JP2010125455A - Continuous casting method for steel - Google Patents

Continuous casting method for steel Download PDF

Info

Publication number
JP2010125455A
JP2010125455A JP2008299134A JP2008299134A JP2010125455A JP 2010125455 A JP2010125455 A JP 2010125455A JP 2008299134 A JP2008299134 A JP 2008299134A JP 2008299134 A JP2008299134 A JP 2008299134A JP 2010125455 A JP2010125455 A JP 2010125455A
Authority
JP
Japan
Prior art keywords
continuous casting
nozzle
steel
liquid
casting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008299134A
Other languages
Japanese (ja)
Other versions
JP5064357B2 (en
Inventor
Toshiaki Mizoguchi
利明 溝口
Daisuke Miki
大輔 三木
Norihiko Uchiyama
▲徳▼彦 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008299134A priority Critical patent/JP5064357B2/en
Publication of JP2010125455A publication Critical patent/JP2010125455A/en
Application granted granted Critical
Publication of JP5064357B2 publication Critical patent/JP5064357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method for steel wherein the parting of a liquid seal is not caused by pressing force applied to a nozzle joint, and air suction from the nozzle joint is surely prevented over a long period. <P>SOLUTION: The continuous casting method for steel is performed using continuous casting equipment where a nozzle joint is sealed by a liquid seal material 10 held between double refractory packing materials 11, 12. The respective packing materials 11, 12 are made thin at the side in contact with the liquid seal material 10 in a state where pressing force is not applied, and are made thick at the side opposite thereto, and, the thickness d<SB>0</SB>in the solidified state of the liquid seal material is controlled to 1 to 8 mm, and its width w<SB>0</SB>is controlled to ≥3 mm, thus, when pressing force is applied to the nozzle joint and the respective refractory packing materials 11, 12 are flatly crushed, the partition of the liquid seal material 10 is prevented, and, while securing the seal of the nozzle joint, the molten metal is poured to a mold. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ノズル接合部を液体シール材によってシールした連続鋳造設備を用いて行う鋼の連続鋳造方法に関するものである。   The present invention relates to a steel continuous casting method performed using a continuous casting facility in which a nozzle joint portion is sealed with a liquid sealing material.

周知のように、鋼の連続鋳造は溶鋼を取鍋からノズルを介してタンディッシュに注湯し、更にタンディッシュから浸漬ノズルを介して溶鋼を鋳型に注湯しながら行われる。これらのノズルは耐火物製であり、取鍋やタンディッシュも全て耐火物製であるから、ノズルと取鍋やタンディッシュとの接合部(ノズル接合部)を完全にシールすることは容易ではない。このためにノズル接合部からの大気の吸い込みによって溶鋼中に酸素が浸入し、アルミナクラスタ等の製品欠陥の原因となったり、ノズル閉塞等の操業トラブルの原因となったりする。   As is well known, continuous casting of steel is performed while pouring molten steel from a ladle into a tundish through a nozzle, and further pouring the molten steel from a tundish into a mold through an immersion nozzle. These nozzles are made of refractory, and the ladle and tundish are all made of refractory, so it is not easy to completely seal the joint between the nozzle and the ladle or tundish (nozzle joint). . For this reason, oxygen infiltrates into the molten steel due to the suction of the air from the nozzle joint, which may cause product defects such as alumina clusters and operation troubles such as nozzle clogging.

このため従来から、アルミナを主成分とする耐火性粉末を熱硬化性樹脂で混練した耐火性パッキング材を用いてノズル接合部をシールする方法(特許文献1)が用いられている。しかしなおシール性は十分ではなく、やむを得ず、ノズルの内部にアルゴン等の不活性ガスを吹き込み、溶鋼中に浸入した酸素によって生ずるアルミナクラスタをアルゴン気泡とともに浮上分離することが行われているが、不活性ガスの流量に応じてコストがかかることとなる。   For this reason, conventionally, a method (Patent Document 1) is used in which a nozzle joint portion is sealed using a fireproof packing material obtained by kneading a fireproof powder mainly composed of alumina with a thermosetting resin. However, the sealing performance is still insufficient, and it is unavoidable that an inert gas such as argon is blown into the nozzle, and alumina clusters generated by oxygen that has entered the molten steel are floated and separated together with argon bubbles. The cost increases depending on the flow rate of the active gas.

そこで出願人は特許文献2に示すように、液体金属からなる液体シール材によってノズル接合部をシールする技術を開発した。液体シール材としては例えばAl合金が使用される。このような液体シール材は内外二重の耐火性パッキング材の間に保持され、室温では金属リングであるが使用状態においては溶融して液化し、ノズル接合部を確実にシールすることができるものである。   Therefore, as shown in Patent Document 2, the applicant has developed a technique for sealing the nozzle joint with a liquid sealing material made of liquid metal. For example, an Al alloy is used as the liquid sealing material. Such a liquid sealing material is held between the inner and outer double refractory packing materials and is a metal ring at room temperature, but melts and liquefies in use, and can reliably seal the nozzle joint. It is.

ところがこのような液体シール材を用いた場合、液体シール材を囲む内外二重の耐火性パッキング材がノズル接合部に与えられる押付け力によって変形することがあり、その場合に耐火性パッキング材がリング状の液体シール材の上に覆い被さり、液体シールを分断するおそれがあることが判明した。もしこのような状態となると液体シールの機能が失われ、耐火性パッキング材のみによるシールが行われる状態となる。
特公昭60−15592号公報 特開2007−69254号公報
However, when such a liquid sealing material is used, the inner and outer double refractory packing material surrounding the liquid sealing material may be deformed by the pressing force applied to the nozzle joint. It has been found that there is a possibility that the liquid seal may be broken by covering the liquid seal material. If such a state occurs, the function of the liquid seal is lost, and the seal is made only with the refractory packing material.
Japanese Patent Publication No. 60-15592 JP 2007-69254 A

従って本発明の目的は上記した従来の問題点を解決し、ノズル接合部に与えられる押付け力による液体シールの分断がなく、長期間にわたってノズル接合部からの大気の吸い込みを確実に防止できる鋼の連続鋳造方法を提供することである。   Therefore, the object of the present invention is to solve the above-mentioned conventional problems, and there is no breakage of the liquid seal due to the pressing force applied to the nozzle joint, and it is possible to reliably prevent the suction of air from the nozzle joint over a long period of time. It is to provide a continuous casting method.

上記の課題を解決するためになされた本発明は、ノズル接合部が内外二重の耐火性パッキング材の間に保持された液体シール材によってシールされた連続鋳造設備を用いて行う鋼の連続鋳造方法において、各耐火性パッキング材の厚さを押付け力が加わらない状態では液体シール材に接する側で薄く、その反対側では厚くしておき、液体シール材の固化状態における厚さdを1〜8mm、幅wを3mm以上とし、ノズル接合部に押付け力を加えて各耐火性パッキング材を扁平に押しつぶすことにより液体シール材によるノズル接合部のシールを確保しながら鋳型への溶湯注入を行うことを特徴とするものである。 The present invention made to solve the above-mentioned problems is a continuous casting of steel performed using a continuous casting facility in which a nozzle joint portion is sealed by a liquid sealing material held between inner and outer double refractory packing materials. In the method, the thickness of each refractory packing material is thin on the side in contact with the liquid seal material when no pressing force is applied, and thick on the opposite side, and the thickness d 0 in the solidified state of the liquid seal material is set to 1. 〜8mm, width w 0 is 3mm or more, and by applying a pressing force to the nozzle joint, each fireproof packing material is crushed flat to inject the molten metal into the mold while ensuring the seal of the nozzle joint with the liquid sealant It is characterized by doing.

なお請求項2のように、各耐火性パッキング材の液体シール材に接する側の厚さを(0.7〜1.0)dとし、反対側の厚さを(1.1〜1.5)dとすることが好ましい。また請求項3のように、各耐火性パッキング材の径方向の幅を10mm以上とすることが好ましい。 Incidentally, as claimed in claim 2, the thickness of the side in contact with the liquid sealing material of the refractory packing material and (0.7 to 1.0) d 0, the opposite side thickness (1.1-1. 5) it is preferable that the d 0. Further, as in claim 3, it is preferable that the radial width of each refractory packing material is 10 mm or more.

さらに請求項4のように、ノズル接合部に与える押付け力を、0.2〜1.5MPaとすることが好ましく、請求項5のように、ノズルに吹き込まれる不活性ガスの流量を溶鋼1トン当たり(0〜1)NLとすることが好ましい。なお請求項6のように、液体シール材としては液体金属または非金属融体を用いることができる。   Further, as in claim 4, the pressing force applied to the nozzle joint is preferably 0.2 to 1.5 MPa, and as in claim 5, the flow rate of the inert gas blown into the nozzle is 1 ton of molten steel. It is preferable to set it to (0-1) NL. As in the sixth aspect, liquid metal or non-metallic melt can be used as the liquid sealing material.

本発明においては、液体シール材の内外両側を囲む耐火性パッキング材として、押付け力が加わらない状態では液体シール材に接する側で薄くその反対側では厚いものを用いる。この耐火性パッキング材も使用状態においては押付け力によって扁平に押しつぶされるが、圧縮密度が液体シール材に接する側ではその反対側に比べて低くなるため、液体シール材に接する領域では変形量は僅かとなり、液体シール材の上に覆い被さるような変形は生じない。このため液体シール材によるノズル接合部のシールを確保しながら鋳型への溶湯注入を行うことができ、ノズル接合部からの大気の吸い込みに起因する製品欠陥や操業トラブルを効果的に防止することができる。このためノズルに吹き込まれる不活性ガスの流量を溶鋼1トン当たり(0〜1)NLにまで減少させることが可能となり、生産コストの低減を図ることも可能となる。   In the present invention, as the fireproof packing material that surrounds both the inside and outside of the liquid seal material, a material that is thin on the side in contact with the liquid seal material and thick on the opposite side is used when no pressing force is applied. This refractory packing material is also flattened by the pressing force in use, but the compression density is lower on the side in contact with the liquid seal material than on the opposite side, so the amount of deformation is small in the region in contact with the liquid seal material. Thus, deformation that covers the liquid sealing material does not occur. For this reason, it is possible to inject molten metal into the mold while ensuring the seal of the nozzle joint with the liquid seal material, and effectively prevent product defects and operational troubles due to air suction from the nozzle joint. it can. Therefore, the flow rate of the inert gas blown into the nozzle can be reduced to (0 to 1) NL per ton of molten steel, and the production cost can be reduced.

以下に本発明の好ましい実施形態を示す。
図1は本発明の実施形態に用いられる連続鋳造設備の断面図であり、1は溶鋼を搬送する取鍋、2はタンディッシュ、3は連続鋳造用の鋳型である。溶鋼は取鍋1の底部に設けられたスライディングノズル4及びロングノズル5を介してタンディッシュ2に注湯され、さらにタンディッシュ2の底部に設けられたスライディングノズル6及び浸漬ノズル7を介して鋳型3に注湯される。
Preferred embodiments of the present invention are shown below.
FIG. 1 is a cross-sectional view of a continuous casting facility used in an embodiment of the present invention, wherein 1 is a ladle for conveying molten steel, 2 is a tundish, and 3 is a casting mold for continuous casting. Molten steel is poured into the tundish 2 through the sliding nozzle 4 and the long nozzle 5 provided at the bottom of the ladle 1, and the mold is further formed through the sliding nozzle 6 and the immersion nozzle 7 provided at the bottom of the tundish 2. 3 is poured.

これらのロングノズル5及び浸漬ノズル7の上端はスライディングノズル4及びスライディングノズル6の下プレートに押付けられるノズル接合部となっており、これらの部分に図2に示されるシール手段が設けられている。   The upper ends of these long nozzles 5 and immersion nozzles 7 are nozzle joints pressed against the lower plates of the sliding nozzle 4 and the sliding nozzle 6, and the sealing means shown in FIG. 2 is provided at these portions.

図2において、10は液体シール材、11はその外側の耐火性パッキング材、12はその内側の耐火性パッキング材である。これらは何れもノズル中心の円形孔を囲むリング状であり、液体シール材10の内外両側を耐火性パッキング材11、12によって囲む構造である。耐火性パッキング材11、12は例えばアルミナ粉末をアクリル樹脂やフェノール樹脂等の熱硬化性樹脂に混練した材質である。液体シール材10は室温においては固体であるが使用状態においては溶融して液化する液体金属または非金属融体からなるものである。液体金属としてはAl、Al合金、Sn、Sn合金が好ましく、非金属融体としては例えばCaO、SiO2、PbOのような金属酸化物や、CaF2、PbF2のような金属弗化物などを原料に使った低融点の化合物を用いることができる。 In FIG. 2, 10 is a liquid sealing material, 11 is an outer fireproof packing material, and 12 is an inner fireproof packing material. Each of these has a ring shape surrounding a circular hole in the center of the nozzle, and has a structure in which both the inner and outer sides of the liquid sealing material 10 are surrounded by fireproof packing materials 11 and 12. The refractory packing materials 11 and 12 are made of, for example, a material in which alumina powder is kneaded with a thermosetting resin such as an acrylic resin or a phenol resin. The liquid sealing material 10 is made of a liquid metal or non-metal melt that is solid at room temperature but melts and liquefies in use. The liquid metal is preferably Al, Al alloy, Sn, or Sn alloy, and the nonmetallic melt is, for example, a metal oxide such as CaO, SiO 2 or PbO, or a metal fluoride such as CaF 2 or PbF 2. The low melting point compound used for the raw material can be used.

図3は本発明の要部を示す拡大断面図であり、図2に丸印を付けた部分の押付け力を加えない初期状態を示している。この図に示すように、液体シール材10の固化状態における厚さをd、幅をwとすると、dは1〜8mm、wは3mm以上とすることが好ましい。dがこの範囲より薄いとシール効果が不十分となり、この範囲よりも厚いと液体シール材10が漏れ出すおそれがある。またwが3mm未満であるとやはりシール効果が不十分となる。 FIG. 3 is an enlarged cross-sectional view showing the main part of the present invention, and shows an initial state in which the pressing force is not applied to the portion marked with a circle in FIG. As shown in this figure, when the thickness of the liquid sealing material 10 in the solidified state is d 0 and the width is w 0 , d 0 is preferably 1 to 8 mm and w 0 is preferably 3 mm or more. If d 0 is thinner than this range, the sealing effect will be insufficient, and if it is thicker than this range, the liquid sealing material 10 may leak out. If w 0 is less than 3 mm, the sealing effect is still insufficient.

本発明においては、液体シール材10の内外両側を囲む耐火性パッキング材11、12として、図3に示すように上面を傾斜させた形状のものを用いる。具体的には、押付け力を加えない初期状態における各耐火性パッキング材11、12の液体シール材10に接する側の厚さd、dを(0.7〜1.0)dとし、反対側の厚さd、dを(1.1〜1.5)dとする。このように初期状態における厚さが液体シール材10に接する側で薄く、その反対側で厚い耐火性パッキング材11、12を用いると、図2に示される押付け力を加えた使用状態において耐火性パッキング材11、12は主として液体シール材10から遠い側の領域が強く圧縮されることとなり、液体シール材10に近い領域では圧縮力は弱くなるので、液体シール材10の上に覆い被さるような変形は生じなくなる。 In the present invention, as the refractory packing materials 11 and 12 surrounding both the inside and outside of the liquid sealing material 10, those having a shape whose upper surface is inclined as shown in FIG. 3 are used. Specifically, the thicknesses d 1 and d 3 of the refractory packing materials 11 and 12 in contact with the liquid sealing material 10 in the initial state where no pressing force is applied are set to (0.7 to 1.0) d 0. The thicknesses d 2 and d 4 on the opposite side are (1.1 to 1.5) d 0 . As described above, when the fire-resistant packing materials 11 and 12 having a thin thickness on the side in contact with the liquid sealing material 10 and having a thick thickness on the opposite side are used, the fire resistance in the usage state with the pressing force shown in FIG. The packing materials 11 and 12 are mainly compressed strongly in the region far from the liquid sealing material 10, and the compression force is weak in the region close to the liquid sealing material 10, so that the packing materials 11 and 12 are covered on the liquid sealing material 10. No deformation occurs.

なお、d、dが(0.7〜1.0)dよりも小さくなると、使用状態において液体シール材10を漏れ出さないように保持する能力が低下し、逆にこの範囲を超えて大きくなると耐火性パッキング材11、12のみによってシールが行われ、液体シール材10を設けた意味が減少する。またd、dが(1.1〜1.5)dよりも小さくなると上面を傾斜させた効果が低下し、逆にこの範囲を超えて大きくなると耐火性パッキング材11、12の液体シール材10から遠い側の領域のみによってシールが行われ、液体シール材10を設けた意味が減少する。 When d 1 and d 3 are smaller than (0.7 to 1.0) d 0 , the ability to hold the liquid sealing material 10 so as not to leak out in use is reduced, and conversely exceeds this range. If it becomes larger, sealing is performed only by the fireproof packing materials 11 and 12, and the meaning of providing the liquid sealing material 10 decreases. When d 2 and d 4 are smaller than (1.1 to 1.5) d 0 , the effect of inclining the upper surface is reduced. Conversely, when d 2 and d 4 are larger than this range, the liquid of the refractory packing materials 11 and 12 is reduced. Sealing is performed only by a region far from the sealing material 10, and the meaning of providing the liquid sealing material 10 is reduced.

なお、各耐火性パッキング材11、12の径方向の幅w1、w2は10mm以上とすることが好ましい。幅が10mm未満であると十分なシール効果を得にくいためである。またノズル接合部には機械的に押付け力が加えられるが、その押付け力は面圧が0.2〜1.5MPaとなる範囲とすることが好ましい。前記したようなアルミナ粉末をアクリル樹脂やフェノール樹脂等の熱硬化性樹脂に混練した耐火性パッキング材11、12を用いる場合には、この範囲未満であると十分なシール効果を得にくく、逆にこの範囲を越えると耐火性パッキング材11、12の変形が大きくなって液体シール材10が漏れ出すおそれがあるためである。尚、w、w1、w2の上限は、効果上の上限の規定はないが、ノズル接合部へのパッキング材およびシール材設置スペースにより制限され、さらにw、w1、w2がそれぞれの下限を外れないように配置することが好ましい。 The radial widths w 1 and w 2 of the fireproof packing materials 11 and 12 are preferably 10 mm or more. This is because it is difficult to obtain a sufficient sealing effect when the width is less than 10 mm. In addition, a pressing force is mechanically applied to the nozzle joint, and the pressing force is preferably in a range where the surface pressure is 0.2 to 1.5 MPa. When using the fireproof packing materials 11 and 12 in which the alumina powder as described above is kneaded with a thermosetting resin such as an acrylic resin or a phenol resin, if it is less than this range, it is difficult to obtain a sufficient sealing effect. If this range is exceeded, deformation of the refractory packing materials 11 and 12 may increase and the liquid sealing material 10 may leak out. The upper limit of w 0 , w 1 , w 2 is not specified as an effective upper limit, but is limited by the packing material and the sealing material installation space at the nozzle joint, and w 0 , w 1 , w 2 are It is preferable to arrange so as not to deviate from the respective lower limits.

上記のようにノズル接合部を図3に示す構造のシール材によってシールすれば、耐火性パッキング材11、12が液体シール材10の上に覆い被さるような変形が発生するおそれがなくなり、液体シール材10が分断されることがないため、常に安定した液封が可能となる。この結果、ノズル接合部からの大気の吸い込みがなくなり、浸漬ノズル7の内部に吹き込まれるアルゴンガスの流量を溶鋼1トン当たり(0〜1)NLにまで減少させても、大気の吸い込みに起因する製品欠陥や操業トラブルを効果的に防止することができる。このため本発明によれば、生産コストの低減を図ることが可能となる。   If the nozzle joint is sealed with the sealing material having the structure shown in FIG. 3 as described above, there is no possibility that the fireproof packing materials 11 and 12 are covered with the liquid sealing material 10, and the liquid sealing Since the material 10 is not divided, stable liquid sealing is always possible. As a result, there is no air suction from the nozzle joint, and even if the flow rate of argon gas blown into the immersion nozzle 7 is reduced to (0-1) NL per ton of molten steel, it is caused by air suction. Product defects and operational troubles can be effectively prevented. Therefore, according to the present invention, it is possible to reduce the production cost.

以下、本発明を実施例に基づき詳細に説明する。
極低炭素鋼の溶鋼300トンを転炉−RH工程にて溶製した。タンディッシュ内の溶鋼を1560〜1580℃とし、3層式スライディングノズルと浸漬ノズルを使用して鋳型内に溶鋼を注入し、厚さ250mm、幅1200〜1600mmの鋳片を鋳造速度1.6〜2.0m/minで製造した。ノズル接合部のシール条件を様々に変化させ、製造された鋳片を切削して、内部に含まれる気泡個数、シール材の分断状況及びノズルの閉塞状況を観察した。シール条件としては、シール材の厚さ、幅、組成、押付け面圧を表1と表2に示すように変化させた。アルゴン流量も合わせて変化させた。
Hereinafter, the present invention will be described in detail based on examples.
300 tons of extremely low carbon steel was melted in the converter-RH process. The molten steel in the tundish is set to 1560 to 1580 ° C., and the molten steel is injected into the mold using a three-layer sliding nozzle and an immersion nozzle, and a cast piece having a thickness of 250 mm and a width of 1200 to 1600 mm is cast at a casting speed of 1.6 to Manufactured at 2.0 m / min. The manufactured slab was cut by changing the sealing conditions of the nozzle joints in various ways, and the number of bubbles contained in the interior, the state of fragmentation of the sealing material, and the state of nozzle clogging were observed. As sealing conditions, the thickness, width, composition, and pressing surface pressure of the sealing material were changed as shown in Tables 1 and 2. The argon flow rate was also changed.

Figure 2010125455
Figure 2010125455

Figure 2010125455
Figure 2010125455

表中の*の意味は下記の通りである。
*1 表中の記号は全て図3に表わした高さ、あるいは、円周方向の幅を示す。
*2 ○:d1<d2かつd3<d4で本発明の範囲内、×:d1≧d2またはd3≧d4、d1≧d2かつd3≧d4で本発明の範囲外。
*3 全て%である。
*4 不活性ガスとしてArガスを使用した。スライディングノズルプレート部、あるいは浸漬ノズル部からArガスを吹き込んだ。
*5 鋳造後に接合面を上から見て、シール材が円周方向に健全に保持されている場合を「シール材分断無しで○」、耐火性パッキング材が液体シール材上に面積率で20%未満覆い被さっている場合を「シール材分断若干有りで△」、20%以上覆い被さっている場合を「シール材分断有りで×」とした。
*6 鋳造後に接合面を上から見てシール材残存率が面積率で「90%以上を○」、「70〜90%を△」、「70%未満を×」とした。
*7 鋳片表層10〜60mmを5mmピッチで研削した時に観察された気泡の1m2当たりの積算個数。
*8 7連々鋳でノズル内部の付着物を除去する酸素洗浄作業を全くしなかった場合を「ノズル閉塞なしで○」、酸素洗浄作業を1回実施した場合を「ノズル閉塞若干有りで△」、2回以上実施した場合を「ノズル閉塞有りで×」とした。
The meaning of * in the table is as follows.
* 1 All the symbols in the table indicate the height shown in Fig. 3 or the width in the circumferential direction.
* 2 ○: d1 <d2 and d3 <d4, within the scope of the present invention, x: d1 ≧ d2 or d3 ≧ d4, d1 ≧ d2 and d3 ≧ d4, outside the scope of the present invention.
* 3 All are%.
* 4 Ar gas was used as the inert gas. Ar gas was blown from the sliding nozzle plate part or the immersion nozzle part.
* 5 When the sealing surface is soundly held in the circumferential direction when the joint surface is viewed from above after casting, `` Without sealing material splitting ○ '', and the fireproof packing material is 20% in area ratio on the liquid sealing material. A case where the covering was less than% was marked as “slightly with sealing material splitting Δ”, and a case where the covering was 20% or more was marked as “with sealing material splitting ×”.
* 6 When the joint surface is viewed from the top after casting, the residual ratio of the sealing material is an area ratio of “90% or more ○”, “70 to 90% Δ”, and “<70% less than ×”.
* 7 The cumulative number of bubbles per 1m2 observed when grinding the slab surface layer 10-60mm at 5mm pitch.
* 8 “No nozzle occlusion” when no oxygen cleaning work was performed to remove deposits inside the nozzle by 7 continuous casting, “No nozzle occlusion △” when oxygen cleaning work was performed once. The case where it was carried out twice or more was designated as “No nozzle clogged”.

本発明の実施形態に用いられる連続鋳造設備の断面図である。It is sectional drawing of the continuous casting installation used for embodiment of this invention. ノズル接合部の水平断面図と中央縦断面図である。It is the horizontal sectional view and center longitudinal cross-sectional view of a nozzle junction part. 要部の拡大断面図である。It is an expanded sectional view of the principal part.

符号の説明Explanation of symbols

1 取鍋
2 タンディッシュ
3 鋳型
4 スライディングノズル
5 ロングノズル
6 スライディングノズル
7 浸漬ノズル
10 液体シール材
11 その外側の耐火性パッキング材
12 内側の耐火性パッキング材
DESCRIPTION OF SYMBOLS 1 Ladle 2 Tundish 3 Mold 4 Sliding nozzle 5 Long nozzle 6 Sliding nozzle 7 Immersion nozzle 10 Liquid seal material 11 Fireproof packing material 12 on the outside 12 Fireproof packing material on the inside

Claims (6)

ノズル接合部が内外二重の耐火性パッキング材の間に保持された液体シール材によってシールされた連続鋳造設備を用いて行う鋼の連続鋳造方法において、各耐火性パッキング材の厚さを押付け力が加わらない状態では液体シール材に接する側で薄く、その反対側では厚くしておき、液体シール材の固化状態における厚さdを1〜8mm、幅wを3mm以上とし、ノズル接合部に押付け力を加えて各耐火性パッキング材を扁平に押しつぶすことにより液体シール材によるノズル接合部のシールを確保しながら鋳型への溶湯注入を行うことを特徴とする鋼の連続鋳造方法。 In the continuous casting method of steel performed using a continuous casting facility in which the nozzle joint is sealed with a liquid sealing material held between the inner and outer double refractory packing materials, the thickness of each refractory packing material is pressed thin on the side in contact with the liquid seal material in a state that is not applied, and leave thicker at the opposite side, the thickness d 0 of the solidification state of the liquid seal material 1 to 8 mm, the width w 0 and more than 3 mm, the nozzle connection part A continuous casting method of steel characterized by injecting molten metal into a mold while securing a seal at a nozzle joint by a liquid seal material by flatly crushing each refractory packing material by applying a pressing force to the mold. 各耐火性パッキング材の液体シール材に接する側の厚さを(0.7〜1.0)dとし、反対側の厚さを(1.1〜1.5)dとすることを特徴とする請求項1記載の鋼の連続鋳造方法。 The thickness of the side in contact with the liquid sealing material of the refractory packing material and (0.7~1.0) d 0, to the thickness of the side opposite to the (1.1 to 1.5) d 0 The continuous casting method for steel according to claim 1, wherein the steel is continuously cast. 各耐火性パッキング材の径方向の幅を10mm以上とすることを特徴とする請求項1または2記載の鋼の連続鋳造方法。   The continuous casting method for steel according to claim 1 or 2, wherein the width in the radial direction of each refractory packing material is 10 mm or more. ノズル接合部に与える押付け力を、0.2〜1.5MPaとすることを特徴とする請求項1乃至3の何れかに記載の鋼の連続鋳造方法。   The method for continuously casting steel according to any one of claims 1 to 3, wherein the pressing force applied to the nozzle joint is 0.2 to 1.5 MPa. ノズルに吹き込まれる不活性ガスの流量を溶鋼1トン当たり(0〜1)NLとすることを特徴とする請求項1乃至4の何れかに記載の鋼の連続鋳造方法。   The continuous casting method for steel according to any one of claims 1 to 4, wherein the flow rate of the inert gas blown into the nozzle is (0 to 1) NL per ton of molten steel. 液体シール材として液体金属または非金属融体を用いることを特徴とする請求項1乃至5の何れかに記載の鋼の連続鋳造方法。   6. The continuous casting method of steel according to claim 1, wherein a liquid metal or a non-metallic melt is used as the liquid sealing material.
JP2008299134A 2008-11-25 2008-11-25 Steel continuous casting method Active JP5064357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299134A JP5064357B2 (en) 2008-11-25 2008-11-25 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299134A JP5064357B2 (en) 2008-11-25 2008-11-25 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2010125455A true JP2010125455A (en) 2010-06-10
JP5064357B2 JP5064357B2 (en) 2012-10-31

Family

ID=42326202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299134A Active JP5064357B2 (en) 2008-11-25 2008-11-25 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP5064357B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293047A (en) * 1985-10-18 1987-04-28 Daido Steel Co Ltd Ladle structure
JPH06297117A (en) * 1993-04-19 1994-10-25 Nippon Steel Corp Mechanism and method for jointing nozzle for continuously casting metal
JPH07314102A (en) * 1994-05-25 1995-12-05 Sumitomo Metal Ind Ltd Tundish for continuous casting
JPH10235457A (en) * 1997-02-25 1998-09-08 Nippon Steel Corp Method for sealing sliding nozzle for casting molten steel
JP2001105107A (en) * 1999-10-05 2001-04-17 Nippon Steel Corp Highly airtight packing material for refractory and continuous casting method using this packing material
JP2007069254A (en) * 2005-09-08 2007-03-22 Nippon Steel Corp Method for sealing nozzle joining part in continuous casting equipment for steel, and structure of sealed part
JP2008212968A (en) * 2007-03-02 2008-09-18 Nippon Steel Corp Structure of sealing part of nozzle joint part in continuous steel casting apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293047A (en) * 1985-10-18 1987-04-28 Daido Steel Co Ltd Ladle structure
JPH06297117A (en) * 1993-04-19 1994-10-25 Nippon Steel Corp Mechanism and method for jointing nozzle for continuously casting metal
JPH07314102A (en) * 1994-05-25 1995-12-05 Sumitomo Metal Ind Ltd Tundish for continuous casting
JPH10235457A (en) * 1997-02-25 1998-09-08 Nippon Steel Corp Method for sealing sliding nozzle for casting molten steel
JP2001105107A (en) * 1999-10-05 2001-04-17 Nippon Steel Corp Highly airtight packing material for refractory and continuous casting method using this packing material
JP2007069254A (en) * 2005-09-08 2007-03-22 Nippon Steel Corp Method for sealing nozzle joining part in continuous casting equipment for steel, and structure of sealed part
JP2008212968A (en) * 2007-03-02 2008-09-18 Nippon Steel Corp Structure of sealing part of nozzle joint part in continuous steel casting apparatus

Also Published As

Publication number Publication date
JP5064357B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP2009501085A (en) Tundish for continuous casting
JP5064357B2 (en) Steel continuous casting method
US5885473A (en) Long nozzle for continuous casting
JP4705438B2 (en) Sealing method and structure of nozzle joint in continuous casting equipment for steel
EP1372888B1 (en) Refractory plug or brick for injecting gas into molten metal
JP4547556B2 (en) Immersion nozzle for continuous casting
CA2012080A1 (en) Electric arc furnace and scrap iron melting process
JP6546148B2 (en) nozzle
JP2012020333A (en) Continuous casting method for preventing intrusion of contamination source into tundish
JP3265239B2 (en) Immersion nozzle for continuous casting
JP5098953B2 (en) Nozzle joint sealing method
JP4719110B2 (en) Sealing method and sealing structure of nozzle joint in steel continuous casting equipment
JP4081453B2 (en) Immersion nozzle for continuous casting
WO2011121721A1 (en) Cast nozzle
JP4264286B2 (en) Continuous casting nozzle
JP4210063B2 (en) Tundish nozzle
JPH07314102A (en) Tundish for continuous casting
KR101159612B1 (en) Mortar for forming submerged entry nozzle assembly and method for forming submerged entry nozzle assembly using the same
JP4315847B2 (en) Dipping nozzle for continuous casting with good adhesion
KR101839839B1 (en) A nozzle
JP5287640B2 (en) Nozzle for continuous casting and steel continuous casting method using the same
KR20100003387U (en) Collector nozzle for molten metal equipment
KR100436212B1 (en) long nozzle for casting molten steel
JP4216661B2 (en) Continuous casting method using a nozzle provided with a digestible interior
KR101850036B1 (en) Shroud nozzle for a continuous casting equipment and gasket therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R151 Written notification of patent or utility model registration

Ref document number: 5064357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350