JP2010120847A - Dielectric ceramic composition for high frequency wave and dielectric resonator using the same - Google Patents

Dielectric ceramic composition for high frequency wave and dielectric resonator using the same Download PDF

Info

Publication number
JP2010120847A
JP2010120847A JP2009282003A JP2009282003A JP2010120847A JP 2010120847 A JP2010120847 A JP 2010120847A JP 2009282003 A JP2009282003 A JP 2009282003A JP 2009282003 A JP2009282003 A JP 2009282003A JP 2010120847 A JP2010120847 A JP 2010120847A
Authority
JP
Japan
Prior art keywords
value
dielectric
dielectric ceramic
ceramic composition
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009282003A
Other languages
Japanese (ja)
Other versions
JP5197559B2 (en
Inventor
Toshiyuki Sue
敏幸 須恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009282003A priority Critical patent/JP5197559B2/en
Publication of JP2010120847A publication Critical patent/JP2010120847A/en
Application granted granted Critical
Publication of JP5197559B2 publication Critical patent/JP5197559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a dielectric ceramic composition for high frequency wave which has high Q value, the decreasing rate of the Q value at 125°C to that at 25°C is low and the curve of the temperature coefficient (τf) of resonant frequency is small. <P>SOLUTION: The dielectric ceramic composition comprises a main component containing at least Mg, Ca and Ti as metal elements and Nb. When the composition formula of the main component is expressed by aMgO-bCaO-cTiO<SB>2</SB>based on the molar ratio of the metal elements, the relations of 0.42≤a≤o.51, 0.01≤b≤0.06, 0.45≤c≤0.53, (where a+b+c=1) are satisfied. The Qf value at 1 GHz is equal to or above 79,000. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、マイクロ波、ミリ波等の高周波領域において、高いQ値を有する高周波用誘電体磁器組成物および誘電体共振器に関するものであり、例えば、マイクロ波やミリ波などの高周波領域において使用される種々の共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料や積層型セラミックコンデンサ、各種イクロ波回路のインピーダンス整合等に用いることができる高周波用誘電体磁器組成物及び誘電体共振器に関するものである。   The present invention relates to a dielectric ceramic composition for high frequency and a dielectric resonator having a high Q value in a high frequency region such as a microwave and a millimeter wave. For example, the present invention is used in a high frequency region such as a microwave and a millimeter wave. Resonator materials, dielectric substrate materials for MICs, dielectric waveguide materials, multilayer ceramic capacitors, dielectric ceramic compositions for high frequencies that can be used for impedance matching of various microwave circuits, and dielectrics It relates to a resonator.

誘電体磁器は、マイクロ波やミリ波等の高周波領域において、誘電体共振器、MIC用誘電体基板や導波路等に広く利用されている。そこに要求される特性として(1)誘電体中では波長が1/εr1/2に短縮されるので、小型化の要求に対して比誘電率が大きいこと、(2)高周波での誘電損失が小さいこと、すなわち高Q値であること、(3)共振周波数の温度に対する変化が小さく、且つ安定であること、以上の3つの特性が主として挙げられる。従来、この種の誘電体磁器としては、例えば、特開平7−282627号公報にCaO・MgO・TiO2・La23・CeO2系材料が示され、La23をモル比で0.07<La23<0.20含有させることが記載されている。また、特開平7−262824号公報にCaO・MgO・TiO2・Nd23・CeO2系材料が示され、Nd23をモル比で0.07<Nd23<0.20含有させることが記載されている。 Dielectric ceramics are widely used in dielectric resonators, dielectric substrates for MICs, waveguides, and the like in high frequency regions such as microwaves and millimeter waves. Since the wavelength is there as characteristics required (1) dielectric material is reduced to 1 / .epsilon.r 1/2, relative dielectric constant with respect to the miniaturization demand is large, the dielectric loss in the (2) high frequency The above three characteristics are mainly cited as follows: (1) a small Q, that is, a high Q value; (3) a small change in the resonance frequency with respect to temperature; Conventionally, as this type of dielectric ceramic, for example, CaO · MgO · TiO 2 · La 2 O 3 · CeO 2 based material disclosed in JP-A-7-282627, a La 2 O 3 in a molar ratio 0 0.07 <La 2 O 3 <0.20 is described. Japanese Laid-Open Patent Publication No. 7-262824 discloses a CaO.MgO.TiO 2 .Nd 2 O 3 .CeO 2 -based material, and Nd 2 O 3 in a molar ratio of 0.07 <Nd 2 O 3 <0.20. The inclusion is described.

しかしながら、これらの従来技術における誘電体磁器は共振周波数の温度係数τfの曲がり、すなわち温度ドリフトの直線性が低かった。また、常温(例えば25℃)でのQ値と比べて高温(例えば125℃)でのQ値が大きく低下する。このためこれらの誘電体磁器を用いた誘電体共振器や誘電体基板では、温度変化に伴う特性変化を高精度に制御することが困難であり、また高周波での損失が大きくなるという問題があった。本発明は上記事情に鑑みて完成されたもので、εrが16〜24程度で高いQ値を維持しつつ、共振周波数の温度係数τfの曲がり、すなわち温度ドリフトの直線性が高く、しかも常温のQ値に対する高温でのQ値の低下率が小さい高周波用誘電体磁器組成物及び誘電体共振器を提供することを目的とする。   However, the dielectric ceramics in these conventional techniques have a low temperature coefficient τf curve of the resonance frequency, that is, the linearity of the temperature drift is low. Further, the Q value at a high temperature (for example, 125 ° C.) is greatly reduced as compared with the Q value at a normal temperature (for example, 25 ° C.). For this reason, dielectric resonators and dielectric substrates using these dielectric porcelains have problems that it is difficult to control the characteristic change accompanying the temperature change with high accuracy and that the loss at high frequency becomes large. It was. The present invention has been completed in view of the above circumstances, and the curvature of the temperature coefficient τf of the resonance frequency, that is, the linearity of the temperature drift is high while maintaining a high Q value with εr of about 16 to 24, and at room temperature. An object of the present invention is to provide a high frequency dielectric ceramic composition and a dielectric resonator that have a low Q value decrease rate at a high temperature with respect to the Q value.

本発明の高周波用誘電体磁器組成物は、金属元素として少なくともMg、Ca、Tiを含有する主成分とNbとを有する高周波誘電体磁器組成物であって、
前記主成分は、前記金属元素のモル比による組成式をaMgO・bCaO・cTiO2と表したとき、前記a、bおよびcが、
0.42≦a≦0.51
0.01≦b≦0.06
0.45≦c≦0.53
(ただし、a+b+c=1)を満足し、1GHzでのQf値が、79000以上であることを特徴とする。
The high frequency dielectric ceramic composition of the present invention is a high frequency dielectric ceramic composition having a main component containing at least Mg, Ca, Ti as a metal element and Nb,
When the composition of the main component is expressed as aMgO · bCaO · cTiO 2 by the molar ratio of the metal elements, the a, b and c are:
0.42 ≦ a ≦ 0.51
0.01 ≦ b ≦ 0.06
0.45 ≦ c ≦ 0.53
(However, a + b + c = 1) is satisfied, and the Qf value at 1 GHz is 79000 or more.

上記の誘電体磁器組成物は、好ましくは、前記Nbが、前記主成分100重量部に対して、Nb換算で0.01重量部以上0.1重量部未満含有されている。 In the above dielectric ceramic composition, the Nb is preferably contained in an amount of 0.01 part by weight or more and less than 0.1 part by weight in terms of Nb 2 O 5 with respect to 100 parts by weight of the main component.

上記の誘電体磁器組成物は、好ましくは、Pr、Nd、Sm、およびLaのうち少なくとも1種以上の希土類元素を含み、前記希土類元素と前記Nbとを合計0.01〜3重量部含有する(ただし、PrはPr611換算し、NdはNd23換算し、SmはSm23換算し、LaはLa23換算し、NbはNb25換算する)。 The dielectric ceramic composition preferably contains at least one or more rare earth elements of Pr, Nd, Sm, and La, and contains a total of 0.01 to 3 parts by weight of the rare earth elements and the Nb. (However, Pr is converted to Pr 6 O 11 , Nd is converted to Nd 2 O 3 , Sm is converted to Sm 2 O 3 , La is converted to La 2 O 3 , and Nb is converted to Nb 2 O 5 ).

また、好ましくは、上記の誘電体磁器組成物において、125℃におけるQ値が、25℃におけるQ値の75%以上である。   Preferably, in the above dielectric ceramic composition, the Q value at 125 ° C. is 75% or more of the Q value at 25 ° C.

さらに、本発明の誘電体共振器は、一対の入出力端子間に誘電体磁器を配置してなり、電磁界結合により作動する誘電体共振器において、前記誘電体磁器が、上記誘電体磁器組成物からなるものである。   Furthermore, the dielectric resonator according to the present invention includes a dielectric ceramic disposed between a pair of input / output terminals, wherein the dielectric ceramic is operated by electromagnetic coupling, and the dielectric ceramic is composed of the dielectric ceramic composition. It consists of things.

以上詳述した通り、金属元素として少なくともMg、Ca、Tiを含有する主成分とNbとを有する高周波誘電体磁器組成物であって、主成分は、金属元素のモル比による組成式をaMgO・bCaO・cTiO2と表したとき、a、bおよびcが、0.42≦a≦0.51、0.01≦b≦0.06、0.45≦c≦0.53(ただし、a+b+c=1)を満足し、1GHzでのQf値が、79000以上である。 As described above in detail, the high-frequency dielectric ceramic composition has a main component containing at least Mg, Ca, Ti as metal elements and Nb, and the main component has a composition formula based on the molar ratio of the metal elements as aMgO. When expressed as bCaO · cTiO 2 , a, b and c are 0.42 ≦ a ≦ 0.51, 0.01 ≦ b ≦ 0.06, 0.45 ≦ c ≦ 0.53 (where a + b + c = 1) is satisfied, and the Qf value at 1 GHz is 79000 or more.

これにより、本発明の高周波用誘電体磁器組成物は、例えば、自動車電話、コードレステレホン、パーソナル無線機、衛星放送受信機等の装置において、マイクロ波やミリ波領域において使用される共振器用材料やMIC用誘電体基板材料、誘電体導波線路、誘電体アンテナ、各種マイクロ波回路のインピーダンス整合、その他の各種電子部品等に適用され、特に、誘電体共振器用として好適である。   Thereby, the dielectric ceramic composition for high frequency of the present invention can be used for a resonator material used in a microwave or millimeter wave region, for example, in an apparatus such as a car phone, a cordless telephone, a personal radio, a satellite broadcast receiver, or the like. It is applied to dielectric substrate materials for MICs, dielectric waveguide lines, dielectric antennas, impedance matching of various microwave circuits, and other various electronic components, and is particularly suitable for dielectric resonators.

本発明の誘電体共振器を示す概略図である。It is the schematic which shows the dielectric resonator of this invention.

本実施形態においては、金属元素として少なくともMg、Ca、Tiを含有する複合酸化物からなり、前記金属元素のモル比による組成式をaMgO・bCaO・cTiO2と表したとき、前記a、bおよびcが、
0.42≦a≦0.51
0.01≦b≦0.06
0.45≦c≦0.53
ただし、a+b+c=1を満足する主成分組成物100重量部に対して、Pr、Nd、Sm、LaおよびNbのうち少なくとも1種以上をPr611、Nd23、Sm23、La23およびNb25換算で合計0.01〜3重量部含有し、Nbを含有する場合はNb25換算で0.01重量部以上1重量部未満含有することが重要である。これらのa、b、c、及びPr611、Nd23、Sm23、La23およびNb25の含有量を上記の範囲に限定した理由は以下の通りである。
In this embodiment, it is composed of a composite oxide containing at least Mg, Ca, and Ti as metal elements, and when the composition formula by the molar ratio of the metal elements is expressed as aMgO · bCaO · cTiO 2 , the a, b, and c is
0.42 ≦ a ≦ 0.51
0.01 ≦ b ≦ 0.06
0.45 ≦ c ≦ 0.53
However, with respect to 100 parts by weight of the main component composition satisfying a + b + c = 1, at least one of Pr, Nd, Sm, La and Nb is contained in Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , It contains a total of 0.01 to 3 parts by weight in terms of La 2 O 3 and Nb 2 O 5 , and when Nb is contained, it is important to contain 0.01 to less than 1 part by weight in terms of Nb 2 O 5. is there. The reasons for limiting the contents of a, b, c, and Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , La 2 O 3 and Nb 2 O 5 to the above ranges are as follows. .

即ち、0.42≦a≦0.51としたのは、0.51<aの場合はQ値が低下したり、τfが負に大きくなりτfの絶対値が50を越えてしまうからである。a<0.42の場合はQ値が低下したり、τfが正に大きくなり、τfの絶対値が50を大きく越えたり、共振周波数の温度係数τfの曲がりが大きくなり温度ドリフトの直線性が低下したりするからである。特に0.43<a<0.49が望ましい。   That is, the reason why 0.42 ≦ a ≦ 0.51 is set is that when 0.51 <a, the Q value decreases, or τf becomes negative and the absolute value of τf exceeds 50. . When a <0.42, the Q value decreases, τf increases positively, the absolute value of τf greatly exceeds 50, the curve of the temperature coefficient τf of the resonance frequency increases, and the linearity of the temperature drift It is because it falls. In particular, 0.43 <a <0.49 is desirable.

また、0.01≦b≦0.06としたのは、0.06<bの場合は共振周波数の温度係数τfが正に大きくなり、τfの絶対値が50を大きく越え、Q値が低下するからであり、b<0.01の場合はτfが負に大きくなりτfの絶対値が50を越えたり、共振周波数の温度係数τfの曲がりが大きくなり温度ドリフトの直線性が低下したりするからである。特に、0.02≦b≦0.05が好ましい。   In addition, 0.01 ≦ b ≦ 0.06 is set because, when 0.06 <b, the temperature coefficient τf of the resonance frequency increases positively, the absolute value of τf greatly exceeds 50, and the Q value decreases. When b <0.01, τf becomes negative and the absolute value of τf exceeds 50, or the curve of the temperature coefficient τf of the resonance frequency increases and the linearity of the temperature drift decreases. Because. In particular, 0.02 ≦ b ≦ 0.05 is preferable.

さらに、0.45≦c≦0.53としたのは、0.53<cの場合には、共振周波数の温度係数τfが正に大きくなりτfの絶対値が50を大きく越えたり、共振周波数の温度係数τfの曲がりが大きくなり温度ドリフトの直線性が低下したりするからである。c<0.45の場合にはQ値が低下したり、比誘電率が小さくなるからである。特に、0.46≦c≦51の範囲が好ましい。   Furthermore, 0.45 ≦ c ≦ 0.53 is set when 0.53 <c, the temperature coefficient τf of the resonance frequency becomes positive and the absolute value of τf greatly exceeds 50, or the resonance frequency This is because the curvature of the temperature coefficient τf increases and the linearity of the temperature drift decreases. This is because in the case of c <0.45, the Q value decreases or the relative dielectric constant decreases. In particular, the range of 0.46 ≦ c ≦ 51 is preferable.

また、Pr、Nd、Sm、LaおよびNbのうち少なくとも1種以上をPr611、Nd23、Sm23、La23およびNb25換算で合計0.01〜3重量部含有したのは、0.01重量部未満の場合は温度ドリフトの直線性が低いからであり、3重量部より多い場合は高温(125℃)のQ値の低下率が大きいからである。Nbを含有する場合、Nb25換算で0.01重量部以上1重量部未満含有したのは、0.01重量部未満の場合は温度ドリフトの直線性が低いからであり、1重量部以上の場合は高温(125℃)のQ値の低下率が大きいからである。特にPr611、Nd23、Sm23、La23およびNb25換算で合計0.05〜〜2.5重量部含有することが望ましい。Nbを含有する場合はNb25換算で0.05〜0.8重量部含有することが望ましい。 The total Pr, Nd, Sm, La and Nb at least one or more of the at Pr 6 O 11, Nd 2 O 3, Sm 2 O 3, La 2 O 3 and calculated as Nb 2 O 5 0.01 to 3 The reason for containing parts by weight is that when the amount is less than 0.01 parts by weight, the linearity of the temperature drift is low, and when the amount is more than 3 parts by weight, the rate of decrease in the Q value at high temperature (125 ° C.) is large. . When Nb is contained, it is contained in an amount of 0.01 part by weight or more and less than 1 part by weight in terms of Nb 2 O 5 because the linearity of the temperature drift is low when it is less than 0.01 part by weight. This is because the rate of decrease in the Q value at high temperature (125 ° C.) is large in the above case. In particular, it is desirable to contain a total of 0.05 to 2.5 parts by weight in terms of Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , La 2 O 3 and Nb 2 O 5 . When containing Nb it is desirably contains 0.05 to 0.8 parts by weight calculated as Nb 2 O 5.

なお、本実施形態においてQ値とは、マイクロ波誘電体において一般に成立するQ値×測定周波数f=一定の関係から1GHzでのQf値に換算した値を示す。   In the present embodiment, the Q value indicates a value converted into a Qf value at 1 GHz from a certain relationship, that is, Q value generally established in microwave dielectrics × measurement frequency f = constant.

かくして、本実施形態の高周波用誘電体磁器組成物は、比誘電率が16〜24程度で高いQ値であり、かつ温度ドリフトの直線性が高く、常温(25℃)のQ値に対する、高温(125℃)のQ値の保持率が75%以上であるという作用効果を有する。常温(25℃)のQ値に対する、高温(125℃)のQ値の保持率が75%以上である誘電体磁器組成物を誘電体共振器内に載置することにより、共振器周辺の温度が変化しても出力信号が減衰しにくいため、広い温度域でノイズの少ない出力信号を得ることができ、優れた誘電体共振器を得ることができる。   Thus, the high frequency dielectric ceramic composition of the present embodiment has a high dielectric constant of about 16 to 24, a high Q value, a high linearity of temperature drift, and a high temperature with respect to a normal temperature (25 ° C.) Q value. There is an effect that the Q value retention of (125 ° C.) is 75% or more. By placing a dielectric ceramic composition having a high-temperature (125 ° C.) Q value retention ratio of 75% or higher with respect to the Q value at normal temperature (25 ° C.) in the dielectric resonator, the temperature around the resonator Since the output signal is not easily attenuated even if changes, an output signal with less noise can be obtained in a wide temperature range, and an excellent dielectric resonator can be obtained.

本実施形態の高周波用誘電体磁器組成物は、例えば、以下のようにして作製される。出発原料として、炭酸マグネシウム、炭酸カルシウムおよび酸化チタンの各粉末を用いて、前述した所望の割合となるように秤量後、純水を加え、混合原料の平均粒径が2.0μm以下となるまで10〜30時間、ジルコニアボール等を使用したミルにより湿式混合・粉砕を行う。   The high frequency dielectric ceramic composition of the present embodiment is produced, for example, as follows. Using each powder of magnesium carbonate, calcium carbonate and titanium oxide as the starting material, weighed to the desired ratio described above, and then added pure water until the average particle size of the mixed material became 2.0 μm or less For 10 to 30 hours, wet mixing and pulverization are performed by a mill using zirconia balls or the like.

この混合物を乾燥後、1000〜1300℃で2〜10時間仮焼処理する。得られた仮焼物に、酸化プラセオジウム、酸化ネオジウム、酸化サマリウム、酸化ランタンおよび酸化ニオビウムを前述した特定の範囲で添加し混合粉砕する。さらに所定量、例えば5重量%程度の成形用の有機バインダーを加えてから整粒し、得られた粉末を所望の成形手段、例えば、金型プレス、冷間静水圧プレス、押し出し成形等により任意の形状に成形後、大気などの酸化性雰囲気中で脱バインダー温度が600℃以上、かつ保持時間が10時間以上の条件で、脱バインダ処理し、この後、1300〜1400℃の温度で1〜10時間大気中において焼成することにより誘電体磁器が得られる。   The mixture is dried and calcined at 1000-1300 ° C. for 2-10 hours. To the obtained calcined product, praseodymium oxide, neodymium oxide, samarium oxide, lanthanum oxide and niobium oxide are added within the specific range described above, and mixed and pulverized. Further, a predetermined amount, for example, about 5% by weight of an organic binder for molding is added, and the particle size is adjusted, and the obtained powder is arbitrarily selected by a desired molding means such as a die press, cold isostatic pressing, extrusion molding, etc. After forming into a shape of the above, the binder removal treatment was performed in an oxidizing atmosphere such as air under the condition that the binder removal temperature was 600 ° C. or more and the holding time was 10 hours or more, and thereafter, the temperature was 1300 to 1400 ° C. Dielectric porcelain is obtained by firing in air for 10 hours.

本実施形態においては、特定の組成範囲内において上述した製法を用いることにより、高いQ値を有し、かつ共振周波数の温度係数τfの曲がり(温度ドリフト)を25〜85℃で0±3(ppm/℃)の範囲に制御、即ち温度ドリフトの直線性を高くすることが可能となる。しかも、常温のQ値に対する高温でのQ値の低下率を小さくすることが可能となる。   In the present embodiment, by using the above-described manufacturing method within a specific composition range, the curvature (temperature drift) of the temperature coefficient τf of the resonance frequency is 0 ± 3 (25 ± 85 ° C.). ppm / ° C.), that is, the linearity of temperature drift can be increased. In addition, the reduction rate of the Q value at a high temperature with respect to the Q value at room temperature can be reduced.

本実施形態における高周波用誘電体磁器組成物の出発原料としては、酸化物以外に炭酸塩、酢酸塩、硝酸塩、炭酸塩、水酸化物等のように、酸化性雰囲気での熱処理によって酸化物を生成し得る化合物を用いても良い。さらに、Mg、CaおよびTiにおいてはゾルゲル法あるいは水熱法等により作製したMgTiO3、CaTiO3の化合物を用いても良い。 As a starting material of the dielectric ceramic composition for high frequency in this embodiment, in addition to oxides, oxides such as carbonates, acetates, nitrates, carbonates, hydroxides, etc. by heat treatment in an oxidizing atmosphere are used. A compound that can be generated may be used. Further, for Mg, Ca, and Ti, MgTiO 3 and CaTiO 3 compounds prepared by a sol-gel method or a hydrothermal method may be used.

本実施形態においては、磁器中に不可避不純物としてZr、Si、Ba等が混入する場合があるが、これらは、酸化物換算で各々0.4重量%以下混入しても特性上問題ない。   In this embodiment, Zr, Si, Ba, etc. may be mixed as inevitable impurities in the porcelain, but these may cause no problem in characteristics even if mixed in an amount of 0.4% by weight or less in terms of oxide.

本実施形態の高周波用誘電体磁器組成物によれば、主成分にPr、Nd、Sm、LaおよびNbのうち少なくとも1種以上を含有させることにより、高いQ値を有し、かつ共振周波数の温度係数τfの曲がり(温度ドリフト)を25〜85℃で0±3(ppm/℃)の範囲に制御、即ち温度ドリフトの直線性を高くすることが可能となる。しかも、常温のQ値に対する高温でのQ値の低下率を小さくすることが可能となる。   According to the dielectric ceramic composition for high frequency of this embodiment, the main component contains at least one of Pr, Nd, Sm, La and Nb, thereby having a high Q value and having a resonance frequency. It is possible to control the bend (temperature drift) of the temperature coefficient τf in the range of 0 ± 3 (ppm / ° C.) at 25 to 85 ° C., that is, to increase the linearity of the temperature drift. In addition, the reduction rate of the Q value at a high temperature with respect to the Q value at room temperature can be reduced.

本実施形態の上記高周波用誘電体磁器組成物は、誘電体共振器用として最も有用である。本実施形態の誘電体共振器として、図1にTEモード型誘電体共振器の概略図を示した。図1の共振器は、金属ケース1の両側に入力端子2及び出力端子3を形成し、これらの端子2、3の間に上記したような組成からなる誘電体磁器4を配置して構成される。このように、TEモード型の誘電体共振器は、入力端子2からマイクロ波が入力され、マイクロ波は誘電体磁器4と自由空間との境界の反射によって誘電体磁器4内に閉じこめられ、特定の周波数で共振を起こす。   The high frequency dielectric ceramic composition of the present embodiment is most useful for a dielectric resonator. As a dielectric resonator of the present embodiment, a schematic diagram of a TE mode type dielectric resonator is shown in FIG. The resonator shown in FIG. 1 is configured by forming an input terminal 2 and an output terminal 3 on both sides of a metal case 1 and disposing a dielectric ceramic 4 having the above composition between these terminals 2 and 3. The As described above, the TE mode type dielectric resonator receives a microwave from the input terminal 2, and the microwave is confined in the dielectric ceramic 4 by reflection at the boundary between the dielectric ceramic 4 and the free space. Resonance occurs at a frequency of.

この信号が出力端子3と電磁界結合し出力される。また、図示しないが、本実施形態の高周波用誘電体磁器組成物をTEMモードを用いた同軸形共振器やストリップ線路共振器、TMモードの誘電体磁器共振器、その他の共振器に適用しても良いことは勿論である。   This signal is electromagnetically coupled to the output terminal 3 and output. Although not shown, the high frequency dielectric ceramic composition of the present embodiment is applied to a coaxial resonator using a TEM mode, a strip line resonator, a TM mode dielectric ceramic resonator, and other resonators. Of course, it is also good.

出発原料として高純度の炭酸マグネシウム(MgCO3)、炭酸カルシウム(CaCO3)および酸化チタン(TiO2)の各粉末を用いて、それらを表1のモル比となるように秤量後、純水を加え、混合原料の平均粒径が2.0μm以下となるまで、ZrO2ボールを用いたミルにより約20時間湿式混合、粉砕を行った。 Using each powder of high-purity magnesium carbonate (MgCO 3 ), calcium carbonate (CaCO 3 ) and titanium oxide (TiO 2 ) as starting materials, weigh them so that they have the molar ratio shown in Table 1, and then add pure water. in addition, until the average particle diameter of the mixed raw material is 2.0μm or less, about 20 hours wet mixing by mill using ZrO 2 balls were crushed.

この混合物を乾燥後、1200℃で2時間仮焼した。得られた仮焼物に、表1の割合となる様高純度の酸化プラセオジウム(Pr611)、酸化ネオジウム(Nd23)および酸化サマリウム(Sm23)、酸化ランタン(La23)、酸化ニオビウム(Nb25)を添加し、混合原料の平均粒径が2.0μm以下となるまで、ZrO2ボールを用いたミルにより約20時間湿式混合、粉砕を行った。このスラリーを乾燥後、さらに5重量%のバインダーを加えてから整粒し、得られた粉末を約1ton/cm2の圧力で円板状に成形した。得られた成形体を大気中で、脱バインダー温度800℃、保持時間10時間の条件で脱バインダー処理を行い、この後、1300〜1500℃の温度で8時間大気中において焼成した。 The mixture was dried and calcined at 1200 ° C. for 2 hours. To the obtained calcined product, high-purity praseodymium oxide (Pr 6 O 11 ), neodymium oxide (Nd 2 O 3 ), samarium oxide (Sm 2 O 3 ), and lanthanum oxide (La 2 O 3 ) Niobium oxide (Nb 2 O 5 ) was added, and wet mixing and pulverization were performed for about 20 hours with a mill using ZrO 2 balls until the average particle size of the mixed raw material became 2.0 μm or less. The slurry was dried and further sized after adding 5% by weight of a binder, and the obtained powder was formed into a disk shape at a pressure of about 1 ton / cm 2 . The obtained molded body was debindered in the air under the conditions of a debinding temperature of 800 ° C. and a holding time of 10 hours, and then baked in the air at a temperature of 1300 to 1500 ° C. for 8 hours.

得られた磁器を平面研磨しアセトン中で超音波洗浄し、150℃で1時間乾燥した後、常温25℃において、円柱共振器法により測定周波数8〜10GHzで比誘電率εr、Q値を測定した。Qfは、マイクロ波誘電体において一般に成立するQ値×測定周波数f=一定の関係から1GHzでのQf値に換算した。さらに高温の125℃におけるQ値も同様に測定し、25℃のQ値に対する125℃のQ値の保持率を算出した。   The obtained porcelain was polished and ultrasonically cleaned in acetone, dried at 150 ° C. for 1 hour, and then measured for relative dielectric constant εr and Q value at a measurement frequency of 8 to 10 GHz by a cylindrical resonator method at a room temperature of 25 ° C. did. Qf was converted into a Qf value at 1 GHz from a certain relationship of Q value × measurement frequency f = generally established for microwave dielectrics. Furthermore, the Q value at a high temperature of 125 ° C. was measured in the same manner, and the retention of the Q value at 125 ° C. with respect to the Q value at 25 ° C. was calculated.

共振周波数の温度係数τfは、25〜85℃の範囲で測定した。また、25〜55℃におけるτfから55〜85℃のτfを引いた値をτfの曲がり(温度ドリフト)とした。   The temperature coefficient τf of the resonance frequency was measured in the range of 25 to 85 ° C. Further, a value obtained by subtracting τf of 55 to 85 ° C. from τf at 25 to 55 ° C. was defined as a bending (temperature drift) of τf.

Figure 2010120847
Figure 2010120847

表1からも明らかなように、本発明の範囲外の誘電体磁器組成物では、比誘電率が低いか、またはQ値が低いか、またはτfの絶対値が50を超えているか、またはτfの曲がり(温度ドリフト)が0±3ppm/℃を越えていた。なお、表1において、*は本発明の請求範囲外の試料を示す。   As is clear from Table 1, in the dielectric ceramic composition outside the scope of the present invention, the dielectric constant is low, the Q value is low, or the absolute value of τf exceeds 50, or τf The bending (temperature drift) exceeded 0 ± 3 ppm / ° C. In Table 1, * indicates a sample outside the scope of the present invention.

これらに対し、本発明の誘電体磁器組成物では、比誘電率が20〜23、Q値が80000(1GHzにおいて)以上、τfが±50(ppm/℃)以内、τfの曲がり(温度ドリフト)が0±3(ppm/℃)以内、25℃のQ値に対する125℃のQ値が75%以上の保持率を有しており、優れた誘電特性が得られることが判る。   In contrast, in the dielectric ceramic composition of the present invention, the relative dielectric constant is 20 to 23, the Q value is 80000 (at 1 GHz) or more, τf is within ± 50 (ppm / ° C.), and τf is bent (temperature drift). Is within 0 ± 3 (ppm / ° C.), the Q value at 125 ° C. with respect to the Q value at 25 ° C. has a holding ratio of 75% or more, and it can be seen that excellent dielectric properties can be obtained.

1 金属ケース
2 入力端子
3 出力端子
4 誘電体磁器
1 Metal Case 2 Input Terminal 3 Output Terminal 4 Dielectric Porcelain

Claims (5)

金属元素として少なくともMg、Ca、Tiを含有する主成分とNbとを有する高周波誘電体磁器組成物であって、
前記主成分は、前記金属元素のモル比による組成式をaMgO・bCaO・cTiO2と表したとき、前記a、bおよびcが、
0.42≦a≦0.51
0.01≦b≦0.06
0.45≦c≦0.53
(ただし、a+b+c=1)を満足し、
1GHzでのQf値が、79000以上であることを特徴とする高周波用誘電体磁器組成物。
A high-frequency dielectric ceramic composition having a main component containing at least Mg, Ca, Ti as a metal element and Nb,
When the composition of the main component is expressed as aMgO · bCaO · cTiO 2 by the molar ratio of the metal elements, the a, b and c are:
0.42 ≦ a ≦ 0.51
0.01 ≦ b ≦ 0.06
0.45 ≦ c ≦ 0.53
(However, a + b + c = 1)
A dielectric ceramic composition for high frequency, wherein a Qf value at 1 GHz is 79000 or more.
前記Nbは、前記主成分100重量部に対して、Nb換算で0.01重量部以上0.1重量部未満含有されている請求項1に記載の高周波用誘電体磁器組成物。 2. The dielectric ceramic composition for high frequency according to claim 1, wherein the Nb is contained in an amount of 0.01 part by weight or more and less than 0.1 part by weight in terms of Nb 2 O 5 with respect to 100 parts by weight of the main component. Pr、Nd、Sm、およびLaのうち少なくとも1種以上の希土類元素を含み、前記希土類元素と前記Nbとを合計0.01〜3重量部含有する(ただし、PrはPr611換算し、NdはNd23換算し、SmはSm23換算し、LaはLa23換算し、NbはNb25換算する)ことを特徴とする請求項2に記載の高周波用誘電体磁器組成物。 It contains at least one or more rare earth elements of Pr, Nd, Sm, and La, and contains a total of 0.01 to 3 parts by weight of the rare earth elements and the Nb (where Pr is converted to Pr 6 O 11 , Nd is Nd 2 O 3 in terms, Sm is Sm 2 O 3 in terms, La is La 2 O 3 in terms, Nb is high-frequency dielectric as claimed in claim 2, wherein Nb 2 O 5 in terms) that Body porcelain composition. 125℃におけるQ値が、25℃におけるQ値の75%以上であることを特徴とする請求項1乃至3のいずれか記載の高周波用誘電体磁器組成物。 The high frequency dielectric ceramic composition according to any one of claims 1 to 3, wherein a Q value at 125 ° C is 75% or more of a Q value at 25 ° C. 一対の入出力端子間に請求項1乃至4のいずれか記載の高周波用誘電体磁器組成物からなる誘電体磁器を配置してなり、電磁界結合により作動するようにしたことを特徴とする誘電体共振器。 A dielectric ceramic comprising the dielectric ceramic composition for high frequency according to any one of claims 1 to 4 is disposed between a pair of input / output terminals, and is operated by electromagnetic field coupling. Body resonator.
JP2009282003A 2009-12-11 2009-12-11 High frequency dielectric ceramic composition and dielectric resonator using the same Expired - Lifetime JP5197559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282003A JP5197559B2 (en) 2009-12-11 2009-12-11 High frequency dielectric ceramic composition and dielectric resonator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282003A JP5197559B2 (en) 2009-12-11 2009-12-11 High frequency dielectric ceramic composition and dielectric resonator using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33684699A Division JP2001151568A (en) 1999-11-26 1999-11-26 Dielectric porcelain composition for high frequency and dielectric resonator using the same

Publications (2)

Publication Number Publication Date
JP2010120847A true JP2010120847A (en) 2010-06-03
JP5197559B2 JP5197559B2 (en) 2013-05-15

Family

ID=42322515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282003A Expired - Lifetime JP5197559B2 (en) 2009-12-11 2009-12-11 High frequency dielectric ceramic composition and dielectric resonator using the same

Country Status (1)

Country Link
JP (1) JP5197559B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746183A (en) * 2019-11-28 2020-02-04 无锡鑫圣慧龙纳米陶瓷技术有限公司 Medium-temperature sintered temperature-stable microwave dielectric ceramic and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114812A (en) * 1977-03-17 1978-10-06 Nichicon Capacitor Ltd Ceramic composites for temperature compensation
JPS54138008A (en) * 1978-04-19 1979-10-26 Murata Manufacturing Co Dielectric ceramic composition for microwave
JPS62270462A (en) * 1986-05-16 1987-11-24 三菱マテリアル株式会社 Semiconductor ceramic dielectric composition, semiconductor ceramic dielectric and manufacture
JPH04188506A (en) * 1990-11-20 1992-07-07 Matsushita Electric Ind Co Ltd Dielectric porcelain composition
JPH0676633A (en) * 1992-06-24 1994-03-18 Kyocera Corp Dielectric ceramic composition and dielectric resonator
JPH10324566A (en) * 1997-05-20 1998-12-08 Matsushita Electric Ind Co Ltd Dielectric ceramic composition, its production and dielectric resonator and dielectric filter using that
JPH11100262A (en) * 1997-09-25 1999-04-13 Kyocera Corp Dielectric ceramic composition and layered product
JP2001097770A (en) * 1999-09-29 2001-04-10 Kyocera Corp Dielectric porcelain composition for high-frequency and dielectric resonator using the same
JP2001151568A (en) * 1999-11-26 2001-06-05 Kyocera Corp Dielectric porcelain composition for high frequency and dielectric resonator using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114812A (en) * 1977-03-17 1978-10-06 Nichicon Capacitor Ltd Ceramic composites for temperature compensation
JPS54138008A (en) * 1978-04-19 1979-10-26 Murata Manufacturing Co Dielectric ceramic composition for microwave
JPS62270462A (en) * 1986-05-16 1987-11-24 三菱マテリアル株式会社 Semiconductor ceramic dielectric composition, semiconductor ceramic dielectric and manufacture
JPH04188506A (en) * 1990-11-20 1992-07-07 Matsushita Electric Ind Co Ltd Dielectric porcelain composition
JPH0676633A (en) * 1992-06-24 1994-03-18 Kyocera Corp Dielectric ceramic composition and dielectric resonator
JPH10324566A (en) * 1997-05-20 1998-12-08 Matsushita Electric Ind Co Ltd Dielectric ceramic composition, its production and dielectric resonator and dielectric filter using that
JPH11100262A (en) * 1997-09-25 1999-04-13 Kyocera Corp Dielectric ceramic composition and layered product
JP2001097770A (en) * 1999-09-29 2001-04-10 Kyocera Corp Dielectric porcelain composition for high-frequency and dielectric resonator using the same
JP2001151568A (en) * 1999-11-26 2001-06-05 Kyocera Corp Dielectric porcelain composition for high frequency and dielectric resonator using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746183A (en) * 2019-11-28 2020-02-04 无锡鑫圣慧龙纳米陶瓷技术有限公司 Medium-temperature sintered temperature-stable microwave dielectric ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP5197559B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP4596004B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2002080273A (en) Porcelain for high frequency wave, dielectric antenna, supporting base, dielectric resonator, dielrctric filter, dielectric duplexer and communication equipment device
WO1998043924A1 (en) Dielectric ceramic composition and dielectric resonator made by using the same
JP3744660B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP4548876B2 (en) High frequency dielectric ceramic composition and dielectric resonator using the same
JP5197559B2 (en) High frequency dielectric ceramic composition and dielectric resonator using the same
JPH0877829A (en) Dielectric ceramic composition and dielectric resonator
JP4839496B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2003238242A (en) Dielectric porcelain and dielectric resonator using the same
JP2002029837A (en) Dielectric porcelain composition for high frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication appliance
JP4131996B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP4303369B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP2000095561A (en) Dielectric porcelain composition and dielectric resonator using the same
JP4535589B2 (en) Dielectric porcelain and dielectric resonator using the same
US6940371B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2003146752A (en) Dielectric ceramic composition
JPH0952761A (en) Aluminous ceramic composition and its production
JP3493316B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP2001151568A (en) Dielectric porcelain composition for high frequency and dielectric resonator using the same
JP4614485B2 (en) Dielectric resonator
JP4830286B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3598886B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3575336B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3376933B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5197559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term