JP4303369B2 - Dielectric ceramic composition and dielectric resonator using the same - Google Patents

Dielectric ceramic composition and dielectric resonator using the same Download PDF

Info

Publication number
JP4303369B2
JP4303369B2 JP23607299A JP23607299A JP4303369B2 JP 4303369 B2 JP4303369 B2 JP 4303369B2 JP 23607299 A JP23607299 A JP 23607299A JP 23607299 A JP23607299 A JP 23607299A JP 4303369 B2 JP4303369 B2 JP 4303369B2
Authority
JP
Japan
Prior art keywords
weight
parts
dielectric
dielectric ceramic
metal elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23607299A
Other languages
Japanese (ja)
Other versions
JP2001072464A (en
Inventor
俊一 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23607299A priority Critical patent/JP4303369B2/en
Publication of JP2001072464A publication Critical patent/JP2001072464A/en
Application granted granted Critical
Publication of JP4303369B2 publication Critical patent/JP4303369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波、ミリ波等の高周波領域において、高いQ値を有する誘電体磁器組成物に関するものであり、例えば、マイクロ波やミリ波などの高周波領域において使用される種々の共振器用材料やMIC(Monolithic IC)用誘電体基板材料、誘電体導波路用材料や積層型セラミックコンデンサ−等に用いることができる誘電体磁器組成物に関する。
【0002】
【従来の技術】
誘電体磁器は、マイクロ波やミリ波等の高周波領域において、誘電体共振器、MIC用誘電体基板や導波路等に広く利用されている。そこに要求される特性として(1) 誘電体中では波長が1/εr1/2 に短縮されるので、小型化の要求に対して比誘電率が大きい事、(2) 高周波での誘電損失が小さい事、すなわち高Q値であること、(3) 共振周波数の温度に対する変化が小さいこと、即ち、比誘電率の温度依存性が小さく且つ安定であること、以上の3つの特性が主として挙げられる。
【0003】
従来、この種の誘電体磁器としては、例えば、Ba(Mg1/3 Ta2/3 )O3 系材料(特公昭59−23048号)、Ba(Zn1/3 Ta2/3 )O3 系材料(特公昭59−48484号)、Ba(Zn1/3 Nb2/3 )O3 系材料(特公昭53−35453号)、Ba(Mg1/3 Nb2/3 )O3 系材料(特開昭53−35345)などの酸化物磁器材料が知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、最近では使用する周波数領域がさらに高く成ってきており、これに対応してさらに高いQ値を持つ材料が要求されている。これから見て、従来の誘電体磁器組成物は、無負荷Qが小さかったり、比誘電率が小さい為、共振器にしたときの形状が大きくなり、また、温度係数が大きかったりして、マイクロ波周波数帯で使用するには、いずれかに難点があり、実際の使用においては不都合が多い。また、これらの材料は、焼成温度が高く、焼成コストがかかり、さらに、材料自体も、Ta、Nbを含む為高価であることから、コストが高く、市場に出回り難いと言った問題があった。
【0005】
本発明は、上記の欠点に鑑み案出されたもので、比誘電率が大きく、高Q値で、比誘電率の温度依存性が小さく且つ安定であり、さらに安価な材料での誘電体磁器組成物を提供するものである。
【0006】
【課題を解決するための手段】
本発明者は上記問題に対し、検討を重ねた結果、金属元素として少なくともLa,Al,Sr,Tiを含有し、これらを特定の範囲に調整することによって、比誘電率が大きく、高Q値で、比誘電率の温度依存性が小さく且つ、安定である誘電体磁器組成物が得られることを知見した。
【0007】
即ち、本発明の誘電体磁器組成物は、金属元素として少なくともLa,Al,Sr,Tiを含有し、これらの金属元素のモル比による組成式をaLa2 3 ・bAl2 3 ・cSrO・dTiO2 と表した時、前記a、b、c、d、が、
0.0954≦a≦0.1596
0.0954≦b≦0.1596
0.3903≦c≦0.5516
0.2129≦d≦0.3546
0.8181≦b/a≦1.2222
0.4285≦d/c<0.7500
(ただし a+b+c+d=1)
と表される組成範囲内にあることを特徴とする。
【0008】
また、金属元素として少なくともLa、Al、Sr及びTiを含有し、これらの金属元素のモル比による組成式を
aLa2 3 ・bAl2 3 ・cSrO・dTiO2
と表したとき、前記a、b、c及びdが
0.0954≦a≦0.1596
0.0954≦b≦0.1596
0.3903≦c≦0.5516
0.2129≦d≦0.3546
0.8181≦b/a≦1.2222
0.4285≦d/c≦0.7500
(ただし、a+b+c+d=1)
を満足する主成分と、該主成分100重量部に対して、MnをMnO2 換算で3.0重量部以下、又はWをWO3 換算で5.0重量部以下、又はMoをMoO3 換算で5.0重量部以下含有することを特徴とする。
【0009】
また、金属元素として少なくともLa、Al、Sr、Tiを含有し、これらの金属元素のモル比による組成式を
aLa2 3 ・bAl2 3 ・cSrO・dTiO2
と表したとき、前記a、b、c、d、が
0.0954≦a≦0.1596
0.0954≦b≦0.1596
0.3903≦c≦0.5516
0.2129≦d≦0.3546
0.8181≦b/a≦1.2222
0.4285≦d/c≦0.7500
(ただし、a+b+c+d=1)
を満足する主成分と、該主成分100重量部に対して、Mn、W、MoをMnO2 、WO3 、MnO3 換算で6.0重量部以下含有することを特徴とする。
【0010】
また、本発明の誘電体共振器は、一対の入出力端子間に誘電体磁器を配置してなり、電磁界結合により作動する誘電体共振器において、前記誘電体磁器が、上記高周波用誘電体磁器組成物からなるものである。
【0011】
本発明は、上記構成により、比誘電率εrが大きく、高Q値であり、共振周波数の温度係数τf の絶対値が小さく、且つ、εr、Q、τf の値を安定に制御でき、さらに、Ta、Nb等の高価な元素を含む材料を使う事無く、安価な誘電体磁器組成物及び誘電体共振器となる。
【0012】
【発明の実施の形態】
本発明の高周波用誘電体磁器組成物は、金属元素として少なくともLa、Al、Sr及びTiを含有する複合酸化物を主成分組成物とする物である。かかる主成分組成物における前記金属元素のモル比による組成式を
aLa2 3 ・bAl2 3 ・cSrO・dTiO2
と表したとき、前記a、b、c、dが
0.0954≦a≦0.1596
0.0954≦b≦0.1596
0.3903≦c≦0.5516
0.2129≦d≦0.3546
0.8181≦b/a≦1.2222
0.4285≦d/c<0.7500
(ただし、a+b+c+d=1)
であることが重要である。これらのa、b、c、dを上記の範囲に限定した理由は以下の通りである。
【0013】
即ち、0.0954≦a≦0.1596としたのは、a<0.0954の場合は、共振周波数の温度係数τfが正に大きくなり、共振周波数の温度係数τfの絶対値が30を大きく越えてしまうからであり、a>0.1596の場合は、τfが負に大きくなり、その絶対値が30を越えてしまうからである。特に0.1211≦a≦0.1369の範囲が好ましい。
【0014】
また、0.0954≦b≦0.1596としたのは、b<0.0954の場合は、共振周波数の温度係数τf が正に大きくなり、τf の絶対値が30を大きく越え、b>0.1596の場合は、共振周波数τf が負に大きくなり、τf の絶対値が30を越えてしまうからである。bは、特に0.1211≦b≦0.1369の範囲が好ましい。
【0015】
さらに、0.3903≦c≦0.5516としたのは、c<0.3903の場合は、共振周波数の温度係数τf が負に大きくなり、τf の絶対値が30を大きく越えてしまうからである。c>0.5516の場合には、共振周波数の温度係数τfが正に大きくなり、その絶対値が30を越えてしまうからである。特に、0.4284≦c≦0.4698の範囲が好ましい。
【0016】
また、0.2129≦d≦0.3546としたのは、d<0.2129の場合は、共振周波数の 温度係数τfが負に大きくなり、その絶対値が30を越えてしまうからであり、d>0.3546の場合は、共振周波数の温度係数τfが正に大きくなり、その絶対値が30を越えてしまうからである。特に、0.2759≦d≦0.3107が好ましい。
【0017】
さらに、0.8181≦b/a≦1.2222としたのは、b/a<0.8181の場合や、b/a>1.2222の場合には、Qfが大きく低下し、40000より低下するからである。特に、0.9602≦b/a≦1.1744が好ましい。
【0018】
また、0.4285≦d/c<0.7500としたのは、d/c<0.4285の場合は、比誘 電率εrが小さくなり、d/c≧0.7500の場合には、τf が正に大きくなり、その絶対値が30を越えてしまうからである。特に0.6129≦d/c≦0.6949が好ましい。
【0019】
さらに、0.8181≦b/a≦1.2222であり、かつ0.4285≦d/c<0.7500としたのは、この範囲において、τf を0付近で調整できるからである。
【0020】
また、本発明は、上記主成分100重量部に対して、MnO2 換算で3.0重量部以下Mnを含有させることによって、εrやτf を変化させずに、Q値のみを向上させることができるのである。Mnの含有量をMnO2 換算で3.0重量部以下としたのは、3.0重量部を越えるとQ値が極端に小さくなるためである。さらに、上述した効果を奏する為には、Mnの量をMnO2 換算で0.01〜3.0重量部とすることが望ましく、特に0.1〜1.0重量部とすることが望ましい。
【0021】
また、本発明は、上記主成分100重量部に対して、WO3 換算で5.0重量部以下Wを含有させることによって、Q値を向上させることができるのである。Wの含有量をWO3 換算で5.0重量部としたのは、5.0重量部を越えるとQ値が極端に小さくなるためである。さらに、上述した効果を奏する為には、Wの量をWO3 換算で0.01〜5.0重量部とすることが望ましく、特に0.1〜2.0重量部とすることが望ましい。
【0022】
また、本発明は、上記主成分100重量部に対して、MoO3 換算で5.0重量部以下Moを含有させることによって、Q値を向上させることができるのである。Moの含有量をMoO3 換算で5.0重量部以下としたのは、5.0重量部を越えるとQ値が極端に小さくなるためである。さらに、上述した効果を奏する為には、MoをMoO3 換算で0.01〜5.0重量部とすることが望ましく、特に0.1〜2.0重量部とすることが望ましい。
【0023】
なお、上記Mn,W,Moの各成分は、それぞれ1種又は2種以上を含有させることができる。これらの成分を全て含有する場合は、上記主成分100重量部に対して、MnO2 、WO3 、MoO3 換算で合計6.0重量部以下含有させることによって、Q値を向上させることができる。Mn、W、Moの含有量をMnO2 、WO3 、MnO3 換算で6.0重量部以下としたのは、6.0重量部を越えるとQ値が極端に小さくなるためである。さらに、上述した効果を奏する為には、MnO2 、WO3 、MnO3 換算で0.01〜6.0重量部とすることが望ましく、特に0.1〜2.0重量部とすることが望ましい。
【0024】
本発明の誘電体磁器組成物は、例えば、以下のようにして作製される。出発原料として、高純度の酸化ランタン、酸化アルミニウム、炭酸ストロンチウム、酸化チタンの各粉末を用いて、所望の割合となるように秤量後、純水を加え、混合原料の平均粒径が2.0μm以下となるまで10〜30時間、ジルコニアボール等を使用したミルにより湿式混合・粉砕を行う。この混合物を乾燥後、1000〜1300℃で2〜10時間仮焼し、さらに5重量%のバインダーを加えてから造粒し、得られた粉末を所望の成形手段、例えば、金型プレス、冷間静水圧プレス、押し出し成形等により任意の形状に成形後、1500〜1700℃の温度で1〜10時間大気中において焼成することにより得られる。
【0025】
本発明における誘電体磁器組成物では、La、Al、Sr、Tiの出発原料としては、酸化物以 外に炭酸塩、酢酸塩、硝酸塩、水酸化物等のように、酸化性雰囲気での熱処理によって酸化物を生成し得る化合物を用いても良い。
【0026】
本発明においては、磁器中に不可避不純物として、Ca、Zr、Si、Ba等が混入する場合があるが、これらは、各々または全部で、酸化物換算で0.1重量%程度混入しても特性上問題ない。
【0027】
本発明の上記誘電体磁器組成物は、誘電体共振器用としても最も有用である。本発明の誘電体共振器として、図1のTEモード型誘電体共振器の概略図を示した。図1の共振器は、金属ケ−ス1の両側に入力端子2及び出力端子3を形成し、これらの端子2、3の間に上記したような組成からなる誘電体磁器4を配置して構成される。このように、TEモ−ド型の誘電体共振器は、入力端子2からマイクロ波が入力され、マイクロ波は誘電体磁器4と自由空間との境界の反射によって誘電体磁器4内に閉じこめられ、特定の周波数で共振を起こす。
【0028】
この信号が出力端子3と電磁界結合し、出力される。また、図示しないが、本発明の誘電体磁器組成物TEMモ−ドを用いた同軸形共振器やストリップ線路共振器、TMモ−ドの誘電体磁器共振器、その他の共振器に適用しても良いことは勿論である。
【0029】
【実施例】
実施例1
出発原料として高純度の酸化ランタン(La2 3 )、酸化アルミニウム(Al2 3 )、炭酸ストロンチウム(SrCO3 )、酸化チタン(TiO2 )の各粉末を用いて、それらを表1となるように秤量後、純水を加え、混合原料の平均粒径が2.0μm以下となるまで、ミルにより約20時間湿式混合、粉砕を行った。なお、ミルのボールの種類や他の種々の条件により、ZrO2 やSiO2 、その他の希土類元素の不純物が合計で1重量%以下含有される場合がある。
【0030】
この混合物を乾燥後、1200℃で2時間仮焼し、さらに約5重量%のバインダーを加えてから 造粒し、得られた粉末を約1ton/cm2 の圧力で円板状に成形し、1500〜1700℃の温度で2時間大気中において焼成した。
【0031】
得られた磁器の円板部を平面研磨し、アセトン中で超音波洗浄し、150℃で1時間乾燥した後、円柱共振器法により測定周波数3.5〜4.5GHzで比誘電率εr、Q値、共振周波数の温度係数τfを測定した。Q値は、マイクロ波誘電体において一般に成立するQ値×測定周波数f=一定の関係から1GHzでのQ値に換算した。
【0032】
共振周波数の温度係数τfは、−40〜85℃の範囲で測定した。
【0033】
【表1】

Figure 0004303369
【0034】
実施例2
出発原料として高純度の酸化ランタン(La2 3 )、酸化アルミニウム(Al2 3 )、炭酸ストロンチウム(SrCO3 )、酸化チタン(TiO2 )の各粉末を用いて、それらを表2となるように秤量後、純水を加え、混合原料の平均粒径が2.0μm以下となるまで、ミルにより約20時間湿式混合、粉砕を行った。
【0035】
この混合物を乾燥後、1200℃で2時間仮焼した。この仮焼粉100重量部に対し、MnO2 、WO3 、MoO3 を表2に示す量を添加後、純水を加え、混合原料の平均粒径が2.0μm以下となるまで、ミルにより約20時間湿式混合、粉砕を行った。乾燥後、さらに約5重量%のバインダーを加えてから造粒した。
【0036】
得られた粉末を約1ton/cm2 の圧力で円板状に成形し、1500〜1700℃の温度で2時間大気中において焼成した。
【0037】
得られた磁器の円板部を平面研磨し、アセトン中で超音波洗浄し、150℃で1時間乾燥した後、円柱共振器法により測定周波数3.5〜4.5GHzで比誘電率εr、Q値、共振周波数の温度係数τfを測定した。Q値は、マイクロ波誘電体において一般に成立するQ値×測定周波数f=一定の関係から1GHzでのQ値に換算した。
【0038】
共振周波数の温度係数τfは、−40〜85℃の範囲で測定した。
【0039】
【表2】
Figure 0004303369
【0040】
表1、2からも明らかなように、本発明の範囲外の誘電体では、比誘電率又はQ値が低いか、あるいはτfの絶対値が30を超えていた。
【0041】
これらに対し、本発明により得られた誘電体は、Q値が70000以上、τfが±30(ppm/℃)以内の優れた誘電特性が得られることがわかった。
【0042】
【発明の効果】
以上詳述した通り、本発明によれば、金属元素として少なくともLa,Al,Sr,Tiを含有し、これらの金属元素のモル比による組成式をaLa2 3 ・bAl2 3 ・cSrO・dTiO2 と表した時、前記a、b、c、dが、
0.0954≦a≦0.1596
0.0954≦b≦0.1596
0.3903≦c≦0.5516
0.2129≦d≦0.3546
0.8181≦b/a≦1.2222
かつ0.4285≦d/c<0.7500
(ただし a+b+c+d=1)
と表される組成範囲内に調整することによって、また、この主成分にMn、W、Moを添加することで、高周波領域において比誘電率εrが30付近で高いQ値を有するとともに、共振周波数の温度係数τfを0付近に、安定して制御することができた。
【0043】
また、Ta、Nb等を構成元素とする従来の誘電体磁器組成物に比べてより安価な材料を提供することができる。さらに、Ta、Nbで構成されている既存材は、高温で、長時間焼成温度を保持しなければ、結晶の規則化が起こらない為、焼成コストがかかっていたが、本発明の材料であれば、焼成温度の保持時間も2〜10時間ですみ、焼成コストが大幅に削減できる。
【0044】
これにより、本発明の誘電体磁器組成物は、例えば、自動車電話、コードレステレホン、パーソナル無線機、衛星放送受信機等の装置において、マイクロ波やミリ波領域において使用される共振器用材料やMIC用誘電体基板材料、誘電体導波線路、誘電体アンテナ、その他の各種電子部品等に好適に適用することができる。
【図面の簡単な説明】
【図1】本発明の誘電体共振器を示す説明図である。
【符号の説明】
1.金属ケ−ス
2.入力端子
3.出力端子
4.誘電体磁器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition having a high Q value in a high-frequency region such as microwaves and millimeter waves, and various resonator materials used in a high-frequency region such as microwaves and millimeter waves. The present invention relates to a dielectric ceramic composition that can be used for dielectric substrate materials for MIC (Monolithic IC), dielectric waveguide materials, multilayer ceramic capacitors, and the like.
[0002]
[Prior art]
Dielectric ceramics are widely used in dielectric resonators, dielectric substrates for MICs, waveguides, and the like in high frequency regions such as microwaves and millimeter waves. The required characteristics are as follows: (1) Since the wavelength is shortened to 1 / εr 1/2 in the dielectric, the relative permittivity is large to meet the demand for miniaturization. (2) Dielectric loss at high frequency The above three characteristics are mainly cited as follows: small Q, that is, high Q value, (3) small change in resonance frequency with temperature, that is, low temperature dependence of relative permittivity and stability. It is done.
[0003]
Conventionally, as this kind of dielectric ceramic, for example, Ba (Mg 1/3 Ta 2/3 ) O 3 -based material (Japanese Patent Publication No. 59-23048), Ba (Zn 1/3 Ta 2/3 ) O 3 Material (Japanese Patent Publication No. 59-48484), Ba (Zn 1/3 Nb 2/3 ) O 3 type material (Japanese Patent Publication No. 53-35453), Ba (Mg 1/3 Nb 2/3 ) O 3 type material An oxide porcelain material such as JP-A-53-35345 is known.
[0004]
[Problems to be solved by the invention]
However, recently, the frequency range to be used has become higher, and a material having a higher Q value is required in response to this. In view of this, the conventional dielectric ceramic composition has a small unloaded Q and a low relative dielectric constant, so that the shape when the resonator is made large, and the temperature coefficient is large. There are some problems in using in the frequency band, and there are many inconveniences in actual use. In addition, these materials have high firing temperatures and high firing costs, and the materials themselves are expensive because they contain Ta and Nb, so there is a problem that they are expensive and difficult to reach the market. .
[0005]
The present invention has been devised in view of the above-described drawbacks, and is a dielectric ceramic made of a material having a large relative permittivity, a high Q value, a small and stable temperature dependence of the relative permittivity, and a low cost. A composition is provided.
[0006]
[Means for Solving the Problems]
As a result of repeated studies on the above problems, the present inventor contains at least La, Al, Sr, and Ti as metal elements, and by adjusting these to a specific range, the relative permittivity is large and the high Q value is high. Thus, it has been found that a dielectric ceramic composition having a low temperature dependence of the relative dielectric constant and being stable can be obtained.
[0007]
That is, the dielectric ceramic composition of the present invention contains at least La, Al, Sr, and Ti as metal elements, and the composition formula based on the molar ratio of these metal elements is aLa 2 O 3 .bAl 2 O 3 .cSrO. When expressed as dTiO 2 , the a, b, c, d are
0.0954 ≦ a ≦ 0.1596
0.0954 ≦ b ≦ 0.1596
0.3903 ≦ c ≦ 0.5516
0.2129 ≦ d ≦ 0.3546
0.8181 ≦ b / a ≦ 1.2222
0.4285 ≦ d / c <0.7500
(However, a + b + c + d = 1)
It is in the composition range represented as follows.
[0008]
Further, at least La, Al, Sr and Ti are contained as metal elements, and the composition formula by the molar ratio of these metal elements is aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2.
Where a, b, c and d are 0.0954 ≦ a ≦ 0.1596.
0.0954 ≦ b ≦ 0.1596
0.3903 ≦ c ≦ 0.5516
0.2129 ≦ d ≦ 0.3546
0.8181 ≦ b / a ≦ 1.2222
0.4285 ≦ d / c ≦ 0.7500
(However, a + b + c + d = 1)
A main component which satisfies, with respect to the main component 100 parts by weight, Mn below 3.0 parts by weight MnO 2 terms, or W and WO 3 in terms of 5.0 parts by weight or less, or Mo and calculated as MoO 3 And 5.0 parts by weight or less.
[0009]
Further, at least La, Al, Sr, and Ti are contained as metal elements, and a composition formula according to the molar ratio of these metal elements is aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2.
Where a, b, c, d are 0.0954 ≦ a ≦ 0.1596.
0.0954 ≦ b ≦ 0.1596
0.3903 ≦ c ≦ 0.5516
0.2129 ≦ d ≦ 0.3546
0.8181 ≦ b / a ≦ 1.2222
0.4285 ≦ d / c ≦ 0.7500
(However, a + b + c + d = 1)
Mn, W, and Mo are contained in an amount of 6.0 parts by weight or less in terms of MnO 2 , WO 3 , and MnO 3 with respect to 100 parts by weight of the main component satisfying the above.
[0010]
The dielectric resonator according to the present invention includes a dielectric ceramic disposed between a pair of input / output terminals, wherein the dielectric ceramic is operated by electromagnetic field coupling. It consists of a porcelain composition.
[0011]
With the above configuration, the present invention has a large relative dielectric constant εr, a high Q value, a small absolute value of the temperature coefficient τf of the resonance frequency, and can stably control the values of εr, Q, τf, Without using a material containing expensive elements such as Ta and Nb, an inexpensive dielectric ceramic composition and dielectric resonator can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The dielectric ceramic composition for high frequency according to the present invention is a material containing a composite oxide containing at least La, Al, Sr and Ti as metal components as a main component composition. The composition formula by the molar ratio of the metal element in the main component composition is aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2.
Where a, b, c and d are 0.0954 ≦ a ≦ 0.1596.
0.0954 ≦ b ≦ 0.1596
0.3903 ≦ c ≦ 0.5516
0.2129 ≦ d ≦ 0.3546
0.8181 ≦ b / a ≦ 1.2222
0.4285 ≦ d / c <0.7500
(However, a + b + c + d = 1)
It is important that The reason why a, b, c, and d are limited to the above range is as follows.
[0013]
That is, 0.0954 ≦ a ≦ 0.1596 is set. When a <0.0954, the temperature coefficient τf of the resonance frequency increases positively, and the absolute value of the temperature coefficient τf of the resonance frequency increases 30. This is because when a> 0.1596, τf becomes negatively large and its absolute value exceeds 30. In particular, the range of 0.1211 ≦ a ≦ 0.1369 is preferable.
[0014]
In addition, 0.0954 ≦ b ≦ 0.1596 is set. When b <0.0954, the temperature coefficient τf of the resonance frequency becomes positively large, the absolute value of τf greatly exceeds 30, and b> 0 In the case of .1596, the resonance frequency τf becomes negatively large and the absolute value of τf exceeds 30. b is particularly preferably in the range of 0.1211 ≦ b ≦ 0.1369.
[0015]
Further, 0.3903 ≦ c ≦ 0.5516 is set because, when c <0.3903, the temperature coefficient τf of the resonance frequency becomes negative and the absolute value of τf greatly exceeds 30. is there. This is because when c> 0.5516, the temperature coefficient τf of the resonance frequency becomes positive and its absolute value exceeds 30. In particular, the range of 0.4284 ≦ c ≦ 0.4698 is preferable.
[0016]
The reason why 0.2129 ≦ d ≦ 0.3546 is set is that when d <0.2129, the temperature coefficient τf of the resonance frequency becomes negatively large and the absolute value thereof exceeds 30. This is because when d> 0.3546, the temperature coefficient τf of the resonance frequency increases positively and its absolute value exceeds 30. In particular, 0.2759 ≦ d ≦ 0.3107 is preferable.
[0017]
Furthermore, 0.8181 ≦ b / a ≦ 1.2222 is set when Q / b is smaller than 40000 when b / a <0.8181 or when b / a> 1.2222. Because it does. In particular, 0.9602 ≦ b / a ≦ 1.1744 is preferable.
[0018]
In addition, 0.4285 ≦ d / c <0.7500 is set because the specific dielectric constant εr is small when d / c <0.4285, and when d / c ≧ 0.7500, This is because τf increases positively and its absolute value exceeds 30. In particular, 0.6129 ≦ d / c ≦ 0.6949 is preferable.
[0019]
Furthermore, 0.8181 ≦ b / a ≦ 1.2222 and 0.4285 ≦ d / c <0.7500 are set because τf can be adjusted in the vicinity of 0 in this range.
[0020]
Further, the present invention can improve only the Q value without changing εr and τf by containing 3.0 parts by weight or less Mn in terms of MnO 2 with respect to 100 parts by weight of the main component. It can be done. The reason why the Mn content is 3.0 parts by weight or less in terms of MnO 2 is that the Q value becomes extremely small when the content exceeds 3.0 parts by weight. Furthermore, in order to exhibit the above-described effects, the amount of Mn is preferably 0.01 to 3.0 parts by weight in terms of MnO 2 , and particularly preferably 0.1 to 1.0 parts by weight.
[0021]
The present invention is also relative to the 100 parts by weight of the main component, by the inclusion of 5.0 parts by weight or less W in terms of WO 3, it is possible to improve the Q value. The reason why the W content is 5.0 parts by weight in terms of WO 3 is that the Q value becomes extremely small when the content exceeds 5.0 parts by weight. Further, in order to achieve the above-described effects, the amount of W is preferably 0.01 to 5.0 parts by weight in terms of WO 3 , and particularly preferably 0.1 to 2.0 parts by weight.
[0022]
The present invention is also relative to the 100 parts by weight of the main component, by the inclusion of 5.0 parts by weight or less Mo calculated as MoO 3, it is possible to improve the Q value. The reason why the Mo content is 5.0 parts by weight or less in terms of MoO 3 is that the Q value becomes extremely small when the content exceeds 5.0 parts by weight. Furthermore, in order to achieve the above-described effects, Mo is preferably 0.01 to 5.0 parts by weight in terms of MoO 3 , and particularly preferably 0.1 to 2.0 parts by weight.
[0023]
In addition, each component of said Mn, W, and Mo can contain 1 type, or 2 or more types, respectively. When all of these components are contained, the Q value can be improved by containing a total of 6.0 parts by weight or less in terms of MnO 2 , WO 3 , and MoO 3 with respect to 100 parts by weight of the main component. . The reason why the content of Mn, W, and Mo is 6.0 parts by weight or less in terms of MnO 2 , WO 3 , and MnO 3 is that the Q value becomes extremely small when the content exceeds 6.0 parts by weight. Furthermore, in order to achieve the above-described effects, it is desirable that the amount be 0.01 to 6.0 parts by weight, particularly 0.1 to 2.0 parts by weight in terms of MnO 2 , WO 3 , and MnO 3. desirable.
[0024]
The dielectric ceramic composition of the present invention is produced, for example, as follows. Using high-purity lanthanum oxide, aluminum oxide, strontium carbonate, and titanium oxide powders as starting materials, weighed to a desired ratio, added pure water, and the average particle size of the mixed materials was 2.0 μm Wet mixing and pulverization are performed in a mill using zirconia balls or the like for 10 to 30 hours until the following. This mixture is dried, calcined at 1000 to 1300 ° C. for 2 to 10 hours, further granulated after adding 5% by weight of a binder, and the resulting powder is subjected to desired molding means such as a mold press, It can be obtained by firing in the atmosphere at a temperature of 1500 to 1700 ° C. for 1 to 10 hours after molding into an arbitrary shape by an isostatic pressing, extrusion molding or the like.
[0025]
In the dielectric ceramic composition of the present invention, the starting materials for La, Al, Sr, and Ti are heat treatments in an oxidizing atmosphere such as carbonates, acetates, nitrates and hydroxides in addition to oxides. A compound capable of generating an oxide may be used.
[0026]
In the present invention, Ca, Zr, Si, Ba, etc. may be mixed as inevitable impurities in the porcelain, but these may be mixed in about 0.1% by weight in terms of oxides, respectively or in total. There is no problem in characteristics.
[0027]
The dielectric ceramic composition of the present invention is most useful for a dielectric resonator. As a dielectric resonator of the present invention, a schematic diagram of the TE mode type dielectric resonator of FIG. 1 is shown. In the resonator shown in FIG. 1, an input terminal 2 and an output terminal 3 are formed on both sides of a metal case 1, and a dielectric ceramic 4 having the above-described composition is disposed between the terminals 2 and 3. Composed. As described above, the TE mode type dielectric resonator receives microwaves from the input terminal 2, and the microwaves are confined in the dielectric ceramic 4 by reflection at the boundary between the dielectric ceramic 4 and the free space. Resonance occurs at a specific frequency.
[0028]
This signal is electromagnetically coupled to the output terminal 3 and output. Although not shown, the present invention is applied to coaxial resonators, stripline resonators, TM mode dielectric ceramic resonators, and other resonators using the dielectric ceramic composition TEM mode of the present invention. Of course, it is also good.
[0029]
【Example】
Example 1
Table 1 shows powders of high purity lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), strontium carbonate (SrCO 3 ), and titanium oxide (TiO 2 ) as starting materials. Thus, after weighing, pure water was added, and wet mixing and pulverization were performed for about 20 hours with a mill until the average particle size of the mixed raw material became 2.0 μm or less. Depending on the type of ball of the mill and various other conditions, ZrO 2 , SiO 2 , and other rare earth element impurities may be contained in total of 1% by weight or less.
[0030]
This mixture is dried, calcined at 1200 ° C. for 2 hours, further granulated after adding about 5% by weight of binder, and the resulting powder is formed into a disk shape at a pressure of about 1 ton / cm 2 , Firing was performed in the air at a temperature of 1500 to 1700 ° C. for 2 hours.
[0031]
The obtained porcelain disk portion was flat-polished, ultrasonically cleaned in acetone, dried at 150 ° C. for 1 hour, and then measured by a cylindrical resonator method at a measurement frequency of 3.5 to 4.5 GHz and a relative dielectric constant εr, The Q value and the temperature coefficient τf of the resonance frequency were measured. The Q value was converted to a Q value at 1 GHz from the relationship of Q value x measurement frequency f = generally established in microwave dielectrics.
[0032]
The temperature coefficient τf of the resonance frequency was measured in the range of −40 to 85 ° C.
[0033]
[Table 1]
Figure 0004303369
[0034]
Example 2
Using each powder of high purity lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), strontium carbonate (SrCO 3 ) and titanium oxide (TiO 2 ) as starting materials, they are shown in Table 2. Thus, after weighing, pure water was added, and wet mixing and pulverization were performed for about 20 hours with a mill until the average particle size of the mixed raw material became 2.0 μm or less.
[0035]
The mixture was dried and calcined at 1200 ° C. for 2 hours. To this calcined powder 100 parts by weight, after the addition amount indicating the MnO 2, WO 3, MoO 3 in Table 2, the pure water added, until the average particle diameter of the mixed raw material is 2.0μm or less, the mill Wet mixing and pulverization were performed for about 20 hours. After drying, the mixture was further granulated after adding about 5% by weight of a binder.
[0036]
The obtained powder was formed into a disk shape at a pressure of about 1 ton / cm 2 and baked in the atmosphere at a temperature of 1500 to 1700 ° C. for 2 hours.
[0037]
The obtained porcelain disk portion was flat-polished, ultrasonically cleaned in acetone, dried at 150 ° C. for 1 hour, and then measured by a cylindrical resonator method at a measurement frequency of 3.5 to 4.5 GHz and a relative dielectric constant εr, The Q value and the temperature coefficient τf of the resonance frequency were measured. The Q value was converted to a Q value at 1 GHz from the relationship of Q value x measurement frequency f = generally established in microwave dielectrics.
[0038]
The temperature coefficient τf of the resonance frequency was measured in the range of −40 to 85 ° C.
[0039]
[Table 2]
Figure 0004303369
[0040]
As is clear from Tables 1 and 2, in dielectrics outside the scope of the present invention, the relative permittivity or Q value was low, or the absolute value of τf exceeded 30.
[0041]
On the other hand, it has been found that the dielectric obtained by the present invention can obtain excellent dielectric characteristics having a Q value of 70,000 or more and τf within ± 30 (ppm / ° C.).
[0042]
【The invention's effect】
As described above in detail, according to the present invention, at least La, Al, Sr, and Ti are contained as metal elements, and the composition formula based on the molar ratio of these metal elements is expressed as aLa 2 O 3 .bAl 2 O 3 .cSrO. When expressed as dTiO 2 , the a, b, c, d are
0.0954 ≦ a ≦ 0.1596
0.0954 ≦ b ≦ 0.1596
0.3903 ≦ c ≦ 0.5516
0.2129 ≦ d ≦ 0.3546
0.8181 ≦ b / a ≦ 1.2222
And 0.4285 ≦ d / c <0.7500
(However, a + b + c + d = 1)
And by adding Mn, W, and Mo to this main component, the relative permittivity εr has a high Q value near 30 in the high frequency region, and the resonance frequency. It was possible to stably control the temperature coefficient τf in the vicinity of 0.
[0043]
Moreover, a cheaper material can be provided compared with the conventional dielectric ceramic composition which uses Ta, Nb, etc. as a constituent element. Furthermore, the existing materials composed of Ta and Nb are high in temperature, and unless the firing temperature is maintained for a long time, crystal ordering does not occur. For example, the holding time of the baking temperature is only 2 to 10 hours, and the baking cost can be greatly reduced.
[0044]
As a result, the dielectric ceramic composition of the present invention can be used, for example, for resonator materials and MICs used in microwave and millimeter wave regions in devices such as automobile telephones, cordless telephones, personal radios, and satellite broadcast receivers. The present invention can be suitably applied to dielectric substrate materials, dielectric waveguide lines, dielectric antennas, and other various electronic components.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a dielectric resonator according to the present invention.
[Explanation of symbols]
1. Metal case 2. Input terminal 3. Output terminal 4. Dielectric porcelain

Claims (4)

金属元素として少なくともLa、Al、Sr及びTiを含有し、これらの金属元素のモル比による組成式を
aLa2 3 ・bAl2 3 ・cSrO・dTiO2
と表したとき、前記a,b,c,及びdが
0.0954≦a≦0.1596
0.0954≦b≦0.1596
0.3903≦c≦0.5516
0.2129≦d≦0.3546
0.8181≦b/a≦1.2222
0.4285≦d/c<0.7500
(ただし a+b+c+d=1)
の範囲内にあることを特徴とする誘電体磁器組成物。
It contains at least La, Al, Sr, and Ti as metal elements, and the composition formula according to the molar ratio of these metal elements is aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2.
Where a, b, c, and d are 0.0954 ≦ a ≦ 0.1596.
0.0954 ≦ b ≦ 0.1596
0.3903 ≦ c ≦ 0.5516
0.2129 ≦ d ≦ 0.3546
0.8181 ≦ b / a ≦ 1.2222
0.4285 ≦ d / c <0.7500
(However, a + b + c + d = 1)
A dielectric ceramic composition characterized by being in the range.
金属元素として少なくともLa、Al、Sr及びTiを含有し、これらの金属元素のモル比による組成式を
aLa2 3 ・bAl2 3 ・cSrO・dTiO2
と表したとき、前記a、b、c、及びdが
0.0954≦a≦0.1596
0.0954≦b≦0.1596
0.3903≦c≦0.5516
0.2129≦d≦0.3546
0.8181≦b/a≦1.2222
0.4285≦d/c≦0.7500
(ただし、a+b+c+d=1)
を満足する主成分と、該主成分100重量部に対して、MnをMnO2 換算で3.0重量部以下、又はWをWO3 換算で5.0重量部以下、又はMoをMoO3 換算で5.0重量部以下含有することを特徴とする誘電体磁器組成物。
It contains at least La, Al, Sr, and Ti as metal elements, and the composition formula according to the molar ratio of these metal elements is aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2.
Where a, b, c, and d are 0.0954 ≦ a ≦ 0.1596.
0.0954 ≦ b ≦ 0.1596
0.3903 ≦ c ≦ 0.5516
0.2129 ≦ d ≦ 0.3546
0.8181 ≦ b / a ≦ 1.2222
0.4285 ≦ d / c ≦ 0.7500
(However, a + b + c + d = 1)
Mn is 3.0 parts by weight or less in terms of MnO 2 , or W is 5.0 parts by weight or less in terms of WO 3 , or Mo is in terms of MoO 3 with respect to 100 parts by weight of the main component satisfying A dielectric ceramic composition comprising 5.0 parts by weight or less.
金属元素として少なくともLa、Al、Sr及びTiを含有し、これらの金属元素のモル比による組成式を
aLa2 3 ・bAl2 3 ・cSrO・dTiO2
と表したとき、前記a、b、c及びd、が
0.0954≦a≦0.1596
0.0954≦b≦0.1596
0.3903≦c≦0.5516
0.2129≦d≦0.3546
0.8181≦b/a≦1.2222
0.4285≦d/c≦0.7500
(ただし、a+b+c+d=1)
を満足する主成分と、該主成分100重量部に対して、Mn、W及びMoをMnO2 、WO3 、MoO3 換算で合計6.0重量部以下含有することを特徴とする誘電体磁器組成物。
It contains at least La, Al, Sr, and Ti as metal elements, and the composition formula according to the molar ratio of these metal elements is aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2.
Where a, b, c and d are 0.0954 ≦ a ≦ 0.1596.
0.0954 ≦ b ≦ 0.1596
0.3903 ≦ c ≦ 0.5516
0.2129 ≦ d ≦ 0.3546
0.8181 ≦ b / a ≦ 1.2222
0.4285 ≦ d / c ≦ 0.7500
(However, a + b + c + d = 1)
A dielectric ceramic characterized by containing Mn, W and Mo in a total amount of 6.0 parts by weight or less in terms of MnO 2 , WO 3 and MoO 3 with respect to 100 parts by weight of the main ingredient satisfying Composition.
請求項1乃至4のいずれかに記載した誘電体磁器組成物からなる共振媒体を一対の入出力端子間に配置し、これら入出力端子間に高周波信号を印可して所望の周波数で共振させるようにしたことを特徴とする誘電体共振器。A resonant medium comprising the dielectric ceramic composition according to any one of claims 1 to 4 is disposed between a pair of input / output terminals, and a high frequency signal is applied between the input / output terminals to resonate at a desired frequency. A dielectric resonator characterized by the above.
JP23607299A 1999-06-29 1999-08-23 Dielectric ceramic composition and dielectric resonator using the same Expired - Fee Related JP4303369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23607299A JP4303369B2 (en) 1999-06-29 1999-08-23 Dielectric ceramic composition and dielectric resonator using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-184426 1999-06-29
JP18442699 1999-06-29
JP23607299A JP4303369B2 (en) 1999-06-29 1999-08-23 Dielectric ceramic composition and dielectric resonator using the same

Publications (2)

Publication Number Publication Date
JP2001072464A JP2001072464A (en) 2001-03-21
JP4303369B2 true JP4303369B2 (en) 2009-07-29

Family

ID=26502496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23607299A Expired - Fee Related JP4303369B2 (en) 1999-06-29 1999-08-23 Dielectric ceramic composition and dielectric resonator using the same

Country Status (1)

Country Link
JP (1) JP4303369B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187997B2 (en) * 2001-09-19 2013-04-24 京セラ株式会社 Dielectric porcelain, method of manufacturing the same, and dielectric resonator using the same
JP2004143033A (en) 2002-08-30 2004-05-20 Murata Mfg Co Ltd Dielectric ceramic composition for high-frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication apparatus
JP2010235337A (en) * 2009-03-30 2010-10-21 Kyocera Corp Dielectric ceramic and dielectric resonator
CN114031390B (en) * 2021-12-14 2023-01-10 广东国华新材料科技股份有限公司 Microwave dielectric material and preparation method thereof

Also Published As

Publication number Publication date
JP2001072464A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP3562454B2 (en) High frequency porcelain, dielectric antenna, support base, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2625074B2 (en) Dielectric ceramic composition and dielectric resonator
EP0915066B1 (en) Dielectric ceramic composition and dielectric resonator made by using the same
JP3744660B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP2001181029A (en) Dielectric ceramic composition for high-frequency use, dielectric resonator, dielectric filter, dielectric duplexer and telecommunication equipment
JP4303369B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP4131996B2 (en) Dielectric ceramic composition and dielectric resonator using the same
EP1172345A1 (en) Dielectric ceramic for high frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication unit
JP2003238242A (en) Dielectric porcelain and dielectric resonator using the same
JP4839496B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2000095561A (en) Dielectric porcelain composition and dielectric resonator using the same
JP4513076B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP4548876B2 (en) High frequency dielectric ceramic composition and dielectric resonator using the same
JP4614485B2 (en) Dielectric resonator
JP3493316B2 (en) High frequency dielectric ceramic composition and dielectric resonator
US6940371B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP5197559B2 (en) High frequency dielectric ceramic composition and dielectric resonator using the same
JP3605295B2 (en) Dielectric ceramic composition and dielectric resonator using the same
KR100234018B1 (en) Dielectric ceramic compositions
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
KR100527960B1 (en) Dielectric ceramic composition and dielectric resonator using the same
JP3575336B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3598886B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2001151568A (en) Dielectric porcelain composition for high frequency and dielectric resonator using the same
JPH0729415A (en) Dielectric porcelain serving also as antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees