPH11131162A (en) * 1997-10-27 1999-05-18 Hitachi Metals Ltd Ni base super cast alloy and turbine wheel made of ni base super alloy
JP2000042755A (en) * 1998-07-30 2000-02-15 Sumitomo Metal Ind Ltd WELDING METHOD FOR HEAT RESISTANT Ni BASE ALLOY
JP2001062594A (en) * 1999-08-26 2001-03-13 Toshiba Corp Alloy for pressurization molding die

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100494641C (en) * 2003-07-30 2009-06-03 株式会社东芝 Steam turbine power plant
EP1568795A1 (en) * 2003-11-20 2005-08-31 BorgWarner Inc. Heat resistant superalloy and its use
US9051844B2 (en) * 2003-11-20 2015-06-09 Borgwarner Inc. Heat resistant super alloy and its use
KR101829292B1 (en) * 2009-07-20 2018-03-29 보르그워너 인코퍼레이티드 Turbocharger and compressor wheel therefor
WO2018069666A1 (en) * 2016-10-12 2018-04-19 Oxford University Innovation Limited A nickel-based alloy
CN110225985A (en) * 2016-10-12 2019-09-10 牛津大学创新有限公司 Nickel-base alloy
CN110225985B (en) * 2016-10-12 2024-01-02 牛津大学创新有限公司 Nickel-based alloy
US11859267B2 (en) 2016-10-12 2024-01-02 Oxford University Innovation Limited Nickel-based alloy
US11761060B2 (en) 2018-12-04 2023-09-19 Alloyed Limited Nickel-based alloy
CN110343907A (en) * 2019-07-17 2019-10-18 浙江大学 High-strength casting Ni containing W3Al based high-temperature alloy and preparation method thereof
CN112760525A (en) * 2019-11-01 2021-05-07 利宝地工程有限公司 High gamma prime nickel-based superalloy, use thereof and method of manufacturing a turbine engine component

Also Published As

Publication number Publication date
JP4811841B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP5582532B2 (en) Co-based alloy
JP5278936B2 (en) Heat resistant superalloy
JP3049767B2 (en) Ti alloy with excellent heat resistance
JP2678083B2 (en) Ti-Al lightweight heat resistant material
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
US20070163682A1 (en) Ni-based superalloy having high oxidation resistance and gas turbine part
JPWO2007122931A1 (en) Ni-base superalloy and manufacturing method thereof
JP4266196B2 (en) Nickel-base superalloy with excellent strength, corrosion resistance and oxidation resistance
JP5063550B2 (en) Nickel-based alloy and gas turbine blade using the same
JP2002294374A (en) Ni BASED CAST HEAT RESISTANT SUPERALLOY AND TURBINE WHEEL MADE OF THE Ni BASED SUPERALLOY
JP2556198B2 (en) Ni-base heat-resistant alloy turbine blade casting
JP2905473B1 (en) Method for producing Ni-based directionally solidified alloy
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP4288821B2 (en) Low thermal expansion Fe-based heat-resistant alloy with excellent high-temperature strength
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
JP2787946B2 (en) Ni-based single crystal superalloy with excellent high-temperature strength and high-temperature corrosion resistance
JPH11131162A (en) Ni base super cast alloy and turbine wheel made of ni base super alloy
JP4184648B2 (en) Ni-based single crystal alloy excellent in strength and corrosion resistance and its manufacturing method
JP6769341B2 (en) Ni-based superalloy
JPH10317080A (en) Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts
JP2000169924A (en) Nickel base cast superalloy and turbine wheel casting made of nickel base superalloy
JP3289847B2 (en) Low thermal expansion super heat resistant alloy with excellent oxidation resistance
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy
JP2820139B2 (en) Ni-based single crystal superalloy with excellent high-temperature strength and high-temperature corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110817

R150 Certificate of patent or registration of utility model

Ref document number: 4811841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees