JP2010120503A - Method for controlling vehicle travel - Google Patents

Method for controlling vehicle travel Download PDF

Info

Publication number
JP2010120503A
JP2010120503A JP2008295589A JP2008295589A JP2010120503A JP 2010120503 A JP2010120503 A JP 2010120503A JP 2008295589 A JP2008295589 A JP 2008295589A JP 2008295589 A JP2008295589 A JP 2008295589A JP 2010120503 A JP2010120503 A JP 2010120503A
Authority
JP
Japan
Prior art keywords
vehicle
travel
point
deceleration
inertial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008295589A
Other languages
Japanese (ja)
Inventor
Masahiro Watanabe
渡邉雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008295589A priority Critical patent/JP2010120503A/en
Publication of JP2010120503A publication Critical patent/JP2010120503A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce energy necessary for vehicle travel and exhaust gas quantity by maximum effective use of kinetic energy that a vehicle has during travel. <P>SOLUTION: Stop at a vehicle stop point or deceleration for green signal/nonstop passage at an intersection is performed by acquiring: distance information from a current point of the vehicle to the vehicle stop point; distance information from a current point of the vehicle to an intersection; and signal state change information of an intersection signal, and by using the kinetic energy the vehicle has at the current point, in other words, by maximizing the use of inertial travel. In addition, start and acceleration of the vehicle can be efficiently performed during a traffic jam. Travel for saving energy and for reducing exhaust gas quantity is performed by inertial travel by effective use of the kinetic energy the vehicle acquires as a result of the start and acceleration. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、車両走行による運動エネルギーを無駄に増加させることなく、かつ車両がすでに獲得している運動エネルギーを最大限に有効活用することによって、省エネルギー化・排出ガス量の削減を行う車両走行制御方法に関する。   The invention of the present application is a vehicle travel control that saves energy and reduces the amount of exhaust gas by maximally and effectively utilizing the kinetic energy already acquired by the vehicle without unnecessarily increasing the kinetic energy due to vehicle travel. Regarding the method.

走行中に有している車両の運動エネルギーを、車両減速時に有効活用・回収して燃料消費量、排出ガス量を削減しようとする試みはハイブリッド車両の如きエネルギー回生機能を有する車両用として数多くなされている (特許文献1、特許文献2、特許文献3、特許文献4)。
また、交差点での赤信号停止後の発進・加速による燃料消費量、排出ガス量を削減するため交差点での赤信号停止頻度を極力低減するシステム、即ち交差点無停止走行制御システム、も提案されている(特許文献5、特許文献6、特許文献7)。
Many attempts have been made to reduce the amount of fuel consumption and exhaust gas by using and recovering the kinetic energy of the vehicle that is in use while the vehicle is decelerating, for vehicles with an energy regeneration function such as a hybrid vehicle. (Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4).
Also proposed is a system that reduces the frequency of red signal stops at intersections as much as possible to reduce fuel consumption and exhaust gas emissions after starting and accelerating after stopping at the intersection at the intersection, that is, an intersection non-stop running control system. (Patent Document 5, Patent Document 6, Patent Document 7).

特開平6−187595JP-A-6-187595 特開平8−337135JP-A-8-337135 特開2005−146966JP 2005-146966 A 特開2007−291919JP2007-291919A 特開2006−031573JP 2006-031573 A 特開2006−251836JP 2006-251836 A 特開2007−233962JP2007-233962

本願発明は上記考え方をより進化させて、ハイブリッド車両あるいは電気自動車の如きエネルギー回生機能を有する車両のみならず、エネルギー回生機能を有していない単一駆動源の車両においても、車両運動エネルギーを効率的に車両の走行エネルギーとするため、加速走行、定速走行および惰性走行を適切に行うことによって車両のエネルギー消費量および排出ガス量の削減を図ることを可能にする車両走行制御方法に関する。
即ち、本願発明は走行中の車両の有している運動エネルギーE=m・V2/2(ここでm:車両の質量、V:車両走行速度)を最も効率的・効果的に車両走行に活用する方法に関するものである。
ここで惰性走行とは、通常の加速走行・定速走行においては車両走行のための駆動力をエンジン・モータ等から獲得するのに対し、惰性走行においては車両走行の駆動力はエンジン・モータから得るのではなく、その時点での車両の有している運動エネルギーを活用しての(車両の走行抵抗に打ち勝っての)走行をいう。
The present invention further evolves the above-described concept to efficiently use the vehicle kinetic energy not only in a vehicle having an energy regeneration function such as a hybrid vehicle or an electric vehicle, but also in a single drive source vehicle not having an energy regeneration function. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle travel control method that makes it possible to reduce vehicle energy consumption and exhaust gas amount by appropriately performing acceleration travel, constant speed travel, and inertial travel in order to obtain vehicle travel energy.
That is, (where m: mass of the vehicle, V: vehicle running speed) the present invention is the kinetic energy E has a running vehicle = m · V 2/2 in the most efficient and effective vehicle traveling It is about the method to utilize.
Here, the inertial traveling means that the driving force for vehicle traveling is acquired from the engine / motor or the like in normal acceleration traveling / constant speed traveling, whereas the driving force for vehicle traveling in inertial traveling is from the engine / motor. Rather than obtaining, it means running using the kinetic energy of the vehicle at that time (overcoming the running resistance of the vehicle).

本願発明に基本的考え方は以下の如くである。
1.車両の有している運動エネルギーを可能な限り有効活用する。この具体的方法として車両の有する運動エネルギーを最大限惰性走行に活用する。惰性走行に余る運動エネルギーについてはエネルギー回生を行い、後刻の車両走行のための駆動エネルギーとする。
2.従って、車両発進・加速あるいは定速走行も無駄なエネルギー消費を避けるため必要最低限に行うものとする。すなわち、発進・加速あるいは定速走行は、前記発進・加速あるいは定速走行のための車両駆動(車両へのエネルギー供給)を停止した後、惰性走行を行って目的とする車両停止点、交差点あるいは特定の走行距離にある地点に所定の速度範囲内であるいは所定の時刻範囲内に到達できるに必要最小限度に行うものとする。
The basic concept of the present invention is as follows.
1. Use the kinetic energy of the vehicle as effectively as possible. As a specific method, the kinetic energy of the vehicle is utilized for maximum inertia traveling. The kinetic energy remaining for inertial travel is regenerated and used as drive energy for later vehicle travel.
2. Therefore, vehicle start / acceleration or constant speed traveling is performed to the minimum necessary to avoid unnecessary energy consumption. That is, in starting / acceleration or constant speed traveling, after stopping the vehicle driving (energy supply to the vehicle) for starting / acceleration or constant speed traveling, inertial traveling is performed and the target vehicle stop point, intersection or It is assumed that a point at a specific travel distance is performed to the minimum necessary to reach a point within a predetermined speed range or a predetermined time range.

以下に上記基本的考え方の具体的実現方法について述べる。
まず、特定地点Pから下流にある交通信号のない交差点等の車両停止点(あるいは徐行点)Qまでの省エネルギー走行及び停止方法について図1を用いて説明する。
車両の惰性走行による減速度(−αi )をあらかじめ明確にしておく。
車両が走行する道路毎に特定地点P(本願発明に基づく走行制御開始点)−車両停止点Q間距離D0情報および特定地点P−車両停止点Q間の許容走行速度範囲(Vmax 〜Vmin )情報を獲得する。この情報獲得の具体的方法としては、車両が搭載するカーナビゲーションシステムの地図データとして保有する、あるいは車両が特定地点P通過時、走行制御センターからの無線通信により、あるいは特定地点Pに設置された路車間通信路側装置からの路車間通信によって知る。
A specific method for realizing the above basic concept will be described below.
First, an energy saving traveling and stopping method from a specific point P to a vehicle stopping point (or slowing point) Q such as an intersection without a traffic signal downstream will be described with reference to FIG.
The deceleration (−αi) due to inertial running of the vehicle is clarified in advance.
The distance D 0 information between the specific point P (travel control start point based on the present invention) and the vehicle stop point Q and the allowable travel speed range between the specific point P and the vehicle stop point Q (Vmax to Vmin) for each road on which the vehicle travels Get information. As a specific method for acquiring this information, it is stored as map data of a car navigation system mounted on the vehicle, or when the vehicle passes through the specific point P, it is installed by wireless communication from the traveling control center or at the specific point P. Road-to-vehicle communication Know by road-to-vehicle communication from the roadside device.

上記特定地点P通過時上記各種情報を得て、車両が現走行速度vで惰性走行に移行した場合の、地点Q’ (車両停止点から距離Db 上流地点、ここで距離Db は速度Vmin で走行中の車両の制動距離でありDb=D0 −D0’ )までの許容走行速度範囲内での到達可否を(数1)、及び(数2)を用いて、即ち現走行速度v で惰性走行に移行し、惰性走行での速度がVmin になった時点での現時点からの走行距離がD0’ 以上であれば到達可能と、判定する。
(数1)
v −αi・t =Vmin
(数2)
V・t −(αi・t2/2)−D0’ > 0
すなわち(数1)を満足する時間t において(数2)を満足すれば車両は地点Q’
に減速度(−αi )による惰性走行で到達することができるといえる。
When the above-mentioned various information is obtained when passing the specific point P and the vehicle shifts to inertial traveling at the current traveling speed v, the point Q ′ (distance Db upstream from the vehicle stopping point, where the distance Db travels at the speed Vmin It is the braking distance of the vehicle in the middle and the reachability within the allowable travel speed range up to Db = D 0 −D 0 ′) is determined using (Equation 1) and (Equation 2), that is, inertia at the current travel speed v If the traveling distance from the current time at the time when the speed of inertial traveling becomes Vmin is greater than D0 ′, it is determined that the vehicle can be reached.
(Equation 1)
v −αi ・ t = Vmin
(Equation 2)
V · t - (αi · t 2/2) -D 0 '> 0
In other words, if (Equation 2) is satisfied at time t 1 where (Equation 1) is satisfied, the vehicle is located at point Q ′.
It can be said that it can be reached by inertial running by deceleration (-αi).

上記判定により、到達が可の場合は惰性走行で車両停止点に向けて走行する。到達不可の場合、現走行速度 vが惰性走行開始速度範囲(Vmax 〜 Vmax’)に未達の場合はあらかじめ定められている加速度での加速を、また現走行速度が惰性走行開始速度範囲(Vmax 〜 Vmax’)内にある場合はその速度での定速走行を、一定走行距離Ds あるいは一定時間Ts 行い、そののちあらためて上記惰性走行開始可否の判定を行う。
上記操作を一定走行距離Ds あるいは一定時間Ts毎に繰り返し、惰性走行によって地点Q‘に到達可となった後惰性走行を開始し、地点Q’ に到達後は摩擦ブレーキによって制動を行い目標とする車両停止点Qに到達・停止する。
According to the above determination, when the vehicle can reach the vehicle, the vehicle travels toward the vehicle stop point by coasting. If the current travel speed v has not reached the inertial travel start speed range (Vmax to Vmax '), acceleration is performed at a predetermined acceleration, and the current travel speed is the inertial travel start speed range (Vmax ˜Vmax ′), a constant speed travel at that speed is performed for a certain distance Ds or a certain time Ts, and after that, whether or not the inertial traveling can be started is determined.
The above operation is repeated every constant travel distance Ds or every certain time Ts, and coasting is started after reaching point Q ′ by coasting. After reaching point Q ′, braking is performed by a friction brake to be a target. Reach and stop at vehicle stop point Q.

次に車両停止点に代えて交差点において青信号・無停止で通過する場合を考える。
この場合車両は、特定地点Pにおいて、特定地点P−交差点Q間距離および許容走行速度範囲(Vmax 〜 Vmin)情報に加えて、車両の特定地点P通過時刻tp および次に通過すべき交差点の信号状態変移時刻情報を獲得して、交差点を青信号・無停止で通過するための最適交差点到達時刻 tq を設定する。前記最適交差点到達時刻 tq 設定方法に関しては、前記特許文献5、6、7に記載されているのでここでの説明は省略する。
但し上記最適交差点到達時刻 tq は、特定地点Pから次に通過すべき交差点の信号状態変移時刻情報を獲得して車両側で算出するに代えて、特定地点Pから直接提供される方法もある。
また最適交差点到達時刻 tq の設定に代えて、最適交差点到達時刻 tq を含む交差点青信号期間とすることも可能である。
Next, let us consider a case of passing through a green light and no stop at an intersection instead of a vehicle stop point.
In this case, at the specific point P, in addition to the distance between the specific point P and the intersection Q and the allowable travel speed range (Vmax to Vmin) information, the vehicle will pass the specific point P passing time tp of the vehicle and the signal of the intersection to be passed next. Obtain the state transition time information and set the optimal intersection arrival time tq to pass through the intersection without a green light and without stopping. The method for setting the optimum intersection arrival time tq is described in Patent Documents 5, 6, and 7 and will not be described here.
However, the optimum intersection arrival time tq may be directly provided from the specific point P instead of acquiring the signal state transition time information of the next intersection to be passed from the specific point P and calculating on the vehicle side.
Further, instead of setting the optimal intersection arrival time tq, it is also possible to set the intersection green light period including the optimal intersection arrival time tq.

現時点(特定地点P 通過時刻 tp から時間Δt 経過後) と交差点Q到達時刻 tq から、現地点(特定地点Pから距離ΔD走行地点)−交差点Q間の平均速度Vavは(数3)で、また速度v の現時点から減速度(−αi )で惰性走行した場合の地点Qでの速度Vqは(数4)であらわされる。
(数3)
Vav =(D0 −ΔD )/(tq −tp −Δt )
(数4)
Vq = v −αi ・(tq −tp −Δt )
従って車両が現時点・現地点から交差点Qまでの間惰性抵抗で走行できるか否かは、(数5)および(数6)を満足できるか否かできまり、惰性走行可の場合の減速度αは(数7)を満足するαとなる。
(数5)
Vq >0
(数6)
(v +Vq )/2 >Vav
(数7)
α=2(v −Vav )/(tq −tp −Δt )
上記条件を満足して惰性走行可の場合は、車両は減速度(−α)の惰性走行によって、また惰性走行不可の場合は現時点から速度Vav で、交差点Qに向けての走行を行う。
The average speed Vav between the local point (distance ΔD travel point from the specific point P) and the intersection Q from the present time (after the passage of time Δt from the passage time tp of the specific point P) and the arrival time tq of the intersection Q is (Expression 3) The speed Vq at the point Q in the case of coasting at a deceleration (−αi) from the current speed v is expressed by (Equation 4).
(Equation 3)
Vav = (D 0 −ΔD) / (tq −tp −Δt)
(Equation 4)
Vq = v −αi ・ (tq −tp −Δt)
Therefore, whether or not the vehicle can travel with inertial resistance from the current point / local point to the intersection Q depends on whether or not (Equation 5) and (Equation 6) can be satisfied. Is α satisfying (Equation 7).
(Equation 5)
Vq> 0
(Equation 6)
(v + Vq) / 2> Vav
(Equation 7)
α = 2 (v −Vav) / (tq −tp −Δt)
When the vehicle satisfies the above conditions and can coast, the vehicle travels toward the intersection Q at a speed (Vav) from the present time by coasting with a deceleration (−α).

ただし、上記惰性走行の減速度(−α)は、
(数8)
α≧αi
であることから、車両は減速度(−α)での惰性走行を行い、{−(α−αi )} 分に相当する車両走行エネルギーは、車両が回生機能を有している場合は回生機能で、また回生機能を有していない場合は摩擦ブレーキで、各々減速度を調整しつつ、即ち惰性走行速度を調整しつつ、走行する。
However, the inertial deceleration (-α) is
(Equation 8)
α ≧ αi
Therefore, the vehicle performs inertial traveling at a deceleration (−α), and the vehicle travel energy corresponding to {− (α−αi)} is a regenerative function when the vehicle has a regenerative function. In the case where the regenerative function is not provided, the friction brake is used to adjust the deceleration, that is, adjust the inertia traveling speed.

ここで上記においては、減速度(−αi )は車両ごとに設定されているとしているが、このような状態では、交通量の多い道路において惰性走行を行う場合は車両相互間に走行速度のばらつきが出て、交通流の乱れの原因となる恐れがある。
この問題を解決するため、車両固有の減速度(−αi )に対して車両に共通な標準減速度(−αs)(但し、αi ≦ αs )を設定し、惰性走行時においてはすべての車両は標準減速度(−αs)による惰性走行を行い、車両固有の減速度(−αi )と標準減速度(−αs)の差分(αs −αi )はエネルギー回生機能(回生ブレーキ等)を活用して調節することによって前記問題は解決されると共に標準減速度走行による運動エネルギー消費に余る運動エネルギーの回生も適切に行えることになる。
Here, in the above description, the deceleration (−αi) is set for each vehicle. However, in such a state, when coasting on a road with a large amount of traffic, the traveling speed varies between the vehicles. May cause traffic disturbance.
In order to solve this problem, a standard deceleration (-αs) (where αi ≤ αs) common to vehicles is set for the vehicle-specific deceleration (-αi). Carry out inertial driving with standard deceleration (-αs), and the difference (αs -αi) between vehicle-specific deceleration (-αi) and standard deceleration (-αs) uses energy regeneration function (regenerative braking, etc.) By adjusting, the above-mentioned problem can be solved and the kinetic energy can be regenerated appropriately for the kinetic energy consumption by the standard deceleration running.

また、渋滞中の走行においては、発進・加速および摩擦ブレーキでの減速・停止を短距離走行毎に繰り返すことによって、燃料の加速増量・加速後増量あるいは車両の運動エネルギーの摩擦熱による放散によるエネルギー消費量・排出ガス量が増大してしまうことから、以下の方策によって車両の運動エネルギーの有効利用によって前記発進・加速および摩擦ブレーキでの減速・停止頻度を低減してエネルギー消費量・排出ガス量を低減することもできる。   In running in a traffic jam, by repeating start / acceleration and deceleration / stop with a friction brake every short distance, the fuel acceleration increase / post-acceleration increase or the energy of the vehicle's kinetic energy dissipated by frictional heat Since consumption and exhaust gas will increase, the following measures will reduce the frequency of deceleration and stop at the start / acceleration and friction brake by effectively using the kinetic energy of the vehicle. Can also be reduced.

すなわち、渋滞中にある車両において、前方車両が発進して低速で一定距離走行した場合、自車は直ちにそれに追従して走行することをせずに、前方車両との車間距離Dvが一定距離(Da +Di )、即ち自車が発進・加速して一定速度vaに達した後惰性走行に移行して車両の運動エネルギー残量が一定量以下になるまで走行できる距離、以上になるまで待つ。
ここで、Da は自車が停止状態から発進・加速して一定速度vaに達する間の走行距離、Di は速度va に達した後惰性走行に移行し自車の運動エネルギーが一定値以下になるまで減速走行する距離、である。
That is, in a vehicle in a traffic jam, when the preceding vehicle starts and travels at a constant distance at a low speed, the vehicle does not immediately follow and travels, and the inter-vehicle distance Dv with the preceding vehicle is constant distance ( Da + Di), that is, after the vehicle starts and accelerates and reaches a constant speed va, the vehicle shifts to inertial driving and waits until the vehicle travels beyond the predetermined amount until the remaining amount of kinetic energy of the vehicle becomes a certain amount or less.
Here, Da is the distance traveled while the vehicle starts and accelerates from a stopped state and reaches a constant speed va, and Di shifts to inertial driving after reaching the speed va, and the kinetic energy of the vehicle falls below a certain value. The distance to travel at a reduced speed.

発進・加速して一定速度vaに到達したとき、即ち距離Da 走行後、前方車両が停止中でかつ前方車両との車間距離DvがDi 以下の場合は直ちに惰性走行に移行する。しかし前方車両との車間距離DvがDi 以上でかつ前方車両との相対速度vr ≦0の場合はそのまま前方車両との車間距離がDi になるまで一定速度vaでの走行を継続した後惰性走行に移行する。
発進・加速して一定速度vaに到達したとき、即ち距離Da 走行後、前方車両との車間距離Dv がDv >Di 、かつ前方車両との相対速度vr >0の場合で、前方走行車との車間距離Dvが自車走行速度の安全車間距離Dvsに対してDv >Dvs となった場合は、前方車両自車とも渋滞状態を脱しつつあるとして前方車両との安全車間距離を保つ範囲で自車走行速度を加速する。
以上の走行を渋滞中繰り返すことによって従来の走行方法に比べて渋滞走行中の車両は発進・加速頻度あるいは摩擦ブレーキによる減速停止頻を低減することができ省エネルギー・排出ガス量低減走行が可能となる。
When the vehicle starts and accelerates and reaches a constant speed va, that is, after traveling for a distance Da, if the preceding vehicle is stopped and the inter-vehicle distance Dv with the preceding vehicle is equal to or less than Di, the vehicle immediately starts coasting. However, if the inter-vehicle distance Dv with the preceding vehicle is equal to or greater than Di and the relative speed vr ≦ 0 with the preceding vehicle, the vehicle continues to travel at a constant speed va until the inter-vehicle distance with the preceding vehicle reaches Di. Transition.
When the vehicle starts and accelerates and reaches a constant speed va, that is, after traveling a distance Da, when the inter-vehicle distance Dv is Dv> Di and the relative speed vr> 0 with the preceding vehicle, When the inter-vehicle distance Dv is Dv> Dvs with respect to the safe inter-vehicle distance Dvs of the own vehicle traveling speed, the host vehicle is within the range that keeps the safe inter-vehicle distance with the preceding vehicle, assuming that the vehicle ahead is getting out of traffic. Accelerate travel speed.
By repeating the above driving in a traffic jam, the vehicle running in a traffic jam can reduce the frequency of starting / acceleration or the frequency of deceleration stop due to friction brakes compared to the conventional driving method, and it is possible to save energy and reduce the amount of exhaust gas. .

上記本願発明によって、車両のエネルギー回生機能を有している車両は勿論、エネルギー回生機能を有していない車両においても車両の運動エネルギーを有効に活用した、信号機のない交差点あるいは自動車専用道の料金所等の車両の停止点・徐行点までの減速、信号機のある交差点の青信号・無停止通過、あるいは渋滞時における効率的な省エネルギー・排出ガス削減走行が可能になる。 By the above-mentioned invention of the present application, not only a vehicle having an energy regeneration function of a vehicle but also a vehicle not having an energy regeneration function, a fee for an intersection without a traffic light or an automobile exclusive road that effectively uses the kinetic energy of the vehicle. The vehicle can be decelerated to a stop point / deceleration point of a vehicle, a green light at an intersection with a traffic light, a non-stop passage, or an efficient energy saving / exhaust gas reduction traveling in a traffic jam.

本願発明は通常のエネルギー回生機能を有しない車両においても有効ではあるが、エネルギー回生機能を有する車両においてはさらにその省エネルギー効果が効率的となることから、ハイブリッド車両あるいは電気自動車等エネルギー回生機能を有する車両への適用が望ましい。
また、特に渋滞時の走行制御用に、前方走行車両との車間距離および相対速度検知を行う必要がある。これはドライバーの目視での一応の検出は可能であるができれば車両に距離および相対速度検知用レーダを有していることが望まれる。
The present invention is effective even in a vehicle that does not have a normal energy regeneration function. However, in a vehicle that has an energy regeneration function, the energy saving effect becomes more efficient, so that the vehicle has an energy regeneration function such as a hybrid vehicle or an electric vehicle. Application to vehicles is desirable.
In addition, it is necessary to detect the inter-vehicle distance and the relative speed with the forward traveling vehicle, particularly for traveling control in a traffic jam. Although it is possible to detect the driver for the time being, it is desirable that the vehicle has a distance and relative speed detection radar.

図1を用いて説明した特定地点Pから下流の交通信号のない交差点等の車両停止点Qまでの省エネルギー走行方法の実施例を、図2に示す車載装置構成、および図3に示す前記車載装置構成における省エネルギー走行制御手順、を用いて説明する。
図2において、
201は、カーナビゲーション機能に本願発明による惰性走行制御機能を付加した車載装置の演算制御部、
202は、車両の現在位置特定部であり、GPS受信機、方位計、あるいはジャイロ等で構成される、
203は、特定地点(本例の場合は、特定地点P)からの車両走行距離ΔDを計測する走行距離計測部であり、走行距離計測は後述の速度較正部204で較正された自車走行速度(自車速)を時間積分することによって行う。
An embodiment of the energy saving traveling method from the specific point P described with reference to FIG. 1 to a vehicle stop point Q such as an intersection without a downstream traffic signal is shown in FIG. 2 and the in-vehicle device shown in FIG. This will be described using the energy-saving travel control procedure in the configuration.
In FIG.
201 is an arithmetic control unit of an in-vehicle device in which the inertial traveling control function according to the present invention is added to the car navigation function;
202 is a current position specifying unit of the vehicle, and includes a GPS receiver, an azimuth meter, or a gyro.
Reference numeral 203 denotes a travel distance measurement unit that measures a vehicle travel distance ΔD from a specific point (in this example, the specific point P). The travel distance measurement is performed by the own vehicle travel speed calibrated by the speed calibration unit 204 described later. This is done by integrating the (vehicle speed) over time.

204は、車両の自車速を較正する速度較正部、
205は、特定地点(本例の場合は、特定地点P)通過時からの経過時間Δt を計測する経過時間計側部、
206は、通常走行中から惰性走行移行時、自車前方の走行車両あるいは障害物の有無を検知して惰性走行移行に際しての前方の危険の有無を判定する前方レーダ部、
204 is a speed calibration unit for calibrating the vehicle speed of the vehicle;
205 is an elapsed time meter side portion that measures the elapsed time Δt from the passage of a specific point (in this example, the specific point P),
206 is a front radar unit that detects the presence of a forward danger when shifting to inertial traveling by detecting the presence of a traveling vehicle or obstacle ahead of the host vehicle during transition from inertial traveling to inertial traveling,

207は、自車のアクセル、ブレーキの押下状態を検知するアクセル、ブレーキON/OFF検知部、
208は、通常走行から惰性走行に移行するに際し、惰性走行を最も効率的に行えるよう(車両走行時の運動エネルギーを最も効率的に活用できるよう)に、車両の惰性走行時のエネルギー負荷を車両の走行に支障をきたさずかつ危険がない範囲で最小にする(例えばクラッチオフする、フエルカットする等)と共に、惰性走行終了時においては車両の運動エネルギーの負荷状態を例えば惰性走行移行直前の状態に自動的に復帰させ、またエネルギー回生動作を含む制動動作をスムースに行えるよう制御する惰性走行制御部、
209は、カーナビゲーションに必要な地図データ等に加えて、各道路における本願発明の惰性走行制御に必要な特定地点P−車両停止点Q間走行距離D0情報、特定地点P−地点Q’ 間走行距離D0’ 情報、許容走行速度範囲(Vmax〜Vmin )情報、惰性走行開始速度範囲(Vmax〜Vmax’)情報、等を有する地図データベース、
207 is an accelerator of the own vehicle, an accelerator for detecting a pressed state of the brake, a brake ON / OFF detector,
208 indicates the energy load during inertial driving of the vehicle so that the inertial traveling can be performed most efficiently (the kinetic energy during vehicle traveling can be most efficiently utilized) when shifting from normal traveling to inertial traveling. At the end of inertial driving, for example, the kinetic energy load state of the vehicle is changed to the state just before the transition to inertial driving. An inertial traveling control unit that automatically returns and controls the braking operation including the energy regeneration operation smoothly.
In addition to the map data and the like necessary for car navigation, 209 is information on the travel distance D 0 between the specific point P and the vehicle stop point Q necessary for the inertial travel control of the present invention on each road, between the specific point P and the point Q ′. A map database having travel distance D 0 ′ information, allowable travel speed range (Vmax to Vmin) information, inertial travel start speed range (Vmax to Vmax ′) information, etc.

210は、カーナビゲーションおよび本願発明による車両惰性走行制御に必要な音声入出力を行う音声入出力部、
211は、カーナビゲーションおよび本願発明による車両惰性走行制御に必要な表示入出力を行う表示入出力部、
212は、あらかじめ本願発明による惰性走行に必要な自車両減速度(−αi )を設定する標準減速度設定部、
である。
210 is a voice input / output unit for performing voice input / output necessary for car navigation and vehicle inertial traveling control according to the present invention;
211 is a display input / output unit that performs display input / output necessary for car navigation and vehicle inertial traveling control according to the present invention;
212 is a vehicle deceleration (-αi) necessary for inertial traveling according to the present invention in advance. ) Standard deceleration setting part to set
It is.

次に図3において、
301は、惰性走行制御手順開始点、
302は、車両が惰性走行による減速度走行制御開始点である特定地点Pを通過したか否かを位置特定部202で特定した位置データから判定する特定地点P通過判定処理、
303は、処理302において車両が特定地点Pを通過したと判定した場合、特定地点Pからの走行距離ΔD計測のための次数nを初期化する(n=0とする)n値初期化処理、
Next, in FIG.
301 is an inertial running control procedure start point,
302 is a specific point P passage determination process for determining whether or not the vehicle has passed a specific point P that is a deceleration traveling control start point by inertial traveling from the position data specified by the position specifying unit 202;
303, when it is determined in the process 302 that the vehicle has passed the specific point P, the order n for measuring the travel distance ΔD from the specific point P is initialized (n = 0), an n value initialization process,

304は、特定地点P通過後の経過時間Δt 、特定地点Pからの走行距離ΔDの計数を開始するΔt、ΔD計数開始処理、
305は、特定地点P−地点Q間車両走行距離D0 情報および減速度(−αi )情報を地図データベースから取り込むデータ取り込み処理、
306は、その時点での自車速vを取り込む自車速取り込み処理、
304 is an elapsed time Δt after passing the specific point P, Δt for starting the counting of the travel distance ΔD from the specific point P, a ΔD counting start process,
305 is a data fetching process for fetching vehicle travel distance D 0 information between specific point P and point Q and deceleration (−αi) information from the map database;
306 is a vehicle speed capturing process that captures the current vehicle speed v.

307は、処理306で取り込んだ自車速v が惰性走行開始速度範囲Vmax’ 〜 Vmax以内か否か、即ち惰性走行開始速度条件を満たしているか否か、を判定する自車速判定処理、
308は、処理307において自車速v が惰性走行開始条件に達していないと判定した場合車両走行速度を範囲内にするため加減速を行う加減速処理、
309は、現速度vで惰性走行を開始した場合地点Qに到達可能か、到達可能であっても地点Q’ において走行速度がVmin 以上か否かから、車両の惰性走行による地点Qに向けての走行が可能か否かを判定する惰性走行可否判定処理、
307 is a host vehicle speed determination process for determining whether the host vehicle speed v captured in the process 306 is within the inertial travel start speed range Vmax ′ to Vmax, that is, whether the inertial travel start speed condition is satisfied,
308 is an acceleration / deceleration process in which acceleration / deceleration is performed to bring the vehicle traveling speed within the range when it is determined in the process 307 that the vehicle speed v has not reached the inertial traveling start condition;
309 indicates that it is possible to reach point Q when coasting is started at the current speed v, and whether or not the traveling speed is Vmin or more at point Q ′ even if it can be reached, toward point Q due to coasting of the vehicle. Inertia traveling availability determination process for determining whether or not traveling is possible,

310は、前方レーダ206で検知した自車前方状態が惰性走行開始可能な状態か否かを判定する前方状態判定処理、
311は、次数nをインクリメントするn値インクリメント処理、
312は、特定地点Pからの走行距離ΔDが、ΔD > n・Ds に達したか否かを判定する、走行距離ΔD判定処理、
310 is a front state determination process for determining whether or not the vehicle front state detected by the front radar 206 is a state in which inertial traveling can be started;
311 is an n-value increment process for incrementing the order n,
312 is a travel distance ΔD determination process for determining whether or not the travel distance ΔD from the specific point P has reached ΔD> n · Ds.

313は、惰性走行を開始する惰性走行開始処理、
314は、特定地点P通過後の車両走行距離ΔDがD0’ に到達したか、すなわち車両が地点Q’ に到達したか否かを判定する惰性走行終了地点判定処理、
315は、惰性走行の終了処理を行う惰性走行終了処理、
316は、地点Q’ 点からの摩擦ブレーキによる地点Qでの停止処理を行う地点Q停止処理、
317は、車両の惰性走行制御手順の終了点、
である。
313 is an inertia running start process for starting inertia running,
314 is an inertial travel end point determination process for determining whether or not the vehicle travel distance ΔD after passing the specific point P has reached D 0 ′, that is, whether or not the vehicle has reached the point Q ′.
315 is an inertia running end process for performing an inertia running end process;
316 is a point Q stop process for performing a stop process at the point Q by friction braking from the point Q ′,
317 is the end point of the vehicle inertial running control procedure,
It is.

以上の如く本願発明による走行制御によって、特定地点P通過時およびその後一定距離Ds 走行毎に惰性走行での地点Q到達可否を判定して、到達可であって前方の安全が確認された場合惰性走行を開始する。
惰性走行中、特定地点からの走行距離がD0’ に達したとき、すなわち車両停止点Qから一定距離手前の地点に到達したとき、惰性走行を中止し摩擦ブレーキによる制動を行うことによって地点Qにおける停止あるいは徐行が可能となる。
As described above, when the traveling control according to the present invention determines whether or not the point Q can be reached in inertial traveling when the vehicle passes the specific point P and thereafter travels for a certain distance Ds, it is possible to reach and confirm the safety ahead. Start running.
During inertial driving, when the travel distance from a specific point reaches D 0 ', that is, when the vehicle reaches a point a certain distance before the vehicle stopping point Q, the inertial driving is stopped and braking by the friction brake is performed. It is possible to stop or slow down.

実施例2においては、本願発明の思想を交差点無停止走行制御に適用し、特定地点(本例の場合は地点P)において路車間通信で車載装置に通報された交差点Qを青信号・無停止で通過するための特定地点P−交差点Q間の減速走行条件を惰性走行によって実現する方法を示す。
本実施例の車載装置構成は、前記図2の実施例1構成に、特定地点Pの路側に設けられた路車間通信路側装置からの通報を受信する路車間通信車側装置を付加することによって実現できる(ただし図2には前記路車間通信車側装置は記載していない)。
上記路車間通信によって路側から車側には車両の特定地点P通過時刻tp 、交差点Qを青信号無停止で通過するための走行条件(本例の場合は交差点Q到達予定時刻tq )が通報されるものとする。
In the second embodiment, the idea of the present invention is applied to the intersection non-stop traveling control, and the intersection Q notified to the in-vehicle device by road-to-vehicle communication at a specific point (in the case of this example, point P) The method of implement | achieving the deceleration driving | running | working condition between the specific point P-intersection Q for passing by coasting is shown.
The in-vehicle device configuration of the present embodiment is obtained by adding a road-to-vehicle communication vehicle side device that receives a report from a road-to-vehicle communication roadside device provided on the roadside of the specific point P to the configuration of the first embodiment in FIG. (However, the road-to-vehicle communication vehicle side device is not shown in FIG. 2).
By the road-to-vehicle communication, the road side to the vehicle side is notified of the vehicle's specific point P passing time tp and the traveling condition for passing through the intersection Q without stopping the green light (in this example, the estimated time of arrival at the intersection Q tq). Shall.

次に図4を用いて、交差点無停止走行制御に際しての惰性走行の適用手順例を示す。
401は、交差点無停止走行制御手順開始点、
402は、車両が交差点無停止走行制御開始点である特定地点Pを通過したか否かを特定地点Pの路側に設けられた路車間通信路側装置からの通報受信有無によって判定する特定地点P通過判定処理、
Next, using FIG. 4, an example of an application procedure for inertial traveling in the intersection non-stop traveling control will be described.
401 is an intersection non-stop travel control procedure start point,
402 is a specific point P passage that determines whether or not the vehicle has passed a specific point P that is an intersection non-stop traveling control start point based on whether or not a notification is received from a road-to-vehicle communication roadside device provided on the roadside of the specific point P. Determination process,

403は、処理402において車両が特定地点Pを通過したと判定した場合、特定地点Pからの経過時間Δt 計測のための次数nを初期化する(n=1とする)n値初期化処理、
404は、特定地点P通過後の経過時間Δt 、特定地点Pからの走行距離ΔDの計数を開始するΔt 、ΔD計数開始処理、
405は、特定地点P通過時路車間通信によって通報された車両の特定地点P通過時刻tp 、交差点到達予定時刻tq 、および自車の有するデータベース中から特定地点P−地点Q間車両走行距離D0 情報、減速度(−αi )情報を取り込むデータ取り込み処理、
403 is an n-value initialization process for initializing the order n for measuring the elapsed time Δt from the specific point P (assuming n = 1) when it is determined in the process 402 that the vehicle has passed the specific point P;
404 is the elapsed time Δt after passing the specific point P, Δt for starting the counting of the travel distance ΔD from the specific point P, ΔD counting start processing,
Reference numeral 405 denotes a specific point P passing time tp of the vehicle notified by the road-to-vehicle communication at the specific point P, an intersection arrival scheduled time tq, and a vehicle travel distance D 0 between the specific point P and the point Q from the database of the own vehicle. Data capture processing to capture information, deceleration (-αi) information,

406は、現時点での自車速vを取り込む自車速取り込み処理、
407は、現地点からの走行によって交差点Qを時刻tq で通過するに必要な現地点−交差点Q間平均走行速度Vav を前記(数3)より算出する平均速度算出処理、
408は、現地点から減速度(−αi )での惰性走行によって交差点Qに向けて走行した場合の交差点Q到達時の予測速度Vq を前記(数4)より算出する交差点到達予測速度算出処理
406 is a vehicle speed capturing process for capturing the current vehicle speed v.
407 is an average speed calculation process for calculating the average traveling speed Vav between the local point and the intersection Q required to pass through the intersection Q at time tq by traveling from the local point according to the above (Equation 3);
408 is an intersection arrival predicted speed calculation process for calculating the predicted speed Vq at the time of arrival at the intersection Q when traveling toward the intersection Q by coasting at a deceleration (−αi) from the local point according to the above (Formula 4).

409は、処理407及び408の結果から、現地点から交差点Qまでの間惰性走行可能か否かを前記(数5)および(数6)より判定する惰性走行可否判定処理、
410は、処理409の結果、惰性走行可である場合、惰性走行のための減速度αを前記(数7)より算出する減速度算出処理、
411は、処理410の結果に基づいて惰性走行を行う惰性走行処理、
412は、処理409の結果、惰性走行不可である場合、処理407で算出した平均速度Vav での走行を行う平均速度走行処理、
409 is an inertial traveling availability determination process for determining whether or not intermittent traveling from the local point to the intersection Q is possible based on the results of processings 407 and 408, based on (Equation 5) and (Equation 6),
410 is a deceleration calculation process for calculating the deceleration α for the inertia traveling from the above (Equation 7) when the inertial traveling is possible as a result of the processing 409;
411 is an inertia traveling process for performing inertia traveling based on the result of the process 410;
412 is an average speed running process for running at the average speed Vav calculated in the process 407 when the inertial running is impossible as a result of the process 409;

413は、特定地点Pで計数を開始した車両走行距離ΔDが特定地点P−交差点Q間距離D0 に達したか否か、すなわち車両が交差点Qに到達したか否かを判定する交差点Q到達判定処理、
414は、特定地点Pで計数を開始した経過時間Δt が一定時間Ts の整数倍(n倍)に達したか否かを判定する一定時間Ts 経過判定処理、
415は、処理414で、経過時間Δt が一定時間Ts のn倍に達したと判定した場合、次数nをインクリメントする次数nインクリメント処理、
416は、処理413において、車両走行距離ΔDが特定地点P−交差点Q間距離D0 に達したと判定した場合、車両は交差点Qに到達したとして本特定地点P−交差点Q間の交差点無停止走行を終了する交差点無停止走行制御手順終了点、
である。
Reference numeral 413 denotes an intersection Q arrival that determines whether or not the vehicle travel distance ΔD that has started counting at the specific point P has reached the distance D 0 between the specific point P and the intersection Q, that is, whether or not the vehicle has reached the intersection Q. Determination process,
414 is a fixed time Ts elapsed determination process for determining whether the elapsed time Δt at which the counting is started at the specific point P has reached an integral multiple (n times) of the fixed time Ts,
415 is an order n increment process for incrementing the order n when it is determined in the process 414 that the elapsed time Δt has reached n times the fixed time Ts;
If it is determined in step 413 that the vehicle travel distance ΔD has reached the distance D 0 between the specific point P and the intersection Q, the vehicle has reached the intersection Q and the intersection between the specific point P and the intersection Q is not stopped. End point of intersection non-stop traveling control procedure to end traveling,
It is.

以上の如く、特定地点P通過時及び特定地点P通過後一定時間Ts 経過毎に惰性走行によって交差点Qへの到達時刻tq での到達可否を判定し、惰性走行によって交差点Qに時刻tq に到達できると判定した場合には、その時点・地点から惰性走行を開始する。また到達不可と判定した場合にはその時点・地点から時刻tq に交差点Qに到達するための平均走行速度で走行する。このように演算処理及び走行を行うことによって車両の運動エネルギーを有効に活用しての効率的な交差点Qの青信号・無停止通過が実現できる。 As described above, it is possible to determine whether or not the vehicle can reach the intersection Q at the arrival time tq by coasting at the time of passage of the specific point P and every certain time Ts after the passage of the specific point P. If it is determined, coasting starts from that point / point. If it is determined that the vehicle cannot be reached, the vehicle travels at the average traveling speed for reaching the intersection Q at the time tq from that point / point. By performing arithmetic processing and traveling in this way, it is possible to realize an efficient green light and non-stop passage at the intersection Q by effectively using the kinetic energy of the vehicle.

実施例3においては、本願思想に基づく渋滞時の走行方法を示す。
図5の渋滞走行制御手順説明図において、
501は、車両の渋滞時走行制御手順開始点、
502は、車両が渋滞中であるか否かを、例えば一定時間内の車両の平均移動速度で、判定し、渋滞中であれば処理503以下の処理に、渋滞中でなければ他の走行制御手順処理に、移行する渋滞判定処理、
503は、前方車両との車間距離Dvが、一定距離 (Da+Di ) を超えたか否かを判定し、一定距離(Da+Di ) を超えていない場合は一定距離(Da+Di ) を超えるのを待つ車間距離(Da+Di ) 判定処理、
ここで、Da は車両が渋滞中停止状態から一定加速度で加速して速度Va に達するまでの走行距離、Di は渋滞中発進・加速によって前記速度Va に達した後惰性走行に移行後の走行可能距離であり、車間距離(Da+Di ) は、通常の渋滞走行における車間距離よりは大きいものとする。
In the third embodiment, a traveling method in a traffic jam based on the idea of the present application will be described.
In the traffic traveling control procedure explanatory diagram of FIG.
501 is the starting point of the travel control procedure when the vehicle is congested,
502 determines whether or not the vehicle is congested based on, for example, the average moving speed of the vehicle within a predetermined time. If the vehicle is congested, the processing is performed after processing 503. In the procedure process, the traffic congestion judgment process to be transferred,
503 determines whether or not the inter-vehicle distance Dv with the preceding vehicle exceeds a certain distance (Da + Di), and if it does not exceed the certain distance (Da + Di), it waits for the certain distance (Da + Di) to exceed the certain distance (Da + Di). Da + Di) judgment processing,
Here, Da is the travel distance from when the vehicle is stopped in a traffic jam until it reaches a speed Va after accelerating at a constant acceleration, and Di is able to run after shifting to inertial driving after reaching the speed Va by starting and accelerating in a traffic jam It is assumed that the inter-vehicle distance (Da + Di) is larger than the inter-vehicle distance in a normal traffic jam.

504は、処理503で前方車両との車間距離Dvが、一定距離(Da+Di ) 以上と判定した場合、前記一定加速度で発進・加速を行う発進・加速処理、
505は、処理504で発進・加速を行った結果、速度がVa に達したか否かを判定する速度Va 判定処理、
506は、処理505で速度判定を行った結果、速度がVa に達したと判定した場合、その時点での前方車両との車間距離Dv が前記距離Di 以上か否かを判定する車間距離Di 判定処理、
507は、処理506で、前方車両との車間距離がDi 未満であると判定した場合、即ち、自車が発進・加速中に前方車両が移動していないと判定した場合、惰性走行を開始する惰性走行開始処理、
504 is a start / acceleration process for starting and accelerating at a constant acceleration when it is determined in the process 503 that the inter-vehicle distance Dv with the preceding vehicle is equal to or greater than a certain distance (Da + Di);
505 is a speed Va determination process for determining whether or not the speed has reached Va as a result of starting and accelerating in process 504;
If the speed is determined to be Va as a result of the speed determination in step 505, the inter-vehicle distance Di determination is performed to determine whether the inter-vehicle distance Dv with the preceding vehicle at that time is equal to or greater than the distance Di. processing,
If the distance between the vehicle and the vehicle ahead is determined to be less than Di in Step 506, that is, if it is determined that the vehicle ahead is not moving while the vehicle is starting or accelerating, coasting is started. Inertia running start processing,

508は、処理507において惰性走行を開始した結果、前方車両との車間距離がDv0 以下に達したか否かを判定する車間距離Dv0 判定処理、ここで車間距離Dv0 は、前方車両との最少車間距離である。
509は、惰性走行の結果自車速度 v がVmin 以下か否かを判定する速度Vmin 判定処理、
510は、処理508で前方車両との車間距離がDv0 以下、あるいは速度がVmin 以下となった場合に車両の摩擦ブレーキによる停止処理を行う車両停止処理、
508 is an inter-vehicle distance Dv 0 determination process for determining whether or not the inter-vehicle distance with the preceding vehicle has reached Dv 0 or less as a result of starting inertial running in process 507, where the inter-vehicle distance Dv 0 is The minimum inter-vehicle distance.
509 is a speed Vmin determination process for determining whether or not the vehicle speed v is equal to or lower than Vmin as a result of coasting.
510 is a vehicle stop process for performing a stop process by friction braking of the vehicle when the inter-vehicle distance with the preceding vehicle is Dv 0 or less or the speed is Vmin or less in the process 508;

511は、処理506において前方車両との車間距離Dv が前記距離Di を超えていると判定した場合、前方車両は移動を開始しているか否かを判定するため前方走行車との相対速度vr が正か否かを確認する相対速度判定処理、ここで相対速度正とは、自車に対して前方車両が離遠していく状態をいう。
512は、処理511で前方車両との相対速度が負または0と判定した場合、速度Va での走行を継続する走行継続処理、
513は、処理511で前方車両との相対速度が正、即ち前方車両は速度Va 以上で走行している、と判定した場合は、前方車両との車間距離Dv がDvs を超えているか否かを判定し、超えていた場合は前方車両、従って自車両は渋滞を抜けだしたと判定する、渋滞通過終了処理、ここで、Dvs は自車走行速度v における前方車両との安全車間距離、
である。
If it is determined in step 506 that the inter-vehicle distance Dv with the preceding vehicle exceeds the distance Di, the relative speed vr with respect to the preceding traveling vehicle is determined to determine whether or not the preceding vehicle has started moving. Relative speed determination processing for confirming whether or not the vehicle is positive. Here, the relative speed positive means a state in which the vehicle ahead moves away from the own vehicle.
512 is a travel continuation process in which the travel at the speed Va is continued when the relative speed with the preceding vehicle is determined to be negative or 0 in the process 511;
If it is determined in step 511 that the relative speed with the preceding vehicle is positive, that is, the preceding vehicle is traveling at a speed Va or higher, whether or not the inter-vehicle distance Dv with the preceding vehicle exceeds Dvs is determined. Judgment is made, and if it exceeds, the vehicle ahead, and therefore the vehicle is judged to have exited the traffic jam, the traffic congestion end processing, where Dvs is the safe inter-vehicle distance from the vehicle ahead at the vehicle traveling speed v,
It is.

514は、1サイクルの渋滞時走行制御手順終了点、
515は、渋滞時走行の結果、車両が渋滞を抜けだしたと判定した場合の渋滞通過処理終了点、
である。
514 is the end point of the one-cycle traffic control procedure at the time of congestion,
515 is the end point of the traffic passing process when it is determined that the vehicle has exited the traffic jam as a result of running in the traffic jam,
It is.

以上の走行制御方法によって、車両は渋滞中を従来の走行方法に比べて発進・加速および停車頻度の少ない、従ってエネルギー消費量・排出ガス量を削減した、合理的な走行が可能となる。 With the above travel control method, the vehicle can travel rationally in a traffic jam with less start / acceleration and stoppage frequency than the conventional travel method, thus reducing energy consumption and exhaust gas amount.

以上述べたごとく、ハイブリッド車あるいは電気自動車の如くエネルギー回生機能を有している車両に限らず、エネルギー回生機能を有しないガソリンエンジン車、ディーゼルエンジン車、等においても本願発明による車両の有する運動エネルギーを最大限に活用した走行方法によって車両の省エネルギー化、排出ガス量の低減化が可能になる。
また本願発明による走行制御方法実現によって、大きなエネルギー消費量削減・排出ガス量削減効果が期待できることに加えてに加え、路車間通信路側装置、センター装置、携帯電話基地局等の路側システム、地図データベースをはじめとする高機能化されたカーナビゲーション装置・路車間通信車側装置・車載用携帯電話等の車側システム、に対する大きなまた拡張性のある装置・システム市場が期待できる。
As described above, the kinetic energy of the vehicle according to the present invention is not limited to a vehicle having an energy regeneration function such as a hybrid vehicle or an electric vehicle, but also to a gasoline engine vehicle, a diesel engine vehicle, or the like that does not have an energy regeneration function. The driving method that makes the best use of the vehicle makes it possible to save the vehicle energy and reduce the amount of exhaust gas.
Moreover, in addition to being able to expect a large energy consumption reduction / exhaust gas reduction effect by realizing the travel control method according to the present invention, roadside-to-vehicle communication roadside devices, center devices, roadside systems such as mobile phone base stations, map databases, etc. A large and expandable device / system market can be expected for highly functional car navigation devices, roadside-to-vehicle communication vehicle-side devices, and vehicle-side systems such as in-vehicle mobile phones.

本願発明による車両の運動エネルギーを最大限に活用した車両停止点に向けての走行制御方法の基本的考え方の説明図、Explanatory drawing of the basic concept of the travel control method toward the vehicle stop point that makes the best use of the kinetic energy of the vehicle according to the present invention, 本願発明による車両の運動エネルギーを最大限に活用した車両停止点に向けての走行制御方法を実現するための車載装置構成例、An in-vehicle device configuration example for realizing a travel control method toward a vehicle stop point that makes the most use of the kinetic energy of the vehicle according to the present invention; 本願発明による車両の運動エネルギーを最大限に活用した車両停止点に向けての走行制御方法を実現するための車載装置における基本的演算・制御手順説明図、Basic calculation / control procedure explanatory diagram in an in-vehicle device for realizing a travel control method toward a vehicle stop point that makes the best use of the kinetic energy of the vehicle according to the present invention, 本願発明による車両の運動エネルギーを最大限に活用した交差点無停止走行制御方法における制御手順説明図、Control procedure explanatory diagram in the intersection non-stop traveling control method utilizing the kinetic energy of the vehicle to the maximum according to the present invention, 本願発明による車両の運動エネルギーを最大限に活用した渋滞走行制御方法における制御手順説明図、である。It is control procedure explanatory drawing in the traffic congestion traveling control method using the kinetic energy of the vehicle by this invention to the maximum.

符号の説明Explanation of symbols

図1、図2、図3において、
Vmax :許容走行速度範囲上限値、惰性走行開始速度上限値、
Vmax’ :惰性走行開始速度下限値、
Vmin :許容走行速度範囲下限値、
特定地点P :本願発明による走行制御開始地点、
地点Q :車両停止地点
地点Q’ :車両停止地点Qから一定距離Db手前の地点でありブレーキによる制動開始地点、
D0 :特定地点P−地点Q 間距離、
D0’ :特定地点P−地点Q’ 間距離、
Ds :一定距離、本距離走行毎に惰性走行開始可否の判断を行う、
−αi :自車両減速度、
v :自車走行速度、
Δt :特定地点Pからの経過時間、
ΔD:特定地点Pからの車両走行距離、
1, 2, and 3,
Vmax: Allowable travel speed range upper limit value, inertial travel start speed upper limit value,
Vmax ': Inertia travel start speed lower limit value,
Vmin: Allowable travel speed range lower limit value,
Specific point P: traveling control start point according to the present invention,
Point Q: Vehicle stop point Q ': A point a certain distance Db before the vehicle stop point Q and the brake start point by the brake,
D 0 : Distance between specific point P and point Q,
D 0 ': distance between specific point P and point Q',
Ds: A determination is made as to whether or not coasting can be started at every fixed distance and every distance traveled.
-Αi: own vehicle deceleration,
v: Own vehicle traveling speed,
Δt: elapsed time from a specific point P,
ΔD: vehicle travel distance from a specific point P,

Claims (4)

車両現在位置から車両停止点あるいは徐行点までの間の車両走行距離および惰性走行時の減速度から、車両現在位置から車両停止点あるいは徐行点までの間を惰性走行によって到達可否の判定を行い、否の場合は一定走行距離あるいは一定時間の加速走行あるいは定速走行後に同様な惰性走行可否の判定を惰性走行が可になるまで繰り返し行い、惰性走行が可となった地点から車両停止点あるいは徐行点までの間惰性走行を行うことを特徴とする車両走行制御方法。   From the vehicle travel distance from the vehicle current position to the vehicle stop point or the slowdown point and the deceleration at the time of coasting, determine whether it can reach by the coasting from the vehicle current position to the vehicle stop point or the slowdown point, If not, repeat the same inertial run determination after a certain distance or acceleration for a certain period of time or at a constant speed until the inertial travel is possible, and stop the vehicle or slow down from the point where the inertial travel is possible A vehicle travel control method comprising performing intermittent travel to a point. 車両現在位置・現時刻に対応して次に通過すべき交差点を青信号・無停止で通過するための最適な交差点到達時刻を設定し、現時点・現時刻から惰性走行によって前記設定した交差点到達時刻に交差点に到達可能か否かを判定し、可能な場合はエネルギー回生機能あるいは制動機能によって惰性走行速度を調整しつつ交差点に向けて惰性走行し、交差点を青信号・無停止で通過することを特徴とする車両走行制御方法。 Set the optimal intersection arrival time to pass through the next intersection that should pass next without stopping according to the current position and current time of the vehicle, and from the current time / current time to the set intersection arrival time by coasting It is determined whether it is possible to reach the intersection, and if possible, coasting toward the intersection while adjusting the inertia traveling speed by the energy regeneration function or the braking function, and passing through the intersection with a green light and no stop. A vehicle travel control method. 惰性走行を行う道路毎に惰性走行のための標準減速度を設定し、車両の走行抵抗等によって定まる車両固有の減速度絶対値が前記標準減速度より小さい場合、車両は標準減速度で惰性走行を行い、前記惰性走行を行うに際しての標準減速度と車両固有の減速度絶対値の差分に相当する車両運動エネルギーは車両のエネルギー回生機能によって回生を行う、ことを特徴とする車両走行制御方法。   If a standard deceleration for inertial driving is set for each road where inertial driving is performed, and the vehicle-specific absolute deceleration value determined by the vehicle's running resistance is smaller than the standard deceleration, the vehicle is inertially driven at standard deceleration. And the vehicle kinetic energy corresponding to the difference between the standard deceleration and the inherent deceleration absolute value when performing inertial traveling is regenerated by the energy regeneration function of the vehicle. 従来の前方走行車に追従しての「一定加速度による一定速度までの発進・加速−一定速度での走行−減速−停止」の繰り返しによる渋滞中の走行に代えて、
停止中の自車の前方走行車との車間距離が「一定加速度による一定速度までの発進・加速走行−惰性走行による減速−停止」1サイクルによる走行可能距離に達したとき「一定加速度による一定速度までの発進・加速−必要に応じての定速走行」−惰性走行による減速−停止」の繰り返しによる渋滞中の走行を行うことによって渋滞走行時の発進・加速および摩擦ブレーキによる減速・停止頻度を低減させてエネルギー消費量削減・排出ガス量削減を行うことを特徴とする車両走行制御方法。
Instead of driving in a traffic jam by repeating `` start / acceleration to a constant speed by constant acceleration-running at a constant speed-deceleration-stop '' following a conventional forward vehicle,
When the distance between the stopped vehicle and the vehicle in front of the vehicle reaches the distance that can be traveled in one cycle, “start / acceleration travel to a constant speed by constant acceleration—deceleration by inertial travel—stop” “constant speed by constant acceleration” Starting and accelerating up to the time-Constant speed driving as needed `` Deceleration by inertial driving-Stopping '' By repeating the driving in traffic jams, the frequency of start and acceleration during traffic jams and deceleration and stop frequency by friction brake A vehicle travel control method characterized by reducing energy consumption and exhaust gas amount by reducing the amount.
JP2008295589A 2008-11-19 2008-11-19 Method for controlling vehicle travel Pending JP2010120503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295589A JP2010120503A (en) 2008-11-19 2008-11-19 Method for controlling vehicle travel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295589A JP2010120503A (en) 2008-11-19 2008-11-19 Method for controlling vehicle travel

Publications (1)

Publication Number Publication Date
JP2010120503A true JP2010120503A (en) 2010-06-03

Family

ID=42322229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295589A Pending JP2010120503A (en) 2008-11-19 2008-11-19 Method for controlling vehicle travel

Country Status (1)

Country Link
JP (1) JP2010120503A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011086459A1 (en) 2010-11-16 2012-05-16 Hitachi, Ltd. RUNNING DEVICE FOR ELECTRIC VEHICLES
WO2012090924A1 (en) * 2010-12-28 2012-07-05 日産自動車株式会社 Vehicle regeneration control device
JP2012147533A (en) * 2011-01-09 2012-08-02 Masahiro Watanabe Electric vehicle and driving control method of the same
JP2013189192A (en) * 2013-03-23 2013-09-26 Masahiro Watanabe Hybrid vehicle
JP2014050312A (en) * 2012-08-29 2014-03-17 Hyundai Motor Company Co Ltd Coasting travel control device of electric car and method thereof
KR101558815B1 (en) 2014-09-30 2015-10-07 현대자동차주식회사 Control method for hybrid electric vehicle
JP6080234B1 (en) * 2015-11-17 2017-02-15 渡邉 雅弘 Hybrid vehicle
JP2017124807A (en) * 2016-06-26 2017-07-20 渡邉 雅弘 Energy-saving decelerating travel method
JP6226495B1 (en) * 2016-10-15 2017-11-08 渡邉 雅弘 Energy-saving traffic control method
KR20180113748A (en) * 2017-04-07 2018-10-17 현대자동차주식회사 Controlling apparatus and method for driving of vehicles)
JP2019031153A (en) * 2017-08-07 2019-02-28 いすゞ自動車株式会社 Travel control device, vehicle, and travel control method
JP2019137296A (en) * 2018-02-14 2019-08-22 いすゞ自動車株式会社 Vehicle travel control device and method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8744656B2 (en) 2010-11-16 2014-06-03 Hitachi, Ltd. Running control device for electric vehicle
DE102011086459A1 (en) 2010-11-16 2012-05-16 Hitachi, Ltd. RUNNING DEVICE FOR ELECTRIC VEHICLES
EP2660444A4 (en) * 2010-12-28 2017-07-19 Nissan Motor Co., Ltd Vehicle regeneration control device
WO2012090924A1 (en) * 2010-12-28 2012-07-05 日産自動車株式会社 Vehicle regeneration control device
CN103282625A (en) * 2010-12-28 2013-09-04 日产自动车株式会社 Vehicle regeneration control device
JPWO2012090924A1 (en) * 2010-12-28 2014-06-05 日産自動車株式会社 Vehicle regeneration control device
US8798870B2 (en) 2010-12-28 2014-08-05 Nissan Motor Co., Ltd. Regeneration control device for vehicle
JP5668761B2 (en) * 2010-12-28 2015-02-12 日産自動車株式会社 Vehicle regeneration control device
CN103282625B (en) * 2010-12-28 2016-01-13 日产自动车株式会社 Vehicle regeneration control device
JP2012147533A (en) * 2011-01-09 2012-08-02 Masahiro Watanabe Electric vehicle and driving control method of the same
JP2014050312A (en) * 2012-08-29 2014-03-17 Hyundai Motor Company Co Ltd Coasting travel control device of electric car and method thereof
JP2013189192A (en) * 2013-03-23 2013-09-26 Masahiro Watanabe Hybrid vehicle
KR101558815B1 (en) 2014-09-30 2015-10-07 현대자동차주식회사 Control method for hybrid electric vehicle
JP2017056928A (en) * 2015-11-17 2017-03-23 渡邉 雅弘 Hybrid vehicle
JP6080234B1 (en) * 2015-11-17 2017-02-15 渡邉 雅弘 Hybrid vehicle
JP2017124807A (en) * 2016-06-26 2017-07-20 渡邉 雅弘 Energy-saving decelerating travel method
JP6226495B1 (en) * 2016-10-15 2017-11-08 渡邉 雅弘 Energy-saving traffic control method
JP2018062325A (en) * 2016-10-15 2018-04-19 渡邉 雅弘 Method for controlling energy saving traffic jam travel
KR20180113748A (en) * 2017-04-07 2018-10-17 현대자동차주식회사 Controlling apparatus and method for driving of vehicles)
KR102286735B1 (en) 2017-04-07 2021-08-05 현대자동차 주식회사 Controlling apparatus and method for driving of vehicles)
JP2019031153A (en) * 2017-08-07 2019-02-28 いすゞ自動車株式会社 Travel control device, vehicle, and travel control method
JP2019137296A (en) * 2018-02-14 2019-08-22 いすゞ自動車株式会社 Vehicle travel control device and method
JP7119407B2 (en) 2018-02-14 2022-08-17 いすゞ自動車株式会社 Vehicle cruise control device and vehicle cruise control method

Similar Documents

Publication Publication Date Title
JP2010120503A (en) Method for controlling vehicle travel
JP4646334B2 (en) Vehicle travel control method
US8410957B2 (en) Traffic light passing support system, in-vehicle apparatus for the same, and method for the same
JP5493780B2 (en) Driving support device, driving support method and program thereof
US8774998B2 (en) Vehicle control device
JP4793886B2 (en) Vehicle travel control method
JP6319192B2 (en) Vehicle speed limiter
WO2011013203A1 (en) Vehicle control device, vehicle control method, and vehicle control system
US20090240413A1 (en) Driving support device, driving support method, and driving support program
JP4765844B2 (en) Driving assistance device
JP2007056734A (en) Engine stop controller, engine start controller, and methods therefor
JP2012043094A (en) Traffic control system and vehicle control system
JP2010143304A (en) Vehicle traveling support control method and device
JP5152284B2 (en) Driver support device and driver support system
JP2011225103A (en) Vehicle traveling control method
JP2007233731A (en) Operation control evaluation device
KR20160049691A (en) Apparatus and method for providing traffic information
KR20200096827A (en) Method and device for automatic control of vehicle longitudinal dynamic behavior
CN114170825A (en) Green wave vehicle speed calculation method and device
JP2011005920A (en) Vehicle travel control method
JP2011098690A (en) Driving assist device for vehicle
JP2012160126A (en) Information processing device, drive support device, and vehicle control device
JP2017124806A (en) Energy saving deceleration travel control method
JP2011034206A (en) Vehicle controller, vehicle control system, and vehicle control method
CN115376333A (en) Intersection vehicle scheduling method and device and electronic equipment