JP2018062325A - Method for controlling energy saving traffic jam travel - Google Patents

Method for controlling energy saving traffic jam travel Download PDF

Info

Publication number
JP2018062325A
JP2018062325A JP2016203169A JP2016203169A JP2018062325A JP 2018062325 A JP2018062325 A JP 2018062325A JP 2016203169 A JP2016203169 A JP 2016203169A JP 2016203169 A JP2016203169 A JP 2016203169A JP 2018062325 A JP2018062325 A JP 2018062325A
Authority
JP
Japan
Prior art keywords
vehicle
travel
deceleration
distance
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016203169A
Other languages
Japanese (ja)
Other versions
JP6226495B1 (en
Inventor
渡邉雅弘
Masahiro Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016203169A priority Critical patent/JP6226495B1/en
Application granted granted Critical
Publication of JP6226495B1 publication Critical patent/JP6226495B1/en
Publication of JP2018062325A publication Critical patent/JP2018062325A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To make both energy saving and gloval warming gas emission-reduction travel and safety travel compatible by rationalizing traffic jam travel.SOLUTION: Traffic jam travel at average speed vj during traffic jam during which start and stop are repeated is performed by travel at average speed vj and an actual inter-vehicle distance L (provided, ΔL<L≤(Ls+ΔL)) by repeating accelerated travel at acceleration αa and at an accelerated travel distance La and decelerated travel at deceleration αd and at a decelerated travel distance Ld (or coasting travel at coasting travel deceleration αi and at a coasting travel distance Li). However, supply of energy to a vehicle driving body during the decelerated travel (or during the coasting travel) and during stopping of a vehicle is stopped or reduced as much as possible, where Ls is a set inter-vehicle distance (Ls=(La+Ld), or Ls =(La+Li)) and ΔL is a safety inter-vehicle distance.SELECTED DRAWING: Figure 1

Description

本願発明は、省エネルギー・低地球温暖化ガス量排出および安全走行の両立を可能にする渋滞走行制御方法に関する。
但し、ここでの渋滞走行とは、前方車両に追従しての発進・停止を頻繁に繰り返す低平均速度走行を云う。
The present invention relates to a traffic congestion control method that enables both energy saving, low global warming gas emission and safe driving.
However, the traffic traveling here means low average speed traveling that frequently repeats starting and stopping following the vehicle ahead.

一定走行距離の走行に際し、最も効率的な走行方法は、最小限の加速走行と、前記最小限の加速走行によって車両が獲得した運動エネルギーを効率的に利用しての最大限の惰性走行による減速走行の組み合わせである。
しかし現状実行されている渋滞走行方法は、エンジンの(全気筒稼働ではなく)一部気筒稼働による走行(特許文献1)、あるいはエンジンの停止条件・再始動条件の最適化(特許文献3)、渋滞走行パターンの学習によるアイドルストップ条件の最適化(特許文献4)等、渋滞走行におけるエンジン利用条件の合理化に関するものが主体であり、、その他には、前方車両との車間距離に対応しての自車速度制御(特許文献2)、等、渋滞走行中の前方車両との車間距離に対応した走行速度の最適化による交通能力の最大化方法等がある。
これらはいずれも自動運転車等に適用できる体系的、合理的な渋滞走行制御方法には至っていない。
When traveling at a fixed distance, the most efficient driving method is the minimum acceleration driving and the deceleration by the maximum inertia driving that efficiently uses the kinetic energy acquired by the vehicle by the minimum acceleration driving. It is a combination of driving.
However, currently running traffic congestion methods include running with some cylinders operating (not all cylinders operating) (Patent Document 1), or optimizing engine stop / restart conditions (Patent Document 3), It is mainly related to rationalization of engine usage conditions in traffic jams, such as optimization of idle stop conditions by learning traffic jam patterns (Patent Document 4), and in addition, it corresponds to the distance between vehicles with the preceding vehicle There is a method for maximizing the traffic capacity by optimizing the traveling speed corresponding to the inter-vehicle distance from the preceding vehicle in a traffic jam, such as own vehicle speed control (Patent Document 2).
None of these methods have achieved a systematic and rational traffic control method that can be applied to autonomous vehicles.

特開2013−249760JP2013-249760 特開2014− 51258JP 2014-51258 A 特開2014−167278JP 2014-167278 A 特開2015−143491JP2015-143491A

本願発明は渋滞走行を、渋滞平均速度(渋滞中の車両の平均走行速度)、あるいは自車両−前方車両間車間距離、を含めてトータル的にとらえ、それに合理的・体系的に対応することによって省エネルギー・低排出ガス量かつ走行安全な渋滞走行を効果的に行おうとするものである。 The present invention captures traffic jams in total, including traffic jam average speed (average vehicle speed of vehicles in traffic jams), or the distance between the host vehicle and the vehicle ahead, and responds to it rationally and systematically. It is intended to effectively carry on traffic jams that are energy-saving, have low emissions, and are safe for running.

従来の渋滞走行の問題点は以下の如くである。
・加速走行・定速走行、あるいは減速時・停車時の(例えばガソリンエンジンへのガソリン等)過剰な駆動体駆動エネルギー供給による浪費、
・減速走行時の車両の有する運動エネルギーの、制動(低効率回生制動を含む)による浪費。
上記問題を解決するためには、以下の対応が必要である。
・渋滞平均速度に対応した最小限の加速走行と、前記加速走行の結果車両に蓄積された運動エネルギーの車両減速走行への効率的な利用、即ち惰性走行の最大限の活用
・減速走行時あるいは停車時の(例えばガソリンエンジンへのガソリン等)駆動体への駆動体駆動エネルギーの供給停止あるいは供給削減。、
Problems with conventional traffic jams are as follows.
-Waste due to excessive drive body drive energy supply during acceleration travel, constant speed travel, deceleration or stop (eg gasoline to gasoline engine),
-Waste due to braking (including low-efficiency regenerative braking) of the kinetic energy of the vehicle during deceleration.
In order to solve the above problems, the following measures are required.
・ Minimum acceleration travel corresponding to the average speed of traffic jams and efficient use of the kinetic energy accumulated in the vehicle as a result of the acceleration travel for vehicle deceleration travel, that is, maximum use of inertial travel Stop or reduce the supply of drive body drive energy to the drive body when the vehicle is stopped (for example, gasoline to a gasoline engine). ,

上記問題解決策実行のための方策を、図1を用いて説明する。
図1において、縦軸を自車速度、横軸を時間あるいは走行距離とする。
またvj は渋滞平均速度(渋滞中の車両の平均速度)である。
速度0から速度(2・vj)までの間加速度αa で加速走行した場合の走行距離をLa 、走行時間をta、速度(2・vj)から速度0までの間減速度αd で減速走行した場合の走行距離をLd 、走行時間をtd、とするとLa、Ld、ta、td はそれぞれ(数1)、(数2)、(数3)、(数4)であらわされる。
(数1)
La =(2・vj )/(2・αa)
(数2)
Ld =(2・vj )/(2・αd)
(数3)
ta =(2・vj)/αa
(数4)
td =(2・vj)/αd
ここで、減速度αd は、
(数5)
αd =αi +αb
但し
αi:惰性走行減速度
αb:減速度αd とするための、惰性走行減速度αiに付加する制動減速度
である。
A measure for executing the above problem solution will be described with reference to FIG.
In FIG. 1, the vertical axis represents the vehicle speed, and the horizontal axis represents time or travel distance.
Further, vj is a traffic jam average speed (average speed of vehicles in a traffic jam).
When traveling at an acceleration αa from speed 0 to speed (2 · vj) at the acceleration distance La, travel time at ta, and traveling at a deceleration αd from speed (2 · vj) to speed 0 Assuming that the travel distance is Ld and the travel time is td, La, Ld, ta, and td are expressed by (Equation 1), (Equation 2), (Equation 3), and (Equation 4), respectively.
(Equation 1)
La = (2 · vj) 2 / (2 · αa)
(Equation 2)
Ld = (2 · vj) 2 / (2 · αd)
(Equation 3)
ta = (2 · vj) / αa
(Equation 4)
td = (2 · vj) / αd
Where deceleration αd is
(Equation 5)
αd = αi + αb
However, αi: inertia traveling deceleration αb: braking deceleration to be added to inertia traveling deceleration αi so as to be deceleration αd.

ここで、加速走行距離La および減速走行距離Ld の和である加減速走行距離(La+Ld)の間を、加速走行時間ta と減速走行時間td の和である加減速走行時間(ta+td)で走行する場合の速度vad は、(数6)で示される。
(数6)
vad =(La+Ld )/(ta +td )=vj
即ち、上記の如き加速走行距離Laと減速走行距離Ldの和である加減速走行距離(La +Ld)を加速時間taと減速時間td での和時間(ta +td)で走行した場合の平均速度は渋滞平均速度
vjとすることができる。
Here, the vehicle travels between the acceleration / deceleration travel distance (La + Ld) which is the sum of the acceleration travel distance La and the deceleration travel distance Ld with the acceleration / deceleration travel time (ta + td) which is the sum of the acceleration travel time ta and the deceleration travel time td. The speed vad in this case is expressed by (Equation 6).
(Equation 6)
vad = (La + Ld) / (ta + td) = vj
That is, the average speed when the vehicle travels by the sum time (ta + td) of the acceleration time ta and the deceleration time td over the acceleration / deceleration travel distance (La + Ld) which is the sum of the acceleration travel distance La and the deceleration travel distance Ld as described above. The traffic jam average speed vj can be obtained.

従って、発進・停止を頻繁に繰り返す渋滞平均速度vj の渋滞中において、停車中の自車両が、前方車両との車間距離Lが(数7)を満足した時(但しΔL:安全車間距離)、上記加速走行を開始し、速度が(2・vj)に達した後減速度αdの減速走行に移行して速度0となるまで走行した場合の走行距離は(La +Ld)となり、この結果、前記加減速走行の間の自車両と前方車両間の車間距離は、前方車両の走行状態如何(但し逆走は無しとする)にかかわらず(数8)を満足することができる。即ち、(数9)で示される設定車間距離Lsを確保しての安全な加減速走行が可能となる。
(数7)
L≧Ls+ΔL
(数8)
L≧ΔL
(数9)
Ls =La +Ld
Therefore, in a traffic jam with a traffic jam average speed vj that frequently starts and stops, when the host vehicle that is stopped satisfies the following distance L with the preceding vehicle (Expression 7), where ΔL is the safe inter-vehicle distance. The acceleration travel is started, and after the speed reaches (2 · vj), the travel distance is (La + Ld) when shifting to the deceleration travel of the deceleration αd and traveling until the speed becomes 0, and as a result, The inter-vehicle distance between the host vehicle and the preceding vehicle during acceleration / deceleration traveling can satisfy (Equation 8) regardless of the traveling state of the preceding vehicle (however, no reverse running is assumed). That is, safe acceleration / deceleration traveling with the set inter-vehicle distance Ls shown in (Equation 9) is possible.
(Equation 7)
L ≧ Ls + ΔL
(Equation 8)
L ≧ ΔL
(Equation 9)
Ls = La + Ld

ここで、上記加速走行距離La 、減速走行距離Ld の最適化、即ち加速度αa 、減速度αd の最適化、を考える。
先ず減速走行距離Ldを考える。
減速走行の最もエネルギー効率の良い走行方法は、前記のとおり惰性走行、即ち減速度αdを惰性走行減速度αi としての走行である。
Here, the optimization of the acceleration travel distance La and the deceleration travel distance Ld, that is, the optimization of the acceleration αa and the deceleration αd will be considered.
First, consider the deceleration travel distance Ld.
As described above, the most energy efficient traveling method of the deceleration traveling is inertia traveling, that is, traveling with the deceleration αd as the inertia traveling deceleration αi.

しかし前記渋滞中の減速走行を惰性走行減速度αiの惰性走行のみで行おうとすると、例えば渋滞平均速度vj=5km/hの渋滞走行において、(一般的な車両においては、)惰性走行減速度αiによる速度(2・vj)=10km/hから速度0までの惰性走行距離Liは10m以上、したがって加速走行距離Laを5mとすると一周期の加減速走行距離は15m以上となってしまい、車間距離が過大になるという問題が発生する。 However, if it is attempted to perform the deceleration traveling in the traffic jam only by the inertia traveling at the inertia traveling deceleration αi, for example, in the traffic jam traveling at the average traffic speed vj = 5 km / h (in a general vehicle), the inertia traveling deceleration α i (2 · vj) = 10 km / h to zero speed, the coasting distance Li is 10 m or more. Therefore, if the acceleration traveling distance La is 5 m, the acceleration / deceleration traveling distance in one cycle is 15 m or more. The problem that becomes excessive.

一方、減速走行を減速度αd (=αi+αb、即ち惰性走行減速度αiに制動減速度αbを付加した減速走行)で行おうとすると、減速走行時の制動減速度αbの制御が必要となることに加えて、速度0から速度(2・vj)までの加速走行によって車両が獲得した運動エネルギー{(m・vj2)/2}(但しm:自車両質量)中の{αi / (αi +αb)}分しか減速走行に利用されず、残りの{αb / (αi +αb)}分は制動減速度αbによる制動による摩擦熱として放散されてしまい、走行の運動エネルギー損失となる。
(但し、上記減速度αbによる制動を摩擦制動ではなく高効率の回生性能を有する回生制動で行う方法もあり、この場合は制動を単なる摩擦制動で行う場合に比べて回生制動の効率分だけ運動エネルギー利用効率を向上させることができる。)
On the other hand, if deceleration traveling is performed at a deceleration αd (= αi + αb, that is, deceleration traveling with inertia braking deceleration αi added to braking deceleration αb), control of braking deceleration αb during deceleration traveling is required. In addition, {αi / (αi + αb) in the kinetic energy {(m · vj 2 ) / 2} (where m is the mass of the host vehicle) acquired by the vehicle by acceleration from speed 0 to speed (2 · vj) } Is used for deceleration traveling, and the remaining {αb / (αi + αb)} is dissipated as frictional heat due to braking by the braking deceleration αb, resulting in kinetic energy loss during traveling.
(However, there is also a method in which braking by the deceleration αb is performed not by friction braking but by regenerative braking having high efficiency regenerative performance. In this case, movement is performed by the efficiency of regenerative braking compared to the case where braking is performed by simple friction braking. Energy use efficiency can be improved.)

従って、渋滞走行速度vjに対応する最適な自車両−前方車両間設定車間距離Lsのための加速走行距離La設定に際しては、加速度αaを許容可能な(乗員に違和感を与えず制御が容易かつ安全な)範囲で最大値に設定して後(数1)より前記極大化した加速度αaに対応した極小化した加速走行距離Laを算出・設定する。
次いで、前記Ls 、La より(数9)を用いてLd (=Ls −La)を算出(但しここで算出されたLd は、惰性走行距離Liに対してLd <Li とする)、前記Ldより(数2)を用いてαdを、(数5)を用いてαb を算出し、最終的には減速走行時αb を制御しての極小化した減速度αd での極大化した減速走行距離Ldでの減速走行を行う。
Therefore, when setting the acceleration travel distance La for the optimum vehicle-to-front vehicle distance Ls corresponding to the traffic speed vj, the acceleration αa can be allowed (the control is easy and safe without giving the passengers a sense of incongruity). The maximum acceleration travel distance La corresponding to the maximum acceleration αa is calculated and set from (Equation 1).
Next, Ld (= Ls−La) is calculated from the above Ls and La using (Equation 9) (however, Ld calculated here is Ld <Li with respect to the inertia traveling distance Li), and from the above Ld Αd is calculated using (Equation 2), and αb is calculated using (Equation 5). Ultimately, the deceleration travel distance Ld maximized at the minimized deceleration αd by controlling αb during deceleration travel. Drive at a reduced speed.

一方、減速走行中あるいは停車中のエンジンあるいはモータの駆動による駆動体駆動エネルギー損失は、駆動を停止するあるいは駆動での消費量を低減させることで可能である。
従ってトータル的な渋滞走行の最適化は、渋滞平均速度vjに対応した設定車間距離Lsに対応する加速度αa、減速度αdの最適化(即ち、加速走行距離La 、減速走行距離Ldの最適化)とその結果としての運動エネルギー利用効率向上と、減速走行時および停車時の駆動体駆動エネルギーの損失低減、を合わせて総合的に最適化することになる。
On the other hand, the driving body drive energy loss due to the driving of the engine or the motor that is running at a reduced speed or stopped can be achieved by stopping the driving or reducing the consumption of the driving.
Accordingly, the optimization of the total traffic traveling is performed by optimizing the acceleration αa and the deceleration αd corresponding to the set inter-vehicle distance Ls corresponding to the average traffic speed vj (that is, optimizing the acceleration traveling distance La and the deceleration traveling distance Ld). And, as a result, the kinetic energy utilization efficiency is improved and the driving body drive energy loss is reduced when the vehicle is decelerated and stopped.

上記のごとき本願発明による平均速度vjでの、基本的に速度0から速度(2・vj)間の加減速度走行の繰り返しによる設定車間距離Lsでの渋滞走行によって、省エネルギー・地球温暖化ガス削減と安全走行が両立した渋滞走行が可能となる。
特に本願発明による渋滞走行はEV等のモーター駆動を主体とした自動運転車への適用が効果的である。
As described above, energy saving and global warming gas reduction can be achieved by congested traveling at a set inter-vehicle distance Ls by repeating acceleration / deceleration traveling between speed 0 and speed (2 · vj) at the average speed vj according to the present invention as described above. Congested driving that enables safe driving is possible.
In particular, the traffic jam according to the present invention is effective when applied to an autonomous driving vehicle mainly driven by a motor such as EV.

本願発明の渋滞走行の基本的考え方を説明する渋滞走行形態説明図、Traffic jam mode explanatory diagram explaining the basic concept of traffic jam traveling of the present invention, 本願発明による渋滞走行制御手順例である。It is an example of a traffic congestion control procedure by this invention.

本発明実施に際しては先ず渋滞平均速度vjの特定が必要になる。これは外部交通情報からの渋滞長と渋滞通過予測時間からの特定、あるいは自車が渋滞状態に侵入した時からの走行距離および経過時間からの特定で可能である。
また追従走行すべき前方車両の有無特定、あるいは自車−前方車両間車間距離Lの特定は、カメラ、レーダー等の測距機能を有する装置、あるいは自車位置特定可能な車両間の(自車−前方車両の)車車間通信によって可能である。
また、渋滞平均速度vjに対応した加速度αa 、減速度αd(あるいは惰性走行減速度αi、制動減速度αb)および設定車間距離Lsおよび安全車間距離ΔLは、あらかじめ特定しておく必要がある。
In implementing the present invention, it is first necessary to specify the traffic jam average speed vj. This can be specified from the length of traffic jam from the external traffic information and the estimated traffic passage time, or from the travel distance and elapsed time from when the vehicle entered the traffic jam state.
Also, the presence / absence of a forward vehicle to be followed or the distance L between the vehicle and the vehicle ahead can be specified by a device having a distance measuring function such as a camera or a radar, or between vehicles capable of specifying the vehicle position (vehicles). -It is possible by inter-vehicle communication (of the vehicle ahead).
Further, the acceleration αa, deceleration αd (or inertia traveling deceleration αi, braking deceleration αb), the set inter-vehicle distance Ls, and the safe inter-vehicle distance ΔL corresponding to the average traffic jam speed vj must be specified in advance.

図2に本願発明による省エネルギー渋滞走行制御方法における制御手順例を示す。
図2において、
201は、渋滞走行制御手順開始点、
202は、自車両前方一定距離Lf以内にある(追従すべき)車両の有無を確認する前方車両有無確認処理A、
ここで前方車両の有無は、自車両から一定距離Lf(Lf>(Ls +ΔL))以内前方に自車両と同一向き走行の車両の有無を、カメラあるいはレーダー等により確認する。
203は、自車速vsが0、即ち自車両が停止状態か否か、の確認処理、
204は、自車−前方車両間実車間距離Lが(Ls +ΔL)以上か否かを判定する車間距離判定処理A、
ここでLs は設定車間距離、ΔLは安全車間距離である。
205は、処理204および後述の処理209でL≧(Ls +ΔL)と判定された場合、あるいは後述の処理206でvs<2・vjと判定された場合、加速度αa の加速走行を開始あるいは継続する加速走行処理、
FIG. 2 shows an example of a control procedure in the energy-saving traffic traveling control method according to the present invention.
In FIG.
201 is a traffic congestion control procedure start point,
202 is a front vehicle presence / absence confirmation process A for confirming the presence / absence of a vehicle within a certain distance Lf in front of the host vehicle (to be followed);
Here, the presence / absence of a forward vehicle is confirmed by a camera or a radar or the like in front of the vehicle within a certain distance Lf (Lf> (Ls + ΔL)).
203 is a process for confirming whether or not the host vehicle speed vs is 0, that is, the host vehicle is in a stopped state,
204, an inter-vehicle distance determination process A for determining whether or not the actual inter-vehicle distance L between the host vehicle and the preceding vehicle is (Ls + ΔL) or more.
Here, Ls is a set inter-vehicle distance, and ΔL is a safe inter-vehicle distance.
205, when it is determined that L ≧ (Ls + ΔL) in the processing 204 and the processing 209 described later, or when it is determined that vs <2 · vj in the processing 206 described later, starts or continues the acceleration travel of the acceleration αa. Accelerated travel processing,

206は加速走行の結果自車速vsが(2・vj)に達したか否かを判定するvs 判定処理、
207は、処理206で加速走行の結果自車速vsが(2・vj) 以上に達したと判定された場合、あるいは後述の処理210でL≧ΔLと判定された場合、減速度αd の減速走行に移行あるいは継続する、減速走行処理、
208は、処理202と同様、自車両前方に追従すべき車両の有無を確認する前方車両有無確認処理B、
209は、処理204と同様、自車−前方車両間実車間距離Lが(Ls +ΔL)以上か否かを判定する車間距離判定処理B、
210は、自車−前方車両間実車間距離Lが安全車間距離ΔL以下か否かを判定する安全車間距離判定処理、
211は、処理210で自車−前方車両間実車間距離Lが安全車間距離ΔL以下であると判定された場合、自車速vsが0か否か、即ち自車両が停止状態にあるか否かを判定する自車停止判定処理、
212は、処理211の判定結果自車速vsが未だ0となっていないと判定された場合、制動減速度αr(αr>αb)によるvs=0へ向けての制動を行う制動処理、
213は、処理208において追従すべき前方走行車両無しと判定された場合、渋滞走行制御処理を終了(したのち通常走行に移行)する渋滞走行制御処理終了点、
である。
206 is a vs determination process for determining whether or not the own vehicle speed vs has reached (2 · vj) as a result of acceleration running;
In step 207, when it is determined in the processing 206 that the vehicle speed vs has reached (2 · vj) or more as a result of the acceleration traveling, or when it is determined that L ≧ ΔL in the processing 210 to be described later, the vehicle travels at a deceleration αd. Decelerating driving process,
As in the process 202, 208 is a front vehicle presence / absence confirmation process B for confirming the presence / absence of a vehicle that should follow the front of the host vehicle.
209 is an inter-vehicle distance determination process B for determining whether or not the actual vehicle-to-vehicle distance L is equal to or greater than (Ls + ΔL), similar to the process 204.
210 is a safe inter-vehicle distance determination process for determining whether the actual inter-vehicle distance L between the host vehicle and the preceding vehicle is equal to or less than the safe inter-vehicle distance ΔL;
211, when it is determined in the process 210 that the actual vehicle-to-front vehicle distance L is less than or equal to the safe inter-vehicle distance ΔL, whether or not the host vehicle speed vs is zero, that is, whether or not the host vehicle is stopped. Own vehicle stop determination process,
212, a braking process for performing braking toward vs = 0 by a braking deceleration rate αr (αr> αb) when it is determined that the vehicle speed vs is not yet 0 in the determination result of the process 211;
213, when it is determined that there is no forward traveling vehicle to be followed in the process 208, the traffic congestion control process end point for ending the traffic congestion control process (and then shifting to normal driving);
It is.

以上の如く本願発明による渋滞走行制御方法は、自車両停車時、前方車両までの実車間距離Lを特定し、実車間距離Lが(Ls+ΔL)以上になるのを待って加速走行を開始し、自車速度が(2・vj) に達した時点で、加速走行から減速走行に移行し、L≦ΔLとなった時点で制動・停止する。
その後は再度前方車両との実車間距離Lが(Ls+ΔL)以上になるのを待って加速走行を開始する。上記動作を基本動作として繰り返すことによって渋滞平均速度vj中の実車間距離(ΔL〜Ls +ΔL)を確保しての渋滞走行が可能となる。
但し減速走行中、自車−前方車両間実車間距離Lが(Ls+ΔL)以上となった場合にはその時点から、加速走行を速度(2・vj)に達するまで行い、その後減速走行に移行することによって、車間距離の拡大を防止する。
As described above, the traffic congestion control method according to the present invention specifies the actual inter-vehicle distance L to the preceding vehicle when the host vehicle is stopped, waits for the actual inter-vehicle distance L to become (Ls + ΔL) or more, and starts acceleration traveling. When the host vehicle speed reaches (2 · vj), the vehicle shifts from acceleration to deceleration and brakes / stops when L ≦ ΔL.
Thereafter, the vehicle waits for the actual inter-vehicle distance L with the preceding vehicle to be equal to or greater than (Ls + ΔL), and then starts acceleration travel. By repeating the above operation as a basic operation, it is possible to travel in a traffic jam while securing a distance (ΔL to Ls + ΔL) between actual vehicles in the traffic jam average speed vj.
However, when the actual vehicle-to-vehicle distance L is greater than (Ls + ΔL) during deceleration travel, acceleration travel is performed from that point until the speed (2 · vj) is reached, and then shifts to deceleration travel. This prevents an increase in the inter-vehicle distance.

本願発明によって、車両駆動体としてエンジンを用いた車両は勿論、電気自動車、ハイブリッド車、あるいは燃料電池車の如きモーターを利用した車両においても、渋滞走行中の運動エネルギーの損失を最小限に抑えた、また減速走行中の駆動体への駆動エネルギー供給を最小限に抑えた、さらに前方車両との実車間距離を走行安全上必要十分な距離に抑えた渋滞走行が可能となり、車両の省エネルギー・地球温暖化ガス排出量削減および安全走行に大きく貢献できる。
特に本願発明を自動化すること、即ち自動運転車の渋滞走行方法として採用することは自動運転車の目的から見ても効果的であると言える。
According to the present invention, not only a vehicle using an engine as a vehicle driving body but also a vehicle using a motor such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle, the loss of kinetic energy during traffic jams is minimized. In addition, it is possible to reduce the amount of driving energy supplied to the driving body during deceleration and minimize the distance between the vehicle and the vehicle ahead and keep it at a necessary and sufficient distance for driving safety. It can greatly contribute to the reduction of greenhouse gas emissions and safe driving.
In particular, it can be said that automating the present invention, that is, adopting it as a traffic jam traveling method for an autonomous driving vehicle is effective from the viewpoint of the autonomous driving vehicle.

vs:自車速
vj:渋滞平均速度
L:自車両−前方車両間実車間距離、
La :加速走行距離
Li :惰性走行距離
Ld :減速走行距離
Ls :渋滞平均速度vj に対応した設定車間距離、
=La +Ld 、あるいはLs=La +Li
Lf :自車両前方に追従すべき車両有無を判定する追従車両判定距離、
ΔL:安全車間距離
ta :加速走行時間
td :減速走行時間
ti :惰性走行時間
αa :加速度
αd :減速度
=αi +αb
αi :惰性走行減速度
αb :減速度αdの一部となる制動減速度、あるいは回生制動減速度
αr :L≦ΔL範囲内での制動減速度、(αr>αb)
vs: own vehicle speed vj: average congestion speed L: actual vehicle-to-front vehicle distance,
La: acceleration travel distance Li: inertial travel distance Ld: deceleration travel distance Ls: set inter-vehicle distance corresponding to the average traffic speed vj,
= La + Ld or Ls = La + Li
Lf: Follow-up vehicle determination distance for determining the presence or absence of a vehicle to follow in front of the host vehicle
ΔL: safe inter-vehicle distance ta: acceleration travel time td: deceleration travel time ti: inertia travel time αa: acceleration αd: deceleration = αi + αb
αi: coasting deceleration αb: braking deceleration that is part of deceleration αd or regenerative braking deceleration αr: braking deceleration within the range of L ≦ ΔL, (αr> αb)

本願発明は、省エネルギー・低地球温暖化ガス量排出走行および安全走行の両立を可能にする渋滞走行制御方法に関する。
但し、ここでの渋滞走行とは、前方車両に追従しての発進・停止を頻繁に繰り返す低平均速度走行を云う。
The present invention relates to a traffic jam traveling control method that enables both energy saving, low global warming gas amount emission traveling and safe traveling.
However, the traffic traveling here means low average speed traveling that frequently repeats starting and stopping following the vehicle ahead.

一定走行距離の走行に際し、最も効率的な走行方法は、最小限の加速走行と、前記最小限の加速走行によって車両が獲得した運動エネルギーを効率的に利用しての最大限の惰性走行による減速走行の組み合わせである。
しかし現状実行されている渋滞走行方法は、エンジンの(全気筒稼働ではなく)一部気筒稼働による走行(特許文献1)、あるいはエンジンの停止条件・再始動条件の最適化(特許文献3)、渋滞走行パターンの学習によるアイドルストップ条件の最適化(特許文献4)等、渋滞走行におけるエンジン利用条件の合理化に関するものが主体でありその他には、前方車両との車間距離に対応しての自車速度制御(特許文献2)、等、渋滞走行中の前方車両との車間距離に対応した走行速度の最適化による交通能力の最大化方法等がある。
しかし、これらはいずれも自動運転車等に適用できる体系的、合理的な渋滞走行制御方法には至っていない。
When traveling at a fixed distance, the most efficient driving method is the minimum acceleration driving and the deceleration by the maximum inertia driving that efficiently uses the kinetic energy acquired by the vehicle by the minimum acceleration driving. of traveling, it is a combination.
However, currently running traffic congestion methods include running with some cylinders operating (not all cylinders operating) (Patent Document 1), or optimizing engine stop / restart conditions (Patent Document 3), optimization of the idle stop condition according to the learning of the congestion running pattern (Patent Document 4), etc., are the main concerns rationalization of engine use conditions in the traffic jam running, others, the self of corresponding inter-vehicle distance to the preceding vehicle car speed control (Patent Document 2), etc., maximization method of traffic capacity by optimization of the traveling speed corresponding to the inter-vehicle distance to the preceding vehicle during a traffic jam traveling, there is.
However, none of these methods have achieved a systematic and rational traffic congestion control method that can be applied to an autonomous vehicle or the like.

従来の渋滞走行の問題点は以下の如くである。
・加速走行・定速走行、あるいは減速時・停車時の(例えばガソリンエンジンへのガソリン等)過剰な駆動体駆動エネルギー供給による浪費、
・減速走行時の車両の有する運動エネルギーの、制動(低効率回生制動を含む)による浪費。
上記問題を解決するためには、以下の対応が必要である。
・渋滞平均速度に対応した最小限の加速走行と、前記加速走行の結果車両に蓄積された運動エネルギーの車両減速走行への効率的な利用、即ち惰性走行の最大限の活用
・減速走行時あるいは停車時の(例えばガソリンエンジンへのガソリン等)駆動体への駆動体駆動エネルギーの供給停止あるいは供給削減
Problems with conventional traffic jams are as follows.
-Waste due to excessive drive body drive energy supply during acceleration travel, constant speed travel, deceleration or stop (eg gasoline to gasoline engine),
-Waste due to braking (including low-efficiency regenerative braking) of the kinetic energy of the vehicle during deceleration.
In order to solve the above problems, the following measures are required.
・ Minimum acceleration travel corresponding to the average speed of traffic jams and efficient use of the kinetic energy accumulated in the vehicle as a result of the acceleration travel for vehicle deceleration travel, that is, maximum utilization of inertial travel ,
-Stopping or reducing the supply of drive body drive energy to the drive body during deceleration or stopping (for example, gasoline to a gasoline engine) ,

上記問題解決策実行のための方策を、図1を用いて説明する。
図1において、縦軸を自車速度、横軸を時間あるいは走行距離とする。
またvj は渋滞平均速度(渋滞中の車両の平均速度)である。
速度0から速度(2・vj)までの間加速度αa で加速走行した場合の走行距離をLa 、走行時間をta、
また、速度(2・vj)から速度0までの間減速度αd で減速走行した場合の走行距離をLd 、走行時間をtd、
とするとLa、Ld、ta、td はそれぞれ(数1)、(数2)、(数3)、(数4)であらわされる。
(数1)
La =(2・vj )/(2・αa)
(数2)
Ld =(2・vj )/(2・αd)
(数3)
ta =(2・vj)/αa
(数4)
td =(2・vj)/αd
ここで、減速度αd は、
(数5)
αd =αi +αb
但し
αi:惰性走行減速度
αb:減速度αd とするための、惰性走行減速度αiに付加する制動減速度
である。
A measure for executing the above problem solution will be described with reference to FIG.
In FIG. 1, the vertical axis represents the vehicle speed, and the horizontal axis represents time or travel distance.
Further, vj is a traffic jam average speed (average speed of vehicles in a traffic jam).
When traveling at an acceleration αa from speed 0 to speed (2 · vj), the travel distance is La, the travel time is ta,
Further, when the vehicle travels at a deceleration αd from the speed (2 · vj) to the speed 0, the travel distance is Ld, the travel time is td,
Then, La, Ld, ta, and td are expressed by (Expression 1), (Expression 2), (Expression 3), and (Expression 4), respectively.
(Equation 1)
La = (2 · vj) 2 / (2 · αa)
(Equation 2)
Ld = (2 · vj) 2 / (2 · αd)
(Equation 3)
ta = (2 · vj) / αa
(Equation 4)
td = (2 · vj) / αd
Where deceleration αd is
(Equation 5)
αd = αi + αb
Where αi: coasting deceleration ,
.alpha.b: for the deceleration .alpha.d, the braking deceleration added to the coasting deceleration .alpha.i,
It is.

一方、減速走行を減速度αd (=αi+αb、即ち惰性走行減速度αiに制動減速度αbを付加した減速走行)で行おうとすると、減速走行時の制動減速度αbの制御が必要となることに加えて、速度0から速度(2・vj)までの加速走行によって車両が獲得した運動エネルギー{m・(2・vj) 2 }/2(但しm:自車両質量)中の{αi / (αi +αb)}分しか減速走行に利用されず、残りの{αb / (αi +αb)}分は制動減速度αbによる制動摩擦熱として放散されてしまい、走行の運動エネルギー損失となる。
(但し、上記減速度αbによる制動を摩擦制動ではなく高効率の回生性能を有する回生制動で行う方法もあり、この場合は制動を単なる摩擦制動で行う場合に比べて回生制動の効率分だけ運動エネルギー利用効率を向上させることができる。)
On the other hand, if deceleration traveling is performed at a deceleration αd (= αi + αb, that is, deceleration traveling with inertia braking deceleration αi added to braking deceleration αb), control of braking deceleration αb during deceleration traveling is required. In addition, {αi / (αi) in the kinetic energy {m · (2 · vj) 2 } / 2 (where m is the mass of the vehicle) acquired by the vehicle by acceleration from speed 0 to speed (2 · vj) Only + αb)} is used for decelerating traveling, and the remaining {αb / (αi + αb)} is dissipated as braking frictional heat due to braking deceleration αb, resulting in kinetic energy loss during traveling.
(However, there is also a method in which braking by the deceleration αb is performed not by friction braking but by regenerative braking having high efficiency regenerative performance. In this case, movement is performed by the efficiency of regenerative braking compared to the case where braking is performed by simple friction braking. Energy use efficiency can be improved.)

従って、渋滞走行速度vjに対応する最適な自車両−前方車両間設定車間距離Lsのための加速走行距離La設定に際しては、加速度αaを許容可能な(乗員に違和感を与えず制御が容易かつ安全な)範囲で最大値に設定して後(数1)より前記最大化(極大化)した加速度αaに対応した極小化した加速走行距離Laを算出・設定する。
次いで、前記Ls 、La より(数9)を用いてLd (=Ls −La)を算出(但しここで算出されたLd は、惰性走行距離Liに対してLd <Li とする)、前記Ldより(数2)を用いてαdを、(数5)を用いてαb を算出し、最終的には減速走行時αb を制御しての極小化した、即ち極力惰性走行減速度αiに近い、減速度αd での極大化した減速走行距離 Ldでの減速走行を行う。
Therefore, when setting the acceleration travel distance La for the optimum vehicle-to-front vehicle distance Ls corresponding to the traffic speed vj, the acceleration αa can be allowed (the control is easy and safe without giving the passengers a sense of incongruity). After that, after setting the maximum value in the range, the minimized acceleration travel distance La corresponding to the maximized (maximized) acceleration αa is calculated and set from (Equation 1).
Next, Ld (= Ls−La) is calculated from the above Ls and La using (Equation 9) (however, Ld calculated here is Ld <Li with respect to the inertia traveling distance Li), and from the above Ld Αd is calculated using (Equation 2), and αb is calculated using (Equation 5). Ultimately, it is minimized by controlling αb during deceleration traveling, that is, a reduction that is as close to inertial traveling deceleration αi as possible. Decelerated traveling at the maximum deceleration traveling distance Ld at the speed αd is performed.

本発明実施に際しては先ず渋滞平均速度vjの特定が必要になる。これは外部交通情報からの渋滞長と渋滞通過予測時間からの特定、あるいは自車が渋滞状態に侵入した時からの走行距離および経過時間からの特定で可能である。
また追従走行すべき前方車両の有無特定、あるいは自車−前方車両間車間距離Lの特定は、カメラ、レーダー等の測距機能を有する装置、あるいは自車位置特定可能な車両間の(自車−前方車両の)車車間通信によって可能である。
また、渋滞平均速度vjに対応した加速度αa 、減速度αd(あるいは惰性走行減速度αi、制動減速度αb)および設定車間距離Lsおよび安全車間距離ΔLは、あらかじめ特定しておく必要がある。
In implementing the present invention, it is first necessary to specify the traffic jam average speed vj. This is possible in particular, from the travel distance and the elapsed time since a particular from congestion length and congestion estimated passage time from an external traffic information, or the vehicle has entered the congested state.
Also, the presence / absence of a forward vehicle to be followed or the distance L between the vehicle and the vehicle ahead can be specified by a device having a distance measuring function such as a camera or a radar, or between vehicles capable of specifying the vehicle position (vehicles). -It is possible by inter-vehicle communication (of the vehicle ahead).
Further, the acceleration αa, deceleration αd (or inertia traveling deceleration αi, braking deceleration αb), the set inter-vehicle distance Ls, and the safe inter-vehicle distance ΔL corresponding to the average traffic jam speed vj must be specified in advance.

本願発明によって、車両駆動体としてエンジンを用いた車両は勿論、電気自動車、ハイブリッド車、あるいは燃料電池車の如きモーターを利用した車両においても、渋滞走行中の運動エネルギーの損失を最小限に抑えた、また減速走行中の駆動体への駆動エネルギー供給を最小限に抑えた、さらに前方車両との実車間距離を走行安全上必要十分な距離に保った、渋滞走行が可能となり、車両の省エネルギー・地球温暖化ガス排出量削減および安全走行に大きく貢献できる。
特に本願発明を自動化すること、即ち自動運転車の渋滞走行方法として採用することは自動運転車の目的から見ても効果的であると言える。
According to the present invention, not only a vehicle using an engine as a vehicle driving body but also a vehicle using a motor such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle, the loss of kinetic energy during traffic jams is minimized. In addition, it is possible to run in traffic jams while minimizing the supply of drive energy to the drive body during deceleration running, and keeping the distance between the vehicle and the vehicle ahead to a necessary and sufficient distance for running safety. It can greatly contribute to the reduction of global warming gas emissions and safe driving.
Especially to automate the present invention, i.e., be employed as the congestion running method of automatic operation car, it can be said that even when viewed from the purpose of automatic operation vehicle is effective.

vs:自車速
vj:渋滞平均速度
L:自車両−前方車両間実車間距離、
La :加速走行距離
Li :惰性走行距離
Ld :減速走行距離
Ls :渋滞平均速度vj に対応した設定車間距離、
=La +Ld 、あるいはLs=La +Li
Lf :自車両前方に追従すべき車両有無を判定する追従車両判定距離、
ΔL:安全車間距離
ta :加速走行時間
td : 減速走行時間
ti :惰性走行時間
αa :加速度
αd :減速度
=αi +αb
αi :惰性走行減速度
αb:減速度αdの一部となる制動減速度、あるいは回生制動減速度
αr:L≦ΔL範囲内での制動減速度、(αr>αb)
vs: own vehicle speed vj: average congestion speed L: actual vehicle-to-front vehicle distance,
La: acceleration travel distance Li: inertial travel distance Ld: deceleration travel distance Ls: set inter-vehicle distance corresponding to the average traffic speed vj,
= La + Ld or Ls = La + Li
Lf: Follow-up vehicle determination distance for determining the presence or absence of a vehicle to follow in front of the host vehicle
ΔL: safe inter-vehicle distance ta: acceleration travel time td: deceleration travel time ti: inertia travel time αa: acceleration
αd : Deceleration = αi + αb
αi: Inertia running deceleration
αb : braking deceleration or regenerative braking deceleration that becomes part of deceleration αd
αr : braking deceleration within the range of L ≦ ΔL, (αr> αb)

Claims (3)

発進・停止を繰り返す渋滞平均速度vjの渋滞走行を、速度0から速度(2・vj)までの加速度αaによる走行距離La の加速走行と、速度(2・vj)から速度0までの減速度αd による走行距離Ld の減速走行、の繰り返しによる、平均速度vj 、自車−前方車両間車間距離範囲ΔL〜(Ls +ΔL)、で行うことを特徴とする省エネルギー渋滞走行制御方法。
ここで、
vj :渋滞平均速度、
Ls:渋滞平均速度vjに対応した設定車間距離
=La+Ld
La:速度0から(2・vj)までの間、加速度αa で加速走行した場合の走行距離
=(2・vj)/(2・αa)、
Ld:速度(2・vj)から0までの間、減速度αdで減速走行した場合の走行距離
=(2・vj)/(2・αd)=(2・vj)/{2・(αi+αb)}
ΔL:安全車間距離
αa:加速度
αd :減速度
=αi +αb
αi :惰性走行減速度
αb:制動減速度
A traffic jam with an average traffic speed vj that repeatedly starts and stops, an acceleration travel of the travel distance La by an acceleration αa from the speed 0 to the speed (2 · vj), and a deceleration αd from the speed (2 · vj) to the speed 0 An energy-saving traffic congestion control method, which is carried out in an average speed vj and an inter-vehicle distance range [Delta] L to (Ls + [Delta] L) by repeating the deceleration travel of the travel distance Ld.
here,
vj: Traffic jam average speed,
Ls: Set inter-vehicle distance corresponding to the average traffic speed vj = La + Ld
La: Traveling distance when acceleration travels at an acceleration αa from speed 0 to (2 · vj) = (2 · vj) 2 / (2 · αa),
Ld: Traveling distance when the vehicle travels at a deceleration αd from a speed (2 · vj) to 0 = (2 · vj) 2 / (2 · αd) = (2 · vj) 2 / {2 · ( αi + αb)}
ΔL: Safe inter-vehicle distance αa: Acceleration αd: Deceleration = αi + αb
αi: coasting deceleration αb: braking deceleration
渋滞平均速度vjに対応した設定車間距離Lsを構成する加速走行距離Laは加速度αa を許容可能範囲内で極大化することによって極小化、減速走行距離Ldは許容可能範囲で減速度αdを極小化(但しαd ≧αi )することによって極大化して設定することを特徴とする請求項1記載の省エネルギー渋滞走行制御方法。 The acceleration travel distance La constituting the set inter-vehicle distance Ls corresponding to the average traffic speed vj is minimized by maximizing the acceleration αa within the allowable range, and the deceleration travel distance Ld is minimized within the allowable range. 2. The energy-saving traffic traveling control method according to claim 1, wherein the setting is maximized by setting (αd ≧ αi). 減速走行中あるいは減速走行終了による停車中、自車−前方車両間実車間距離Lが
L≧(Ls +ΔL)の関係を満足した場合は、その時点から速度(2・vj)へ向けての、加速度αa の加速走行に移行することを特徴とする、請求項1記載の省エネルギー渋滞走行制御方法。
If the actual vehicle-to-vehicle distance L satisfies the relationship L ≧ (Ls + ΔL) during deceleration traveling or when the vehicle is stopped due to completion of deceleration traveling, from that point toward the speed (2 · vj), 2. The energy-saving jammed travel control method according to claim 1, wherein the travel is accelerated to acceleration [alpha] a.
JP2016203169A 2016-10-15 2016-10-15 Energy-saving traffic control method Expired - Fee Related JP6226495B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016203169A JP6226495B1 (en) 2016-10-15 2016-10-15 Energy-saving traffic control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016203169A JP6226495B1 (en) 2016-10-15 2016-10-15 Energy-saving traffic control method

Publications (2)

Publication Number Publication Date
JP6226495B1 JP6226495B1 (en) 2017-11-08
JP2018062325A true JP2018062325A (en) 2018-04-19

Family

ID=60265817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016203169A Expired - Fee Related JP6226495B1 (en) 2016-10-15 2016-10-15 Energy-saving traffic control method

Country Status (1)

Country Link
JP (1) JP6226495B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102457914B1 (en) * 2021-04-21 2022-10-24 숭실대학교산학협력단 Method for combating stop-and-go wave problem using deep reinforcement learning based autonomous vehicles, recording medium and device for performing the method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183150A (en) * 1999-10-15 2001-07-06 Nissan Motor Co Ltd Running pattern production device
JP2010120503A (en) * 2008-11-19 2010-06-03 Masahiro Watanabe Method for controlling vehicle travel
JP2010274839A (en) * 2009-05-29 2010-12-09 Toyota Motor Corp Travel control apparatus
JP2012081924A (en) * 2010-10-14 2012-04-26 Toyota Motor Corp Driving support device
JP2014000942A (en) * 2012-08-21 2014-01-09 Masahiro Watanabe Method for estimating capable travel distance and energy consumption of energy saved vehicle
JP2015143490A (en) * 2014-01-31 2015-08-06 マツダ株式会社 Active cruise control device
JP2016141223A (en) * 2015-01-30 2016-08-08 株式会社アドヴィックス Vehicle control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183150A (en) * 1999-10-15 2001-07-06 Nissan Motor Co Ltd Running pattern production device
JP2010120503A (en) * 2008-11-19 2010-06-03 Masahiro Watanabe Method for controlling vehicle travel
JP2010274839A (en) * 2009-05-29 2010-12-09 Toyota Motor Corp Travel control apparatus
JP2012081924A (en) * 2010-10-14 2012-04-26 Toyota Motor Corp Driving support device
JP2014000942A (en) * 2012-08-21 2014-01-09 Masahiro Watanabe Method for estimating capable travel distance and energy consumption of energy saved vehicle
JP2015143490A (en) * 2014-01-31 2015-08-06 マツダ株式会社 Active cruise control device
JP2016141223A (en) * 2015-01-30 2016-08-08 株式会社アドヴィックス Vehicle control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102457914B1 (en) * 2021-04-21 2022-10-24 숭실대학교산학협력단 Method for combating stop-and-go wave problem using deep reinforcement learning based autonomous vehicles, recording medium and device for performing the method

Also Published As

Publication number Publication date
JP6226495B1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
US9849870B2 (en) Hybrid vehicle having switch control function of travel mode based on map information
JP2010093947A (en) Vehicle running control method
JP4793886B2 (en) Vehicle travel control method
JP2016117389A (en) Hybrid vehicle control device
JP2011020571A (en) Device for controlling hybrid vehicle
JP2013226945A (en) Vehicle traveling control method
CN105654754A (en) Vehicle control method and device
JP2007186045A (en) Running control system for hybrid vehicle
JP5785897B2 (en) Drive system and control method of trained vehicle
JP6435789B2 (en) Output control device for hybrid drive vehicle
JP4716340B2 (en) Vehicle travel control method
JP2019059474A (en) Hybrid vehicle control device
JP5668791B2 (en) Vehicle control device
JP2014159213A (en) Method of controlling energy-saving deceleration traveling
JP6988908B2 (en) Control method and control device for self-driving vehicles
US10407064B2 (en) Method and apparatus for controlling driving of SSC-cruise system
JP6226495B1 (en) Energy-saving traffic control method
JP4518569B2 (en) Vehicle traveling speed control method
KR102331764B1 (en) Hybrid vehicle and method of controlling charge mode
JP2011014055A (en) Vehicle traveling speed control method
JP5557754B2 (en) Train control system
JP2017140962A (en) Energy saving slowdown travel assisting method
JP2014104833A (en) Energy saving travel control method
JP6430690B2 (en) Exhaust gas purification device for hybrid vehicle
JP2010218486A (en) Vehicle traveling speed control method

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170824

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171006

R150 Certificate of patent or registration of utility model

Ref document number: 6226495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees