JPS60162760A - Production of high-strength heat resistant material - Google Patents

Production of high-strength heat resistant material

Info

Publication number
JPS60162760A
JPS60162760A JP1844984A JP1844984A JPS60162760A JP S60162760 A JPS60162760 A JP S60162760A JP 1844984 A JP1844984 A JP 1844984A JP 1844984 A JP1844984 A JP 1844984A JP S60162760 A JPS60162760 A JP S60162760A
Authority
JP
Japan
Prior art keywords
less
heat
strength
temperature
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1844984A
Other languages
Japanese (ja)
Inventor
Susumu Isobe
磯部 晋
Motoaki Imamura
今村 元昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1844984A priority Critical patent/JPS60162760A/en
Publication of JPS60162760A publication Critical patent/JPS60162760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a high-strength heat-resistant material having high-temp. strength and high hardness by subjecting an Ni-base alloy incorporated therein with a specific amt. of C, Cr and Al, Ti, etc. to soaking to the solutionizing temp. of a gamma phase or above and to work hardening at the recrystallization temp. or below and further to age hardening. CONSTITUTION:An Ni-base alloy contg. 0.01-0.20wt% C, 13.0-23.0% Cr, 1.5- 3.5% Ti and 0.1-4.5% Al (where >=2.0% Ti+Al) is melted. The billet of such Ni-base alloy is soaked to the temp. above the solubilizing temp. of the gamma phase [Ni3(Ti; Al)]. The billet is then work-hardened by >=20% working at the recrystallization temp. or below and is age-hardened at 600-850 deg.C in this state. The inter-granular precipitation of the gamma phase is thereby accelerated and the eta phase at the grain boundary is suppressed. This material is applicable to a material for the exhaust valve of an internal-combustion engine and a material for heat-resistant parts of a turbine, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば内燃機関の排気バルブ用材料やター
ビン等の耐熱部品用材料として適する高強度耐熱材料を
製造するのに好適な高強度耐熱材料の製造方法に関する
ものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a high-strength heat-resistant material suitable for producing a high-strength heat-resistant material suitable as, for example, an exhaust valve material for an internal combustion engine or a material for heat-resistant parts such as a turbine. This invention relates to a method for manufacturing materials.

(従来技術) 例えば舶用ディーゼルエンジンに用いられる排%バルブ
では、そのとくにフェース面部分において、加熱・冷却
にともなう熱応力の繰返しに耐えると共に、燃焼残渣物
の付着による二ローション・コロ−ジョンに耐えること
が要求される0通常、この種の用途にはJIS 5UH
3などのマルテンサイト系耐熱鋼や5UH32などのオ
ーステナイト系耐熱鋼が使用され、とくに高硬度が要求
されるバルブフェース面にはコバルト基などの硬化合金
の溶接肉盛などが実施されてきた。
(Prior art) For example, in the exhaust valve used in marine diesel engines, the face part in particular can withstand repeated thermal stress due to heating and cooling, and can also withstand double lotion corrosion caused by the adhesion of combustion residues. Normally, JIS 5UH is required for this type of application.
Martensitic heat-resistant steels such as No. 3 and austenitic heat-resistant steels such as 5UH32 are used, and welding of hardened alloys such as cobalt-based alloys has been applied to the valve face surface, which requires particularly high hardness.

ところで、近年、エンジンの高効率化の要請および燃料
の低質化の傾向に伴ってバルブの使用環境はますます苛
酷なものになりつつあり、バルブ材質においてもより高
性能なものがめられている。
Incidentally, in recent years, with the demand for higher engine efficiency and the trend toward lower quality fuel, the environment in which valves are used has become increasingly harsh, and higher performance valve materials are being sought.

最近、このような用途にナイモニック(Nimonic
)80Aなどのニッケル基耐熱合金が使用されるような
ってきたが、この種のニッケル基耐熱合金はもともとガ
スタービン用ブレードなどに開発されたものであり、そ
の使用条件からもクリープ強度が最も重要な特性の一つ
であり、適用される熱処理もそのような目的で開発され
たものである。
Recently, Nimonic has been developed for such applications.
) Nickel-based heat-resistant alloys such as 80A have come into use, but this type of nickel-based heat-resistant alloys was originally developed for gas turbine blades, and creep strength is the most important factor due to the conditions of use. The heat treatment applied was also developed for this purpose.

しかし、先述した排気バルブにとって重要な特性はむし
ろ高温における強度とくに疲労強度と硬さである。した
がって、このような用途に対しては上述したガスタービ
ン用ブレードなどに適用される標準熱処理は必ずしも適
当ではないものであった。
However, the important properties for the above-mentioned exhaust valves are strength at high temperatures, particularly fatigue strength and hardness. Therefore, the standard heat treatment applied to gas turbine blades and the like described above is not necessarily appropriate for such uses.

(発明の目的) この発明は、このような従来の事情に鑑みてなされたも
のであって、高温における強度とくに疲労強度に優れて
いると同時に高硬度が得られる高強度耐熱材料を製造す
ることができる高強度耐熱材料の製造方法を提供するこ
とを目的としている。
(Object of the Invention) The present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to manufacture a high-strength heat-resistant material that has excellent strength at high temperatures, particularly fatigue strength, and at the same time has high hardness. The purpose of this study is to provide a method for producing high-strength, heat-resistant materials that can

(発明の構成) この発明による高強度耐熱材料の製造方法は、重量%で
、C:0.01〜0.20%、Cr:13.0〜23.
0%、Ti : 1.5〜3.5%、A文:0.1〜4
.5%でかつ(”rt+A文):2.0%以上を基本含
有成分とし、必要に応じてB:0.02%以下、Zr:
0.10%以下、Hf:2.0%以下のうちの1種また
は2種、Ca:0.03%以下、Mg:0.03%以下
、REM:0.03%以下のうちの1種または2種以上
、Mo:5.0%以下、W: 5.0%以下、Nb+T
a:5.0%以下のうちの1種または2種以上、Co 
: 20%以下、Fe : 40%以下のうちの1種ま
たは2種を含有するNi基合金を熱処理するに際し、前
記合金をγ′相[Ni3 (Ti 、A文)]の固溶温
度以」二の温度で均熱した後再結晶温度以下で20%以
」二の加工によって加工硬化させ1次いで600〜85
0℃で時効硬化させるようにしたことを特徴としている
(Structure of the Invention) A method for producing a high-strength heat-resistant material according to the present invention includes, in weight percent, C: 0.01 to 0.20%, Cr: 13.0 to 23.
0%, Ti: 1.5-3.5%, A text: 0.1-4
.. 5% and ("rt+A sentence): 2.0% or more is the basic component, B: 0.02% or less, Zr:
0.10% or less, Hf: 1 or 2 of 2.0% or less, Ca: 0.03% or less, Mg: 0.03% or less, REM: 0.03% or less Or two or more types, Mo: 5.0% or less, W: 5.0% or less, Nb+T
a: One or more of 5.0% or less, Co
When heat-treating a Ni-based alloy containing one or two of the following: 20% or less, Fe: 40% or less, the alloy is heated to a temperature below the solid solution temperature of the γ' phase [Ni3 (Ti, text A)]. After soaking at a temperature of 2, it is work hardened by 20% or less at a temperature below the recrystallization temperature.
It is characterized by being age hardened at 0°C.

上述したNi基合金に対する加工熱処理によって得られ
る組織は、γ′相[N i 3 (T i *AM)]
および炭化物によってビン止めされた転位のセル構造か
らなる。 ′ このような下部組織は700℃以上の温度での使用にお
いてもあまり変化しないので高強度が保持され、またセ
ル構造内での転位の移動が比較的容易なため優れた靭延
性が得られる。
The structure obtained by the processing heat treatment of the Ni-based alloy described above is a γ′ phase [N i 3 (T i *AM)]
and consists of a cellular structure of dislocations bottled by carbides. ' Such a substructure does not change much even when used at temperatures of 700°C or higher, so high strength is maintained, and excellent toughness and ductility can be obtained because dislocations move relatively easily within the cell structure.

これに対して従来の標準熱処理材の場合において強度を
上げるためには、Ti、AJ、Nbなど゛のγ′相生成
元素を添加したり、あるいはMo。
On the other hand, in the case of conventional standard heat-treated materials, in order to increase the strength, γ' phase forming elements such as Ti, AJ, Nb, etc. are added, or Mo.

W、Taなどの固溶強化元素を増加したりする手段がと
られる。しかし、このようにして作られた組織ではγ′
相の均一析出による整合歪のために生じた転位構造のゆ
えに、その靭延性は強度の増加とともに著しく低下する
Measures are taken to increase solid solution strengthening elements such as W and Ta. However, in the tissue created in this way, γ′
Due to the dislocation structure caused by coherent strain due to homogeneous precipitation of phases, its toughness and ductility decrease significantly with increasing strength.

このように、この発明による加工熱処理材は、同一強度
レベルの標準熱処理材に比べて靭延性がかなり優れてお
り、必ずしも合金元素の増加によらずとも高い強度が得
られる。もちろん、必要に応じて合金元素を添加しても
よいことはいうまでもない。
As described above, the processed and heat-treated material according to the present invention has considerably superior toughness and ductility compared to standard heat-treated materials of the same strength level, and high strength can be obtained without necessarily increasing the alloying element. Of course, it goes without saying that alloying elements may be added as necessary.

次に、この発明が適用されるNi基耐熱合金の好ましい
成分範囲(重量%)ヒその限定理由について説明する。
Next, the reasons for limiting the preferred range of components (wt%) of the Ni-based heat-resistant alloy to which the present invention is applied will be explained.

C:0.0L−0,20% CはTi、Crなどと炭化物を作り、この炭化物の析出
によって転位セル構造および結晶粒界を安定化するのに
有効な元素である。そして、その結果、組織的安定性が
高温まで十分に保たれるようになり、このような効果を
得るためには、C量は0.01%以上とするのが良い。
C: 0.0L-0.20% C forms a carbide with Ti, Cr, etc., and is an effective element for stabilizing the dislocation cell structure and grain boundaries by precipitation of this carbide. As a result, the structural stability is sufficiently maintained up to high temperatures, and in order to obtain this effect, the C content is preferably 0.01% or more.

そして、o、oi%未満のC4では結晶粒が粗大化しや
すく、加工熱処理によっても十分な特性が得にくく、反
対に0.20%を超えるCiでは炭化物量が過度に増加
して加工性を阻害するので好ましくない。
If the C4 content is less than o, oi%, the crystal grains tend to become coarse, and it is difficult to obtain sufficient properties even through mechanical heat treatment.On the other hand, if the Ci content exceeds 0.20%, the amount of carbides increases excessively and inhibits workability. Therefore, it is not desirable.

Cr: 13.0〜23.0% Crは耐熱合金に必要な耐食性および耐酸化性を確保す
るために有効な元素であって、このような効果を得るた
めには13.0%以上添加するのが良い。しかし、多す
ぎるとσ相が形成され、靭延性が低下するので23.0
%以下とするのが良い。
Cr: 13.0-23.0% Cr is an effective element for ensuring the corrosion resistance and oxidation resistance required for heat-resistant alloys, and in order to obtain such effects, it must be added in an amount of 13.0% or more. It's good. However, if the amount is too high, σ phase will be formed and the toughness and ductility will decrease.
It is better to keep it below %.

Ti:1.5〜3.5% TiはNiおよびAMと結合して高温強度の向上に有効
なγ′相[Ni3 (Ti 、A文)]を形成させるた
めに必要な元素であって、このためには1.5%以上添
加するのが良い。しかし、多量に添加するとη相[Ni
3Ti]の析出により高温特性が劣化するので、3.5
%以下とするのが良い。
Ti: 1.5-3.5% Ti is an element necessary to combine with Ni and AM to form a γ' phase [Ni3 (Ti, text A)] that is effective in improving high-temperature strength. For this purpose, it is preferable to add 1.5% or more. However, if a large amount is added, η phase [Ni
3Ti], the high temperature properties deteriorate due to the precipitation of 3.5
It is better to keep it below %.

A文=0.1〜4.5% A文はTiと同様にγ′相の形成に必要な元素であり、
このためには0.1%以上添加するのが良い。しかし、
多量に添加するとTi/A、l比が減少して強度の低下
をきたすので4.5%以下とするのが良い。
A text = 0.1 to 4.5% A text is an element necessary for the formation of the γ' phase like Ti,
For this purpose, it is preferable to add 0.1% or more. but,
If added in a large amount, the Ti/A, l ratio decreases, resulting in a decrease in strength, so it is preferable to limit the amount to 4.5% or less.

Ti+A文:2.0%以上 Ti、Aiは上述した理由により添加するが、合金の強
度は(Ti+A文)量とともに増加する。したがって、
例えば排気バルブのような用途に対しては(TI+AM
)量が260%未満では十分な硬さを得ることは困難で
あるので、2.0%以上とする必要がある。しかし、(
Ti+A11)量が多すぎると、熱間および温間におけ
る加工性が劣化するので、5.0%以下とすることがよ
り望ましい。
Ti+A: 2.0% or more Ti and Al are added for the reasons mentioned above, but the strength of the alloy increases with the amount of (Ti+A). therefore,
For example, for applications such as exhaust valves (TI+AM
) If the amount is less than 260%, it is difficult to obtain sufficient hardness, so it is necessary to make it 2.0% or more. but,(
If the amount of Ti+A11) is too large, the workability in hot and warm conditions will deteriorate, so it is more desirable that the amount is 5.0% or less.

B:0.02%以下 Bはη相の析出を抑制する効果のある元素であ□ す、このよう:な効果を得るためにより望ましくは0.
001%□以上必要に応じて添カーけるのも良いが、多
すぎる添加は粒界の局部溶融温度を著しく低下させ、熱
間加工性を損なうので0.02%以下とするのが良い。
B: 0.02% or less B is an element that has the effect of suppressing the precipitation of the η phase. In order to obtain such an effect, it is more desirable to contain 0.02% or less.
It is good to add more than 0.001%□ if necessary, but adding too much will significantly lower the local melting temperature of the grain boundaries and impair hot workability, so it is better to limit it to 0.02% or less.

Zr:O,10%以下、Hf:2.0%以下のうちの1
種または2種 Zr、Hfは炭化物を形成して高温強度および靭性を高
めるのに有効であると共に、粒界を強化して強度および
靭性を高めるのにも有効な元素であるので必要に応じて
添加するのも良い、しかし、多すぎると靭性や加工性を
劣化させるので、Zrは0.1θ%以下、Hfは2.0
%以下とするのが良い。
One of Zr: O, 10% or less, Hf: 2.0% or less
Zr and Hf are effective elements for forming carbides and increasing high temperature strength and toughness, and are also effective for strengthening grain boundaries and increasing strength and toughness, so they can be used as needed. It is good to add Zr to 0.1θ% or less, and Hf to 2.0% because too much will deteriorate toughness and workability.
It is better to keep it below %.

Ca:0.03%以下、Mg : 0.03%以下。Ca: 0.03% or less, Mg: 0.03% or less.

REM: 0.03%以下のうちの1種または2種以上 Ca、Mg、REMはSを固定することによって熱間加
工性を向上させ、また炭化物の分布形態を制御して靭延
性を高めるのに有効な元素であるので、これらの1種ま
たは2種以上を添加するのも良い、しかし、多量に添加
すると加工性を劣化するのでそれぞれ0.03%以下と
するのが良い。
REM: 0.03% or less of one or more of Ca, Mg, and REM improves hot workability by fixing S, and also improves toughness and ductility by controlling the distribution form of carbides. It is good to add one or more of these elements.However, if added in large amounts, workability deteriorates, so it is better to limit each to 0.03% or less.

Mo:5.0%以下、、W:5.0%以下、Nb+Ta
(いずれか一方がOの場合を含む) :5.0%以下の
うちの1種または2種以上 M o 、 W 、 N b 、 T aは炭化物を形
成して高温強度および靭性を高めるのに有効な元素であ
り、このような効果を得るためにM o 、 W 、 
N b 。
Mo: 5.0% or less, W: 5.0% or less, Nb+Ta
(Including cases where either one is O): 5.0% or less of one or more of Mo, W, Nb, and Ta form carbides to improve high-temperature strength and toughness. It is an effective element, and in order to obtain such an effect, M o , W ,
Nb.

Taのうちの1種または2種以上を添加するのも良い、
しかし、多すぎると靭性や加工性を劣化するので、Mo
:5.0%以下、W:5.0%以下、Nb+Ta:5.
0%以下とするのが良い。
It is also good to add one or more of Ta.
However, if it is too much, the toughness and workability will deteriorate, so Mo
: 5.0% or less, W: 5.0% or less, Nb+Ta: 5.
It is preferable to set it to 0% or less.

Co;20%以下、Fe : 40%以下のうちの1種
または2種 CoはNiの置換元素として添加しうるものであり、基
地の強化をはかると同時にクリープ強度の増大に寄与す
る元素であるので、20%以下の範囲で添加することも
できる。また、FeもNiの置換元素として添加しうる
ものであり、合金の低廉化が可能となるので40%以下
の範囲で添加することもできる。
Co: 20% or less, Fe: 40% or less Co can be added as a replacement element for Ni, and is an element that strengthens the base and at the same time contributes to increasing creep strength. Therefore, it can be added in an amount of 20% or less. Further, Fe can also be added as a substituent element for Ni, and since it becomes possible to reduce the cost of the alloy, it can also be added in a range of 40% or less.

Ni:残部 Niはオーステナイト組織の安定化に必要であると同時
にγ′相[Ni3 (Ti 、A立)]を形成させるの
に必要な元素であるので残部とした。
Ni: Remaining Ni is an element necessary for stabilizing the austenite structure and at the same time forming the γ' phase [Ni3 (Ti, Al)], so it was left as the remainder.

この発明による高強度耐熱材料の製造方法は以上に例示
したような成分組成を有するNi基耐熱合金に対し、当
該Ni基合金をγ′相[Ni3 (Ti 、A文)]の
固溶温度以上、例えば1050〜t too℃以上の温
度で均熱化したのち、再結晶温度以下、例えば980〜
102060以下の温度で20%以上の加工を加えるこ
とによって加工硬化させ、加工硬化した状態で600〜
850℃の温度で時効硬化処理してγ′相[Ni3 (
Ti 、A11) ]の粒内析山を促進すると共に粒界
におけるη相[Ni3Ti]の析出を抑制するようにし
たものである。
The method for producing a high-strength heat-resistant material according to the present invention is to prepare a Ni-based heat-resistant alloy having the composition as exemplified above, at a temperature higher than the solid solution temperature of the γ' phase [Ni3 (Ti, A pattern)]. , for example, after soaking at a temperature of 1050~ttoo℃ or higher, the temperature is lower than the recrystallization temperature, for example, 980~
It is work hardened by adding 20% or more processing at a temperature of 102060 or less, and the work hardened state is 600 ~
The γ' phase [Ni3 (
Ti, A11)] is promoted in the grains, and at the same time, the precipitation of the η phase [Ni3Ti] at the grain boundaries is suppressed.

次に、上記の加工熱処理についてさらに詳細に説明する
Next, the above processing heat treatment will be explained in more detail.

加工熱処理によって高い硬度を得るためには、まず十分
高温で均熱した後再結晶温度以下において加工歪を与え
て硬化させ、次に時効硬化処理を行う必要がある。
In order to obtain high hardness through processing heat treatment, it is necessary to first soak the material at a sufficiently high temperature, then apply processing strain to the material below the recrystallization temperature to harden it, and then perform age hardening treatment.

第1図はナイモニツク(Nimonic ) 80 A
(成分組成は第1表参照)およびワスパロイ(Wasp
aloy) (成分組成は第3表参照)の時効硬さにお
よぼす加工温度および加工量の影響を示したものである
。これらのうち、ナイモニック80Aの再結晶温度は9
80℃付近であるが、加工温度が再結晶温度以上では加
工硬化せず、再結晶温度以下においては加工温度が低い
ほど、また加工量が増すほど、700℃時効後の硬さは
増加する傾向がある。
Figure 1 shows Nimonic 80A.
(See Table 1 for component composition) and Waspaloy (Wasp
This figure shows the effects of processing temperature and amount of processing on the aging hardness of alloys (see Table 3 for component composition). Among these, the recrystallization temperature of Nimonic 80A is 9
Although it is around 80℃, work hardening does not occur when the processing temperature is above the recrystallization temperature, and when the processing temperature is below the recrystallization temperature, the lower the processing temperature and the greater the amount of processing, the harder the material after 700℃ aging tends to increase. There is.

一方、ワスパロイの再結晶温度は1020℃付近である
ため、再結晶温度以上の1050℃の加工においては殆
ど加工硬化しないが、再結晶温度以下においては加工温
度が低いほど、また加工量が増すほど加工硬化量が増え
、750℃時効後の硬さは高くなる。
On the other hand, since the recrystallization temperature of Waspaloy is around 1020℃, there is almost no work hardening when processing at 1050℃, which is above the recrystallization temperature, but below the recrystallization temperature, the lower the processing temperature and the greater the amount of processing. The amount of work hardening increases, and the hardness after aging at 750°C increases.

このような結果から、実際の加工では、Ni基耐熱合金
の成分組成にもよるが、γ′相が十分に固溶する105
0−tioo”c程度に均熱した後、この温度から加工
を開始し、ナイモニック80Aの場合は980℃以下、
ワスパロイの場合は1020℃以下において少なくとも
20%以上、より望ましくは30%以上の加工量を残す
ようにして加工を行う。
From these results, in actual processing, depending on the composition of the Ni-based heat-resistant alloy, 105
After soaking to about 0-tioo”c, processing starts from this temperature, and in the case of Nimonic 80A, it is 980℃ or less,
In the case of Waspaloy, the processing is carried out at 1020° C. or below so as to leave at least 20% or more, more preferably 30% or more of the processing amount.

ところで、上記の加工が低すぎる温度例えば800℃よ
り低温において行われると、変形のモードがプラナ−辷
りとなり、不均一な歪変形を生じやすく、時効処理後も
そのまま機械的性質の不均一性が残り、繰返し応力がか
かるような用途に使用されると早期に疲労破壊を生じや
すい、このため、とくに疲労強度が要求される部品の加
工においては比較的高温例えば800℃以上で終止する
ことがより望ましい。
By the way, if the above-mentioned processing is performed at a temperature that is too low, for example, lower than 800°C, the mode of deformation becomes planar sliding, which tends to cause non-uniform strain deformation, and even after aging treatment, the non-uniformity of mechanical properties continues. However, when used in applications where repeated stress is applied, fatigue failure is likely to occur at an early stage.For this reason, when machining parts that require particularly high fatigue strength, it is better to finish processing at a relatively high temperature, e.g., 800°C or higher. desirable.

」−2加工後の時効処理においてγ′相の全面析出によ
り硬化させるためには、600〜850℃での時効処理
が必要である。すなわち、600℃よりも低い温度での
時効処理においてはTl。
In order to harden the steel by precipitation of the γ' phase over the entire surface in the aging treatment after processing, the aging treatment at 600 to 850°C is necessary. That is, Tl in aging treatment at a temperature lower than 600°C.

Anの拡散速度が遅く、γ′相の析出が活発に生じない
ため、十分な硬さを得ることが困難であり、一方、85
0℃を超える温度で時効処理を行うと、前の加工によっ
て形成された転位のセル構造の再配列が促進して加工硬
化量が減少するので、最終の時効処理によって十分な硬
度を得ることは困難となるためである。 1 (実施例1) 真空アーク炉で溶製した直径400+uのインゴットか
ら鍛伸した直径180mmのビレットを用いて中型舶用
排気バルブの製造を行った。使用した材料の化学成分を
第1表に示す。
Because the diffusion rate of An is slow and the precipitation of the γ' phase does not occur actively, it is difficult to obtain sufficient hardness.
If aging treatment is performed at a temperature exceeding 0℃, the rearrangement of the dislocation cell structure formed by the previous processing will be promoted and the amount of work hardening will decrease, so it is difficult to obtain sufficient hardness through the final aging treatment. This is because it becomes difficult. 1 (Example 1) A medium-sized marine exhaust valve was manufactured using a billet with a diameter of 180 mm that was forged from an ingot with a diameter of 400+U melted in a vacuum arc furnace. The chemical components of the materials used are shown in Table 1.

バルブの鍛造は軸部の鍛伸と傘部の型入れとに分かれる
が、まず軸部の鍛伸では加熱温度を1050℃として直
径75mmに仕上げた。このとき、仕上ヒートの加工率
は30%、終止温度は900℃とした。
The forging of the valve is divided into the forging of the shaft and the molding of the cap.First, in the forging of the shaft, the heating temperature was 1050°C and the diameter was 75mm. At this time, the finishing heat processing rate was 30%, and the final temperature was 900°C.

次に、傘部の鍛造では加熱温度を1050℃とし、型入
れを行い、1ヒートで直径約3001111に仕上げた
。このとき、仕上げ温度はバルブのフェース部で約85
0°C1傘先端中央部で約900℃であった。また、加
工率はフェース部で最大的60%であり、t$2図に示
す形状のバルブ1を製作した。
Next, in the forging of the umbrella part, the heating temperature was set to 1050°C, and the mold was put into a mold, and it was finished to a diameter of about 3001111 mm in one heat. At this time, the finishing temperature at the face of the valve is approximately 85.
The temperature at the center of the 0°C1 umbrella tip was approximately 900°C. In addition, the machining rate was at most 60% on the face portion, and a valve 1 having the shape shown in Fig. t$2 was manufactured.

次いで、このバルブ1に1t(76700℃X16hr
の時効処理を加えた加工熱処理のものと、1080℃X
1hr加熱後水冷の固溶化処理の後700°CX16h
rの時効処理を加えた標準熱処理のものについて、それ
ぞれ軸部の引張試験を行った。その結果を第2表にまと
めて示す。
Next, this valve 1 was heated for 1 t (76,700°C
1080℃X
After heating for 1 hour and solid solution treatment with water cooling, 700°C for 16 hours.
A tensile test was conducted on the shaft portion of each specimen subjected to standard heat treatment including aging treatment of r. The results are summarized in Table 2.

第2表に示すように、加工熱処理材は700℃以上の高
温までの耐力、引張強さが著しく高くなっており、延性
もあまり低下せず高靭性が維持されていることが明らか
である。
As shown in Table 2, it is clear that the processed and heat-treated materials have significantly higher yield strength and tensile strength up to high temperatures of 700° C. or higher, and maintain high toughness without much decrease in ductility.

第3図はバルブ1のフェース部1aの深さ方向の硬さ分
布を示したものである。第3図において、加工熱処理材
の仕上表面の硬さは通常のコバルト基硬化肉盛合金の溶
着部に匹敵する高いレベルであり、仕上表面から約20
■腸深さにおいても、硬さ低下量はわずかにHv30程
度にすぎず、硬化層が深部にまで及んでいることが明ら
かである。
FIG. 3 shows the hardness distribution of the face portion 1a of the valve 1 in the depth direction. In Fig. 3, the hardness of the finished surface of the processed and heat-treated material is at a high level comparable to that of the welded area of ordinary cobalt-based hardfacing alloys, and is approximately 20 mm hard from the finished surface.
(2) Even at the depth of the intestines, the amount of decrease in hardness is only about Hv30, and it is clear that the hardened layer extends deep.

このように、加工熱処理を施すことによって作製された
バルブは、Mo、W、Taなどの固溶強化元素を添加し
なくとも優れた耐食性を有する上に高強度・高硬度を有
しており、必ずしも肉盛硬化溶接を施さなくとも苛酷な
腐食環境において高温までの繰返し応力に十分耐えるこ
とができるという非常に優れたものである。
In this way, valves produced by processing heat treatment have excellent corrosion resistance and high strength and hardness even without the addition of solid solution strengthening elements such as Mo, W, and Ta. It is extremely excellent in that it can sufficiently withstand repeated stress up to high temperatures in a severe corrosive environment without necessarily performing build-up hardening welding.

(実施例2) 真空アーク炉で溶製した直径4001II11のインゴ
ットから鍛伸した直径50mmのビレットを用いて中型
舶用排気バルブの製造を行った。使用した材料の化学成
分を第3表に示す。
(Example 2) A medium-sized marine exhaust valve was manufactured using a billet with a diameter of 50 mm that was forged from an ingot with a diameter of 4001II11 melted in a vacuum arc furnace. The chemical components of the materials used are shown in Table 3.

バルブの鍛造は軸部の鍛伸と傘部の型入れとに分かれる
が、まず軸部の鍛伸では加熱温度を1120℃として直
径25鵬−に仕上げた。このとき、仕上ヒートの加工率
は30%、終止温度は950℃とした。
The forging of the valve is divided into the forging of the shaft part and the molding of the cap part.First, in the forging of the shaft part, the heating temperature was 1120°C and the diameter was 25 mm. At this time, the finishing heat processing rate was 30%, and the final temperature was 950°C.

次に、傘部の鍛造では加熱温度を1100℃とし、型入
れを行い、lヒートで直径約1201I11に仕上げた
。このとき、仕上げ温度はバルブのフェース部で約90
0 ’0、傘先端中央部で約940℃であった。また、
加工率はフェース部で最大的60%であり、第2図に示
す形状のバルブ1を製作した。
Next, in the forging of the umbrella part, the heating temperature was set to 1100°C, and the mold was put into a mold, and it was finished with a diameter of about 1201I11 with 1 heat. At this time, the finishing temperature at the valve face is approximately 90°C.
0'0, and the temperature at the center of the umbrella tip was approximately 940°C. Also,
The maximum machining rate was 60% on the face portion, and a valve 1 having the shape shown in FIG. 2 was manufactured.

次いで、このバルブ1に直接760℃X16hrの時効
処理を加えた加工熱処理のものと、1040℃X1hr
加熱後水冷の固溶化処理の後。
Next, this valve 1 was directly aged at 760°C for 16 hours, and then heated at 1040°C for 1 hour.
After heating and water-cooling solid solution treatment.

845℃X4hrAC,760℃X16hrの時効処理
を加えた標準熱処理のものについて、それぞれ軸部の引
張試験を行った。その結果を第4表にまとめて示す。
Tensile tests were conducted on the shaft portions of the standard heat-treated specimens, which were subjected to aging treatments of 845° C. for 4 hrs and 760° C. for 16 hrs. The results are summarized in Table 4.

儒 寸 派 ■ t54表に示すように、加工熱処理材は700℃以上の
高温までの耐力、引張強さが著しく高くなっており、延
性もあまり低下せず高靭性が維持されていることが明ら
かである。
As shown in the t54 table, the processed and heat-treated material has significantly higher yield strength and tensile strength up to high temperatures of 700°C or higher, and it is clear that the ductility does not decrease much and high toughness is maintained. It is.

第4図はバルブ1のフェース部1aの深さ方向の硬さ分
11jを示したものである。第4図において、加工熱処
理材の仕上表面の硬さは通常のコバルト基硬化肉盛合金
の溶着部に匹敵する高いレベルであり、仕上表面から約
10m+s深さにおいても、硬さ低下量はわずかにHv
20程度にすぎず、硬化層が深部にまで及んでいること
が明らかである。
FIG. 4 shows the hardness 11j of the face portion 1a of the valve 1 in the depth direction. In Figure 4, the hardness of the finished surface of the processed and heat-treated material is at a high level comparable to that of the welded area of ordinary cobalt-based hardfacing alloys, and even at a depth of approximately 10 m+s from the finished surface, the hardness decreases only slightly. to Hv
It is only about 20, and it is clear that the hardened layer extends deep.

このように、加工熱処理を施すことによって作製された
バルブは、優れた耐食性を有する上に高強度番高硬度を
有しており、必ずしも肉盛硬化溶接を施さなくとも苛酷
な腐食環境において高温までの繰返し応力に耐えること
ができるという非常に優れたものである・ (発明の効果) 以上説明してきたように、この発明による高強度耐熱材
料の製造方法は、重量%で、C:0.01〜0.20%
、Cr:13.0〜23.0%、Ti:1.5〜3.5
%、A立:o、i〜4.5%でかつ(Ti+AJlj)
 : 2 、0%以上を基本含有成分とし、必要に応じ
てB:0.02%以下、Zr:0.10%以下、Hf 
:2.0%以下のうちの1種または2種、Ca:0.0
3%以下、Mg:0.C1%以下、REM:0.03%
以下のうちの1種または2種以上。
In this way, valves manufactured by processing heat treatment have excellent corrosion resistance and high strength and hardness, and can be used up to high temperatures in harsh corrosive environments without necessarily having to undergo overlay hardening welding. (Effects of the Invention) As explained above, the method for producing a high-strength heat-resistant material according to the present invention has a C: 0.01% by weight. ~0.20%
, Cr: 13.0-23.0%, Ti: 1.5-3.5
%, A standing: o, i ~ 4.5% and (Ti + AJlj)
: 2, 0% or more as basic components, B: 0.02% or less, Zr: 0.10% or less, Hf as necessary.
: 1 or 2 of 2.0% or less, Ca: 0.0
3% or less, Mg: 0. C1% or less, REM: 0.03%
One or more of the following.

Mo:5.0%以下、W:5.0%以下、Nb+Ta:
5.0%以下のうちの1種または2種以上、Co : 
20%以下、Fe : 40%以下のうちの1種または
2種を含有するNi基合金を熱処理するに際し、前記合
金をγ′相[Ni3 (Ti 。
Mo: 5.0% or less, W: 5.0% or less, Nb+Ta:
One or more of 5.0% or less, Co:
When heat-treating a Ni-based alloy containing one or two of the following: 20% or less, Fe: 40% or less, the alloy is converted into a γ' phase [Ni3 (Ti).

A文)〕の固固溶温度上の温度で均熱した後再結晶温度
以下で20%以上の加工によって加工硬化させ、次いで
600〜850℃で時効硬化させるようにしたものであ
るから、この発明による加工熱処理材は標準熱処理材に
比較して高強度でかつ高硬度が得られると同時に靭延性
が著しく優れており、必ずしも合金元素を多種多量に添
加しなくとも高強度・高靭性が得られると共に、仕上表
面での硬さは通常のコバルト基硬化肉盛合金の溶着部に
匹敵する高いレベルのものが得られ、硬化層も深部まで
及んでいるので1例えば、エンジン用vト気バルブに適
用した場合に必ずしも高価な肉盛硬化溶接を施さなくと
も苛酷な腐食環境において高温まで繰返し応力に十分耐
えることができるものが得られるという非常に優れた効
果をもたらしうるちのである。
A)] is soaked at a temperature above the solid solution temperature, then work hardened by working at 20% or more below the recrystallization temperature, and then age hardened at 600 to 850°C. The processed and heat-treated material according to the invention has higher strength and hardness than standard heat-treated materials, and at the same time has significantly superior toughness and ductility.It is possible to obtain high strength and high toughness without necessarily adding various kinds of alloying elements in large amounts. In addition, the hardness of the finished surface is at a high level comparable to that of the welded parts of ordinary cobalt-based hardfacing alloys, and the hardened layer extends deep. When applied to the industry, it can produce a product that can sufficiently withstand repeated stress up to high temperatures in a severe corrosive environment without necessarily performing expensive overlay hardening welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNi基耐熱合金に対する加工条件と時効後の硬
さとの関係を調べた結果の一例を示すグラフ、第2図は
この発明の実施例において製作したバルブの形状を示す
部分説明図、第3図およびfJJA図は各々この発明の
実施例1および2において調べたバルブの深さ方向の硬
さ分布を示すグラフである。 特許出願人 大同特殊鋼株式会社 代理人弁理士 小 塩 古 第1図 刀工章(%) 第3図 匂りl4IIイすJ:lプ114b
FIG. 1 is a graph showing an example of the results of investigating the relationship between processing conditions and hardness after aging for Ni-based heat-resistant alloys, FIG. 2 is a partial explanatory diagram showing the shape of a valve manufactured in an example of the present invention, FIG. 3 and fJJA are graphs showing the hardness distribution in the depth direction of the valves investigated in Examples 1 and 2 of the present invention, respectively. Patent Applicant: Daido Steel Co., Ltd. Representative Patent Attorney Shio Ko Shio Old Figure 1 Sword Craftsman's Badge (%) Figure 3 Stainless Steel 14II Isu J: 114b

Claims (1)

【特許請求の範囲】 (1)重量%で、C: O,、01〜0,20%、Cr
: 13.0〜23.0%、Ti:1.5〜3.5%、
A文=0.1〜4.5%でかつ(Ti+A文):2.0
5以上を基本含有成分とするNi基合金を熱処理するに
際し、前記合金をγ′相の固溶温度以上の温度で均熱し
た後再結晶温度以下で20%以上の加工によって加工硬
化させ。 次いで600〜850℃で時効硬化させることを特徴と
する高強度耐熱材料の製造方法。 (2)Ni基合金が、B:0.02%以下を含有する特
許請求の範囲第(1)項記載の高強度耐熱材料の製造方
法。 (3)Ni基合金が、Zr:O,10%以下。 Hf:2.0%以下のうちの1種または2種を含有する
特許請求の範囲第(1)項または第(2)項記載の高強
度耐熱材料の製造方法。 (4)Ni基合金が、Ca:0.03%以下。 Mg:0.03%以下、REM:0.03%以下のうち
の1種または2種以上を含有する特許請求の範囲第(1
)項ないし第(3)項のいずれかに記載の高強度耐熱材
料の製造方法。 (5)Ni基合金が、Mo:5.0%以下、W:5.0
%以下、Nb+Ta:5.0%以下のうちの1種または
2種以上を含有する特許請求の範囲第(1)項ないし第
(0項のいずれかに記載の高強度耐熱材料の製造方法。 (8)Ni基合金が、Co : 20%以下、Fe:4
0%以下のうちの1種または2種を含有する特許請求の
範囲第(1)項ないし第(5)項のいずれかに記載の高
強度耐熱材料の製造方法。
[Claims] (1) In weight%, C: O, 01-0.20%, Cr
: 13.0-23.0%, Ti: 1.5-3.5%,
A sentence = 0.1 to 4.5% and (Ti + A sentence): 2.0
When heat-treating a Ni-based alloy having a basic content of 5 or more, the alloy is soaked at a temperature above the solid solution temperature of the γ' phase, and then work-hardened by working by 20% or more at a temperature below the recrystallization temperature. A method for producing a high-strength, heat-resistant material, which is then age-hardened at 600 to 850°C. (2) The method for producing a high-strength heat-resistant material according to claim (1), wherein the Ni-based alloy contains 0.02% or less of B. (3) Ni-based alloy contains Zr:O, 10% or less. Hf: A method for producing a high-strength heat-resistant material according to claim 1 or 2, which contains one or two of 2.0% or less. (4) Ni-based alloy contains Ca: 0.03% or less. Claim No. 1 containing one or more of Mg: 0.03% or less and REM: 0.03% or less
) to (3), the method for producing a high-strength heat-resistant material. (5) Ni-based alloy, Mo: 5.0% or less, W: 5.0
% or less, and Nb+Ta: 5.0% or less. (8) Ni-based alloy contains Co: 20% or less, Fe: 4
The method for producing a high-strength heat-resistant material according to any one of claims (1) to (5), which contains one or two of 0% or less.
JP1844984A 1984-02-06 1984-02-06 Production of high-strength heat resistant material Pending JPS60162760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1844984A JPS60162760A (en) 1984-02-06 1984-02-06 Production of high-strength heat resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1844984A JPS60162760A (en) 1984-02-06 1984-02-06 Production of high-strength heat resistant material

Publications (1)

Publication Number Publication Date
JPS60162760A true JPS60162760A (en) 1985-08-24

Family

ID=11971930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1844984A Pending JPS60162760A (en) 1984-02-06 1984-02-06 Production of high-strength heat resistant material

Country Status (1)

Country Link
JP (1) JPS60162760A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218536A (en) * 1985-12-30 1987-09-25 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Nickel base super alloy composition
JPS6350440A (en) * 1986-08-18 1988-03-03 インコ、アロイス、インタ−ナショナル インコ−ポレ−テッド Nickel-chromium alloy improved in fatique strength
JPS63114951A (en) * 1986-09-15 1988-05-19 ゼネラル・エレクトリック・カンパニイ Method for forming fatique and cracking resistant nickel-base superalloy by thermal processing and formed product
JPS63186845A (en) * 1987-01-27 1988-08-02 Mitsubishi Metal Corp Ni group heat-resisting alloy having excellent thermal shock resistance
JPH03177526A (en) * 1989-10-04 1991-08-01 General Electric Co <Ge> Alloy article based on wear and cracking resisting high strength nickel
JPH05179379A (en) * 1992-01-08 1993-07-20 Mitsubishi Materials Corp High-temperature sealing material made of rolled ni alloy sheet
JPH05508194A (en) * 1991-04-15 1993-11-18 ユナイテッド・テクノロジーズ・コーポレイション Superalloy forging method
JP2007254804A (en) * 2006-03-22 2007-10-04 Daido Steel Co Ltd Ni-BASED ALLOY
JP2012149343A (en) * 2011-01-03 2012-08-09 General Electric Co <Ge> Alloy
JP2016132824A (en) * 2015-01-22 2016-07-25 株式会社日本製鋼所 HIGH STRENGTH Ni-BASED SUPER ALLOY

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218536A (en) * 1985-12-30 1987-09-25 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Nickel base super alloy composition
JP2586894B2 (en) * 1985-12-30 1997-03-05 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Nickel-base superalloys
JPS6350440A (en) * 1986-08-18 1988-03-03 インコ、アロイス、インタ−ナショナル インコ−ポレ−テッド Nickel-chromium alloy improved in fatique strength
JP2575399B2 (en) * 1986-08-18 1997-01-22 インコ、アロイス、インタ−ナショナル インコ−ポレ−テッド Nickel-chromium alloy with excellent thermal fatigue resistance
JPS63114951A (en) * 1986-09-15 1988-05-19 ゼネラル・エレクトリック・カンパニイ Method for forming fatique and cracking resistant nickel-base superalloy by thermal processing and formed product
JPS63186845A (en) * 1987-01-27 1988-08-02 Mitsubishi Metal Corp Ni group heat-resisting alloy having excellent thermal shock resistance
JPH03177526A (en) * 1989-10-04 1991-08-01 General Electric Co <Ge> Alloy article based on wear and cracking resisting high strength nickel
JPH05508194A (en) * 1991-04-15 1993-11-18 ユナイテッド・テクノロジーズ・コーポレイション Superalloy forging method
JPH05179379A (en) * 1992-01-08 1993-07-20 Mitsubishi Materials Corp High-temperature sealing material made of rolled ni alloy sheet
JP2007254804A (en) * 2006-03-22 2007-10-04 Daido Steel Co Ltd Ni-BASED ALLOY
JP2012149343A (en) * 2011-01-03 2012-08-09 General Electric Co <Ge> Alloy
JP2016132824A (en) * 2015-01-22 2016-07-25 株式会社日本製鋼所 HIGH STRENGTH Ni-BASED SUPER ALLOY

Similar Documents

Publication Publication Date Title
US7651575B2 (en) Wear resistant high temperature alloy
US20050194073A1 (en) Heat-resistant austenitic stainless steel and a production process thereof
EP1591548A1 (en) Method for producing of a low thermal expansion Ni-base superalloy
US6129795A (en) Metallurgical method for processing nickel- and iron-based superalloys
EP0639654B1 (en) Fe-Ni-Cr-base super alloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JP2010065547A (en) Welding type rotor for turbine and its manufacturing method
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JPS604895B2 (en) Structure with excellent stress corrosion cracking resistance and its manufacturing method
CN108026623A (en) Ferrite-group stainless steel
JPS60162760A (en) Production of high-strength heat resistant material
JPH10219377A (en) Manufacture of high corrosion resistant valve for intake and exhaust valve for diesel engine and intake and exhaust valve
JPS5834129A (en) Heat-resistant metallic material
JP3671271B2 (en) Manufacturing method of engine exhaust valve
JPS61119640A (en) Alloy for exhaust valve
JPS58126965A (en) Shroud for gas turbine
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
US2416515A (en) High temperature alloy steel and articles made therefrom
JPS61238942A (en) Heat resisting alloy
RU2352680C1 (en) Ferrite corrosion-resistant steel
JP2000328163A (en) Exhaust valve alloy for diesel engine and production of exhaust valve
JP2860260B2 (en) High corrosion resistance Ni-based alloy
JPS6013020A (en) Heat treating method of heat resistant alloy
JPS5945752B2 (en) Strong precipitation hardening austenitic heat resistant steel
JPH07238349A (en) Heat resistant steel
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics