JP2001072464A - Dielectric ceramic composition and dielectric resonator using the same - Google Patents

Dielectric ceramic composition and dielectric resonator using the same

Info

Publication number
JP2001072464A
JP2001072464A JP23607299A JP23607299A JP2001072464A JP 2001072464 A JP2001072464 A JP 2001072464A JP 23607299 A JP23607299 A JP 23607299A JP 23607299 A JP23607299 A JP 23607299A JP 2001072464 A JP2001072464 A JP 2001072464A
Authority
JP
Japan
Prior art keywords
dielectric
weight
parts
ceramic composition
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23607299A
Other languages
Japanese (ja)
Other versions
JP4303369B2 (en
Inventor
Shunichi Murakawa
俊一 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23607299A priority Critical patent/JP4303369B2/en
Publication of JP2001072464A publication Critical patent/JP2001072464A/en
Application granted granted Critical
Publication of JP4303369B2 publication Critical patent/JP4303369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dielectric ceramic composition having both high dielectric constant and high Q-value in high-frequency region, with its temperature coefficient τf of resonance frequency controllable stably to low levels. SOLUTION: This dielectric ceramic composition contains at least La, Al, Sr and Ti as metallic elements, having the compositional formula aLa2O3.bAl2 O3.cSrO.dTiO2; wherein the parameters a, b, c and d are adjusted so as to meet the following ranges, respectively (where a+b+c+d=1):0.0954<=a<=0.1596, 0.0954<=b<=0.1596, 0.3903<=c<=0.5516 and 0.2129<=d<=0.3546, and also 0.8181<=b/a<=1.2222 and 0.4285<=d/c<0.7500.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波、ミリ
波等の高周波領域において、高いQ値を有する誘電体磁
器組成物に関するものであり、例えば、マイクロ波やミ
リ波などの高周波領域において使用される種々の共振器
用材料やMIC(MonolithicIC)用誘電体
基板材料、誘電体導波路用材料や積層型セラミックコン
デンサ−等に用いることができる誘電体磁器組成物に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition having a high Q value in a high frequency range such as a microwave and a millimeter wave, and is used in a high frequency range such as a microwave and a millimeter wave. The present invention relates to a dielectric ceramic composition which can be used for various resonator materials, a dielectric substrate material for MIC (Monolithic IC), a dielectric waveguide material, a multilayer ceramic capacitor, and the like.

【0002】[0002]

【従来の技術】誘電体磁器は、マイクロ波やミリ波等の
高周波領域において、誘電体共振器、MIC用誘電体基
板や導波路等に広く利用されている。そこに要求される
特性として(1) 誘電体中では波長が1/εr1/2 に短縮
されるので、小型化の要求に対して比誘電率が大きい
事、(2) 高周波での誘電損失が小さい事、すなわち高Q
値であること、(3) 共振周波数の温度に対する変化が小
さいこと、即ち、比誘電率の温度依存性が小さく且つ安
定であること、以上の3つの特性が主として挙げられ
る。
2. Description of the Related Art Dielectric ceramics are widely used in dielectric resonators, MIC dielectric substrates, waveguides, and the like in high-frequency regions such as microwaves and millimeter waves. The required characteristics are (1) Since the wavelength is reduced to 1 / εr 1/2 in a dielectric, a large relative dielectric constant is required for miniaturization, and (2) Dielectric loss at high frequencies Is small, that is, high Q
(3) the change in resonance frequency with respect to temperature is small, that is, the temperature dependency of the relative dielectric constant is small and stable.

【0003】従来、この種の誘電体磁器としては、例え
ば、Ba(Mg1/3 Ta2/3 )O3系材料(特公昭59
−23048号)、Ba(Zn1/3 Ta2/3 )O3 系材
料(特公昭59−48484号)、Ba(Zn1/3 Nb
2/3 )O3 系材料(特公昭53−35453号)、Ba
(Mg1/3 Nb2/3 )O3 系材料(特開昭53−353
45)などの酸化物磁器材料が知られている。
Conventionally, as this type of dielectric porcelain, for example, a Ba (Mg 1/3 Ta 2/3 ) O 3 material (Japanese Patent Publication No. 59-59 )
No. 23048), Ba (Zn 1/3 Ta 2/3 ) O 3 material (JP-B-59-48484), Ba (Zn 1/3 Nb)
2/3 ) O 3 material (JP-B-53-35453), Ba
(Mg 1/3 Nb 2/3 ) O 3 -based material (JP-A-53-353)
Oxide porcelain materials such as 45) are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、最近で
は使用する周波数領域がさらに高く成ってきており、こ
れに対応してさらに高いQ値を持つ材料が要求されてい
る。これから見て、従来の誘電体磁器組成物は、無負荷
Qが小さかったり、比誘電率が小さい為、共振器にした
ときの形状が大きくなり、また、温度係数が大きかった
りして、マイクロ波周波数帯で使用するには、いずれか
に難点があり、実際の使用においては不都合が多い。ま
た、これらの材料は、焼成温度が高く、焼成コストがか
かり、さらに、材料自体も、Ta、Nbを含む為高価で
あることから、コストが高く、市場に出回り難いと言っ
た問題があった。
However, recently, the frequency range to be used has been further increased, and accordingly, a material having a higher Q value has been demanded. From this, it can be seen that the conventional dielectric porcelain composition has a small unloaded Q and a small relative dielectric constant, so that the shape when formed into a resonator is large, and the temperature coefficient is large, and the microwave coefficient is large. There are some difficulties in using them in the frequency band, and there are many disadvantages in actual use. In addition, these materials have a problem that the firing temperature is high and the firing cost is high, and the materials themselves are expensive because they contain Ta and Nb. .

【0005】本発明は、上記の欠点に鑑み案出されたも
ので、比誘電率が大きく、高Q値で、比誘電率の温度依
存性が小さく且つ安定であり、さらに安価な材料での誘
電体磁器組成物を提供するものである。
The present invention has been made in view of the above-mentioned drawbacks, and has a large relative dielectric constant, a high Q value, a small temperature dependence of the relative dielectric constant, and is stable. A dielectric porcelain composition is provided.

【0006】[0006]

【課題を解決するための手段】本発明者は上記問題に対
し、検討を重ねた結果、金属元素として少なくともL
a,Al,Sr,Tiを含有し、これらを特定の範囲に
調整することによって、比誘電率が大きく、高Q値で、
比誘電率の温度依存性が小さく且つ、安定である誘電体
磁器組成物が得られることを知見した。
Means for Solving the Problems The present inventor has repeatedly studied the above problem and found that at least L
By containing a, Al, Sr, and Ti and adjusting them to a specific range, the relative dielectric constant is large, the Q value is high,
It has been found that a dielectric ceramic composition having a small temperature dependence of the relative dielectric constant and being stable can be obtained.

【0007】即ち、本発明の誘電体磁器組成物は、金属
元素として少なくともLa,Al,Sr,Tiを含有
し、これらの金属元素のモル比による組成式をaLa2
3 ・bAl2 3 ・cSrO・dTiO2 と表した
時、前記a、b、c、d、が、 0.0954≦a≦0.1596 0.0954≦b≦0.1596 0.3903≦c≦0.5516 0.2129≦d≦0.3546 0.8181≦b/a≦1.2222 0.4285≦d/c<0.7500 (ただし a+b+c+d=1) と表される組成範囲内にあることを特徴とする。
That is, the dielectric porcelain composition of the present invention contains at least La, Al, Sr, and Ti as metal elements, and the composition formula based on the molar ratio of these metal elements is aLa 2.
When expressed as O 3 · bAl 2 O 3 · cSrO · dTiO 2, wherein a, b, c, d, but, 0.0954 ≦ a ≦ 0.1596 0.0954 ≦ b ≦ 0.1596 0.3903 ≦ Within a composition range expressed as c ≦ 0.5516 0.2129 ≦ d ≦ 0.3546 0.8181 ≦ b / a ≦ 1.2222 0.4285 ≦ d / c <0.7500 (where a + b + c + d = 1) There is a feature.

【0008】また、金属元素として少なくともLa、A
l、Sr及びTiを含有し、これらの金属元素のモル比
による組成式を aLa2 3 ・bAl2 3 ・cSrO・dTiO2 と表したとき、前記a、b、c及びdが 0.0954≦a≦0.1596 0.0954≦b≦0.1596 0.3903≦c≦0.5516 0.2129≦d≦0.3546 0.8181≦b/a≦1.2222 0.4285≦d/c≦0.7500 (ただし、a+b+c+d=1) を満足する主成分と、該主成分100重量部に対して、
MnをMnO2 換算で3.0重量部以下、又はWをWO
3 換算で5.0重量部以下、又はMoをMoO3換算で
5.0重量部以下含有することを特徴とする。
In addition, at least La, A
l, when containing Sr and Ti, showing the composition formula by molar ratio of these metal elements and aLa 2 O 3 · bAl 2 O 3 · cSrO · dTiO 2, wherein a, b, c and d are 0. 0954 ≦ a ≦ 0.1596 0.0954 ≦ b ≦ 0.1596 0.3903 ≦ c ≦ 0.5516 0.2129 ≦ d ≦ 0.3546 0.8181 ≦ b / a ≦ 1.2222 0.4285 ≦ d /C≦0.7500 (where a + b + c + d = 1) and 100 parts by weight of the main component,
Mn is 3.0 parts by weight or less in terms of MnO 2 , or W is WO
Equivalent to 3 5.0 parts by weight or less, or Mo, characterized in that it contains more than 5.0 parts by weight calculated as MoO 3.

【0009】また、金属元素として少なくともLa、A
l、Sr、Tiを含有し、これらの金属元素のモル比に
よる組成式を aLa2 3 ・bAl2 3 ・cSrO・dTiO2 と表したとき、前記a、b、c、d、が 0.0954≦a≦0.1596 0.0954≦b≦0.1596 0.3903≦c≦0.5516 0.2129≦d≦0.3546 0.8181≦b/a≦1.2222 0.4285≦d/c≦0.7500 (ただし、a+b+c+d=1) を満足する主成分と、該主成分100重量部に対して、
Mn、W、MoをMnO2 、WO3 、MnO3 換算で
6.0重量部以下含有することを特徴とする。
Further, at least La, A as a metal element
l, Sr, containing Ti, when the composition formula by molar ratio of the metal elements expressed as aLa 2 O 3 · bAl 2 O 3 · cSrO · dTiO 2, wherein a, b, c, d, but 0 0.0954 ≦ a ≦ 0.1596 0.0954 ≦ b ≦ 0.1596 0.3903 ≦ c ≦ 0.5516 0.2129 ≦ d ≦ 0.3546 0.8181 ≦ b / a ≦ 1.2222 0.4285 ≦ With respect to a main component satisfying d / c ≦ 0.7500 (a + b + c + d = 1) and 100 parts by weight of the main component,
Mn, W, and Mo are contained in an amount of 6.0 parts by weight or less in terms of MnO 2 , WO 3 , and MnO 3 .

【0010】また、本発明の誘電体共振器は、一対の入
出力端子間に誘電体磁器を配置してなり、電磁界結合に
より作動する誘電体共振器において、前記誘電体磁器
が、上記高周波用誘電体磁器組成物からなるものであ
る。
In the dielectric resonator according to the present invention, a dielectric porcelain is disposed between a pair of input / output terminals, and the dielectric porcelain operates by electromagnetic field coupling. It comprises a dielectric ceramic composition for use.

【0011】本発明は、上記構成により、比誘電率εr
が大きく、高Q値であり、共振周波数の温度係数τf の
絶対値が小さく、且つ、εr、Q、τf の値を安定に制
御でき、さらに、Ta、Nb等の高価な元素を含む材料
を使う事無く、安価な誘電体磁器組成物及び誘電体共振
器となる。
According to the present invention, the relative permittivity εr
Is large, the Q value is high, the absolute value of the temperature coefficient τf of the resonance frequency is small, the values of εr, Q, τf can be controlled stably, and materials containing expensive elements such as Ta and Nb can be used. Without using it, it becomes an inexpensive dielectric ceramic composition and dielectric resonator.

【0012】[0012]

【発明の実施の形態】本発明の高周波用誘電体磁器組成
物は、金属元素として少なくともLa、Al、Sr及び
Tiを含有する複合酸化物を主成分組成物とする物であ
る。かかる主成分組成物における前記金属元素のモル比
による組成式を aLa2 3 ・bAl2 3 ・cSrO・dTiO と表したとき、前記a、b、c、dが 0.0954≦a≦0.1596 0.0954≦b≦0.1596 0.3903≦c≦0.5516 0.2129≦d≦0.3546 0.8181≦b/a≦1.2222 0.4285≦d/c<0.7500 (ただし、a+b+c+d=1) であることが重要である。これらのa、b、c、dを上
記の範囲に限定した理由は以下の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION The high frequency dielectric ceramic composition of the present invention comprises a composite oxide containing at least La, Al, Sr and Ti as metal elements as a main component composition. When the composition formula based on the molar ratio of the metal element in such a main component composition is expressed as aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2 , a, b, c, and d are 0.0954 ≦ a ≦ 0.1596 0.0954 ≦ b ≦ 0.1596 0.3903 ≦ c ≦ 0.5516 0.2129 ≦ d ≦ 0.3546 0.8181 ≦ b / a ≦ 1.2222 0.4285 ≦ d / c <0 0.7500 (where a + b + c + d = 1). The reasons for limiting a, b, c, and d to the above ranges are as follows.

【0013】即ち、0.0954≦a≦0.1596と
したのは、a<0.0954の場合は、共振周波数の温
度係数τfが正に大きくなり、共振周波数の温度係数τ
fの絶対値が30を大きく越えてしまうからであり、a
>0.1596の場合は、τfが負に大きくなり、その
絶対値が30を越えてしまうからである。特に0.12
11≦a≦0.1369の範囲が好ましい。
That is, the reason for setting 0.0954 ≦ a ≦ 0.1596 is that when a <0.0954, the temperature coefficient τf of the resonance frequency becomes positive and the temperature coefficient τf of the resonance frequency becomes large.
This is because the absolute value of f greatly exceeds 30.
If> 0.1596, τf becomes large negatively, and its absolute value exceeds 30. Especially 0.12
The range of 11 ≦ a ≦ 0.1369 is preferable.

【0014】また、0.0954≦b≦0.1596と
したのは、b<0.0954の場合は、共振周波数の温
度係数τf が正に大きくなり、τf の絶対値が30を大
きく越え、b>0.1596の場合は、共振周波数τf
が負に大きくなり、τf の絶対値が30を越えてしまう
からである。bは、特に0.1211≦b≦0.136
9の範囲が好ましい。
Further, the reason for setting 0.0954 ≦ b ≦ 0.1596 is that when b <0.0954, the temperature coefficient τf of the resonance frequency becomes positive and the absolute value of τf greatly exceeds 30, When b> 0.1596, the resonance frequency τf
Becomes negative and the absolute value of τf exceeds 30. b is, in particular, 0.1211 ≦ b ≦ 0.136
A range of 9 is preferred.

【0015】さらに、0.3903≦c≦0.5516
としたのは、c<0.3903の場合は、共振周波数の
温度係数τf が負に大きくなり、τf の絶対値が30を
大きく越えてしまうからである。c>0.5516の場
合には、共振周波数の温度係数τfが正に大きくなり、
その絶対値が30を越えてしまうからである。特に、
0.4284≦c≦0.4698の範囲が好ましい。
Further, 0.3903 ≦ c ≦ 0.5516
The reason is that when c <0.3903, the temperature coefficient τf of the resonance frequency becomes negative and the absolute value of τf greatly exceeds 30. When c> 0.5516, the temperature coefficient τf of the resonance frequency becomes positive, and
This is because the absolute value exceeds 30. In particular,
The range of 0.4284 ≦ c ≦ 0.4698 is preferable.

【0016】また、0.2129≦d≦0.3546と
したのは、d<0.2129の場合は、共振周波数の
温度係数τfが負に大きくなり、その絶対値が30を越
えてしまうからであり、d>0.3546の場合は、共
振周波数の温度係数τfが正に大きくなり、その絶対値
が30を越えてしまうからである。特に、0.2759
≦d≦0.3107が好ましい。
Further, the condition of 0.2129 ≦ d ≦ 0.3546 is that when d <0.2129, the resonance frequency
This is because the temperature coefficient τf becomes negative and its absolute value exceeds 30. When d> 0.3546, the temperature coefficient τf of the resonance frequency becomes positive and its absolute value exceeds 30. It is because. In particular, 0.2759
≦ d ≦ 0.3107 is preferred.

【0017】さらに、0.8181≦b/a≦1.22
22としたのは、b/a<0.8181の場合や、b/
a>1.2222の場合には、Qfが大きく低下し、4
0000より低下するからである。特に、0.9602
≦b/a≦1.1744が好ましい。
Furthermore, 0.8181 ≦ b / a ≦ 1.22
22 is set when b / a <0.8181 or when b / a <0.8181.
In the case of a> 1.2222, Qf greatly decreases and 4
This is because it is lower than 0000. In particular, 0.9602
≦ b / a ≦ 1.1744 is preferred.

【0018】また、0.4285≦d/c<0.750
0としたのは、d/c<0.4285の場合は、比誘
電率εrが小さくなり、d/c≧0.7500の場合に
は、τf が正に大きくなり、その絶対値が30を越えて
しまうからである。特に0.6129≦d/c≦0.6
949が好ましい。
Also, 0.4285 ≦ d / c <0.750
0 was set when d / c <0.4285.
This is because when the electric conductivity εr decreases and d / c ≧ 0.7500, τf increases positively and its absolute value exceeds 30. In particular, 0.6129 ≦ d / c ≦ 0.6
949 is preferred.

【0019】さらに、0.8181≦b/a≦1.22
22であり、かつ0.4285≦d/c<0.7500
としたのは、この範囲において、τf を0付近で調整で
きるからである。
Furthermore, 0.8181 ≦ b / a ≦ 1.22
22 and 0.4285 ≦ d / c <0.7500
The reason is that τf can be adjusted near 0 in this range.

【0020】また、本発明は、上記主成分100重量部
に対して、MnO2 換算で3.0重量部以下Mnを含有
させることによって、εrやτf を変化させずに、Q値
のみを向上させることができるのである。Mnの含有量
をMnO2 換算で3.0重量部以下としたのは、3.0
重量部を越えるとQ値が極端に小さくなるためである。
さらに、上述した効果を奏する為には、Mnの量をMn
2 換算で0.01〜3.0重量部とすることが望まし
く、特に0.1〜1.0重量部とすることが望ましい。
Further, the present invention improves the Q value only without changing εr or τf by adding 3.0 parts by weight or less of Mn in terms of MnO 2 with respect to 100 parts by weight of the main component. It can be done. The reason that the content of Mn was set to 3.0 parts by weight or less in terms of MnO 2 was 3.0.
This is because when the amount exceeds the weight part, the Q value becomes extremely small.
Further, in order to achieve the above-described effects, the amount of Mn is changed to Mn.
It is preferably 0.01 to 3.0 parts by weight in terms of O 2 , particularly preferably 0.1 to 1.0 part by weight.

【0021】また、本発明は、上記主成分100重量部
に対して、WO3 換算で5.0重量部以下Wを含有させ
ることによって、Q値を向上させることができるのであ
る。Wの含有量をWO3 換算で5.0重量部としたの
は、5.0重量部を越えるとQ値が極端に小さくなるた
めである。さらに、上述した効果を奏する為には、Wの
量をWO3 換算で0.01〜5.0重量部とすることが
望ましく、特に0.1〜2.0重量部とすることが望ま
しい。
Further, the present invention is, with respect to the 100 parts by weight of the main component, by the inclusion of 5.0 parts by weight or less W in terms of WO 3, it is possible to improve the Q value. The content of W is set to 5.0 parts by weight in terms of WO 3 because the Q value becomes extremely small when it exceeds 5.0 parts by weight. Furthermore, in order to achieve the effect described above, it is desirable that 0.01 to 5.0 parts by weight the amount of W in terms of WO 3, it is desirable to particularly 0.1 to 2.0 parts by weight.

【0022】また、本発明は、上記主成分100重量部
に対して、MoO3 換算で5.0重量部以下Moを含有
させることによって、Q値を向上させることができるの
である。Moの含有量をMoO3 換算で5.0重量部以
下としたのは、5.0重量部を越えるとQ値が極端に小
さくなるためである。さらに、上述した効果を奏する為
には、MoをMoO3 換算で0.01〜5.0重量部と
することが望ましく、特に0.1〜2.0重量部とする
ことが望ましい。
In the present invention, the Q value can be improved by adding 5.0 parts by weight or less of Mo in terms of MoO 3 with respect to 100 parts by weight of the main component. The reason why the Mo content is set to 5.0 parts by weight or less in terms of MoO 3 is that if the content exceeds 5.0 parts by weight, the Q value becomes extremely small. Furthermore, in order to achieve the effect described above, it is desirable that 0.01 to 5.0 parts by weight of Mo calculated as MoO 3, it is desirable to particularly 0.1 to 2.0 parts by weight.

【0023】なお、上記Mn,W,Moの各成分は、そ
れぞれ1種又は2種以上を含有させることができる。こ
れらの成分を全て含有する場合は、上記主成分100重
量部に対して、MnO2 、WO3 、MoO3 換算で合計
6.0重量部以下含有させることによって、Q値を向上
させることができる。Mn、W、Moの含有量をMnO
2 、WO3 、MnO3 換算で6.0重量部以下としたの
は、6.0重量部を越えるとQ値が極端に小さくなるた
めである。さらに、上述した効果を奏する為には、Mn
2 、WO3 、MnO3 換算で0.01〜6.0重量部
とすることが望ましく、特に0.1〜2.0重量部とす
ることが望ましい。
Each of the above components of Mn, W, and Mo may contain one or more of them. When all of these components are contained, the Q value can be improved by including a total of 6.0 parts by weight or less in terms of MnO 2 , WO 3 , and MoO 3 with respect to 100 parts by weight of the main component. . The content of Mn, W, and Mo was changed to MnO
2. The reason why the content is not more than 6.0 parts by weight in terms of WO 3 and MnO 3 is that if it exceeds 6.0 parts by weight, the Q value becomes extremely small. Further, in order to achieve the above-described effects, Mn
The content is preferably 0.01 to 6.0 parts by weight, particularly 0.1 to 2.0 parts by weight in terms of O 2 , WO 3 and MnO 3 .

【0024】本発明の誘電体磁器組成物は、例えば、以
下のようにして作製される。出発原料として、高純度の
酸化ランタン、酸化アルミニウム、炭酸ストロンチウ
ム、酸化チタンの各粉末を用いて、所望の割合となるよ
うに秤量後、純水を加え、混合原料の平均粒径が2.0
μm以下となるまで10〜30時間、ジルコニアボール
等を使用したミルにより湿式混合・粉砕を行う。この混
合物を乾燥後、1000〜1300℃で2〜10時間仮
焼し、さらに5重量%のバインダーを加えてから造粒
し、得られた粉末を所望の成形手段、例えば、金型プレ
ス、冷間静水圧プレス、押し出し成形等により任意の形
状に成形後、1500〜1700℃の温度で1〜10時
間大気中において焼成することにより得られる。
The dielectric ceramic composition of the present invention is produced, for example, as follows. As starting materials, high-purity lanthanum oxide, aluminum oxide, strontium carbonate, and titanium oxide powders were weighed so as to have a desired ratio, and pure water was added.
Wet mixing and pulverization are performed by a mill using zirconia balls or the like for 10 to 30 hours until the particle size becomes not more than μm. After the mixture is dried, it is calcined at 1000 to 1300 ° C. for 2 to 10 hours, and granulated after further adding 5% by weight of a binder, and the obtained powder is subjected to desired molding means, for example, die pressing, cold pressing. It is obtained by forming into an arbitrary shape by isostatic pressing, extrusion molding or the like, and then firing in the air at a temperature of 1500 to 1700 ° C. for 1 to 10 hours.

【0025】本発明における誘電体磁器組成物では、L
a、Al、Sr、Tiの出発原料としては、酸化物以
外に炭酸塩、酢酸塩、硝酸塩、水酸化物等のように、酸
化性雰囲気での熱処理によって酸化物を生成し得る化合
物を用いても良い。
In the dielectric porcelain composition of the present invention, L
a, Al, Sr, Ti starting materials
In addition, a compound that can generate an oxide by heat treatment in an oxidizing atmosphere, such as a carbonate, an acetate, a nitrate, or a hydroxide, may be used.

【0026】本発明においては、磁器中に不可避不純物
として、Ca、Zr、Si、Ba等が混入する場合があ
るが、これらは、各々または全部で、酸化物換算で0.
1重量%程度混入しても特性上問題ない。
In the present invention, Ca, Zr, Si, Ba, and the like may be mixed as unavoidable impurities into the porcelain.
Even if it is mixed in about 1% by weight, there is no problem in characteristics.

【0027】本発明の上記誘電体磁器組成物は、誘電体
共振器用としても最も有用である。本発明の誘電体共振
器として、図1のTEモード型誘電体共振器の概略図を
示した。図1の共振器は、金属ケ−ス1の両側に入力端
子2及び出力端子3を形成し、これらの端子2、3の間
に上記したような組成からなる誘電体磁器4を配置して
構成される。このように、TEモ−ド型の誘電体共振器
は、入力端子2からマイクロ波が入力され、マイクロ波
は誘電体磁器4と自由空間との境界の反射によって誘電
体磁器4内に閉じこめられ、特定の周波数で共振を起こ
す。
The above-mentioned dielectric ceramic composition of the present invention is most useful for a dielectric resonator. As a dielectric resonator of the present invention, a schematic diagram of the TE mode dielectric resonator of FIG. 1 is shown. In the resonator shown in FIG. 1, an input terminal 2 and an output terminal 3 are formed on both sides of a metal case 1, and a dielectric porcelain 4 having the above-described composition is arranged between these terminals 2, 3. Be composed. As described above, in the TE mode dielectric resonator, the microwave is input from the input terminal 2 and the microwave is confined in the dielectric ceramic 4 by reflection at the boundary between the dielectric ceramic 4 and free space. Causes resonance at a specific frequency.

【0028】この信号が出力端子3と電磁界結合し、出
力される。また、図示しないが、本発明の誘電体磁器組
成物TEMモ−ドを用いた同軸形共振器やストリップ線
路共振器、TMモ−ドの誘電体磁器共振器、その他の共
振器に適用しても良いことは勿論である。
This signal is electromagnetically coupled to the output terminal 3 and output. Although not shown, the present invention is applied to a coaxial resonator, a strip line resonator, a TM mode dielectric ceramic resonator, and other resonators using the dielectric ceramic composition TEM mode of the present invention. Of course, it is also good.

【0029】[0029]

【実施例】実施例1 出発原料として高純度の酸化ランタン(La2 3 )、
酸化アルミニウム(Al2 3 )、炭酸ストロンチウム
(SrCO3 )、酸化チタン(TiO2 )の各粉末を用
いて、それらを表1となるように秤量後、純水を加え、
混合原料の平均粒径が2.0μm以下となるまで、ミル
により約20時間湿式混合、粉砕を行った。なお、ミル
のボールの種類や他の種々の条件により、ZrO2 やS
iO2 、その他の希土類元素の不純物が合計で1重量%
以下含有される場合がある。
Example 1 High-purity lanthanum oxide (La 2 O 3 ) as a starting material
Using each powder of aluminum oxide (Al 2 O 3 ), strontium carbonate (SrCO 3 ), and titanium oxide (TiO 2 ), weighing them as shown in Table 1, and adding pure water,
The mixture was wet-mixed and pulverized for about 20 hours by a mill until the average particle size of the mixed raw material became 2.0 μm or less. Note that ZrO 2 and S
1% by weight of total impurities of iO 2 and other rare earth elements
The following may be contained.

【0030】この混合物を乾燥後、1200℃で2時間
仮焼し、さらに約5重量%のバインダーを加えてから
造粒し、得られた粉末を約1ton/cm2 の圧力で円
板状に成形し、1500〜1700℃の温度で2時間大
気中において焼成した。
After the mixture is dried, it is calcined at 1200 ° C. for 2 hours, and about 5% by weight of a binder is added.
The obtained powder was granulated, formed into a disk at a pressure of about 1 ton / cm 2 , and fired in the air at a temperature of 1500 to 1700 ° C. for 2 hours.

【0031】得られた磁器の円板部を平面研磨し、アセ
トン中で超音波洗浄し、150℃で1時間乾燥した後、
円柱共振器法により測定周波数3.5〜4.5GHzで
比誘電率εr、Q値、共振周波数の温度係数τfを測定
した。Q値は、マイクロ波誘電体において一般に成立す
るQ値×測定周波数f=一定の関係から1GHzでのQ
値に換算した。
The disk portion of the obtained porcelain was polished flat, ultrasonically washed in acetone, and dried at 150 ° C. for 1 hour.
The relative permittivity εr, the Q value, and the temperature coefficient τf of the resonance frequency were measured at a measurement frequency of 3.5 to 4.5 GHz by a cylindrical resonator method. The Q value is determined by the following formula: Q value generally established in microwave dielectric × measurement frequency f = Q at 1 GHz from a fixed relation.
It was converted to a value.

【0032】共振周波数の温度係数τfは、−40〜8
5℃の範囲で測定した。
The temperature coefficient τf of the resonance frequency is -40 to 8
It was measured in the range of 5 ° C.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例2 出発原料として高純度の酸化ランタン(La2 3 )、
酸化アルミニウム(Al2 3 )、炭酸ストロンチウム
(SrCO3 )、酸化チタン(TiO2 )の各粉末を用
いて、それらを表2となるように秤量後、純水を加え、
混合原料の平均粒径が2.0μm以下となるまで、ミル
により約20時間湿式混合、粉砕を行った。
Example 2 High-purity lanthanum oxide (La 2 O 3 ) as a starting material
Using each powder of aluminum oxide (Al 2 O 3 ), strontium carbonate (SrCO 3 ), and titanium oxide (TiO 2 ), weighing them as shown in Table 2, and adding pure water,
The mixture was wet-mixed and pulverized for about 20 hours by a mill until the average particle size of the mixed raw material became 2.0 μm or less.

【0035】この混合物を乾燥後、1200℃で2時間
仮焼した。この仮焼粉100重量部に対し、MnO2
WO3 、MoO3 を表2に示す量を添加後、純水を加
え、混合原料の平均粒径が2.0μm以下となるまで、
ミルにより約20時間湿式混合、粉砕を行った。乾燥
後、さらに約5重量%のバインダーを加えてから造粒し
た。
After drying this mixture, it was calcined at 1200 ° C. for 2 hours. With respect to 100 parts by weight of the calcined powder, MnO 2 ,
After adding WO 3 and MoO 3 in the amounts shown in Table 2, pure water was added until the average particle size of the mixed raw material became 2.0 μm or less.
The mixture was wet-mixed and pulverized for about 20 hours by a mill. After drying, about 5% by weight of a binder was further added, followed by granulation.

【0036】得られた粉末を約1ton/cm2 の圧力
で円板状に成形し、1500〜1700℃の温度で2時
間大気中において焼成した。
The obtained powder was formed into a disk at a pressure of about 1 ton / cm 2 and fired in the air at a temperature of 1500 to 1700 ° C. for 2 hours.

【0037】得られた磁器の円板部を平面研磨し、アセ
トン中で超音波洗浄し、150℃で1時間乾燥した後、
円柱共振器法により測定周波数3.5〜4.5GHzで
比誘電率εr、Q値、共振周波数の温度係数τfを測定
した。Q値は、マイクロ波誘電体において一般に成立す
るQ値×測定周波数f=一定の関係から1GHzでのQ
値に換算した。
The disk portion of the obtained porcelain was polished flat, ultrasonically cleaned in acetone, and dried at 150 ° C. for 1 hour.
The relative permittivity εr, the Q value, and the temperature coefficient τf of the resonance frequency were measured at a measurement frequency of 3.5 to 4.5 GHz by a cylindrical resonator method. The Q value is determined by the following formula: Q value generally established in microwave dielectric × measurement frequency f = Q at 1 GHz from a fixed relation.
It was converted to a value.

【0038】共振周波数の温度係数τfは、−40〜8
5℃の範囲で測定した。
The temperature coefficient τf of the resonance frequency is -40 to 8
It was measured in the range of 5 ° C.

【0039】[0039]

【表2】 [Table 2]

【0040】表1、2からも明らかなように、本発明の
範囲外の誘電体では、比誘電率又はQ値が低いか、ある
いはτfの絶対値が30を超えていた。
As is clear from Tables 1 and 2, dielectrics outside the range of the present invention had low relative permittivity or Q value, or had an absolute value of τf exceeding 30.

【0041】これらに対し、本発明により得られた誘電
体は、Q値が70000以上、τfが±30(ppm/
℃)以内の優れた誘電特性が得られることがわかった。
On the other hand, the dielectric obtained by the present invention has a Q value of 70,000 or more and a τf of ± 30 (ppm /
It was found that excellent dielectric properties within (° C) were obtained.

【0042】[0042]

【発明の効果】以上詳述した通り、本発明によれば、金
属元素として少なくともLa,Al,Sr,Tiを含有
し、これらの金属元素のモル比による組成式をaLa2
3 ・bAl2 3 ・cSrO・dTiO2 と表した
時、前記a、b、c、dが、 0.0954≦a≦0.1596 0.0954≦b≦0.1596 0.3903≦c≦0.5516 0.2129≦d≦0.3546 0.8181≦b/a≦1.2222 かつ0.4285≦d/c<0.7500 (ただし a+b+c+d=1) と表される組成範囲内に調整することによって、また、
この主成分にMn、W、Moを添加することで、高周波
領域において比誘電率εrが30付近で高いQ値を有す
るとともに、共振周波数の温度係数τfを0付近に、安
定して制御することができた。
As described in detail above, according to the present invention, at least La, Al, Sr, and Ti are contained as metal elements, and the composition formula based on the molar ratio of these metal elements is aLa 2.
When expressed as O 3 · bAl 2 O 3 · cSrO · dTiO 2 , the a, b, c, and d are 0.0954 ≦ a ≦ 0.1596 0.0954 ≦ b ≦ 0.1596 0.3903 ≦ c ≦ 0.5516 0.2129 ≦ d ≦ 0.3546 0.8181 ≦ b / a ≦ 1.2222 and 0.4285 ≦ d / c <0.7500 (where a + b + c + d = 1) By adjusting, also
By adding Mn, W, and Mo to this main component, a high dielectric constant εr has a high Q value in the vicinity of 30 in a high frequency region, and the temperature coefficient τf of the resonance frequency is stably controlled to be close to 0. Was completed.

【0043】また、Ta、Nb等を構成元素とする従来
の誘電体磁器組成物に比べてより安価な材料を提供する
ことができる。さらに、Ta、Nbで構成されている既
存材は、高温で、長時間焼成温度を保持しなければ、結
晶の規則化が起こらない為、焼成コストがかかっていた
が、本発明の材料であれば、焼成温度の保持時間も2〜
10時間ですみ、焼成コストが大幅に削減できる。
Further, it is possible to provide a less expensive material as compared with a conventional dielectric ceramic composition containing Ta, Nb or the like as a constituent element. In addition, the existing material composed of Ta and Nb has a high firing temperature at a high temperature unless the firing temperature is maintained for a long time. If the firing temperature is maintained for 2
In 10 hours, the firing cost can be greatly reduced.

【0044】これにより、本発明の誘電体磁器組成物
は、例えば、自動車電話、コードレステレホン、パーソ
ナル無線機、衛星放送受信機等の装置において、マイク
ロ波やミリ波領域において使用される共振器用材料やM
IC用誘電体基板材料、誘電体導波線路、誘電体アンテ
ナ、その他の各種電子部品等に好適に適用することがで
きる。
Thus, the dielectric porcelain composition of the present invention can be used as a material for a resonator used in a microwave or millimeter wave region in a device such as an automobile telephone, a cordless telephone, a personal wireless device, a satellite broadcast receiver, and the like. And M
The present invention can be suitably applied to a dielectric substrate material for an IC, a dielectric waveguide, a dielectric antenna, and other various electronic components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の誘電体共振器を示す説明図である。FIG. 1 is an explanatory view showing a dielectric resonator of the present invention.

【符号の説明】[Explanation of symbols]

1.金属ケ−ス 2.入力端子 3.出力端子 4.誘電体磁器 1. Metal case 2. Input terminal 3. Output terminal 4. Dielectric porcelain

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01P 7/10 H01P 7/10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01P 7/10 H01P 7/10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属元素として少なくともLa、Al、S
r及びTiを含有し、これらの金属元素のモル比による
組成式を aLa2 3 ・bAl2 3 ・cSrO・dTiO2 と表したとき、前記a,b,c,及びdが 0.0954≦a≦0.1596 0.0954≦b≦0.1596 0.3903≦c≦0.5516 0.2129≦d≦0.3546 0.8181≦b/a≦1.2222 0.4285≦d/c<0.7500 (ただし a+b+c+d=1) の範囲内にあることを特徴とする誘電体磁器組成物。
1. At least La, Al, S as a metal element
containing r and Ti, when the composition formula by molar ratio of the metal elements expressed as aLa 2 O 3 · bAl 2 O 3 · cSrO · dTiO 2, wherein a, b, c, and d is 0.0954 ≤a≤0.1596 0.0954≤b≤0.1596 0.3903≤c≤0.5516 0.2129≤d≤0.3546 0.8181≤b / a≤1.2222 0.4285≤d / c <0.7500 (where a + b + c + d = 1).
【請求項2】金属元素として少なくともLa、Al、S
r及びTiを含有し、これらの金属元素のモル比による
組成式を aLa2 3 ・bAl2 3 ・cSrO・dTiO2 と表したとき、前記a、b、c、及びdが 0.0954≦a≦0.1596 0.0954≦b≦0.1596 0.3903≦c≦0.5516 0.2129≦d≦0.3546 0.8181≦b/a≦1.2222 0.4285≦d/c≦0.7500 (ただし、a+b+c+d=1) を満足する主成分と、該主成分100重量部に対して、
MnをMnO2 換算で3.0重量部以下、又はWをWO
3 換算で5.0重量部以下、又はMoをMoO3換算で
5.0重量部以下含有することを特徴とする誘電体磁器
組成物。
2. At least La, Al, S as a metal element
r and Ti, and when the composition formula based on the molar ratio of these metal elements is expressed as aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2 , a, b, c, and d are 0.0954 ≤a≤0.1596 0.0954≤b≤0.1596 0.3903≤c≤0.5516 0.2129≤d≤0.3546 0.8181≤b / a≤1.2222 0.4285≤d / With respect to a main component satisfying c ≦ 0.7500 (a + b + c + d = 1) and 100 parts by weight of the main component,
Mn is 3.0 parts by weight or less in terms of MnO 2 , or W is WO
3. A dielectric porcelain composition containing not more than 5.0 parts by weight in terms of 3 or not more than 5.0 parts by weight of Mo in terms of MoO3.
【請求項3】金属元素として少なくともLa、Al、S
r及びTiを含有し、これらの金属元素のモル比による
組成式を aLa2 3 ・bAl2 3 ・cSrO・dTiO2 と表したとき、前記a、b、c及びd、が 0.0954≦a≦0.1596 0.0954≦b≦0.1596 0.3903≦c≦0.5516 0.2129≦d≦0.3546 0.8181≦b/a≦1.2222 0.4285≦d/c≦0.7500 (ただし、a+b+c+d=1) を満足する主成分と、該主成分100重量部に対して、
Mn、W及びMoをMnO2 、WO3 、MoO3 換算で
合計6.0重量部以下含有することを特徴とする誘電体
磁器組成物。
3. At least La, Al, S as a metal element
When the composition formula based on the molar ratio of these metal elements is represented by aLa 2 O 3 .bAl 2 O 3 .cSrO.dTiO 2 , the a, b, c and d are 0.0954. ≤a≤0.1596 0.0954≤b≤0.1596 0.3903≤c≤0.5516 0.2129≤d≤0.3546 0.8181≤b / a≤1.2222 0.4285≤d / With respect to a main component satisfying c ≦ 0.7500 (a + b + c + d = 1) and 100 parts by weight of the main component,
Mn, MnO 2 W and Mo, WO 3, MoO 3 dielectric ceramic composition characterized by containing the following total 6.0 parts by weight basis.
【請求項4】請求項1乃至4のいずれかに記載した誘電
体磁器組成物からなる共振媒体を一対の入出力端子間に
配置し、これら入出力端子間に高周波信号を印可して所
望の周波数で共振させるようにしたことを特徴とする誘
電体共振器。
4. A resonance medium comprising the dielectric ceramic composition according to claim 1 is disposed between a pair of input / output terminals, and a high-frequency signal is applied between the input / output terminals to obtain a desired medium. A dielectric resonator characterized by resonating at a frequency.
JP23607299A 1999-06-29 1999-08-23 Dielectric ceramic composition and dielectric resonator using the same Expired - Fee Related JP4303369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23607299A JP4303369B2 (en) 1999-06-29 1999-08-23 Dielectric ceramic composition and dielectric resonator using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-184426 1999-06-29
JP18442699 1999-06-29
JP23607299A JP4303369B2 (en) 1999-06-29 1999-08-23 Dielectric ceramic composition and dielectric resonator using the same

Publications (2)

Publication Number Publication Date
JP2001072464A true JP2001072464A (en) 2001-03-21
JP4303369B2 JP4303369B2 (en) 2009-07-29

Family

ID=26502496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23607299A Expired - Fee Related JP4303369B2 (en) 1999-06-29 1999-08-23 Dielectric ceramic composition and dielectric resonator using the same

Country Status (1)

Country Link
JP (1) JP4303369B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095736A (en) * 2001-09-19 2003-04-03 Kyocera Corp Dielectric ceramic, production method therefor, and dielectric resonator obtained by using the same
US6940371B2 (en) 2002-08-30 2005-09-06 Murata Manufacturing Co., Ltd. High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2010235337A (en) * 2009-03-30 2010-10-21 Kyocera Corp Dielectric ceramic and dielectric resonator
CN114031390A (en) * 2021-12-14 2022-02-11 广东国华新材料科技股份有限公司 Microwave dielectric material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095736A (en) * 2001-09-19 2003-04-03 Kyocera Corp Dielectric ceramic, production method therefor, and dielectric resonator obtained by using the same
US6940371B2 (en) 2002-08-30 2005-09-06 Murata Manufacturing Co., Ltd. High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2010235337A (en) * 2009-03-30 2010-10-21 Kyocera Corp Dielectric ceramic and dielectric resonator
CN114031390A (en) * 2021-12-14 2022-02-11 广东国华新材料科技股份有限公司 Microwave dielectric material and preparation method thereof

Also Published As

Publication number Publication date
JP4303369B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP3562454B2 (en) High frequency porcelain, dielectric antenna, support base, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP2625074B2 (en) Dielectric ceramic composition and dielectric resonator
US6025291A (en) Dielectric ceramic composition and dielectric resonator using the same
JP3744660B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP4303369B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP2003238242A (en) Dielectric porcelain and dielectric resonator using the same
JPH0877829A (en) Dielectric ceramic composition and dielectric resonator
JP4131996B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP4548876B2 (en) High frequency dielectric ceramic composition and dielectric resonator using the same
JP2000095561A (en) Dielectric porcelain composition and dielectric resonator using the same
WO1996008019A1 (en) Dielectric procelain composition and its manufacture
JP4513076B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3113829B2 (en) Dielectric porcelain composite
JP3493316B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP4614485B2 (en) Dielectric resonator
JP5197559B2 (en) High frequency dielectric ceramic composition and dielectric resonator using the same
JPH0952761A (en) Aluminous ceramic composition and its production
JPH0952762A (en) Aluminous ceramic composition
US20040041662A1 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP4959043B2 (en) Dielectric porcelain composition, method for producing the same, and dielectric resonator
JP2001151568A (en) Dielectric porcelain composition for high frequency and dielectric resonator using the same
JPH0729415A (en) Dielectric porcelain serving also as antenna
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JPH0952760A (en) Dielectric ceramic composition
KR100527960B1 (en) Dielectric ceramic composition and dielectric resonator using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees