JP2013226945A - Vehicle traveling control method - Google Patents

Vehicle traveling control method Download PDF

Info

Publication number
JP2013226945A
JP2013226945A JP2012100546A JP2012100546A JP2013226945A JP 2013226945 A JP2013226945 A JP 2013226945A JP 2012100546 A JP2012100546 A JP 2012100546A JP 2012100546 A JP2012100546 A JP 2012100546A JP 2013226945 A JP2013226945 A JP 2013226945A
Authority
JP
Japan
Prior art keywords
vehicle
travel
distance
transition
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012100546A
Other languages
Japanese (ja)
Inventor
Masahiro Watanabe
雅弘 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012100546A priority Critical patent/JP2013226945A/en
Publication of JP2013226945A publication Critical patent/JP2013226945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an implementation method of safe and superior energy utilization efficiency in transition to preceding vehicle tracking travel of a vehicle during single traveling and the tracking travel or braking travel after the transition.SOLUTION: A tracking travel area is set between a subject vehicle and a preceding traveling vehicle. A determination of right or wrong of transition from a normal traveling state of a vehicle to the tracking travel area by the inertia travel is normally repeated until a tracking travel transition becoming acceptable in a normal travel fixed time or each certain traveling distance, and the tracking travel area transition travel by the inertia travel is done from the point that became a tracking travel acceptable transition aiming at the tracking travel area. After the transition to the tracking travel area, tracking travel is performed by alternately repeating transition to moderate acceleration travel or inertia travel, each time when the following distance in the tracking travel area is expanded or reduced to a boundary following distance. When coming off from the tracking travel area by the speed variation etc. of the preceding vehicle, the subject vehicle increases the transition operation or the vehicle deceleration degree to the tracking travel area from the inertia travel deceleration to braking deceleration again and decelerates and stops.

Description

本願発明は、車両走行の省エネルギー化、排出ガス量低減化、のための、車両の有する運動エネルギーを最大限に活用した車両走行制御方法(前方車両への追従走行および制動走行制御方法)に関する。 The present invention relates to a vehicle traveling control method (following traveling to the front vehicle and braking traveling control method) that makes the most of the kinetic energy of the vehicle for energy saving of vehicle traveling and reduction of exhaust gas amount.

前方車両への適切な追従走行制御方法として、自車両の車速に応じて前方車両との間の最小車間距離および最大車間距離を設定し、前方車両との車間距離が最小車間距離より小さくなった時には惰性走行を開始し、車間距離が最大車間距離よりも大きくなった時には駆動力の発生を開始することによって、前方車両との車間距離を最小車間距離〜最大車間距離に保ったエネルギー消費量および排出ガス量の少ない効率的な追従走行を行う方法が提案されている(特許文献1)。 As an appropriate follow-up driving control method for the preceding vehicle, the minimum inter-vehicle distance and the maximum inter-vehicle distance with the preceding vehicle are set according to the speed of the host vehicle, and the inter-vehicle distance with the preceding vehicle is smaller than the minimum inter-vehicle distance. In some cases, coasting is started, and when the inter-vehicle distance becomes greater than the maximum inter-vehicle distance, the generation of driving force is started, thereby maintaining the inter-vehicle distance with the preceding vehicle from the minimum inter-vehicle distance to the maximum inter-vehicle distance and A method of performing efficient follow-up traveling with a small amount of exhaust gas has been proposed (Patent Document 1).

但し上記方法においては、定速走行から追従走行への移行時の制御方法が明確ではなく、また追従走行中においても上記のごとき車間距離条件において惰性走行あるいは駆動力の発生走行を各々開始しても、惰性走行あるいは駆動力の発生走行開始時点の前方車両との相対速度によっては前方車両との車間距離は前記特許文献1に記載されている最小車間距離よりも短くあるいは最大車間距離よりも長くなることもあり、その結果車間距離変動幅が大きくなってしまう問題がある。 However, in the above method, the control method at the time of transition from the constant speed traveling to the following traveling is not clear, and even during the following traveling, the inertial traveling or the driving force generation traveling is started under the above-mentioned inter-vehicle distance condition. However, depending on the relative speed with the preceding vehicle at the time of starting coasting or generating driving force, the inter-vehicle distance to the preceding vehicle is shorter than the minimum inter-vehicle distance described in Patent Document 1 or longer than the maximum inter-vehicle distance. As a result, there is a problem that the fluctuation range of the inter-vehicle distance becomes large.

上記追従走行における車間距離変動幅拡大の問題解決策として、自車両と前方車両間に自車−前方車両間相対速度許容範囲、および自車−前方車両車間距離範囲、で設定される追従走行領域、を設け、前記追従走行領域内において惰性走行から緩加速度走行、あるいは緩加速度走行から惰性走行への移行を交互に繰り返し行うことによって前方車両への追従走行を行う方法が提案されている(特許文献2)。 As a solution to the problem of increasing the inter-vehicle distance fluctuation range in the above-mentioned follow-up running, a follow-up running area set by the own vehicle-front vehicle relative speed allowable range and the own vehicle-forward vehicle inter-vehicle distance range between the own vehicle and the preceding vehicle And a method of following the vehicle ahead by repeating the transition from inertial running to slow acceleration running or from the slow acceleration running to inertial running alternately in the following running region (patent). Reference 2).

しかし、特許文献2に示される方法においては、追従走行領域の設定方法、および前方車両の速度変動等によって自車が追従走行領域を外れた場合の対応方法、に不明確な点がある。 However, in the method disclosed in Patent Document 2, there are unclear points in the method for setting the following traveling region and the method for dealing with the case where the host vehicle deviates from the following traveling region due to the speed fluctuation of the preceding vehicle.

ここで、惰性走行とは、エンジン、モーター等の車両駆動力発生動作を停止する、あるいはエンジン、モーター等の車両駆動力を駆動輪への伝達を停止する、ことによってその時点で車両の有している運動エネルギーのみで車両を走行させる走行方法をいう。 Here, coasting means stopping the vehicle driving force generation operation of the engine, motor, etc., or stopping the vehicle driving force, such as the engine, motor, etc., from being transmitted to the drive wheels. This is a traveling method in which a vehicle travels only with the kinetic energy that is present.

特開2007−291919JP2007-291919A 特開2011−005920JP2011-005920A

本願発明は、定速走行中の車両が前方車両を検知した後制動を行わずに安全
かつ効率的に追従走行に移行する方法、前方車両への追従走行移行後は安全車間距離を確保しかつ車間距離変動幅を最小に保ちつつ前方車両との相対速度範囲を所定範囲内に保つ追従走行の方法、および前方車両との相対速度範囲あるいは車間距離範囲が所定範囲を超えた場合の省エネルギー走行および安全走行の観点からの合理的対応方法、を提案するものである。
The invention of the present application is a method for safely and efficiently shifting to follow-up without braking after a vehicle running at a constant speed detects a preceding vehicle, ensuring a safe inter-vehicle distance after shifting to follow-up to the preceding vehicle, and Follow-up driving method that keeps the relative speed range with the preceding vehicle within a predetermined range while keeping the inter-vehicle distance fluctuation range to a minimum, and energy-saving driving when the relative speed range with the preceding vehicle or the inter-vehicle distance range exceeds the predetermined range, and We propose a rational response method from the viewpoint of safe driving.

エンジン/モーターハイブリッド車の省エネルギー性能は、減速時回生ブレーキで車両の有する運動エネルギーを回生し、発進・加速時に前記回生したエネルギーを効果的・効率的に活用するところにある。しかし減速時における車両の運動エネルギー回生効率は100%には遠く及ばない。したがって、減速時車両の有している運動エネルギーを最も効率よく利用する方法は、運動エネルギーを回生して利用するのではなく、直接車両走行に利用する、すなわち運動エネルギーによる惰性走行を行うことである。 The energy-saving performance of the engine / motor hybrid vehicle is that the kinetic energy of the vehicle is regenerated by the regenerative braking at the time of deceleration, and the regenerated energy is effectively and efficiently used at the start and acceleration. However, the kinetic energy regeneration efficiency of the vehicle during deceleration is far from 100%. Therefore, the most efficient method of using the kinetic energy possessed by the vehicle during deceleration is not to regenerate and use the kinetic energy, but to use it directly for vehicle travel, that is, by performing inertial travel using kinetic energy. is there.

本願発明における車両走行制御方法においては、定速走行から追従走行への移行および移行後の追従走行の実行に際しては、加速は極力緩加速を行い、減速は、安全上やむを得ない場合を除いて極力ブレーキ(回生ブレーキを含む)を使用せず、車両の有している運動エネルギーを最大限活用した惰性走行による緩やかな減速を行うものとする。 In the vehicle travel control method according to the present invention, in the transition from the constant speed travel to the follow-up travel and the execution of the follow-up travel after the transition, the acceleration is performed as slowly as possible, and the deceleration is performed as much as possible except in the case of safety. The brakes (including regenerative brakes) are not used, and the vehicle is slowly decelerated by coasting that makes the best use of the kinetic energy of the vehicle.

先ず、速度Vsで走行中の自車が前方距離Lの地点に速度Va (但し、 Vs > Va とする)で走行する前方車両を検知した場合の本願発明による追従走行領域の設定方法、追従走行領域移行方法、および追従走行領域移行後の走行方法について図1を用いて説明する。 First, the following traveling region setting method according to the present invention when a vehicle traveling at a speed Vs detects a forward vehicle traveling at a speed Va (provided that Vs> Va) at a point of a forward distance L, the following traveling A region transition method and a traveling method after transition to the following traveling region will be described with reference to FIG.

図1において、自車両11は速度Va で走行する前方車両12に対し前方車両速度Va と最大減速度(制動減速度)αm によって定まる(数1)で示される安全車間距離L1(Va)、自車−前方車両許容相対速度最大値Vr0 と惰性走行減速度αi で定まる(数2)で示される惰性走行距離最大値L2(Vr0)、自車−前方車両許容相対速度最大値Vr0 と緩加速度走行加速度αa で定まる(数3)で示される緩加速度走行距離最大値L3(Vr0)、および(数4)で示される相対速度許容範囲(但し相対速度Vr =Va −Vs )、で設定される追従走行領域13を設定し、自車が前方車両との車間距離L、自車速度Vs で走行中の現時点から惰性走行減速度αi で惰性走行を開始した後、前方車両との相対速度Vr がVr =0となる時点で前方車両との予測車間距離L’ が(数5)を満足するか否かを演算・判定する。ここで、予測車間距離L’ は(数6)で算出される。 In FIG. 1, the own vehicle 11 has a safe inter-vehicle distance L1 (Va) represented by (Equation 1) determined by a forward vehicle speed Va and a maximum deceleration (braking deceleration) αm with respect to a forward vehicle 12 traveling at a speed Va. Car-front vehicle allowable relative speed maximum value Vr0 and inertial traveling deceleration αi determined by equation (2), inertial traveling distance maximum value L2 (Vr0), own vehicle-front vehicle allowable relative speed maximum value Vr0 and slow acceleration traveling Follow-up set by the slow acceleration maximum travel distance L3 (Vr0) expressed by (Equation 3) determined by the acceleration αa and the relative speed allowable range expressed by (Equation 4) (where relative velocity Vr = Va−Vs). After setting the traveling region 13 and starting inertial traveling at the inertial traveling deceleration αi from the present time when the host vehicle is traveling at the inter-vehicle distance L and the subject vehicle speed Vs, the relative speed Vr with respect to the preceding vehicle is Vr. When the vehicle becomes = 0, the predicted distance between the vehicle ahead It is calculated and determined whether or not the distance L ′ satisfies (Equation 5). Here, the predicted inter-vehicle distance L ′ is calculated by (Equation 6).

但し、追従走行領域13は、(数4)の相対速度範囲と(数8)の車間距離範囲で設定される惰性追従走行領域14と、(数4)の相対速度範囲と(数9)の車間距離範囲で設定される緩加速度追従走行領域15で構成される。惰性追従走行領域14と緩加速度追従走行領域15の境界となる(数10)で示される車間距離を境界車間距離16と称する。 However, the follow-up travel area 13 includes an inertia follow-up travel area 14 set in a relative speed range of (Equation 4) and an inter-vehicle distance range of (Equation 8), a relative speed range of (Equation 4), and (Equation 9). It consists of a slow acceleration following travel region 15 set in the inter-vehicle distance range. The inter-vehicle distance indicated by (Equation 10) serving as the boundary between the inertia following traveling region 14 and the slow acceleration following traveling region 15 is referred to as a boundary inter-vehicle distance 16.

(数1)
L1(Va)=Va2 /(2・αm)
ここで、(数1)は厳密にはL1(Va)=Va2
/(2・αm)+L0 (L0 :前方車両停車時の安全車間距離)とすべきであるが、説明を簡略化するため以降L1(Va)は(数1)で示すこととする。
(Equation 1)
L1 (Va) = Va 2 / (2 · αm)
Here, strictly speaking, (Equation 1) is L1 (Va) = Va 2
/(2.multidot..alpha.m)+L0 (L0: safe inter-vehicle distance when the vehicle ahead is stopped). In order to simplify the description, L1 (Va) will be expressed by (Equation 1).

(数2)
L2(Vr0)=Vr02 /(2・αi)
(Equation 2)
L2 (Vr0) = Vr0 2 /(2.αi)

(数3)
L3(Vr0)=Vr02 /(2・αa)
(Equation 3)
L3 (Vr0) = Vr0 2 /(2.αa)

(数4)
−Vr0 ≦Vr ≦+Vr0
(Equation 4)
-Vr0 ≤ Vr ≤ + Vr0

(数5)
L1(Va)≦L’ ≦L1(Va)+L2(Vr0)+L3(Vr0)
(Equation 5)
L1 (Va) ≤L'≤L1 (Va) + L2 (Vr0) + L3 (Vr0)

(数6)
L’ =L−{Vr02/(2・αi)}
(Equation 6)
L ′ = L− {Vr0 2 /(2.αi)}

(数7)
L1(Va)≦L≦L1(Va)+L2(Vr0)+L3(Vr0)
(Equation 7)
L1 (Va) ≤L≤L1 (Va) + L2 (Vr0) + L3 (Vr0)

ここで、安全車間距離L1(Va)は、速度Vaで走行する前方車両に速度Vaで追従走行する自車両が緊急時最大減速度αm で安全に停止できる最小車間距離、
惰性走行距離L2(Vr0)は、速度Vaで走行する前方車両との相対速度Vr=+Vr0で走行中の自車両が、減速度αi の惰性走行に移行して後相対速度Vr=0 になるまでの間に前方車両に接近する相対走行距離、
緩加速度走行距離L3(Vr0)は、速度Vaで走行する前方車両との相対速度Vr=−Vr0で走行中の自車両が、緩加速度αaの加速走行に移行して後相対速度Vr=0 になるまでの間に前方車両から離遠する相対走行距離、
である。
Here, the safe inter-vehicle distance L1 (Va) is the minimum inter-vehicle distance at which the host vehicle traveling following the preceding vehicle traveling at the speed Va can safely stop at the emergency maximum deceleration αm.
The inertial running distance L2 (Vr0) is determined until the host vehicle running at the relative speed Vr = + Vr0 with the preceding vehicle running at the speed Va shifts to the inertial running at the deceleration αi and then becomes the relative speed Vr = 0. Relative mileage approaching the vehicle ahead,
The slow acceleration travel distance L3 (Vr0) is set to the relative speed Vr = 0 after the host vehicle traveling at a relative speed Vr = −Vr0 with respect to the preceding vehicle traveling at the speed Va shifts to the acceleration travel at the slow acceleration αa. Relative mileage away from the vehicle ahead,
It is.

上記判定の結果、予測車間距離L’ が(数5)を満足した場合は、自車は現時点から惰性走行によって前記追従走行領域に到達可能であるとして追従走行領域に向けての惰性走行を開始する。
予測車間距離L’が(数5)を満足しない場合は、その時点の自車速度Vsで一定時間Ti あるいは一定走行距離Di
走行を行った後、改めてその時点での車間距離L、自車速度Vs、前方車両速度Va を検知して上記(数1)〜(数6)を用いての追従走行領域の設定、惰性走行による追従走行領域への到達可否の判定を、追従走行領域到達可となるまで繰り返してのち追従走行領域に向けての惰性走行を開始する。
If the predicted inter-vehicle distance L ′ satisfies (Equation 5) as a result of the determination, the vehicle starts inertial traveling toward the following traveling region, assuming that the vehicle can reach the following traveling region by inertial traveling from the present time. To do.
If the predicted inter-vehicle distance L ′ does not satisfy (Equation 5), the vehicle speed Vs at that time will be a fixed time Ti or a fixed travel distance Di.
After traveling, the distance L between the vehicle, the host vehicle speed Vs, and the forward vehicle speed Va are detected again, and the following traveling area is set using the above (Equation 1) to (Equation 6), inertial traveling. The determination of whether or not the vehicle can reach the following traveling region is repeated until the following traveling region can be reached, and then inertial traveling toward the following traveling region is started.

追従走行領域に向けての惰性走行開始後、自車−前方車両間相対速度VrがVr =0となった時点で自車−前方車両車間距離Lが(数6)を満足した場合、あるいは自車−前方車両車間距離Lが(数10)を満足した時点で自車−前方車両相対速度Vrが(数3)を満足した場合、自車は追従走行領域に入ったとして追従走行移行動作は終了する。 When the vehicle-to-front vehicle relative speed Vr becomes Vr = 0 after the start of inertial traveling toward the following traveling region, the vehicle-to-front vehicle distance L satisfies (Expression 6) or When the vehicle-forward vehicle relative speed Vr satisfies (Equation 3) when the vehicle-to-front vehicle distance L satisfies (Equation 10), it is assumed that the vehicle has entered the follow-up travel region, finish.

次に、上記によって追従走行への移行を終了した時点で自車と前方車両の車間距離Lが(数8)を満足する状態である場合は減速度αiでの惰性走行を継続する。
また追従走行への移行を終了した時点で自車と前方車両の車間距離Lが(数9)を満足する場合は緩加速度αaの緩加速度走行に移行する。
Next, when the transition to the follow-up running is completed as described above, if the distance L between the host vehicle and the preceding vehicle satisfies the equation (8), the inertia running at the deceleration αi is continued.
Further, when the distance L between the host vehicle and the preceding vehicle satisfies (Equation 9) at the time when the transition to the follow-up traveling is finished, the transition to the slow acceleration traveling of the slow acceleration αa is performed.

即ち、追従走行に移行終了後の追従走行領域13において、惰性追従走行領域14で惰性走行中相対速度VrがVr=0なる状態を経由した後惰性走行中車間距離Lが(数10)に示す距離(境界車間距離)に拡大あるいは相対速度Vrが(数11)に示す速度に減少した場合は惰性走行から緩加速度αaの緩加速度走行に、
また、緩加速度追従走行領域15で緩加速度走行中相対速度VrがVr=0なる状態を経由した後車間距離Lが(数9)の状態から(数10)に示す距離(境界車間距離)に低減あるいは相対速度Vrが(数12)に示す速度に増加した場合は緩加速度走行から減速度αi の惰性走行に、
各々移行する。
以上のごとく惰性追従走行領域14、緩加速度追従走行領域15への移行を車間距離Lが境界車間距離に達するごとに交互に繰り返し行うことによって自車は急加速・急減速・制動無しでの省エネルギーかつ安全な前方車両走行速度に対応した追従走行を行うことができることになる。
That is, in the follow-up running region 13 after the transition to the follow-up running, the following distance L during the inertia running through the state in which the inertial running relative speed Vr is Vr = 0 in the inertia following follow-up region 14 is shown in (Expression 10). When the distance (boundary inter-vehicle distance) is increased or the relative speed Vr is reduced to the speed shown in (Equation 11), the inertial running is changed to the slow acceleration running with the slow acceleration αa.
In addition, the following inter-vehicle distance L from the state of (Equation 9) through the state where the relative speed Vr during the slow acceleration traveling in the slow acceleration following traveling region 15 is Vr = 0 is changed to the distance (boundary inter-vehicle distance) shown in (Equation 10). When the reduction or the relative speed Vr increases to the speed shown in (Equation 12), from the slow acceleration running to the inertia running with the deceleration αi,
Migrate each.
As described above, when the vehicle distance L reaches the boundary inter-vehicle distance alternately by shifting to the inertia following traveling region 14 and the slow acceleration following traveling region 15, the vehicle can save energy without sudden acceleration, sudden deceleration, or braking. In addition, it is possible to perform follow-up traveling corresponding to a safe front vehicle traveling speed.

(数8)
L1(Va)≦L<L1(Va)+L2 (Vr0)
(Equation 8)
L1 (Va) ≦ L <L1 (Va) + L2 (Vr0)

(数9)
L1(Va)+L2(Vr0)<L ≦L1(Va)+L2(Vr0) +L3(Vr0)
(Equation 9)
L1 (Va) + L2 (Vr0) <L ≦ L1 (Va) + L2 (Vr0) + L3 (Vr0)

(数10)
L=L1(Va)+L2 (Vr0)
(Equation 10)
L = L1 (Va) + L2 (Vr0)

(数11)
Vr=−Vr0
(Equation 11)
Vr = -Vr0

(数12)
Vr=+Vr0
(Equation 12)
Vr = + Vr0

追従走行中、前方車両との相対速度VrがVr =0に達した時点の車間距離Lが(数8)および(数9)を満足しない場合、すなわち(数13)あるいは(数14)
を満足する場合は、共に前方車両速度Vaの変動等によって、車両が追従走行領域を外れたとして、以下の処理を行う。
If the following distance L does not satisfy (Equation 8) and (Equation 9) when the relative speed Vr with the preceding vehicle reaches Vr = 0 during follow-up traveling, that is, (Equation 13) or (Equation 14).
Are satisfied, the following processing is performed on the assumption that the vehicle has deviated from the following traveling area due to fluctuations in the forward vehicle speed Va or the like.

(数13)
L <L1(Va)
(Equation 13)
L <L1 (Va)

(数14)
L>L1(Va)+L2(Vr0)+L3(Vr0)
(Equation 14)
L> L1 (Va) + L2 (Vr0) + L3 (Vr0)

追従走行中、前方車両の急加速等によって相対速度Vr がVr <-Vr0 となった場合、あるいは車間距離が(数14)を満足した場合は、あらためて自車−前方車両間に追従走行領域を設定し、自車が前方車両に追従走行可能か否かを判定し、可の場合は前記追従走行領域への移行処理を行って後追従走行に移行する。また、追従走行が否の場合は、設定速度Vc での定速走行に移行する。 If the relative speed Vr becomes Vr <-Vr0 due to sudden acceleration of the vehicle ahead during follow-up, or if the inter-vehicle distance satisfies (Equation 14), the follow-up travel region is set again between the vehicle and the vehicle ahead. It is set and it is determined whether or not the own vehicle can follow the preceding vehicle. If yes, a transition process to the following traveling region is performed to shift to the following following traveling. If the follow-up traveling is not possible, the vehicle shifts to constant speed traveling at the set speed Vc.

一方、追従走行中、前方車両が急減速あるいは急停止して相対速度がVr
>+Vr0 となった場合、あるいは車間距離が(数13)を満足した場合は、(数15)より減速度αを算出して、前記算出した減速度αでの減速走行を自車が追従走行領域内に復帰するまで、あるいは自車が停車するまで継続する。
On the other hand, during follow-up, the vehicle in front suddenly decelerates or stops suddenly and the relative speed becomes Vr.
If> + Vr0, or if the inter-vehicle distance satisfies (Equation 13), the deceleration α is calculated from (Equation 15), and the host vehicle follows the deceleration traveling at the calculated deceleration α. Continue until you return to the area or until your vehicle stops.

(数15)
α=Vr2 /(2・L) (但し、α≦αm)
(Equation 15)
α = Vr 2 / (2 · L) (where α ≦ αm)

上記においては惰性走行時の減速度αiは、一定としているが、実際には車両状態(走行速度、車両重量等)、あるいは走行する道路状態(道路勾配、道路面状況等)によって変化する。この補正は、例えば車両に搭載するカーナビゲーションシステムの地図データベースに減速度補正係数を車両状態、道路状態ごとに記憶・保持しそれを用いて行う、あるいは惰性走行時に実測する、等の方法がある。 In the above description, the deceleration αi during coasting is constant, but actually varies depending on the vehicle state (travel speed, vehicle weight, etc.) or the road condition (road gradient, road surface condition, etc.). This correction can be performed by, for example, storing and holding the deceleration correction coefficient for each vehicle state and road state in a map database of a car navigation system mounted on the vehicle and using it, or measuring it during coasting. .

本願発明によって、一般道路あるいは自動車専用道において、前方車両を検知してのちの追従走行への移行、追従走行移行後の追従走行の継続、追従走行中の前方車両速度変化への対応、を安全かつ効率的に行うことができ、自車両のエネルギー回生機能有無にかかわらず、省エネルギー・排出ガス量削減および安全走行に大きく寄与することができる。 According to the present invention, on a general road or an exclusive road for automobiles, it is possible to safely shift to follow-up after detecting a preceding vehicle, continue to follow-up after transition to follow-up, and respond to changes in the front vehicle speed during follow-up. It can be carried out efficiently and can greatly contribute to energy saving, reduction of exhaust gas emissions and safe driving regardless of whether the vehicle has an energy regeneration function.

本願発明による追従走行および追従走行領域の基本的考え方説明図、Basic concept explanatory diagram of the following traveling and the following traveling region according to the present invention, 本願発明のACC(Adaptive Cruise Control)装置機能構成例、ACC (Adaptive Cruise Control) device functional configuration example of the present invention, 本願発明による走行制御手順例、である。It is an example of the travel control procedure by this invention.

本願発明の実施は基本的にはACC(Adaptive Cruise Control)装置の改良で可能である。また従来のACC装置の構成要素の一つであるレーダ機能に代えて、あるいは加えて、自車位置特定機能たとえば高精度GPS受信機及び車車間通信機能を設ける方法もある。
以下実施例1にレーダ方式ACC装置による本願発明実施例を示す。
The present invention can be basically implemented by improving an ACC (Adaptive Cruise Control) apparatus. Further, instead of or in addition to the radar function which is one of the components of the conventional ACC device, there is a method of providing a vehicle position specifying function such as a high-accuracy GPS receiver and a vehicle-to-vehicle communication function.
A first embodiment of the present invention using a radar-type ACC device will be described below as a first embodiment.

レーダ方式ACC装置機能構成例を図2に、図2中の演算制御部22における走行制御手順例を図3に、各々示す。
図2において、
20は、レーダ21および演算制御部22で構成されるACC装置、
21は、自車両−前方車両車間距離Lおよび自車速度Vsに対する前方車両の相対速度Vr を検知するレーダ、
22は、レーダ21出力である自車両−前方車両車間距離L情報および自車速度Vsに対する前方車両の相対速度Vr情報、自車両から得られる自車速度Vs 情報、ドライバーが設定する自車両走行に際して自動走行制御を行うか否かを示す走行制御有無情報、定速走行に際しての設定速度Vc情報、から自車両走行のための速度制御情報、車両駆動/制動/惰性走行制御情報を自車両の駆動力出力機構・駆動力伝達機構・制動制御機構に対して出力する演算制御部、
である。
An example of the radar system ACC device functional configuration is shown in FIG. 2, and an example of a traveling control procedure in the arithmetic control unit 22 in FIG. 2 is shown in FIG.
In FIG.
20 is an ACC device composed of a radar 21 and an arithmetic control unit 22;
21 is a radar that detects a relative speed Vr of the preceding vehicle with respect to the own vehicle-front vehicle distance L and the own vehicle speed Vs;
Reference numeral 22 denotes information on the distance L between the host vehicle and the preceding vehicle, which is an output of the radar 21, relative speed Vr information of the preceding vehicle with respect to the host vehicle speed Vs, host vehicle speed Vs information obtained from the host vehicle, and host vehicle traveling set by the driver. Based on the travel control presence / absence information indicating whether or not to perform automatic travel control, the set speed Vc information during constant speed travel, the speed control information for traveling the vehicle, and the vehicle driving / braking / inertial traveling control information are driven. Calculation control unit that outputs to force output mechanism, driving force transmission mechanism, braking control mechanism,
It is.

図2中の演算制御部における自動走行制御手順、即ち定速走行、追従走行への移行、追従走行制御および制動制御のための制御手順を図3に示す。
但し図3に示す制御手順処理のバックグランド処理として、自車速Vs 、前方車両との距離L、自車−前方車両間相対速度Vr (但し、自車−前方車両が接近中はVr >0、自車−前方車両が離遠中はVr <0とする)は継続的に計測するものとする。
FIG. 3 shows an automatic travel control procedure in the arithmetic control unit in FIG. 2, that is, a control procedure for constant speed travel, transition to follow-up travel, follow-up travel control, and braking control.
However, as a background process of the control procedure process shown in FIG. 3, the own vehicle speed Vs, the distance L to the preceding vehicle, the relative speed Vr between the own vehicle and the preceding vehicle (provided that Vr> 0 when the own vehicle-the preceding vehicle is approaching, It is assumed that Vr <0 is continuously measured while the host vehicle is moving away from the vehicle ahead.

図3において、
301は、走行制御手順開始点、
302は、ドライバーからの自動走行制御を開始するか否かの指示の有無を判断する自動走行制御開始判定処理、
303は、処理302で自動走行制御指示があると判定した後、レーダ検知距離の範囲内前方に車両があるか否かを判定する前方車両有無判定処理、
304は、前方車両速度Va(=Vs −Vr )が自車の定速走行速度Vc未満か否かを判定する前方車両速度判定処理、
305は、あらかじめACC装置に設定されている定速走行速度Vcで自車両を走行させる定速走行処理、
In FIG.
301 is the starting point of the travel control procedure,
302 is an automatic travel control start determination process for determining whether or not there is an instruction on whether or not to start the automatic travel control from the driver;
303 is a front vehicle presence / absence determination process for determining whether or not there is a vehicle ahead in the range of the radar detection distance after determining that there is an automatic travel control instruction in process 302;
304 is a forward vehicle speed determination process for determining whether or not the forward vehicle speed Va (= Vs−Vr) is less than the constant speed traveling speed Vc of the own vehicle;
305 is a constant speed traveling process for causing the host vehicle to travel at a constant speed traveling speed Vc preset in the ACC device,

306は、処理304において前方車両が自車設定速度Vc よりも低速で走行中と判定した場合、自車と前方車両の間に図1に示す追従走行領域を設定する追従走行領域設定処理、
307は、自車が現走行状態から惰性走行に移行して、処理306で設定した追従走行領域に移行できるか否か、即ち前方車両に追従走行可能か否か、を判定する追従走行移行判定処理、
308は、処理307において追従走行移行不可と判定された場合、その原因として追従走行領域での相対速度Vr がVr >Vr0 であるか否か、あるいは車間距離LがL<L1であるか否かから、自車の前方車両への異常接近を判定する前方車両への異常接近判定処理、
309は、追従走行領域での相対速度Vr がVr <−Vr0 であるか否か、あるいは車間距離LがL>L1+L2 +L3であるか否かから、自車の前方車両からの異常離遠を判定する前方車両からの異常離遠判定処理、
306 is a follow-up running area setting process for setting the follow-up running area shown in FIG. 1 between the own vehicle and the preceding vehicle when it is determined in process 304 that the preceding vehicle is running at a speed lower than the own vehicle set speed Vc.
307 is a follow-up travel transition determination that determines whether or not the vehicle has shifted from the current travel state to inertial travel and can travel to the follow-up travel region set in the process 306, that is, whether or not the vehicle can travel following the vehicle ahead. processing,
If it is determined in the process 307 that it is not possible to make a transition to follow-up, whether the relative speed Vr in the follow-up running region is Vr> Vr0 or whether the inter-vehicle distance L is L <L1 is the cause. From the abnormal approach determination process to the front vehicle to determine the abnormal approach to the vehicle ahead of the vehicle,
309 determines an abnormal distance from the vehicle ahead of the vehicle based on whether or not the relative speed Vr in the following traveling region is Vr <−Vr0 or whether the inter-vehicle distance L is L> L1 + L2 + L3. Abnormal distance determination processing from the vehicle ahead,

310は、処理307で、追従走行移行可と判定された場合、惰性走行による追従走行移行を行う追従走行移行処理、
311は、処理310による追従走行移行処理の結果、自車が追従走行領域に移行できたか否かを判定する追従走行領域移行完了判定処理、
312は、処理308の結果自車両が前方車両に対して(追従走行領域を外れて)異常接近状態にあると判定された場合、α=Vr2/(2・L)なる減速度で減速走行制御を行う減速走行制御処理、
310 is a follow-up travel transition process for performing a follow-up travel transition by coasting when it is determined in the process 307 that a follow-up travel transition is possible;
311 is a follow-up travel region transition completion determination process for determining whether or not the own vehicle has been transferred to the follow-up travel region as a result of the follow-up travel transition processing by the processing 310;
When it is determined that the host vehicle is in an abnormal approaching state (out of the following traveling region) as a result of processing 308, 312 is decelerated at a deceleration of α = Vr 2 / (2 · L). Decelerating running control processing to control,

313および314は、処理311で自車が追従走行領域に移行できたと判定した場合、現在の自車位置が追従走行領域中の惰性走行中領域か、あるいは緩加速度領域中か、を判定する惰性走行領域判定処理および緩加速度領域判定処理、
315は、処理312の結果自車速Vs がVs =0即ち停車したか否かを判定する自車停止判定処理、
316は、処理315の結果自車が停止したと判定した場合には本走行制御処理は一旦終了して次の制御指示を待つ、あるいは走行開始を待つ、走行制御手順終了点、
317は、処理313の結果惰性走行領域にあると判定された場合惰性走行を行う追従走行領域内惰性走行処理、
318は、処理314の結果緩加速度走行領域にあると判定した場合緩加速度走行を行う追従走行領域内緩加速度走行処理、
319は、現在の惰性走行から緩加速度走行に移行すべき状態にあるか否かを車間距離L≧L1+L2の成否から判定する、緩加速度走行移行判定処理、
320は、、現在の緩加速度走行から惰性走行に移行すべき状態にあるか否かをL≦L1+L2の成否から判定する、惰性走行移行判定処理、
である。
313 and 314, when it is determined in the process 311 that the own vehicle has been transferred to the following traveling region, the inertia determining whether the current own vehicle position is the inertia traveling region in the following traveling region or the slow acceleration region. Traveling region determination processing and slow acceleration region determination processing,
315 is a vehicle stop determination process for determining whether or not the vehicle speed Vs is Vs = 0, that is, whether the vehicle is stopped as a result of the process 312;
If it is determined that the host vehicle has stopped as a result of the process 315, the travel control process ends once and waits for the next control instruction, or waits for the start of travel.
317 is an inertial traveling process in the following traveling region in which the inertial traveling is performed when it is determined as a result of the processing 313 that the vehicle is in the inertial traveling region;
318 is a slow acceleration running process in a follow-up running area that performs slow acceleration running when it is determined that the vehicle is in the slow acceleration running area as a result of process 314;
319 is a slow acceleration travel transition determination process for determining whether or not the current inertial travel state should be shifted to the slow acceleration travel based on the success or failure of the inter-vehicle distance L ≧ L1 + L2.
320 is an inertial travel transition determination process for determining whether or not the current slow acceleration travel is to be shifted to inertial travel from the success or failure of L ≦ L1 + L2.
It is.

以上のごとき制御により、従来の追従走行あるいは減速走行に比べて制動頻度の少ない、その結果としてのエネルギー消費量および排出ガス量の少なくかつ前方車両の急激な速度変化にも対応できる、安全な走行が可能になる。 With the control described above, safe driving that requires less braking than conventional follow-up driving or decelerating driving, results in less energy consumption and exhaust gas, and can respond to sudden speed changes in the vehicle ahead. Is possible.

以上述べたごとく本願発明による車両走行制御方法によって、通常走行中の車両の前方車両へのスムーズで効率的な追従走行への移行、前方車両への追従走行移行後の安定・安全・効率的追従走行、および追従走行が不可となった場合の対応、特に前方車両の減速・停止への合理的かつ安全な対応処理が可能となり、車両の省エネルギー、排出ガス削減および安全走行に大きな効果をもたらす。 As described above, according to the vehicle travel control method of the present invention, the transition of the vehicle during normal traveling to the preceding vehicle to smooth and efficient follow-up traveling, and the stable, safe and efficient following after the transition to following vehicle traveling is performed. It is possible to cope with a case where traveling and follow-up traveling become impossible, in particular, a reasonable and safe handling process for deceleration / stop of the preceding vehicle, which has a great effect on vehicle energy saving, emission gas reduction, and safe driving.

11:自車両
12:前方車両
13:追従走行領域
14:惰性追従走行領域
15:緩加速度追従走行領域
16:境界車間距離
11: Own vehicle 12: preceding vehicle 13: following traveling region 14: inertia following traveling region 15: slow acceleration following traveling region 16: boundary inter-vehicle distance

L:自車両−前方車両車間距離
Vs :自車速度、
Va :前方車両速度、
Vr :前方車両−自車間相対速度(Vr>0:接近しつつあるとき、V<0:離遠しつつあるとき)、
Vr0 :自車−前方車両許容相対速度最大値、
L1(Va)、L1 :前方車両速度Va に対応する自車−前方車両間安全車間距離
=Va2 /(2・αm)
Αm :減速走行最大減速度、
L2(Vr0)、L2 :自車−前方車両許容相対速度最大値Vr0に対応する惰性走行距離最大値、惰性走行領域車間距離、
=Vr02 /(2・αi)
αi:惰性走行減速度、
L3(Vr0)、L3 :自車−前方車両許容相対速度最大値Vr0に対応する緩加速度走行距離最大値、緩加速度走行領域車間距離、
=Vr02 /(2・αa)
αa :緩加速度走行加速度、
L1+L2:境界車間距離、
L’ :自車−前方車両予測車間距離、
L: Distance between own vehicle and forward vehicle Vs: own vehicle speed,
Va: vehicle speed ahead,
Vr: Relative speed between the preceding vehicle and the host vehicle (Vr> 0: when approaching, V <0: when moving away),
Vr0: own vehicle-front vehicle allowable relative speed maximum value,
L1 (Va), L1: Safe vehicle-to-vehicle distance corresponding to forward vehicle speed Va = Va 2 /(2.αm)
Αm: Maximum deceleration for deceleration travel,
L2 (Vr0), L2: self-vehicle-front vehicle allowable relative speed maximum value Vr0 corresponding to the inertial travel distance maximum value, inertial travel region inter-vehicle distance,
= Vr0 2 /(2.αi)
αi: coasting deceleration,
L3 (Vr0), L3: Own vehicle-front vehicle allowable relative speed maximum value Vr0 corresponding to the maximum value of the slow acceleration travel distance, the slow acceleration travel range inter-vehicle distance,
= Vr0 2 /(2.αa)
αa: slow acceleration, running acceleration,
L1 + L2: Boundary distance between vehicles
L ′: host vehicle-forward vehicle predicted inter-vehicle distance,

Claims (2)

自車−前方走行車両の間に、自車−前方車両間相対速度許容範囲(−Vr0 ≦Vr ≦V0r)、自車−前方車両間追従走行車間距離範囲(L1≦L≦L1+L2+L3)、で設定される追従走行領域を設け、前記追従走行領域内の境界車間距離(L=L1+L2)において惰性走行から緩加速走行、あるいは緩加速走行から惰性走行への移行を交互に繰り返し行うことによって前方車両速度に対応した追従走行を行う、
ことを特徴とする車両走行制御方法。
ここで、
L:自車両−前方車両車間距離
Vr :前方車両−自車間相対速度(Vr>0:接近しつつあるとき、V<0:離遠しつつあるとき)、
Vr0 :自車−前方車両許容相対速度最大値、
L1(Va)、L1 :前方車両速度Va に対応する自車−前方車両間安全車間距離、
=Va2 /(2・αm)
αm :減速走行減速度最大値、
L2(Vr0)、L2 :自車−前方車両許容相対速度最大値Vr0に対応する惰性走行距離最大値、惰性走行領域車間距離、
=Vr02 /(2・αi)
αi :惰性走行減速度、
L3(Vr0)、L3 :自車−前方車両許容相対速度最大値Vr0に対応する緩加速度走行距離最大値、緩加速度走行領域車間距離、
=Vr02 /(2・αa)
αa :緩加速度走行加速度、
L1+L2 :境界車間距離、
である。
Set between the own vehicle and the forward traveling vehicle with the allowable range of relative speed between the own vehicle and the preceding vehicle (-Vr0 ≤ Vr ≤ V0r) and the following distance between the own vehicle and the preceding vehicle traveling distance (L1 ≤ L ≤ L1 + L2 + L3). Forward vehicle speed by alternately repeating the transition from coasting to slow acceleration or from slow acceleration to coasting at a boundary inter-vehicle distance (L = L1 + L2) within the following traveling region. Follow-up driving corresponding to
The vehicle travel control method characterized by the above-mentioned.
here,
L: Distance between host vehicle and front vehicle Vr: Relative speed between front vehicle and host vehicle (Vr> 0: approaching, V <0: away)
Vr0: own vehicle-front vehicle allowable relative speed maximum value,
L1 (Va), L1: Safe vehicle-to-front vehicle-to-vehicle distance corresponding to the forward vehicle speed Va,
= Va 2 /(2.αm)
αm: Maximum deceleration deceleration value,
L2 (Vr0), L2: self-vehicle-front vehicle allowable relative speed maximum value Vr0 corresponding to the inertial travel distance maximum value, inertial travel region inter-vehicle distance,
= Vr0 2 /(2.αi)
αi: coasting deceleration,
L3 (Vr0), L3: Own vehicle-front vehicle allowable relative speed maximum value Vr0 corresponding to the maximum value of the slow acceleration travel distance, the slow acceleration travel range inter-vehicle distance,
= Vr0 2 /(2.αa)
αa: slow acceleration, running acceleration,
L1 + L2: Boundary distance between vehicles
It is.
前方車両が減速あるいは停止することによって車間距離LがL<L1 となった場合あるいは相対速度Vr がVr >Vr0 となった場合は、前方車両に対する減速度αを、α=Vr2/(2・L)(但しα≦αm )に設定しての減速走行を、
また前方車両が加速することによって車間距離LがL>L1+L2 +L3 となった場合あるいは相対速度Vr がVr <−Vr0 となった場合は、改めて自車の追従走行領域への移行可否判断、および判断の結果に対応した追従走行移行処理あるいは定速走行処理を、
各々行うことによって追従走行への復帰、定速走行への移行、あるいは停車を行う、
ことを特徴とする請求項1記載の車両走行制御方法。
When the inter-vehicle distance L becomes L <L1 or the relative speed Vr becomes Vr> Vr0 due to deceleration or stopping of the preceding vehicle, the deceleration α with respect to the preceding vehicle is expressed as α = Vr 2 / (2. L) (where α ≦ αm)
Further, when the distance L between the vehicles becomes L> L1 + L2 + L3 due to acceleration of the preceding vehicle or when the relative speed Vr becomes Vr <−Vr0, it is determined whether or not the vehicle is allowed to shift to the follow-up travel region. Follow-up running transition processing or constant speed running processing corresponding to the result of
By doing each, return to follow-up driving, transition to constant speed driving, or stop,
The vehicle travel control method according to claim 1.
JP2012100546A 2012-04-26 2012-04-26 Vehicle traveling control method Pending JP2013226945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100546A JP2013226945A (en) 2012-04-26 2012-04-26 Vehicle traveling control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100546A JP2013226945A (en) 2012-04-26 2012-04-26 Vehicle traveling control method

Publications (1)

Publication Number Publication Date
JP2013226945A true JP2013226945A (en) 2013-11-07

Family

ID=49675088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100546A Pending JP2013226945A (en) 2012-04-26 2012-04-26 Vehicle traveling control method

Country Status (1)

Country Link
JP (1) JP2013226945A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143490A (en) * 2014-01-31 2015-08-06 マツダ株式会社 Active cruise control device
JP2016142236A (en) * 2015-02-05 2016-08-08 株式会社デンソー Travel control device
JP2016210222A (en) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 Control device of vehicle
JP2018030460A (en) * 2016-08-25 2018-03-01 渡邉 雅弘 Energy saving travel control method
WO2018042499A1 (en) * 2016-08-29 2018-03-08 マツダ株式会社 Vehicle control device
WO2018042498A1 (en) * 2016-08-29 2018-03-08 マツダ株式会社 Vehicle control device
JP2018034600A (en) * 2016-08-30 2018-03-08 マツダ株式会社 Vehicle control device
WO2018047232A1 (en) * 2016-09-06 2018-03-15 マツダ株式会社 Vehicle control device
CN111204278A (en) * 2020-01-22 2020-05-29 长安大学 Large truck speed out-of-control early warning method
US10906547B2 (en) 2018-11-28 2021-02-02 Hyundai Motor Company Controlling engine idle sailing in a vehicle using relative vehicle speed

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143490A (en) * 2014-01-31 2015-08-06 マツダ株式会社 Active cruise control device
JP2016142236A (en) * 2015-02-05 2016-08-08 株式会社デンソー Travel control device
WO2016125471A1 (en) * 2015-02-05 2016-08-11 株式会社デンソー Travel control device
JP2016210222A (en) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 Control device of vehicle
JP2018030460A (en) * 2016-08-25 2018-03-01 渡邉 雅弘 Energy saving travel control method
WO2018042498A1 (en) * 2016-08-29 2018-03-08 マツダ株式会社 Vehicle control device
WO2018042499A1 (en) * 2016-08-29 2018-03-08 マツダ株式会社 Vehicle control device
JP2018034600A (en) * 2016-08-30 2018-03-08 マツダ株式会社 Vehicle control device
WO2018047232A1 (en) * 2016-09-06 2018-03-15 マツダ株式会社 Vehicle control device
JPWO2018047232A1 (en) * 2016-09-06 2018-12-27 マツダ株式会社 Vehicle control device
US10906547B2 (en) 2018-11-28 2021-02-02 Hyundai Motor Company Controlling engine idle sailing in a vehicle using relative vehicle speed
CN111204278A (en) * 2020-01-22 2020-05-29 长安大学 Large truck speed out-of-control early warning method
CN111204278B (en) * 2020-01-22 2021-12-07 长安大学 Large truck speed out-of-control early warning method

Similar Documents

Publication Publication Date Title
JP2013226945A (en) Vehicle traveling control method
JP4639320B2 (en) Moving body movement pattern calculation apparatus and method
JP4793886B2 (en) Vehicle travel control method
JP5831560B2 (en) Deceleration factor estimation device and driving support device
JP2014050312A (en) Coasting travel control device of electric car and method thereof
JP4716340B2 (en) Vehicle travel control method
JP5991220B2 (en) Driving assistance device
JPWO2011101949A1 (en) Vehicle control device
JP2010093947A (en) Vehicle running control method
JP5790795B2 (en) Deceleration factor estimation device
JP2015113075A (en) Control apparatus of hybrid vehicle
JPWO2013099011A1 (en) Deceleration factor estimation device
JP2017056927A (en) Energy-saving deceleration-running control method
JP6253646B2 (en) Vehicle control device
JP2017081353A (en) Electric car control device
KR20160140053A (en) System and Method for controlling regenerative braking
JP2015104984A (en) Travel control device of hybrid vehicle
JP2014122010A (en) Energy-saving travel control method
JPWO2014181578A1 (en) Control device for hybrid vehicle
SE1150074A1 (en) Method for determining a braking position for a regenerative braking of a vehicle, device, braking system and vehicle
CN113165666A (en) Method for improving the energy efficiency of a motor vehicle, motor vehicle and computer-readable medium
JP2018046735A (en) Method of travel control to expand drivable distance in electric automobile
JP2017140962A (en) Energy saving slowdown travel assisting method
JP2015116871A (en) Controller of hybrid electric vehicle
JP6430690B2 (en) Exhaust gas purification device for hybrid vehicle