JP4646334B2 - Vehicle travel control method - Google Patents
Vehicle travel control method Download PDFInfo
- Publication number
- JP4646334B2 JP4646334B2 JP2008231825A JP2008231825A JP4646334B2 JP 4646334 B2 JP4646334 B2 JP 4646334B2 JP 2008231825 A JP2008231825 A JP 2008231825A JP 2008231825 A JP2008231825 A JP 2008231825A JP 4646334 B2 JP4646334 B2 JP 4646334B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- point
- traveling
- intersection
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Regulating Braking Force (AREA)
- Control Of Transmission Device (AREA)
Description
本願発明は、車両走行の省エネルギー化、排出ガス量低減化、のため、車両の惰性走行を最大限に活用した車両走行制御方法に関する。 The present invention relates to a vehicle travel control method that makes full use of inertial travel of a vehicle for energy saving of vehicle travel and reduction of exhaust gas amount.
走行中に有している車両の運動エネルギーを、車両減速時に有効活用・回収して燃料消費量、排出ガス量を削減しようとする試みは古くから数多くある (特許文献1、特許文献2、特許文献3、等)。
本願発明は上記考え方をより進化させて、ハイブリッド車両の如きエネルギー回生機能を有する車両のみならず、単一駆動源の車両、すなわちエネルギー回生機能を有していない車両においても車両減速時において車両運動エネルギーを効率的に車両の走行エネルギーとするとともに、車両運動エネルギー中の車両走行に供するエネルギーに余るエネルギーを合理的に回収して、車両のエネルギー消費量、排出ガス量の削減を図ろうとするものである。
There have been many attempts to reduce the amount of fuel consumption and exhaust gas by effectively utilizing and recovering the kinetic energy of a vehicle that is in motion during vehicle deceleration (Patent Document 1, Patent Document 2, Patent). Reference 3, etc.).
The present invention further evolves the above-mentioned concept, and not only a vehicle having an energy regeneration function such as a hybrid vehicle but also a vehicle of a single drive source, that is, a vehicle not having an energy regeneration function, during vehicle deceleration during vehicle deceleration. Energy is efficiently used as vehicle running energy, and energy that is used for vehicle running in vehicle kinetic energy is rationally recovered to reduce vehicle energy consumption and emissions. It is.
本願発明は走行中の車両の有している運動エネルギーE=m・V2/2(ここでm:車両の質量、V:車両走行速度)を最も効率的・効果的に車両走行に活用する方法を示すものであり、その基本的考え方は、車両の惰性走行を運動エネルギーの許す範囲で、また車両走行速度の許す範囲で、できるだけ長距離行おうとするものである。
ここで言う惰性走行とは、車両のエンジン動作、駆動動作、操舵動作等を含む動作状態・操作状態に安全上あるいは信頼性上の支障をきたさない範囲内で車両の運動エネルギーを車両の走行エネルギーに効率的に変換できる走行状態であって、例えば惰性走行中制動動作が必要な状態が発生した場合は直ちに通常走行時と同様な制動動作を行うことができる走行状態をいう。
ここでハイブリッド車両の行っている「車両の有する運動エネルギーをエネルギー回生機能によって回収・蓄積を行い、その後改めて蓄積エネルギーを運動エネルギーへ転換即ち走行エネルギー化する」方法はエネルギーの回収効率および転換効率を考えると惰性走行に比べて効率が落ちることから、惰性走行が可能な状態においては極力エネルギー回生は行わず惰性走行のみ行うこととする。
The present invention (here m: mass of the vehicle, V: vehicle running speed) the kinetic energy E has a running vehicle = m · V 2/2 to make the most efficient and effective vehicle traveling The basic idea is to try to travel as long as possible within the range allowed by the kinetic energy and the range allowed by the vehicle running speed.
Here, inertial running refers to vehicle kinetic energy within the range that does not interfere with safety or reliability in the operation state / operation state including engine operation, drive operation, steering operation, etc. of the vehicle. For example, when a state requiring a braking operation during inertial traveling occurs, the traveling state can immediately perform a braking operation similar to that during normal traveling.
Here, the method of “collecting and accumulating the kinetic energy of the vehicle by the energy regeneration function and then converting the accumulated energy into kinetic energy, that is, turning it into running energy”, which is performed by the hybrid vehicle, increases the energy recovery efficiency and conversion efficiency. Considering this, the efficiency is lower than that of coasting, so that in the state where coasting is possible, energy regeneration is not performed as much as possible and only coasting is performed.
上記思想実現のための第一の方法として、現時点における車両走行速度および現地点から車両の停止あるいは徐行すべき地点までの走行距離を知って、現時点で惰性走行に移行した場合、停止地点あるいは徐行地点までの惰性走行が可能か否かを判定して可能であれば惰性走行を行う。
この判定には、上記の如く車両を惰性走行させた場合の減速度(負の加速度:−α)、および現地点から停止地点までの車両走行距離情報、現時点での走行速度情報、をあらかじめ知っておく必要がある。
ここで減速度(−α)は、自車両の減速度標準値(−α0)はあらかじめ測定して記憶しておくとともに道路状態、例えば道路勾配による補正係数β1、道路表面状態等による補正係数β2等による減速度補正係数βも道路毎、走行方向ごとに記憶しておき、(数1)により算出して使用する。
The first way to realize the above idea is to know the current vehicle travel speed and the travel distance from the local point to the point where the vehicle should stop or slow down. It is determined whether or not coasting to the point is possible, and coasting is performed if possible.
This determination is made in advance by knowing the deceleration (negative acceleration: -α) when the vehicle is coasting as described above, the vehicle travel distance information from the local point to the stop point, and the current travel speed information. It is necessary to keep.
Here, the deceleration (−α) is measured and stored in advance as the deceleration standard value (−α 0 ) of the host vehicle, and is corrected by the road condition, for example, the correction coefficient β 1 due to the road gradient, the road surface condition, etc. The deceleration correction coefficient β by the coefficient β 2 or the like is also stored for each road and for each traveling direction, and is calculated and used by (Equation 1).
(数1)
−α=(−α0 )・β
ここで、
β=β1・β2 (ただし、通常はβ=1)
(Equation 1)
−α = (− α 0 ) · β
here,
β = β 1・ β 2 (However, usually β = 1)
以下本願発明による惰性走行可否判断の基本的考え方を図1で説明する。
図1において、運動エネルギーEを有する車両は地点Aから地点Bに向けて走行し、地点Bにおいて停止、すなわち車両の運動エネルギーを0にする、ものとする。
地点A−地点B車両走行距離D0情報、地点Aでの走行速度V0情報、減速度(−α)情報から、(数2)により目標地点Bへの惰性走行による到達の可否を判定する。即ち(数2)が成り立つ場合は、惰性走行によって地点Bへの到達が可能であるとする。
Hereinafter, the basic concept of the inertia traveling determination according to the present invention will be described with reference to FIG.
In FIG. 1, it is assumed that a vehicle having kinetic energy E travels from point A to point B and stops at point B, that is, the kinetic energy of the vehicle is set to zero.
From the point A-point B vehicle travel distance D 0 information, the travel speed V 0 information at the point A, and the deceleration (−α) information, it is determined whether or not the target point B can be reached by inertial travel by (Equation 2). . That is, when (Equation 2) holds, it is assumed that the point B can be reached by coasting.
(数2)
V0 2/(2・α)−D0 > 0
(Equation 2)
V 0 2 / (2 · α) −D 0 > 0
(数2)が成立しない場合は、地点Aからの通常走行を継続し、地点Aから一定距離DS 走行毎に惰性走行での地点Bへの到達の可否を(数3)により判定する。(数3)を満足した場合その地点(地点An 、地点An −地点B間走行距離Dn 、走行速度Vn )から地点Bへの惰性走行を行う。ただし(数3)におけるDn は、(数4)で示される。 If (number 2) is not satisfied it determines to continue the normal running from the point A, the possibility of reaching from point A to point B in the coasting every predetermined distance D S travel by equation (3). When (Expression 3) is satisfied, coasting from the point (the point An, the point An to the point B-travel distance Dn, the travel speed Vn) to the point B is performed. However, D n in (Expression 3) is expressed by (Expression 4).
(数3)
Vn2/(2・α)−Dn > 0
(Equation 3)
Vn 2 / (2 · α) -Dn> 0
(数4)
Dn =D0 −n・Ds
ただし
n:1、2、3、・・・
である。
(Equation 4)
Dn = D 0 -n · Ds
However, n: 1, 2, 3, ...
It is.
但し、上記判定操作は、車両走行速度V0 あるいはVn が低速度の場合は意味がない。なぜなら、惰性走行をしてもその走行距離は短く直ちに直接摩擦ブレーキによる減速を行うことになるからである。
従って上記操作は車両走行速度V0 あるいはVn が(数5)を満足する場合に限定される。
However, the above determination operation is performed only when the vehicle traveling speed V 0 or Vn There is no point if is slow. This is because even if the vehicle is coasting, the traveling distance is short and the vehicle is immediately decelerated by the friction brake.
Therefore, the above operation can be performed with the vehicle running speed V 0 or V n Is limited to satisfying (Equation 5).
(数5)
Vmin1 ≦V0 、あるいはVmin1 ≦Vn
但し、
Vmin1 :惰性走行開始のための走行速度下限値
:惰性走行開始のための運動エネルギー下限値Emin1 時の車両走行速度
である。
(Equation 5)
Vmin1 ≤ V 0 or Vmin1 ≤ Vn
However,
Vmin1 : Lower limit of running speed for coasting
: Lower limit of kinetic energy Emin1 for starting coasting Vehicle travel speed at the time.
また惰性走行終了は、基本的には車両の運動エネルギーが減少して一定値Emin2 に達した時、すなわち惰性走行時の車両走行速度が前記運動エネルギーEmin2 に対応する車両走行速度Vmin2 に減少したときとする。
また本願発明の基本となる減速度は惰性走行実行毎に較正する。
較正された減速度(−α)は、惰性走行開始する地点AあるいはAn における車両走行速度V 0 あるいはVnと時刻ta あるいはtan、惰性走行を停止する地点B’での車両走行速度Vmin2 と時刻tb’、 から、(数6)によって求められる。
In addition, the end of inertial traveling is basically performed when the kinetic energy of the vehicle decreases to reach a certain value Emin2 , that is, the vehicle traveling speed Vmin2 corresponding to the kinetic energy Emin2 when the vehicle traveling speed during inertial traveling is reached. When it decreases to.
Further, the deceleration that is the basis of the present invention is calibrated every time coasting is performed.
The calibrated deceleration (−α) is determined by the vehicle travel speed V 0 or Vn at the point A or An where coasting starts and the time ta or tan, the vehicle travel speed Vmin2 at the point B ′ where coasting is stopped. And time tb ′, are obtained by (Equation 6).
(数6)
−α=−(V 0 −Vmin2 )/(tb’ − ta)
あるいは
−α=−(Vn−Vmin2 )/(tb’ − tan)
ここで、
Vmin2:車両走行速度がこれ未満になると車両動作・操作の安定性・信頼性に支障をきたしてしまう恐れがあることから惰性走行を停止する速度、
である。
(Equation 6)
−α = − (V 0 −Vmin2 ) / (Tb '− ta)
Or -α =-(Vn-Vmin2 ) / (Tb '− tan)
here,
Vmin2: The speed at which coasting is stopped because there is a risk that the vehicle operation / operation stability / reliability may be hindered if the vehicle traveling speed is less than this .
It is.
上記較正された減速度が得られた場合は、較正された減速度から減速度補正係数βを算出して、地図データベース中に、対応する道路・走行方向の減速度として記憶・保存し次回の同一道路を惰性走行する際に使用する。
即ち、上記較正された減速度(−α)は、道路の上り勾配/下り勾配等の道路勾配情報、舗装道路/未舗装道路等の道路面情報等の前記補正係数βを含んでおり、標準道路(平坦な舗装道路)における標準減速度(−α0 )を道路勾配あるいは道路面状態での補正係数βで補正した(数1)で示すトータル減速度(−α)が上記減速度となる。
When the calibrated deceleration is obtained, the deceleration correction coefficient β is calculated from the calibrated deceleration, and stored and saved as the corresponding road / travel direction deceleration in the map database. Used when coasting on the same road.
That is, the calibrated deceleration (-.alpha.) is contained upslope / descending slope roads gradient information of the road, the correction coefficient of the roads surface information such as paved roads / unpaved roads beta, standard road total deceleration indicated by the standard deceleration in (flat pavement) (-.alpha. 0) was corrected by β correction coefficient on the road gradient or the road surface condition (number 1) (-.alpha.) is the deceleration .
ここで、(数1)において、補正係数βは、通常の舗装状態の上り勾配道路においては、β>1、下り勾配道路においてはβ<1(β<0もありうる)、通常の平坦道路においてはβ=1となる。
上記、βは、道路地図データとして記憶しておき、地図データベース上に惰性走行すべき道路の上記(数6)の如く較正された減速度として記憶されていない場合は、標準減速度α0を補正して使用する。
Here, in (Equation 1), the correction coefficient β is β> 1 for an upgraded road in a normal paved state, β <1 (may be β <0) for a downgraded road, and a normal flat road. In this case, β = 1.
Β is stored as road map data. If the road is to be coasted on the map database and is not stored as a calibrated deceleration as in (Equation 6), standard deceleration α 0 is set. Correct and use.
減速度走行開始時は、前記(数2)あるいは(数3)の演算によって惰性走行が可能と判断できた時点で、アクセルオフ、クラッチオフ、フュエルカット等の車両の運動エネルギーが車両の走行エネルギーに最も効率的に転換できる車両状態への移行操作を行い惰性走行を開始する。ただし自車両の直前に車両が走行中であるような惰性走行に移行しての走行に危険が発生する恐れがある場合は惰性走行への移行を中止し、通常走行を行いつつ安全状態になるのを待つ。この場合の前方走行車両の検知は車両の前方監視レーダ等において行う。
また、惰性走行中に前記惰性走行停止条件を満足した場合は惰性走行中の車両状態を惰性走行開始直前の車両状態すなわち通常走行状態に移行させて減速・制動操作にうつる。
上記通常走行から惰性走行、惰性走行から通常走行・減速状態への移行のための車両状態操作は一括して自動的に行う方法が望ましい。
At the start of deceleration traveling, when it is determined that inertial traveling is possible by the calculation of (Equation 2) or (Equation 3), the kinetic energy of the vehicle such as accelerator off, clutch off, fuel cut, etc. The coasting operation is started by performing the transition operation to the vehicle state that can be converted most efficiently to the vehicle. However, if there is a risk of danger when traveling to coasting where the vehicle is traveling just before the host vehicle, the transition to coasting is stopped and the vehicle is in a safe state while performing normal traveling. Wait for In this case, the vehicle traveling ahead is detected by a vehicle front monitoring radar or the like.
Further, when the inertia traveling stop condition is satisfied during inertial traveling, the vehicle state during inertial traveling is shifted to the vehicle state immediately before starting inertial traveling, that is, the normal traveling state, and the deceleration / braking operation is performed.
It is desirable that the vehicle state operation for the transition from the normal traveling to the inertia traveling and the transition from the inertia traveling to the normal traveling / deceleration state is automatically performed collectively.
また、車両がエネルギー回生機能を有する場合は、前記惰性走行から通常の減速状態への移行条件をその時点での車両の回生エネルギーの蓄積レベルに対応して可変とすることが合理的である。
以上は地点Bが一旦停止すべき無信号交差点等の場合であるが、地点Bが信号交差点であり車両が交差点無停止走行制御、すなわち車両の走行速度を制御することによって交差点を青信号無停止で通過する制御を行っている場合についても適用できる。
Further, when the vehicle has an energy regeneration function, it is reasonable to make the transition condition from the inertia traveling to the normal deceleration state variable in accordance with the accumulation level of the regeneration energy of the vehicle at that time.
The above is a case where the point B is a non-signalized intersection that should be stopped once, but the point B is a signalized intersection and the vehicle does not stop at the intersection by controlling the vehicle speed without stopping at the intersection. The present invention can also be applied to a case where passing control is performed.
上記交差点無停止走行制御における減速時の惰性走行方法、即ち本願発明の第二の実現方法についての基本的考え方を図4を用いて説明する。
地点Aにおいて車両が交差点Bを青信号・無停止で通過するための地点A−交差点B間走行条件算出に必要な交差点B信号状態遷移情報、地点A−交差点B間距離情報D、車両の地点A通過時刻ta 、等を獲得し、車両は前記獲得した情報から交差点Bを青信号・無停止で通過するための走行条件、本願発明においては交差点B到達最適時刻tb 、を算出し、地点A通過以降の走行による車両の交差点B到達時刻が前記時刻tb になるように走行する。
The basic concept of the inertial traveling method during deceleration in the intersection non-stop traveling control, that is, the second realization method of the present invention will be described with reference to FIG.
Intersection B signal state transition information, point A-intersection B distance information D, vehicle point A required for calculating the travel condition between point A and intersection B for a vehicle to pass through intersection B without a green light at point A Passing time ta, etc. are acquired, and the vehicle calculates a traveling condition for passing through intersection B without a green light and non-stop from the acquired information, in the present invention, intersection B arrival optimum time tb, and after passing point A The vehicle travels such that the arrival time at the intersection B of the vehicle is the time tb.
即ち、地点Aにおいて時刻ta 時(車両走行速度:Va)に減速度(−α)で惰性走行を開始した場合の時刻tb までの間の車両の予測惰性走行距離Daは、(数7)で 、
また地点A通過後一定距離
n・Ds の間を走行した後時刻tan 時に走行速度Vanから減速度(−α)で惰性走行を開始した場合の時刻tb までの間の予測惰性走行距離Dan は(数8)で、各々あらわされる。
In other words, the predicted inertial travel distance Da of the vehicle up to time tb when inertial traveling is started at the time point ta (vehicle traveling speed: Va) at a deceleration (−α) is (Equation 7). ,
Further, after traveling for a certain distance n · Ds after passing through the point A, the predicted inertial travel distance Dan until the time tb when the inertial travel is started with the deceleration (−α) from the travel speed Van at the time tan is ( Each is expressed by Equation 8).
(数7)
Da =Va・(tb ―ta )−α・(tb ―ta )2/2
(Equation 7)
Da = Va · (tb -ta) -α · (tb -ta) 2/2
(数8)
Dan =Van・(tb ―tan )−α・(tb ―tan )2/2
(Equation 8)
Dan = Van · (tb -tan) -α · (tb -tan) 2/2
(数9)
Da > D
(Equation 9)
Da> D
(数10)
Dan > Dn
(Equation 10)
Dan> Dn
(数11)
Dn = D−n・Ds
(Equation 11)
Dn = Dn.Ds
ここで前記予測走行距離Da と地点A−地点B間走行距離D
の関係が(数9)を満足しない場合は、惰性走行によって車両は交差点Bに時刻tb 以降に到達することになるのに対し、
(数9)を満足する場合は、惰性走行によって車両は交差点Bに時刻tb 以前に到達することができることになる。したがって(数9)を満足する場合には地点Aにおいて惰性走行を開始し走行途中交差点Bに接近した場合はブレーキによって交差点B到達時刻を調整することによって交差点Bに時刻tb に到着することが可能となる。
Here, the predicted travel distance Da and the travel distance D between point A and point B
If the relationship of (9) does not satisfy (Equation 9), the vehicle will reach the intersection B after time tb by coasting,
If (Equation 9) is satisfied, the vehicle can reach the intersection B before time tb by coasting. Therefore, if (Equation 9) is satisfied, coasting can be started at point A, and when approaching intersection B on the way, it is possible to arrive at intersection B by adjusting the arrival time at intersection B by braking. It becomes.
また、地点Aで(数9)を満足しない場合は、(数8)による地点Aから距離n・Dsの地点Anまでの間 通常走行した後の時刻tan から時刻tb までの間の惰性走行による予測走行距離Dan
算出 と、(数11)に示す地点An から交差点Bまでの走行距離Dn の比較を、予測走行距離Dan が交差点Bまでの走行距離Dn より大きくなるまで繰り返し、予測走行距離Dan が交差点Bまでの走行距離Dn より大きくなった時点で惰性走行を開始する。
ここで、上記においては地点A通過後一定走行距離Ds 毎に惰性走行可否の判定を行っているが、これに代えて一定時間Ts 毎に行うこともできる。
Also, if (Equation 9) is not satisfied at point A, it will be due to coasting from time tan to time tb after normal travel from point A to point An at a distance n · Ds from (Equation 8). Estimated mileage Dan
The calculation and the comparison of the travel distance Dn from the point An to the intersection B shown in (Equation 11) are repeated until the predicted travel distance Dan becomes larger than the travel distance Dn to the intersection B, and the predicted travel distance Dan reaches the intersection B. Inertia travel is started when the travel distance becomes greater than Dn.
Here, in the above description, whether or not the inertial traveling is possible is determined every constant travel distance D s after passing through the point A, but instead, it can be performed every constant time Ts.
以上本願発明の第一の方法、第二の方法は、車両が特定地点での停止、徐行、あるいは交差点での青信号無停止通過のための減速時における惰性走行の活用方法であるが、本願発明の思想は、第三の方法すなわち車両の前方走行車への追従走行の安定化、効率化、省エネルギー化にも有効である。
図6(A)、(B)において、車両Aが前方走行車両Bに対して追従走行している場合の本願発明の方法について説明する。
通常の追従走行においては車両A−車両B間距離Lに、車両Aの走行速度Vs に対応する上下限値Lmax 、Lmin を設定し、車間距離が前記上下限値Lmax 、Lmin内に入るように惰性走行、加速走行を繰り返す(特許文献4参照)。しかしこの方法ではLmax において加速走行を、またLminにおいて惰性走行を、各々開始すると、実際の車両A−車両B間距離変動幅はLmin 〜Lmax 以上となってしまう上に、車両Aの追従走行速度変動幅も大きくなってしまう。
As described above, the first method and the second method of the present invention are methods for utilizing inertial running during deceleration when the vehicle stops at a specific point, slows down, or passes through a green light without stopping at an intersection. This idea is also effective for stabilization, efficiency and energy saving of the third method, that is, the follow-up traveling of the vehicle to the forward traveling vehicle.
6A and 6B, the method of the present invention in the case where the vehicle A is traveling following the forward traveling vehicle B will be described.
In normal follow-up traveling, upper and lower limit values Lmax and Lmin corresponding to the traveling speed Vs of the vehicle A are set in the distance L between the vehicle A and the vehicle B so that the distance between the vehicles falls within the upper and lower limit values Lmax and Lmin. Inertia running and acceleration running are repeated (see Patent Document 4). However, in this method , when acceleration running at Lmax and coasting at Lmin are started, the actual fluctuation range of the distance between the vehicle A and the vehicle B becomes not less than Lmin to Lmax, and the following running speed of the vehicle A is increased. The fluctuation range also becomes large.
これに対して本願発明は、図6に示すごとく、追従走行中の加速走行から惰性走行移行時および惰性走行から加速走行移行時の車両A−車両B間距離を同一とすること、すなわち加速走行時一定の車間距離(L=L1 +L2 )に達したとき惰性走行に移行し、その後の惰性走行時車両A−車両B間相対速度が0になった時点の車両A−車両B間距離L1(L1:最短車間距離)を安全車間距離に設定し、さらにその後相対速度が負となって車両A−車両B間距離が惰性走行開始時の車間距離(L=L1 +L2 )に一致したときに加速走行に移行すること、によって、惰性走行、加速走行を繰り返しての追従走行時における車間距離変動幅、したがって車両A−車両B間相対速度変動幅を最低限に抑圧した安定した効率的な追従走行を可能とする。 In contrast, in the present invention, as shown in FIG. 6, the distance between the vehicle A and the vehicle B at the time of transition from the acceleration traveling during the follow-up traveling to the inertia traveling and the transition from the inertia traveling to the acceleration traveling is made the same. When a certain inter-vehicle distance (L = L1 + L2) is reached, the vehicle shifts to coasting, and the vehicle A-vehicle B distance L1 ( when the relative speed between the vehicle A and the vehicle B becomes zero at the time of coasting thereafter ) L1: the shortest inter-vehicle distance) is set as the safe inter-vehicle distance, and then the acceleration is accelerated when the relative speed becomes negative and the distance between the vehicle A and the vehicle B coincides with the inter-vehicle distance (L = L1 + L2) at the start of inertial driving. moving to travel, by coasting, the inter-vehicle distance variation width during follow-up running of repeated acceleration running, thus stable and efficient follow-up run with suppressed relative speed variation between the vehicles A- vehicle B to the minimum Is possible.
次に本願発明による追従走行の具体的制御手順を示す。
車両A−車両B間相対速度Vr1 ( > 0)をあらかじめ設定しておく。
車両Aが車両Bに追従走行を開始し、車両A−車両B間相対速度VrがVr =0でかつ車両A−車両B間距離Lが(数12)に示す距離、すなわち車両速度Vs 時の制動距離(安全車間距離)、の時点で車両Aは減速度(−α)での惰性走行を開始し、
前記惰性走行開始後車両A−車両B間距離Lが(数14)に示す距離に拡大した時点で加速度α’ の加速走行に移行する、
加速走行移行後車両A−車両B間距離Lが一旦(数16)に示す距離に拡大した後(数14)に示す距離に復帰(縮小)した時点で再度惰性走行を開始する、
以後惰性走行中車両A−車両B間距離Lが一旦(数12)に示す距離に縮小した後(数14)に示す距離に拡大時点で加速走行の開始、加速走行中車両A−車両B間距離Lが一旦(数16)に示す距離に拡大した後(数14)に示す距離に復帰(縮小)時点で惰性走行の開始、を繰り返すことによって車両Bへの追従走行を行う。
Next, a specific control procedure for follow-up running according to the present invention will be described.
Vehicle A- vehicle B between the relative velocity V r 1 (> 0) Contact clauses set in advance.
When the vehicle A starts traveling following the vehicle B, the relative speed Vr between the vehicle A and the vehicle B is Vr = 0, and the distance L between the vehicle A and the vehicle B is the distance shown in (Equation 12) , that is, the vehicle speed Vs. At the time of the braking distance (safe inter-vehicle distance), the vehicle A starts coasting at a deceleration (−α),
When the distance L between the vehicle A and the vehicle B is increased to the distance shown in (Expression 14) after the start of inertial traveling, the vehicle shifts to acceleration traveling with acceleration α ′.
After the acceleration travel transition, after the distance L between the vehicle A and the vehicle B is once increased to the distance shown in (Expression 16) , the inertial travel is started again when returning to the distance shown in (Expression 14) (reduction) .
After that, after the distance L between the vehicle A and the vehicle B during inertia traveling is once reduced to the distance shown in (Equation 12), the acceleration running starts at the time of expansion to the distance shown in (Equation 14). After the distance L is once increased to the distance shown in (Equation 16), the inertial running is started at the time of returning (reducing) to the distance shown in (Equation 14), thereby following the vehicle B.
(数12)
L=L1(Vs)
(Equation 12)
L = L1 (Vs)
(数13)
L2(Vr1) =Vr12 /(2・α)
(Equation 13)
L2 (Vr1) = Vr1 2 /(2.α)
(数14)
L=L2(Vr1) +L1(Vs) ={Vr12 /(2・α)}+L1(Vs)
(Equation 14)
L = L2 (Vr1) + L1 (Vs) = {Vr1 2 /(2.α)}+L1(Vs)
(数15)
L3(Vr1) =Vr12 /(2・α’)
(Equation 15)
L3 (Vr1) = Vr1 2 / (2 · α ′)
(数16)
L=L3(Vr1) +L2(Vr1) +L1(Vs) ={Vr12 /(2・α’) }+{Vr12 /(2・α)}+L1(Vs)
(Equation 16)
L = L3 (Vr1) + L2 (Vr1) + L1 (Vs) = {Vr1 2 / (2 · α ′)} + {Vr1 2 / (2 · α)} + L1 (Vs)
ここで、
L1(Vs):速度Vs で走行中の車両Aの安全車間距離(制動距離)、
L2(Vr1):車両A−車両B間相対速度上限値Vr1 (>0)で走行中の車両Aが、惰性走行開始後Vr =0となるまでの間に車両Bに接近する相対距離、
L3(Vr1) :車両A−車両B間相対速度下限値(−Vr1) で走行中の車両Aが、加速度α’で加速走行開始後Vr =0となるまでの間に車両Bから遠ざかる相対距離、
Vs :前方走行車走行速度、
Vr :前方走行車との相対速度、
Vr1 :前方走行車との相対速度上下限値の絶対値、
である。
here,
L1 (Vs): safe inter-vehicle distance (braking distance) of vehicle A traveling at speed Vs,
L2 (Vr1): Relative distance that the vehicle A traveling at the vehicle A-vehicle B relative speed upper limit value Vr1 (> 0) approaches the vehicle B after the start of inertial traveling until Vr = 0.
L3 (Vr1): Relative distance that the vehicle A traveling at the vehicle A-vehicle B relative speed lower limit value (-Vr1) moves away from the vehicle B until the acceleration α 'starts and Vr = 0 after acceleration starts. ,
Vs: traveling vehicle traveling speed,
Vr: relative speed with the vehicle in front
Vr1: absolute value of the upper and lower relative speed relative to the vehicle traveling ahead,
It is.
上記条件下で追従走行を行うことによって車両Aの車両Bに対する相対速度VrがVr=0の時点、即ち惰性走行開始して後時間tr( =Vr1 /α) 経過時、車両Aは車両Bに最も接近して、車間距離Lは速度Vs で走行中の車両Aの制動距離L1(Vs)となる。したがってその時点でもブレーキを踏む必要はなく惰性走行を継続でき、車両A−車両B間車間距離Lが(数14)に示す距離に復帰した時点で改めて加速動作に移行しその後再度車間距離Lが(数14)の条件を満足した時点で惰性走行を開始する。この加速走行・惰性走行動作を繰り返すことによって、高速道路等の車両専用道は勿論一般道路においても、車両Aは安全にかつ最小の車間距離変動幅・走行速度変動幅でかつ最小の運動エネルギー損失で車両Bに対する追従走行ができることになる。 By following the vehicle under the above conditions, when the relative speed Vr of the vehicle A with respect to the vehicle B is Vr = 0, that is, when the time tr (= Vr1 / α) has elapsed since the start of inertial traveling, the vehicle A moves to the vehicle B. The closest distance L is the braking distance L 1 (Vs) of the vehicle A traveling at the speed Vs. Therefore, it is not necessary to step on the brake even at that time, and coasting can be continued. When the inter-vehicle distance L between the vehicle A and the vehicle B returns to the distance shown in (Equation 14) , the acceleration operation is started again, and then the inter-vehicle distance L is again set. Inertia running is started when the condition of (Expression 14) is satisfied. By repeating this acceleration traveling / inertial traveling operation, the vehicle A is safe and has the smallest range of inter-vehicle distance variation / running speed variation and the smallest kinetic energy loss on a general road as well as a dedicated road such as an expressway. Thus, it is possible to follow the vehicle B.
本願発明によって、車両走行中停止地点までの間の減速動作によるエネルギー消費量、排出ガス量を大幅に低減できる。また交差点無停止走行制御システムに本願発明による減速方法を採用することによって、交差点無停止走行制御によって期待される燃料消費量、排出ガス量削減効果を一層向上させることができる。さらに前方走行車への追従走行も安全かつ効率的に行うことができる。 According to the present invention, it is possible to greatly reduce the energy consumption and the exhaust gas amount due to the deceleration operation up to the stop point during traveling of the vehicle. Further, by adopting the deceleration method according to the present invention in the intersection non-stop traveling control system, it is possible to further improve the fuel consumption and exhaust gas amount reduction effect expected by the intersection non-stop traveling control. Furthermore, it is possible to follow and follow the forward vehicle safely and efficiently.
特定地点での停止、徐行のための惰性走行時、あるいは交差点にむけて特定走行条件に基づいての惰性走行する場合、走行による危険を避けるため、車両に前方レーダ等を装着し、前方に障害となる車両等が存在しないことを確認したうえで惰性走行を行うことが望ましい。また、前方走行車に追従走行する場合は前方走行車との車間距離および相対速度検知のための前方レーダ等がより必要となる。
また惰性走行開始に際してのアクセルオフ動作、クラッチオフ操作等を手動で別々に行うのでなく、たとえばアクセルオフ動作に連動してクラッチオフ動作等を自動的に一括して行うこと等が可能な車両のパワートレイン制御の合理化・自動化も望まれる。
When coasting to stop at a specific point, traveling slowly, or coasting based on specific driving conditions toward an intersection, the vehicle is equipped with a front radar etc. It is desirable to perform inertial running after confirming that there is no vehicle or the like. Further, when following a forward traveling vehicle, a front radar or the like for detecting the inter-vehicle distance from the forward traveling vehicle and the relative speed is required.
Also, instead of manually performing accelerator-off operation, clutch-off operation, etc. at the start of inertial running separately, for example, a vehicle that can automatically perform clutch-off operation, etc. in batch in conjunction with the accelerator-off operation, etc. The rationalization and automation of powertrain control is also desired.
地点Aから地点Bに向けて走行中の車両を、地点Bにおいて停止あるいは徐行させる場合の、車両走行による運動エネルギーを有効に活用した本願発明による減速方法を示す。
図2に車載装置の構成例を示す。
201は、カーナビゲーション機能に本願発明による減速制御機能を付加した車載装置の演算制御部、
202は、車両の現在位置特定部であり、GPS受信機、方位計、あるいはジャイロ等で構成される、
203は、特定地点(本例の場合は、地点A)からの車両走行距離を計測する走行距離計測部であり、後述の速度較正部204で較正された自車走行速度(自車速)を時間積分することによって走行距離計測を行う、
A deceleration method according to the present invention that effectively utilizes kinetic energy from vehicle travel when a vehicle traveling from a point A to a point B is stopped or slowed down at the point B will be described.
FIG. 2 shows a configuration example of the in-vehicle device.
201 is an arithmetic control unit of an in-vehicle device in which the deceleration control function according to the present invention is added to the car navigation function,
202 is a current position specifying unit of the vehicle, and includes a GPS receiver, an azimuth meter, or a gyro.
Reference numeral 203 denotes a travel distance measuring unit that measures a vehicle travel distance from a specific point (in this example, a point A). The vehicle travel speed (vehicle speed) calibrated by the speed calibration unit 204 described later is set as a time. Measure mileage by integrating,
204は、車両の自車速を較正する速度較正部、
205は、特定地点(本例の場合は、地点A)通過時からの経過時間を計測する経過時間計側部、
206は、通常走行中から惰性走行移行時、自車前方の走行車両あるいは障害物の有無等を検知して惰性走行に危険がないか否かを判定する前方レーダ部、
204 is a speed calibration unit for calibrating the vehicle speed of the vehicle;
205 is an elapsed time meter side portion that measures an elapsed time from passing through a specific point (in this example, point A);
206, during coasting shift from the normal traveling, the forward radar unit determines whether or not there is danger coasting detects the presence or absence of the vehicle ahead of the traveling vehicle or an obstacle,
207は、自車のアクセル、ブレーキの押下状態を検知するアクセル、ブレーキON/OFF検知部、
208は、通常走行から惰性走行に移行するに際し、惰性走行を最も効率的に行えるよう(車両走行時の運動エネルギーを最も効率的に活用できるよう)に、車両の惰性走行時のエネルギー負荷を車両の惰性走行に支障をきたさずかつ危険がない範囲で最小にする(例えばクラッチオフする、フエルカットする等)と共に、惰性走行終了時においては車両の運動エネルギーの負荷状態を例えば惰性走行移行直前の状態に自動的に復帰させると共にエネルギー回生動作を含む制動動作をスムースに行えるよう制御する惰性走行制御部、
209は、カーナビゲーションに必要な地図データに加えて、各道路における本願発明の減速度制御に必要な地点A−地点B間走行距離D情報、惰性走行時の減速度(−α)情報あるいは減速度補正係数β情報を有する地図データベース、
207 is an accelerator of the own vehicle, an accelerator for detecting a pressed state of the brake, a brake ON / OFF detector,
208 indicates the energy load during inertial driving of the vehicle so that the inertial traveling can be performed most efficiently (the kinetic energy during vehicle traveling can be most efficiently utilized) when shifting from normal traveling to inertial traveling. The vehicle's kinetic energy load state at the end of inertial driving is, for example, the state immediately before transitioning to inertial driving. An inertial traveling control unit for automatically returning to the vehicle and controlling the braking operation including the energy regeneration operation smoothly.
In addition to the map data necessary for car navigation, 209 is the travel distance D information between points A and B necessary for deceleration control of the present invention on each road, deceleration (-α) information or deceleration during coasting. Map database with speed correction coefficient β information,
210は、カーナビゲーションおよび本願発明による車両の惰性走行による減速度制御に必要な音声入出力を行う音声入出力部、
211は、カーナビゲーションおよび本願発明による車両の惰性走行による減速度制御に必要な表示入出力を行う表示入出力部、
212は、あらかじめ本願発明による惰性走行に必要な標準減速度(−α0 )を設定する標準減速度設定部、
である。
210 is a voice input / output unit for performing voice input / output necessary for deceleration control by car navigation and coasting of the vehicle according to the present invention;
211 is a display input / output unit that performs display input / output required for car navigation and deceleration control by inertial running of the vehicle according to the present invention;
212 is a standard deceleration setting unit that previously sets a standard deceleration (−α 0 ) necessary for inertial running according to the present invention;
It is.
次に、図2構成による車載装置における等減速度走行制御手順例を図3に示す手順図を用いて説明する。
図3において、
301は、車両の惰性走行制御手順開始点、
302は、車両が惰性走行による減速度走行制御開始点である地点Aを通過したか否かを位置特定部202で特定した位置データから判定する地点A通過判定処理、
303は、処理302において車両が地点Aを通過したと判定した場合、地点Aからの走行距離計測のための次数nを初期化する(n=0とする)n値初期化処理、
Next, an example of a constant deceleration traveling control procedure in the in-vehicle apparatus having the configuration shown in FIG. 2 will be described with reference to a procedure diagram shown in FIG.
In FIG.
301 is the starting point of the inertial running control procedure of the vehicle,
302 is a point A passage determination process for determining whether or not the vehicle has passed a point A that is a deceleration traveling control start point by inertia traveling from the position data specified by the position specifying unit 202;
303, when it is determined that the vehicle has passed the point A in the process 302, the order n for measuring the travel distance from the point A is initialized (n = 0), an n-value initialization process,
304は、地点A通過後の経過時間Δt、地点Aからの走行距離ΔDの計数を開始するΔt、ΔD計数開始処理、
305は、地点A−地点B間車両走行距離D0 情報および減速度(−α)情報を地図データベースから取り込むデータ取り込み処理、
306は、その時点での自車速Vn(n:0、1、2、・・・、地点A通過時はn=0 )を取り込む自車速取り込み処理、
304 is an elapsed time Δt after passing through the point A, Δt for starting counting of the travel distance ΔD from the point A, ΔD counting start process,
305 is a data fetching process for fetching vehicle travel distance D 0 information between point A and point B and deceleration (−α) information from the map database;
306 is the vehicle speed Vn at that time (n = 0, 1, 2,..., N = 0 when passing through point A )
307は、処理306で取り込んだ自車速Vn がVmin1以上か否か、即ち惰性走行を行う車両運動エネルギーEmin1 に対応する自車速以上の条件を満たしているか否か、を判定する自車速判定処理1、
308は、自車速Vn で走行中の車両が惰性走行を開始した場合の到達可能距離Da あるいはDan を算出する惰性走行到達可能距離算出処理、
309は、処理308の算出結果が距離(D0−n・Ds)以上か否か、即ち惰性走行によって地点Bに到達可能か否かを判定する地点B到達可否判定処理、
307 is a host vehicle speed determination process 1 for determining whether or not the host vehicle speed Vn captured in the process 306 is equal to or higher than Vmin1, that is, whether or not a condition equal to or higher than the host vehicle speed corresponding to the vehicle kinetic energy Emin1 for coasting is satisfied. ,
308 is an inertial travel reachable distance calculation process for calculating the reachable distance Da or Dan when the vehicle running at the host vehicle speed Vn starts inertial travel;
309 is a point B reachability determination process for determining whether or not the calculation result of the process 308 is greater than or equal to the distance (D 0 −n · Ds), that is, whether or not the point B can be reached by coasting.
310は、前方レーダ206で検知した自車前方状態が惰性走行開始可能な状態か否かを判定する前方状態判定処理、
311は、次数nをインクリメントするn値インクリメント処理、
312は、地点Aからの走行距離ΔDが、n・Dsに達したか否かを判定する、走行距離n・Ds 到達判定処理、
310 is a front state determination process for determining whether or not the vehicle front state detected by the front radar 206 is a state in which inertial traveling can be started;
311 is an n-value increment process for incrementing the order n,
312 is a travel distance n · Ds arrival determination process for determining whether or not the travel distance ΔD from the point A has reached n · Ds;
313は、惰性走行を開始する惰性走行開始処理、
314は、惰性走行開始時の時刻tan を経過時間計測部205から取り込む tan 取り込み処理、
315は、惰性走行中の自車速がVmin2 未満となったか否か、即ち惰性走行を終了する車両運動エネルギーEmin2に対応する自車速の条件を満たしているか否か、を判定する自車速判定処理2、
313 is an inertia running start process for starting inertia running,
314 is a tan capturing process for capturing the time tan at the start of coasting from the elapsed time measuring unit 205;
Reference numeral 315 denotes a vehicle speed determination process 2 for determining whether or not the vehicle speed during inertial traveling is less than Vmin2, that is, whether or not the vehicle speed condition corresponding to the vehicle kinetic energy Emin2 for terminating inertial traveling is satisfied. ,
316は、処理315において自車速がVmin2 未満と判定した場合、その時点の時刻tb’ を取り込むとともに、惰性走行を終了して通常のエネルギー回生を含む制動による減速に移行する惰性走行終了処理、
317は、(数6)より、減速度実測値を算出して次回の同一道路走行時において使用するためデータベースに蓄積する実測α値算出・記憶処理、
318は、車両の惰性走行制御手順の終了点、
である。
In step 315, when it is determined in the process 315 that the host vehicle speed is less than Vmin2, the time tb ′ at that time is taken and the inertial traveling is terminated and the inertial traveling termination process for shifting to deceleration by braking including normal energy regeneration is performed.
317 is an actual measurement α value calculation / storage process for calculating an actual deceleration value from (Equation 6) and storing it in the database for use in the next driving on the same road.
318 is the end point of the vehicle inertial running control procedure;
It is.
以上の如く本願発明による惰性走行によって、地点A通過時およびその後一定距離Ds 走行毎に惰性走行での地点B到達可否を判定して、到達可であって前方の安全が確認された場合惰性走行を開始し、自車速がVmin2 に到達するまで惰性走行を行い、自車速がVmin2に達した時点で惰性走行を停止し以後はエネルギー回生を含む減速動作に切り替えて地点Bにおける停止あるいは徐行を可能にする。 As described above, when coasting according to the present invention is performed, it is determined whether or not the point B can be reached in inertial traveling when passing the point A and every certain distance Ds traveling thereafter. The coasting is started until the host vehicle speed reaches Vmin2, and when the host vehicle speed reaches Vmin2, the coasting is stopped. After that, switching to the deceleration operation including energy regeneration is possible to stop or slow down at point B. To.
実施例2においては、本願発明の思想を交差点無停止走行制御に適用し、特定地点(本例の場合は地点A)において路車間通信で車載装置に通報された交差点Bを青信号・無停止で通過するための地点A−交差点B間の減速走行条件を惰性走行によって実現する方法を示す。
本実施例の車載装置構成は、前記図2の実施例1構成に、地点Aの路側に設けられた路車間通信路側装置からの通報を受信する路車間通信車側装置を付加することによって実現できる(ただし図2には前記路車間通信車側装置は記載していない)。
上記路車間通信によって路側から車側には車両の地点A通過時刻ta 、交差点Bを青信号無停止で通過するための走行条件(本例の場合は交差点B到達予定時刻tb )が通報されるものとする。
In the second embodiment, the idea of the present invention is applied to the intersection non-stop traveling control, and the intersection B notified to the in-vehicle device by road-to-vehicle communication at a specific point (in this example, point A) is green and non-stop. The method of implement | achieving the deceleration driving | running | working condition between the point A and the intersection B for passing by coasting is shown.
The in-vehicle device configuration of the present embodiment is realized by adding a road-to-vehicle communication vehicle-side device that receives a report from a road-to-vehicle communication road-side device provided on the road side of the point A to the configuration of the first embodiment in FIG. (However, the road-to-vehicle communication vehicle side device is not shown in FIG. 2).
By the above-mentioned road-to-vehicle communication, the road side to the vehicle side is notified of the vehicle's point A passing time ta and the traveling condition for passing through the intersection B without a green light stop (in this example, the estimated time of arrival at the intersection B tb). And
次に図5を用いて、交差点無停止走行制御に際しての惰性走行の適用手順例を示す。
501〜504は、図3における301〜304に同じ、
505は、地点Aにおいて路車間通信で通報される自車の地点A通過時刻ta 、交差点B到達予定時刻tb 、および車載装置中のデータベース中から地点A−地点B間車両走行距離D情報および減速度(−α)情報を取り込むデータ取り込み処理、
Next, FIG. 5 is used to show an example of an application procedure of inertial traveling in the intersection non-stop traveling control.
501 to 504 are the same as 301 to 304 in FIG.
Reference numeral 505 denotes a point A passing time ta of the own vehicle notified by road-to-vehicle communication at the point A, an expected arrival time tb at the intersection B, and a vehicle travel distance D information between the point A and the point B from the database in the in-vehicle device and a decrease. Data capture processing to capture speed (-α) information,
506〜507は、図3における306〜307に同じ、
508は、前記(数7)あるいは(数8)によってDan を演算するDan 演算処理、(ただしn :0、1、2、・・・である)
509は、(数9)あるいは(数10)でDan とDn (ただしn :0、1、2、・・・である)の大小関係を判定して、車両が交差点Bに時刻tb 以前に到達することが可能か否かで惰性走行の可否を判定する交差点B到達時刻判定処理、
510〜513および515〜518は、図3における処理310〜313および315〜318に同じ、
である。
506 to 507 are the same as 306 to 307 in FIG.
Reference numeral 508 denotes Dan calculation processing for calculating Dan according to the above (Equation 7) or (Equation 8) (where n is 0, 1, 2,...).
509 determines the magnitude relationship between Dan and Dn (where n is 0, 1, 2,...) In (Equation 9) or (Equation 10), and the vehicle reaches intersection B before time tb. Intersection B arrival time determination process for determining whether or not coasting is possible depending on whether or not it is possible to
510-513 and 515-518 are the same as processes 310-313 and 315-318 in FIG.
It is.
以上の如く、地点A通過時及び地点A通過後一定距離Ds 走行毎、に惰性走行での交差点Bへの到達予定時刻が時刻tb 以前か否かを判定し、惰性走行によって交差点Bに交差点無停止走行条件を満足する時刻tb に到達できると判定した場合には、その時点・地点から惰性走行を開始する。このように演算処理及び惰性走行を行うことによって、交差点Bを青信号無停止で通過するために地点Aで急激な減速による速度調整を行うことなく、かつ車両の運動エネルギーを有効に活用しての交差点無停止走行が実現できることになる。 As described above, it is determined whether or not the estimated time of arrival at the intersection B in coasting is before the time tb when traveling at a certain distance Ds after passing through the point A, and there is no intersection at the intersection B by coasting. If it is determined that the time tb that satisfies the stop traveling condition can be reached, coasting is started from that point / point. By performing the arithmetic processing and the coasting in this way, it is possible to effectively use the kinetic energy of the vehicle without adjusting the speed by rapid deceleration at the point A in order to pass through the intersection B without stopping the green light. Crossing without stopping can be realized.
実施例3においては、本願発明の思想を前方走行車に追従走行する車両に適用することによって、前方走行車に対して安全かつ効率的な追従走行方法を提供する。
本実施例の車載装置構成は、基本的には前記図2の実施例1構成に同一である。ただし、前方レーダは単に前方の障害物あるいは走行車両の検知ではなく、自車−前方走行車間の車間距離の計測および相対速度の検知が可能なものとする。
In the third embodiment, the concept of the present invention is applied to a vehicle that travels following a forward traveling vehicle, thereby providing a safe and efficient follow-up traveling method for the forward traveling vehicle.
The in-vehicle device configuration of the present embodiment is basically the same as that of the first embodiment shown in FIG. However, it is assumed that the front radar is capable of measuring the inter-vehicle distance between the host vehicle and the forward traveling vehicle and detecting the relative speed, not simply detecting the obstacle or traveling vehicle ahead.
次に図7を用いて、追従走行における惰性走行の適用手順例を示す。ただし本実施例における車両Aの位置情報、従って走行中の道路での減速度(−α)情報は図7に示す処理のバックグラウンドで得られているものとする。
701は、本願発明による前方走行車への追従走行制御処理手順開始点、
702は、自車前方に追従走行すべき走行車があるか否かを判定する前方走行車判定処理、
703は、追従走行中か否かの判別フラグをクリア、即ち追従走行中ではないと設定、するフラグクリア処理、
704は、前方レーダから自車−前方走行車車間距離L、自車−前方走行車間相対速度Vr (ただし、自車が前方走行車に接近しつつある場合をVr >0とする)を、また自車速度計から自車速Vs を取り込む、情報取得処理1、
Next, an example of an application procedure of inertial traveling in follow-up traveling will be described with reference to FIG. However, it is assumed that the position information of the vehicle A in the present embodiment, and hence the deceleration (−α) information on the running road, is obtained in the background of the processing shown in FIG.
701 is a follow-up running control process procedure start point for a forward running vehicle according to the present invention,
702 is a forward traveling vehicle determination process for determining whether or not there is a traveling vehicle that should follow the vehicle ahead;
703 clears a flag for determining whether or not the vehicle is following, that is, a flag clear process for setting that the vehicle is not following.
704 is a distance L between the own vehicle and the forward traveling vehicle from the front radar, a relative speed Vr between the own vehicle and the forward traveling vehicle (provided that Vr> 0 when the own vehicle is approaching the forward traveling vehicle), and Information acquisition processing 1 for acquiring the vehicle speed Vs from the vehicle speedometer,
705は、データベース中から自車速Vsに対応した制動距離(安全車間距離)L1(Vs)、自車−前方走行車間設定相対速度Vr1 、および加速度α’ を取り込む情報取得処理2、
706は、自車−前方走行車間距離LがL1(Vs)以下か否かを判定する、L1(Vs)判定処理、
707は、処理706において自車−前方走行車間距離LがL1(Vs)以下であると判定した場合、前方走行車への追突回避の制動を行う減速・制動処理、
705 is an information acquisition process 2 for taking in the braking distance (safe inter-vehicle distance) L1 (Vs) corresponding to the host vehicle speed Vs, the set relative speed Vr1 between the host vehicle and the forward traveling vehicle, and the acceleration α ′ from the database;
706 is an L1 (Vs) determination process for determining whether the distance L between the host vehicle and the forward traveling vehicle is L1 (Vs) or less.
707 is a deceleration / braking process for performing braking for avoiding a rear-end collision on the forward traveling vehicle when it is determined in the process 706 that the distance L between the host vehicle and the forward traveling vehicle is L1 (Vs) or less.
708は、追従走行中か否かの判別フラグを判定するフラグ判定処理、
709は、処理708において、まだ追従走行が開始されていないと判定された場合、車間距離がL1でかつ相対速度が0であるか否か、即ち追従走行開始条件が満足された状態になったか否かを判定する追従走行開始判定処理、
710は、処理709で追従走行開始条件が満足された状態になったと判定した場合には、追従走行中か否かの判別フラグをセットするフラグセット処理、
708 is a flag determination process for determining a determination flag as to whether or not the vehicle is following traveling;
If it is determined in step 708 that the follow-up running has not yet started, whether the inter-vehicle distance is L1 and the relative speed is 0, that is, whether the follow-up running start condition has been satisfied. Follow-up running start determination process for determining whether or not,
710 is a flag setting process for setting a determination flag as to whether or not the vehicle is following the vehicle when it is determined in the process 709 that the following vehicle start condition has been satisfied;
711は、自車−前方走行車設定相対速度Vr1における距離L2(Vr1)を前記(数12)より算出するL2(Vr1)算出処理、
712は、自車−前方走行車間距離LがL1(Vs)+L2(Vr1) 以下か否かを判定するL1(Vs)+L2(Vr1)判定処理、
711 is an L2 (Vr1) calculation process for calculating the distance L2 (Vr1) at the vehicle-front traveling vehicle set relative speed Vr1 from the above (Equation 12);
712 is an L1 (Vs) + L2 (Vr1) determination process for determining whether or not the distance L between the host vehicle and the forward traveling vehicle is L1 (Vs) + L2 (Vr1) or less.
713は、処理712において自車−前方走行車間距離LがL1(Vs)+L2(Vr1) 以下であると判定した場合、惰性走行の開始あるいは継続を行う惰性走行処理、
714は、処理708において自車−前方走行車間距離LがL1(Vs)+L2(Vr1)を超えていると判定した場合、加速走行の開始あるいは継続を行う加速走行処理、
である。
713 is an inertial traveling process for starting or continuing inertial traveling when it is determined in process 712 that the distance L between the host vehicle and the forward traveling vehicle is L1 (Vs) + L2 (Vr1) or less.
714 is an acceleration traveling process for starting or continuing the acceleration traveling when it is determined in the process 708 that the distance L between the host vehicle and the forward traveling vehicle exceeds L1 (Vs) + L2 (Vr1).
It is.
以上の如く、車両Aは車両Bとの車間距離L1(Vs)+L2(Vr1) のタイミングで、加速走行開始、惰性走行開始制御を各々行うことによって車間距離変動幅の少なく従って走行速度変動幅の少ない、またエネルギー効率の良い状態での車両Bへの追従走行が可能となる。 As described above, the vehicle A performs the acceleration travel start and inertial travel start control at the timing of the inter-vehicle distance L1 (Vs) + L2 (Vr1) with the vehicle B, thereby reducing the inter-vehicle distance variation width and accordingly the travel speed variation width. It is possible to follow the vehicle B in a state where there is little energy efficiency.
以上述べたごとく、ハイブリッド車等のエネルギー回生機能を有している車両に限らず単一駆動源の車両においても本願発明によって車両の有している運動エネルギーを効果的・効率的に活用して車両停止点での停止あるいは徐行を、交差点無停止走行における減速動作を、また前方車両の追従動作を実現でき、車両の省エネルギーあるいは排出ガス量削減に大きく貢献することができる。 As described above, the present invention effectively and efficiently utilizes the kinetic energy possessed by a vehicle in a single drive source vehicle as well as a vehicle having an energy regeneration function such as a hybrid vehicle. Stopping or slowing down at the vehicle stopping point, deceleration operation in nonstop driving at the intersection, and tracking operation of the preceding vehicle can be realized, which can greatly contribute to energy saving of the vehicle or reduction of the exhaust gas amount.
図1、図4において、
E:自車が地点A通過時の運動エネルギー
Emin1 :自車が走行速度Vmin1で走行時の車両運動エネルギー、車両に惰性走行を許容する運動エネルギー下限値、
Emin2 :自車が走行速度Vmin2 で走行時の車両運動エネルギー、車両に惰性走行を停止させる運動エネルギー上限値、
D、D0 :地点A−地点B(交差点B)間走行距離
Ds :地点A通過後の走行距離単位、
n・Ds :地点A通過後の走行距離(ただしn:0、1、2、・・・)
1 and 4,
E: Kinetic energy when the host vehicle passes through the point A Emin1: Vehicle kinetic energy when the host vehicle travels at the traveling speed Vmin1, kinetic energy lower limit value that allows the vehicle to travel inertially,
Emin2: Vehicle kinetic energy when the vehicle is traveling at the traveling speed Vmin2, upper limit value of kinetic energy that causes the vehicle to stop coasting,
D, D 0 : Travel distance between point A and point B (intersection B) Ds: Travel distance unit after passing through point A,
n · Ds: Travel distance after passing through point A (however, n: 0, 1, 2, ...)
地点A1 :地点Aから走行距離Ds の地点、
地点An :地点Aから走行距離n・Ds の地点、
地点B‘ :車両の運動エネルギーがEmin2 になる(惰性走行による走行速度がVmin2
になる)地点でありこの地点以降はブレーキによる制動を行う、
ta :地点A通過時刻、
tb :交差点Bを青信号無停止で通過するための交差点B到達予定時刻、
ta1:自車の地点A1 通過時刻、
tan:自車の地点An 通過時刻、
Point A1: A point of the travel distance Ds from the point A,
Point An: Point of mileage n · Ds from point A ,
Point B ′: The kinetic energy of the vehicle becomes Emin2 (the running speed by inertial running is Vmin2
And after this point, braking with the brake is performed .
ta: Time of passing through point A ,
tb: Expected arrival time at intersection B for passing through intersection B without a green light stop,
ta1: Passing time A1 of your vehicle,
tan: own vehicle point An passing time,
図6において、
P1 :前方走行車までの距離がL1(Vs)の地点、
P2 :前方走行車までの距離がL1(Vs)+L2(Vr1)の地点、
P3 :前方走行車までの距離がL1(Vs)+L2(Vr1)+L3(Vr1)の地点、
L:車両A(自車)−車両B(前方走行車)間距離、
Vs :車両B(前方走行車)走行速度、
Vr1 :車両A(自車)−車両B(前方走行車)間設定相対速度、
In FIG.
P1: Point where the distance to the vehicle ahead is L1 (Vs)
P2: The point where the distance to the vehicle ahead is L1 (Vs) + L2 (Vr1),
P3: a point where the distance to the vehicle ahead is L1 (Vs) + L2 (Vr1) + L3 (Vr1),
L: Distance between vehicle A (own vehicle) and vehicle B (front vehicle),
Vs: vehicle B (front vehicle) traveling speed,
Vr1: a set relative speed between the vehicle A (own vehicle) and the vehicle B (front vehicle),
Claims (1)
ここで、
Van:地点A(n=0時)、あるいは地点Aから距離ΔDn交差点Bに近づいた地点(地点An)での車両走行速度、
n:1、2、3、・・・、
Dn:地点An−交差点B間車両走行距離、
D:地点A−地点B間車両走行距離、
ΔDn:地点A通過後地点An通過までの車両走行距離、
α:惰性走行減速度、地点A通過時車載データベースより取得する、
tan:地点An通過時刻、
ta:地点A通過時刻、地点A通過時路車間通信によって取得する、
Δtn:地点A通過後地点An通過までの経過時間、
tb:交差点B到達最適時刻、地点A通過時路車間通信によって取得する、
である。 The vehicle traveling from the point A toward the target intersection point B is the vehicle travel speed Van at the local point / current point An, and the vehicle travel distance Dn (= D from the local point / current point An to the target intersection point B. −ΔDn), deceleration α when the vehicle is coasting, current time tan (= ta + Δtn), and arrival point optimal time tb during intersection green light period, which is the target point. Whether or not the intersection B can be reached at the optimum arrival time tb when coasting to the intersection B is determined every time the vehicle travels a certain distance after passing the point A or every certain time, and if that is possible, A vehicle travel control method, characterized in that the vehicle travels from the time point to the intersection B, which is a target point, and passes through the intersection B without a green light stop .
here,
Van: vehicle traveling speed at a point A (n = 0 o'clock) or a point approaching a distance ΔDn intersection B from the point A (point An),
n: 1, 2, 3, ...
Dn: vehicle travel distance between point An and intersection B
D: vehicle travel distance between point A and point B,
ΔDn: vehicle travel distance after passing through point A until passing through point An,
α: coasting deceleration, acquired from the in-vehicle database when passing through point A,
tan: point An passing time,
ta: Acquired by point A passage time, point-A passage time road-to-vehicle communication,
Δtn: Elapsed time after passing through point A until passing through point An,
tb: acquired by intersection B arrival optimal time, point-A passing road-to-vehicle communication,
It is.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008231825A JP4646334B2 (en) | 2008-09-10 | 2008-09-10 | Vehicle travel control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008231825A JP4646334B2 (en) | 2008-09-10 | 2008-09-10 | Vehicle travel control method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2010064576A JP2010064576A (en) | 2010-03-25 |
JP2010064576A5 JP2010064576A5 (en) | 2010-06-17 |
JP4646334B2 true JP4646334B2 (en) | 2011-03-09 |
Family
ID=42190547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008231825A Expired - Fee Related JP4646334B2 (en) | 2008-09-10 | 2008-09-10 | Vehicle travel control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4646334B2 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4793886B2 (en) * | 2009-08-27 | 2011-10-12 | 渡邉 雅弘 | Vehicle travel control method |
JP2011225103A (en) * | 2010-04-20 | 2011-11-10 | Masahiro Watanabe | Vehicle traveling control method |
DE102010023198A1 (en) * | 2010-06-09 | 2011-12-15 | Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) | Device and method for controlling the driving behavior of a vehicle approaching a breakpoint |
JP5549563B2 (en) * | 2010-12-01 | 2014-07-16 | トヨタ自動車株式会社 | Vehicle control device |
JP5602611B2 (en) * | 2010-12-20 | 2014-10-08 | Udトラックス株式会社 | Acceleration / deceleration degree display device |
JP2012147533A (en) * | 2011-01-09 | 2012-08-02 | Masahiro Watanabe | Electric vehicle and driving control method of the same |
DE102011083013A1 (en) * | 2011-09-20 | 2013-03-21 | Robert Bosch Gmbh | Method for operating driver assistance system in motor vehicle, involves calculating earliest and latest possible points in time to begin coasting and to start braking operation, for determining desired timepoint for slowing vehicle |
WO2013093962A1 (en) * | 2011-12-20 | 2013-06-27 | トヨタ自動車株式会社 | Vehicle control device |
JP5939621B2 (en) * | 2012-03-23 | 2016-06-22 | 本田技研工業株式会社 | Travel control device |
JP6089504B2 (en) * | 2012-08-29 | 2017-03-08 | トヨタ自動車株式会社 | Vehicle control device |
KR101428278B1 (en) | 2012-12-12 | 2014-08-07 | 현대자동차주식회사 | Driving map controlling method for vehicle |
US9026348B2 (en) | 2012-12-21 | 2015-05-05 | Honda Motor Co., Ltd. | System and method for brake coaching |
EP3006698B1 (en) * | 2013-05-31 | 2018-08-22 | Hitachi Automotive Systems, Ltd. | Vehicle control apparatus and vehicle control method |
JP5668791B2 (en) | 2013-06-03 | 2015-02-12 | トヨタ自動車株式会社 | Vehicle control device |
JP2017124807A (en) * | 2016-06-26 | 2017-07-20 | 渡邉 雅弘 | Energy-saving decelerating travel method |
DE102016224511A1 (en) * | 2016-12-08 | 2018-06-14 | Zf Friedrichshafen Ag | Method for controlling a rolling or sailing mode of a vehicle |
JP6930124B2 (en) * | 2017-02-10 | 2021-09-01 | いすゞ自動車株式会社 | Travel control device and vehicle |
JP6930483B2 (en) * | 2018-04-17 | 2021-09-01 | 株式会社デンソー | Travel control device |
CN113815609B (en) * | 2020-06-19 | 2023-08-01 | 宇通客车股份有限公司 | Constant-speed cruising system and fuel-saving control method and device thereof |
KR102368880B1 (en) * | 2020-08-24 | 2022-03-02 | 한양대학교 산학협력단 | Driving parameter control method and apparatus |
JP7334767B2 (en) * | 2021-09-21 | 2023-08-29 | いすゞ自動車株式会社 | Vehicle controller and vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006224809A (en) * | 2005-02-17 | 2006-08-31 | Toyota Motor Corp | Vehicle stop controller |
JP2006327545A (en) * | 2005-05-30 | 2006-12-07 | Toyota Central Res & Dev Lab Inc | Device and method for calculating traveling pattern of traveling object |
JP4518569B2 (en) * | 2008-02-26 | 2010-08-04 | 雅弘 渡邉 | Vehicle traveling speed control method |
-
2008
- 2008-09-10 JP JP2008231825A patent/JP4646334B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006224809A (en) * | 2005-02-17 | 2006-08-31 | Toyota Motor Corp | Vehicle stop controller |
JP2006327545A (en) * | 2005-05-30 | 2006-12-07 | Toyota Central Res & Dev Lab Inc | Device and method for calculating traveling pattern of traveling object |
JP4518569B2 (en) * | 2008-02-26 | 2010-08-04 | 雅弘 渡邉 | Vehicle traveling speed control method |
Also Published As
Publication number | Publication date |
---|---|
JP2010064576A (en) | 2010-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4646334B2 (en) | Vehicle travel control method | |
US8849492B2 (en) | Driving assistance apparatus | |
CN101327770B (en) | Travel control device | |
US8972080B2 (en) | Traffic control system, vehicle control system, traffic regulation system, and traffic control method | |
US9207091B2 (en) | Drive assistance device | |
US9061590B2 (en) | Leading vehicle detecting apparatus and inter-vehicular control apparatus using leading vehicle detecting apparatus | |
US10875534B2 (en) | Vehicle control device | |
JP4793886B2 (en) | Vehicle travel control method | |
US10160317B2 (en) | Vehicle speed control apparatus and vehicle speed limiting apparatus | |
JP6911945B2 (en) | Vehicle automatic driving method and automatic control device | |
CN110949375B (en) | Information processing system and server | |
JP2010120503A (en) | Method for controlling vehicle travel | |
JP4716340B2 (en) | Vehicle travel control method | |
JP2011225103A (en) | Vehicle traveling control method | |
US10683002B2 (en) | Efficient acceleration from surrounding vehicles | |
KR20170005065A (en) | Method and system for adapting the acceleration of a vehicle during driving of the vehicle along a route of travel | |
KR20170007362A (en) | Method and system for improving the operating efficiency of a vehicle during driving of a vehicle along a route of travel | |
JP6494006B2 (en) | Energy-saving deceleration travel control method | |
JP5029588B2 (en) | Idling stop notification device | |
JP2011098690A (en) | Driving assist device for vehicle | |
JP4979026B2 (en) | Communication type car navigation system | |
JP2012153296A (en) | Running control apparatus | |
JP2013089136A (en) | Road shape estimation device of vehicle, and vehicle travel control device including the same | |
KR20190003096A (en) | Vehicle having electric motor and method of controlling coasting torque for the same | |
CN115376333A (en) | Intersection vehicle scheduling method and device and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100422 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100423 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100429 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100726 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100729 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |