JPS63186845A - Ni group heat-resisting alloy having excellent thermal shock resistance - Google Patents
Ni group heat-resisting alloy having excellent thermal shock resistanceInfo
- Publication number
- JPS63186845A JPS63186845A JP62016362A JP1636287A JPS63186845A JP S63186845 A JPS63186845 A JP S63186845A JP 62016362 A JP62016362 A JP 62016362A JP 1636287 A JP1636287 A JP 1636287A JP S63186845 A JPS63186845 A JP S63186845A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- thermal shock
- shock resistance
- content
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 40
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 36
- 230000035939 shock Effects 0.000 title claims abstract description 17
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 8
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 6
- 229910052742 iron Inorganic materials 0.000 claims abstract 6
- 239000000203 mixture Substances 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 19
- 230000007423 decrease Effects 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910018575 Al—Ti Inorganic materials 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、すぐれた耐熱衝撃性を有し、かつ高温強度
にもすぐれたNi基耐熱合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a Ni-based heat-resistant alloy that has excellent thermal shock resistance and high-temperature strength.
従来、例えばディーゼルエンジンの副燃焼室の構造部材
の製造には、耐熱衝撃性、高温強度、および耐熱性が要
求されることから、
重電%で(は下%は重電%を示す)、Ni−20%Cr
−2,4%Ti−1,2%Affl−0,22%Cの
代表組成を有し、かつ溶体(ヒ処理(例えば真空中、温
度:1080℃に8時間保持後、空冷の条件)および時
効処理(例えば真空中、温度ニア00℃に16時間保持
後、空冷の条件)を晦すことによって、オーステナイト
素地にNi−Al−Tiを主成分とする金属間化合物、
すなわちNi3 CM、 Ti )を微細に析出させた
組織を具備せしめたNi基耐熱合金や、
Co−18%Cr−15%W−10%Ni −0,4%
Cの代表組成を有するCo基耐熱合金、
などが用いられている。Traditionally, for example, in the manufacture of structural members for the sub-combustion chamber of a diesel engine, thermal shock resistance, high temperature strength, and heat resistance are required, so it is expressed in heavy electric percentage (the lower % indicates heavy electric percent). Ni-20%Cr
It has a typical composition of -2,4%Ti-1,2%Affl-0,22%C, and is treated with solution (for example, in a vacuum, after being kept at a temperature of 1080°C for 8 hours, followed by air cooling) and By performing an aging treatment (for example, maintaining the temperature in a vacuum at a temperature near 00°C for 16 hours, and then cooling it in air), an intermetallic compound mainly composed of Ni-Al-Ti can be formed on the austenite matrix.
That is, a Ni-based heat-resistant alloy with a structure in which Ni3 (CM, Ti) is finely precipitated, Co-18%Cr-15%W-10%Ni-0.4%
A Co-based heat-resistant alloy having a typical composition of C is used.
しかし、近年、各種エンジンに対する高性能化の要求は
厳しく、これに伴ない1例えばディーゼルエンジンの副
燃焼室でも、その使用条件は一段と苛酷さを増している
が、これらの構造部材を構成する上記の従来Ni基耐熱
合金やCO基耐熱合金では、高温強度および耐熱性は満
足するものの、特に耐熱衝撃性が不十分であるために、
信頼性の点で問題がある。However, in recent years, there has been a severe demand for higher performance for various engines, and as a result, the usage conditions for the sub-combustion chamber of a diesel engine, for example, have become even more severe. Conventional Ni-based heat-resistant alloys and CO-based heat-resistant alloys have satisfactory high-temperature strength and heat resistance, but their thermal shock resistance is particularly insufficient.
There are problems with reliability.
そこで、本発明者等は、上述のような観点から、特に耐
熱衝撃性にすぐれ、かつ高温強度および耐熱性にすぐれ
た材料を開発すべく研究を行なった結果、
C: 0.05〜0.25%、 Cr:10〜25%
。Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a material with particularly excellent thermal shock resistance, high-temperature strength, and heat resistance, and as a result, C: 0.05-0. 25%, Cr:10-25%
.
Ti:1〜3%、 、U:O,S〜2.5%。Ti: 1 to 3%, U: O, S to 2.5%.
Fe:1〜15%。Fe: 1-15%.
WおよびMoのうちの1種または2種:0.05〜1.
5 %。One or two of W and Mo: 0.05 to 1.
5%.
Nb 、 Ta 、および’Hfのうちの1種または2
種以上:0.01〜2%!
を含有し、さらに必要に応じて、
Co : 0.3〜3%と、
BおよびZrのうちの1種または2種:0.001〜0
.2 % 、
のいずれか、あるいは両方を含有し、残りがNiと不可
避不純物からなる組成を有するNi基合金は、鋳放し状
態、並びに溶体化処理および時効処理の熱処理を施した
状態で、特にすぐれた耐熱衝撃性を有し、かつ上記の従
来Ni基耐熱合金および従来Co基耐熱合金と同等のす
ぐれた高温強度および耐熱性を有し、したがって、この
Ni基耐熱合金を、例えばディーゼルエンジンの副燃焼
室の構造部材として用いた場合に著しく長期に亘ってす
ぐれた性能を発揮するという知見を得たのである。One or two of Nb, Ta, and 'Hf
More than seeds: 0.01-2%! and, if necessary, Co: 0.3 to 3%, and one or two of B and Zr: 0.001 to 0.
.. Ni-based alloys containing either or both of 2% and 2%, with the remainder consisting of Ni and unavoidable impurities, have particularly excellent properties in the as-cast state and in the heat-treated state of solution treatment and aging treatment. It also has excellent high-temperature strength and heat resistance equivalent to the conventional Ni-based heat-resistant alloy and the conventional Co-based heat-resistant alloy described above. They found that when used as a structural member of a combustion chamber, it exhibits excellent performance over a long period of time.
この発明は、上記知見にもとづいてなされたものであっ
て、以下に成分組成を上記の通りに限定した理由を説明
する。This invention was made based on the above knowledge, and the reason why the component composition was limited as described above will be explained below.
(a) C
C成分には、Cr +Tt lWIMo lさらにNb
、 Ta 。(a) C The C component contains Cr + Tt lWIMo l and Nb
, Ta.
Hfなどと結合して炭化物を形成し、結晶粒界および粒
内な強(シシ、もって常温および高温強度を向上させる
作用があるが、その含有数が0,05%未満では@記作
用に所望の効果が得られず、一方その含有数が025%
を越えると、合金の靭性が低下するようになることから
、その含有数を0.05〜0.25%と定めた。It combines with Hf etc. to form carbides and has the effect of improving the strength at room temperature and high temperature at grain boundaries and within the grains, but if the content is less than 0.05%, it will not have the desired effect. However, the content is 0.25%.
Since the toughness of the alloy decreases when the content exceeds 0.05% to 0.25%.
(b) Cr
Cr成分には、オーステナイト素地に固溶して、合金の
高温耐酸化性(耐熱性)を著しく向上させる作用がある
が、その含有数が10%未満では所望の高温耐酸化性を
確保することができず、一方その含有数が25%を越え
ると、高温強度および靭性が急激に低下するようになる
ことから、その含有数を10〜25%と定めた。(b) Cr The Cr component has the effect of forming a solid solution in the austenite matrix and significantly improving the high-temperature oxidation resistance (heat resistance) of the alloy, but if its content is less than 10%, the desired high-temperature oxidation resistance cannot be achieved. However, if the content exceeds 25%, the high-temperature strength and toughness will rapidly decrease. Therefore, the content was set at 10 to 25%.
(cl Ti
Ti成分C二は、NiおよびMと共にNN15(、Ti
)の金属間化合物c以下γ′相という)を形成して、
合金を析出強化し、もって常温および高温強度を向上さ
せる作用があるが、その含有数が1%未満では前記作用
に所望の効果が得られず、一方その含有数が3%を越え
ると、脆いη相(、:gi 3 Ti相)が多電に析出
するようになって、合金の靭性が低下することから、そ
の含有数を1〜3%と定めた。(cl Ti Ti component C2 is NN15 (, Ti
) to form an intermetallic compound c (hereinafter referred to as γ' phase),
It has the effect of precipitation strengthening the alloy and thereby improving its strength at room temperature and high temperature. However, if the content is less than 1%, the desired effect cannot be obtained, while if the content exceeds 3%, it becomes brittle. Since the η phase (,: gi 3 Ti phase) precipitates in a multi-electrode manner and the toughness of the alloy decreases, its content was determined to be 1 to 3%.
(d) AJ
ME分には、上記の通り、γ′相を形成して、合金の常
温および高温強度を向上させるほか、高温耐酸化性を向
上させる作用があるが、その含有数が0.5%未満では
前記作用に所望の効果が得られず、一方その含有数が2
.5%を越えると、鋳造性および溶接性が悪化し、さら
に靭性も低下するようになることから、その含有数を0
.5〜2.5%と定めた。(d) As mentioned above, the AJ ME component has the effect of forming the γ' phase and improving the room temperature and high temperature strength of the alloy as well as the high temperature oxidation resistance. If the content is less than 5%, the desired effect cannot be obtained; on the other hand, if the content is less than 2
.. If it exceeds 5%, the castability and weldability will deteriorate, and the toughness will also decrease, so the content should be reduced to 0.
.. It was set at 5 to 2.5%.
fe) Fe
FeE分には、オーステナイト素地に固溶して、合金の
耐熱筒″Is性を一段と向上させる作用があるが、その
含有lが1%未満では所望の耐熱衝撃性が得られず、一
方その含有数が15%を越えると、合金の高温強度の低
下が著しくなることから、その含有数を1〜15%と定
めた。fe) Fe The FeE content has the effect of solidly dissolving in the austenite matrix and further improving the heat-resistant cylinder "Is" properties of the alloy, but if the content is less than 1%, the desired thermal shock resistance cannot be obtained. On the other hand, if the content exceeds 15%, the high-temperature strength of the alloy will decrease significantly, so the content is set at 1 to 15%.
if) WおよびM。if) W and M.
これらの成分には、オーステナイト素地に固溶するほか
、上記の通り炭化物を形成して、合金の常温および高温
強度を向上させる作用があるが、その含有数が0.05
%未満では前記作用に所望の効果が得られず、一方その
含有数が1.5%を越えると、高温耐酸化性および靭性
が著しく劣化するようになることから、その含有数を0
.05〜1.5%と定めた。These components not only form a solid solution in the austenite matrix, but also form carbides as mentioned above and have the effect of improving the room temperature and high temperature strength of the alloy.
If the content is less than 1.5%, the desired effect cannot be obtained, while if the content exceeds 1.5%, the high temperature oxidation resistance and toughness will deteriorate significantly.
.. It was set at 05 to 1.5%.
(g) Nb 、 Ta 、およびHfこれらの成分
には、上記の通りMC型炭化物を形成して結晶粒界およ
び校内を強化し、もって常温および高温強度を向上させ
る作用があるが、その含有lが0.01%未満では前記
作用に所望の効果が得られず、一方その含有数が2%を
越えると、靭性が低下するようになることから、その含
有数を0.01〜2%と定めた。(g) Nb, Ta, and Hf As mentioned above, these components have the effect of forming MC type carbides to strengthen grain boundaries and grain regions, thereby improving the strength at room temperature and high temperature. If the content is less than 0.01%, the desired effect cannot be obtained, while if the content exceeds 2%, the toughness will decrease. Established.
fh) C。fh) C.
Co成分には、オーステナイト素地に固溶して、高温強
度および高温耐酸化性を一段と向上させる作用があるの
で、必要に応じて含有させるが、その含有数が0.3%
未満では前記作用に所望の向上効果が得られず、一方そ
の含有数が3%を越えてもより一層の向上効果は得られ
ず、経済性を考慮して、その含有数を0.3〜3%と定
めた。The Co component is dissolved in the austenite matrix and has the effect of further improving high temperature strength and high temperature oxidation resistance, so it is included as necessary, but the content is 0.3%.
If the content is less than 3%, the desired effect of improving the above action cannot be obtained, and on the other hand, even if the content exceeds 3%, no further improvement effect can be obtained. It was set at 3%.
fi) BおよびZr
これらの成分には、結晶粒界を強靭化し、もって耐熱衝
撃性を一段と向上させる作用があるので、必要に応じて
含有されるが、その含有1が0.001%未満では前記
作用に所望の向上効果が得られず、一方その含有数が0
.2%を越えると、合金に脆化傾向が現われるようにな
ることから、その含有数な0.001〜0.2%と定め
た。fi) B and Zr These components have the effect of toughening grain boundaries and further improving thermal shock resistance, so they are included as necessary, but if the content of 1 is less than 0.001%, The desired effect of improving the above action cannot be obtained, and on the other hand, the content is 0.
.. If it exceeds 2%, the alloy tends to become brittle, so the content was set at 0.001 to 0.2%.
なお、この発明のNi基耐熱合金においては、不可避不
純物としてSiおよびMn ’ljx含有しても、その
含有数がそれぞれ2%以下であれば、合金特性に何らの
悪影響も及ぼさないので、これらの成分をそれぞれ2%
以下の範囲で、脱酸剤として使用することは有用なこと
である。In addition, in the Ni-based heat-resistant alloy of the present invention, even if Si and Mn'ljx are contained as unavoidable impurities, as long as their content is 2% or less, they will not have any adverse effect on the alloy properties. 2% of each ingredient
It is useful to use it as a deoxidizing agent within the following range.
つぎに、この発明のNi基耐熱合金を実施例により具体
的に説明する。Next, the Ni-based heat-resistant alloy of the present invention will be specifically explained using examples.
通常の真空溶解炉を用い、それぞれ第1段に示される成
分組成をもった合金溶湯を調製し、これらの合金溶湯を
、aストワックス精密鋳造法にて、それぞれ第1図fa
tに平面図で、同fblに第1図のA−A線断面図で示
される形状を有し、かつ外径=31閣φ×厚さ:10博
の寸法をもったディーゼルニンジンの副燃焼室の構造部
材である口金部材、並びに平行部外径=7−φ×平行部
長さ=50閣×チャック部外径:25mmφ×全長:9
0咽の寸法をもった引張試験片素材に鋳造し、さらにこ
れらの口金部材および試験片素材のうちの一部(第2表
の備考参照)に、真空中、1000〜1150℃の範囲
内の温度に4〜10時間保持後、空冷の溶体化処理と、
真空中、650〜750℃の範囲内の温度に、16時間
保持後、空冷の時効処理からなる熱処理を旌すことによ
って本発明Ni基耐熱合金材1〜25、従来Ni基耐熱
合金材、および従来Co基if1熱合金材をそれぞれ製
造した。Using an ordinary vacuum melting furnace, prepare molten alloys having the component compositions shown in the first stage, and cast these molten alloys using the a-stwax precision casting method as shown in Figure 1 fa.
A diesel carrot sub-combustion having a shape shown in a plan view at t and a cross-sectional view taken along the line A-A in Fig. The cap member, which is a structural member of the chamber, and the parallel part outer diameter = 7-φ x parallel part length = 50 mm x chuck part outer diameter: 25 mmφ x total length: 9
It is cast into a tensile test piece material with a dimension of 0.0 mm, and a part of these mouthpiece members and the test piece material (see notes in Table 2) is heated in a vacuum at a temperature of 1000 to 1150°C. After holding at the temperature for 4 to 10 hours, solution treatment with air cooling,
After holding the temperature in the range of 650 to 750°C in vacuum for 16 hours, heat treatment consisting of air cooling aging treatment is performed to obtain the Ni-based heat-resistant alloy materials 1 to 25 of the present invention, the conventional Ni-based heat-resistant alloy materials, and Conventional Co-based if1 thermal alloy materials were manufactured respectively.
ついで、この結果得られた各種の耐熱合金材を用い、ま
ず、第2図に概略説明図で示されるように、水平回転軸
1に放射状に収付けた4本の腕2の先端部のホルダー3
に上記口金部材Sをセットし、バーナー4からのフレー
ムがス5(二て前記口金部材Sの上面を加熱し、パイロ
スコープ6で加熱温度を観察し、この口金部材の上面@
度が800℃になった時点で、腕2を矢印方向に回転し
て、水槽7内の水8中に前記の加熱された口金部材Sを
浸漬し、これを口金部材Sの噴孔部に割れが発生するま
で繰り返し行なうことによって耐熱衝撃性を評価し、さ
らに高温強度については、上記引張試験片素材から削り
出した所定寸法の引張試験片を用い、大気中、温度=8
00℃で引張試験を行ない、引張強さと0.2%耐力を
測定することにより評価した。これらの結果を第2表に
示した。Next, using the various heat-resistant alloy materials obtained as a result, first, as shown in the schematic diagram in FIG. 3
The above-mentioned cap member S is set at 5, and the flame from the burner 4 heats the upper surface of the cap member S. The heating temperature is observed with a pyroscope 6.
When the temperature reaches 800°C, rotate the arm 2 in the direction of the arrow, immerse the heated cap member S in the water 8 in the water tank 7, and insert it into the nozzle hole of the cap member S. Thermal shock resistance was evaluated by repeating the test until cracking occurred, and high-temperature strength was evaluated using a tensile test piece of a predetermined size cut from the above-mentioned tensile test piece material in air at a temperature of 8.
A tensile test was conducted at 00°C, and evaluation was made by measuring tensile strength and 0.2% proof stress. These results are shown in Table 2.
第1表および第2表に示される結果から1本発明Ni基
耐熱合金1〜25は、いずれも鋳放し状態および熱処理
状態で、従来M基耐熱合金および従来Co基耐熱合金と
同等あるいはこれU上のすぐれた高温強度を有し、かつ
これより一段とすぐれた耐熱衝撃性をもつことが明らか
である。From the results shown in Tables 1 and 2, the Ni-based heat-resistant alloys 1 to 25 of the present invention are equivalent to or better than the conventional M-based heat-resistant alloy and the conventional Co-based heat-resistant alloy in both the as-cast state and the heat-treated state. It is clear that it has superior high-temperature strength as above, and even superior thermal shock resistance.
上述のように、この発明のNi基耐熱合金は、特を二す
ぐれた耐熱衝撃性を有し、かつ高温強度にもすぐれてい
るので、これらの特注が要求される、%Ltばディーゼ
ルエンジンの副燃焼室の構造部材などとして用いた場合
にすぐれた性能を著しく長期に亘って発揮するなどの工
業上有用な特性を有するのである。As mentioned above, the Ni-based heat-resistant alloy of the present invention has particularly excellent thermal shock resistance and high-temperature strength. It has industrially useful properties such as exhibiting excellent performance over a long period of time when used as a structural member of an auxiliary combustion chamber.
第1図(alおよび(blは、ディーゼルエンジンの副
暁焼室の口金部材を示す平面図および第1図のA−A線
断面図、第2図は耐熱衝撃性試験の概略説明図である。
1・・・水平回転軸、 2・・・腕、 3・・・ホ
ルダー。
4・・・バーナー、 5・・・フレームガス。
6・・・パイロスコープ、 7・・・水41. 8・
・・水。
S・・・口金部材。Figure 1 (al and (bl) are a plan view showing the mouth member of the auxiliary combustion chamber of a diesel engine and a sectional view taken along the line A-A in Figure 1, and Figure 2 is a schematic explanatory diagram of a thermal shock resistance test. 1...Horizontal rotation axis, 2...Arm, 3...Holder. 4...Burner, 5...Flame gas. 6...Pyroscope, 7...Water 41. 8.
··water. S: Base member.
Claims (4)
、Ti:1〜3%、Al:0.5〜2.5%、Fe:1
〜15%、 WおよびMoのうちの1種または2種:0.05〜1.
5%、 Nb、Ta、およびHfのうちの1種または2種以上:
0.01〜2%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とする耐熱衝撃性のすぐ
れたNi基耐熱合金。(1) C: 0.05-0.25%, Cr: 10-25%
, Ti: 1-3%, Al: 0.5-2.5%, Fe: 1
~15%, one or two of W and Mo: 0.05~1.
5%, one or more of Nb, Ta, and Hf:
A Ni-based heat-resistant alloy having excellent thermal shock resistance, characterized in that it contains 0.01 to 2% of the following, with the remainder consisting of Ni and unavoidable impurities (weight percent).
、Ti:1〜3%、Al:0.5〜2.5%、Fe:1
〜15%、 WおよびMoのうちの1種または2種:0.05〜1.
5%、 Nb、Ta、およびHfのうちの1種または2種以上:
0.01〜2%、 を含有し、さらに、 Co:0.3〜3%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とする耐熱衝撃性のすぐ
れたNi基耐熱合金。(2) C: 0.05-0.25%, Cr: 10-25%
, Ti: 1-3%, Al: 0.5-2.5%, Fe: 1
~15%, one or two of W and Mo: 0.05~1.
5%, one or more of Nb, Ta, and Hf:
Thermal shock resistance characterized by having a composition (the above weight %) containing 0.01 to 2%, further containing Co: 0.3 to 3%, and the remainder consisting of Ni and unavoidable impurities. An excellent Ni-based heat-resistant alloy.
、Ti:1〜3%、Al:0.5〜2.5%、Fe:1
〜15%、 WおよびMoのうちの1種または2種:0.05〜1.
5%、 Nb、Ta、およびHfのうちの1種または2種以上:
0.01〜2%、 を含有し、さらに、 BおよびZrのうちの1種または2種:0.001〜0
.2%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とする耐熱衝撃性のすぐ
れたNi基耐熱合金。(3) C: 0.05-0.25%, Cr: 10-25%
, Ti: 1-3%, Al: 0.5-2.5%, Fe: 1
~15%, one or two of W and Mo: 0.05~1.
5%, one or more of Nb, Ta, and Hf:
0.01 to 2%, and further one or two of B and Zr: 0.001 to 0
.. 1. A Ni-based heat-resistant alloy with excellent thermal shock resistance, characterized by having a composition (weight %) of 2% and the rest consisting of Ni and unavoidable impurities.
、Ti:1〜3%、Al:0.5〜2.5%、Fe:1
〜15%、 WおよびMoのうちの1種または2種:0.05〜1.
5%、 Nb、Ta、およびHfのうちの1種または2種以上:
0.01〜2%、 を含有し、さらに、 Co:0.3〜3%と、 BおよびZrのうちの1種または2種:0.001〜0
.2%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とする耐熱衝撃性のすぐ
れたNi基耐熱合金。(4) C: 0.05-0.25%, Cr: 10-25%
, Ti: 1-3%, Al: 0.5-2.5%, Fe: 1
~15%, one or two of W and Mo: 0.05~1.
5%, one or more of Nb, Ta, and Hf:
0.01 to 2%, furthermore, Co: 0.3 to 3%, and one or two of B and Zr: 0.001 to 0.
.. 1. A Ni-based heat-resistant alloy with excellent thermal shock resistance, characterized by having a composition (weight %) of 2% and the rest consisting of Ni and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62016362A JPH0768599B2 (en) | 1987-01-27 | 1987-01-27 | Diesel engine auxiliary combustion chamber base member with excellent thermal shock resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62016362A JPH0768599B2 (en) | 1987-01-27 | 1987-01-27 | Diesel engine auxiliary combustion chamber base member with excellent thermal shock resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63186845A true JPS63186845A (en) | 1988-08-02 |
JPH0768599B2 JPH0768599B2 (en) | 1995-07-26 |
Family
ID=11914223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62016362A Expired - Lifetime JPH0768599B2 (en) | 1987-01-27 | 1987-01-27 | Diesel engine auxiliary combustion chamber base member with excellent thermal shock resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0768599B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010132966A (en) * | 2008-12-04 | 2010-06-17 | Mitsubishi Materials Corp | Ni BASED HEAT RESISTANT ALLOY HAVING HIGH TEMPERATURE STRENGTH AND GAS TURBINE BLADE CASTING COMPOSED OF THE ALLOY |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57210942A (en) * | 1981-06-12 | 1982-12-24 | Special Metals Corp | Nickel-base cast alloy |
JPS60162760A (en) * | 1984-02-06 | 1985-08-24 | Daido Steel Co Ltd | Production of high-strength heat resistant material |
JPS61119640A (en) * | 1984-11-16 | 1986-06-06 | Honda Motor Co Ltd | Alloy for exhaust valve |
-
1987
- 1987-01-27 JP JP62016362A patent/JPH0768599B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57210942A (en) * | 1981-06-12 | 1982-12-24 | Special Metals Corp | Nickel-base cast alloy |
JPS60162760A (en) * | 1984-02-06 | 1985-08-24 | Daido Steel Co Ltd | Production of high-strength heat resistant material |
JPS61119640A (en) * | 1984-11-16 | 1986-06-06 | Honda Motor Co Ltd | Alloy for exhaust valve |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010132966A (en) * | 2008-12-04 | 2010-06-17 | Mitsubishi Materials Corp | Ni BASED HEAT RESISTANT ALLOY HAVING HIGH TEMPERATURE STRENGTH AND GAS TURBINE BLADE CASTING COMPOSED OF THE ALLOY |
Also Published As
Publication number | Publication date |
---|---|
JPH0768599B2 (en) | 1995-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5394715B2 (en) | Weldable nickel-iron-chromium-aluminum alloy with oxidation resistance | |
JP4037929B2 (en) | Low thermal expansion Ni-base superalloy and process for producing the same | |
JPS6293334A (en) | Nickel aluminide alloy and nickel-iron aluminide used in high temperature oxidative atmosphere | |
US5338379A (en) | Tantalum-containing superalloys | |
JPS59143055A (en) | Soldering alloy | |
EP0074603B1 (en) | Gas turbine nozzle having superior thermal fatigue resistance | |
JPS6253583B2 (en) | ||
JP3412234B2 (en) | Alloy for exhaust valve | |
JPS60234938A (en) | Alloy for exhaust valve excellent in high temperature characteristics | |
US3984239A (en) | Filler metal | |
JPH09268337A (en) | Forged high corrosion resistant superalloy alloy | |
JPH01259139A (en) | Ti-al intermetallic compound-type alloy having excellent high temperature oxidizing resistance | |
JPS63186845A (en) | Ni group heat-resisting alloy having excellent thermal shock resistance | |
JPH0317243A (en) | Super alloy containing tantalum | |
JPH0445239A (en) | Alloy for spark plug | |
JPH07238349A (en) | Heat resistant steel | |
JP2732934B2 (en) | Constant temperature forging die made of Ni-base alloy with excellent high-temperature strength and high-temperature oxidation resistance | |
JPH03134144A (en) | Nickel-base alloy member and its manufacture | |
JPS6046353A (en) | Heat resistant steel | |
JPS6147900B2 (en) | ||
JPS6134497B2 (en) | ||
JPS62164844A (en) | Co-base alloy for engine valve and engine valve seat | |
JPS60224732A (en) | Heat resistant co-base alloy | |
JPS613859A (en) | High-strength heat-resistant co alloy for gas turbine | |
JPS6353234A (en) | Structural member having heat resistance and high strength |