JP6080234B1 - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
JP6080234B1
JP6080234B1 JP2015224885A JP2015224885A JP6080234B1 JP 6080234 B1 JP6080234 B1 JP 6080234B1 JP 2015224885 A JP2015224885 A JP 2015224885A JP 2015224885 A JP2015224885 A JP 2015224885A JP 6080234 B1 JP6080234 B1 JP 6080234B1
Authority
JP
Japan
Prior art keywords
travel
vehicle
acceleration
power storage
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015224885A
Other languages
Japanese (ja)
Other versions
JP2017056928A (en
Inventor
渡邉雅弘
Original Assignee
渡邉 雅弘
渡邉 雅弘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 渡邉 雅弘, 渡邉 雅弘 filed Critical 渡邉 雅弘
Priority to JP2015224885A priority Critical patent/JP6080234B1/en
Application granted granted Critical
Publication of JP6080234B1 publication Critical patent/JP6080234B1/en
Publication of JP2017056928A publication Critical patent/JP2017056928A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

【課題】市街地等での限定された使用を目的とした、省エネルギー・低排出ガス性能を有するモータ/エンジンハイブリッド車両の提供【解決手段】加速走行は蓄電装置に蓄積された電気エネルギーおよびエンジンによって駆動される発電機出力による電気エネルギーでモータを駆動して、また、加速走行後の目標停止点までの減速走行は、原則的には加速走行の結果車両に蓄積された運動エネルギーによる惰性走行および制動走行で、各々行う。但し加速走行の結果目標停止点までの距離が惰性走行および制動走行に余る場合はエンジンによって駆動される発電機出力による電気エネルギーでモータを駆動して、定速走行する。一方、蓄電装置への蓄電は、高効率な一定回転領域で駆動されるエンジンに接続された発電機出力をもって、惰性走行主体の減速走行の間に、行う。【選択図】 図2To provide a motor / engine hybrid vehicle having energy saving and low exhaust gas performance for limited use in an urban area, etc. SOLUTION: Acceleration travel is driven by electric energy stored in a power storage device and an engine The motor is driven by the electric energy generated by the generator and the vehicle is decelerated to the target stop point after accelerating. In principle, coasting and braking are performed by the kinetic energy accumulated in the vehicle as a result of acceleration. Do each on the run. However, when the distance to the target stop point remains as a result of the acceleration travel, the inertia travel and the braking travel are performed, and the motor is driven by the electric energy generated by the generator driven by the engine to travel at a constant speed. On the other hand, power storage in the power storage device is performed during deceleration traveling of the inertial traveling subject with a generator output connected to an engine driven in a highly efficient constant rotation region. [Selection] Figure 2

Description

本願発明は、その用途・仕様を、市街地走行用に限定した高エネルギー利用効率のハイブリッド車両に関する。 The present invention relates to a hybrid vehicle with high energy utilization efficiency whose use / specification is limited to urban driving.

従来の各種ハイブリッド車両中、シリーズハイブリッド車両が市街地走行用として優れていると言われ、実用化されている。しかしこれら車両は、主たる用途として市街地走行を想定しているが都市間道路での走行にも耐えるような仕様になっていること等の理由から、特にそのモータ駆動用大容量バッテリーに関しその容量、重量、専有面積、エネルギー利用効率(回生効率、充放電効率)、寿命、コスト等多くの問題を抱えている。
これら問題解決策として、例えば、エネルギー利用効率向上に関し、回生制動方法の改良による燃費向上策(特許文献1)、あるいはモータ駆動領域の拡大による回生エネルギーの増大策(特許文献2)、等が考えられ、実行されている。
またエネルギー回生に代えての惰性走行の有効性も提案され、その実用化への取り組みもなされている。(特許文献3、4)
Among various conventional hybrid vehicles, the series hybrid vehicle is said to be excellent for city driving, and has been put into practical use. However, these vehicles are supposed to run in urban areas as their main use, but because of their specifications that can withstand running on intercity roads, their capacity, especially with regard to their high-capacity batteries for driving motors, It has many problems such as weight, exclusive area, energy utilization efficiency (regenerative efficiency, charge / discharge efficiency), life span, and cost.
As these problem-solving measures, for example, regarding energy utilization efficiency improvement, a fuel efficiency improvement measure by improving the regenerative braking method (Patent Document 1), or a measure for increasing regenerative energy by expanding the motor drive range (Patent Document 2), etc. And running.
In addition, the effectiveness of coasting instead of energy regeneration has been proposed, and efforts are being made to put it into practical use. (Patent Documents 3 and 4)

特開2009−029388JP2009-029388 特開2004−023959JP2004-023959 特開2011−046272JP2011-046272A 特開2013−177126JP 2013-177126 A

本願発明は、前記従来のハイブリッド車両普及の主たる問題である大容量バッテリーに関し、車両の用途をより明確化するとともにエネルギー利用効率の向上を図ることによって、その容量値・重量・専有面積の低減、その結果としての車両コストの削減につなげ、省エネルギー・低排出ガス車両としての普及促進を図ろうとするものである。 The present invention relates to a large-capacity battery, which is a main problem of the conventional hybrid vehicle, and further reduces the capacity value / weight / occupied area by clarifying the use of the vehicle and improving energy utilization efficiency, The result is a reduction in vehicle costs, and an attempt to promote diffusion as an energy-saving and low-emission vehicle.

車両は、最高速度は50〜60Km/h等、その用途を市街地走行用に限定した車両を想定する。
車両駆動方法は、省エネルギー性能・低排出ガス性能に配慮して、モータ/エンジンによるハイブリッド車とし、エンジンはモータ駆動用電力の発電用に特化する、即ちシリーズハイブリッド構成とする。
モータ駆動用電力を蓄積する蓄電装置は、車両の用途に対応して、その重量・サイズ・価格を極小化するため、車両が停止状態から車両仕様による最高速度状態まで所定の(加速度を含む)走行条件下で加速するに必要・十分な電力を蓄積しモータに供給・駆動できる範囲でその容量を極小化した、例えば高充放電効率を有する電気二重層コンデンサー等で構成する。
The vehicle is assumed to have a maximum speed of 50 to 60 km / h or the like and whose use is limited to urban driving.
In consideration of energy saving performance and low exhaust gas performance, the vehicle driving method is a hybrid vehicle using a motor / engine, and the engine is specialized for power generation of motor driving power, that is, a series hybrid configuration.
In order to minimize the weight, size, and price of a power storage device that accumulates motor driving power, the vehicle is set from a stop state to a maximum speed state according to vehicle specifications (including acceleration). It is composed of, for example, an electric double layer capacitor having a high charge / discharge efficiency and the like that has minimized the capacity within a range where electric power necessary and sufficient for acceleration under driving conditions can be accumulated and supplied to and driven by the motor.

また車両の単位走行区間(停止状態から次の停止状態までの走行区間)は市街地であるため平均1000m程度を想定し、この単位走行区間の走行は、基本的には、モータ駆動による必要最小距離の加速走行と、前記加速走行の結果車両に蓄積された運動エネルギーの最大限の有効利用による惰性走行および(摩擦)制動走行とし、運動エネルギー回生制動走行は行わない。
また蓄電装置への充電は、惰性走行主体の減速走行の間に行う。この結果蓄電装置への充電時間は(従来の回生制動による充電時間に比べて)伸長でき、充電効率の良い電気二重層コンデンサを使用しなくても、例えばリチュウムイオン電池等を蓄電装置に用いても、その充電効率を実用上問題ない程度の低下に軽減することができる。
The unit travel section of the vehicle (the travel section from the stop state to the next stop state) is an urban area, so an average of about 1000 m is assumed. The travel of this unit travel section is basically the minimum required distance by motor drive. Acceleration traveling, and inertial traveling and (friction) braking traveling by the maximum effective use of the kinetic energy accumulated in the vehicle as a result of the acceleration traveling, and kinetic energy regenerative braking traveling is not performed.
The power storage device is charged during the deceleration traveling of the inertia traveling subject . As a result the charging time of the power storage device can be extended (compared to the charging time according to a conventional regenerative braking), without using a good electric double layer capacitor of the charging efficiency, for example, using a Lithium-ion battery or the like in the power storage device However, the charging efficiency can be reduced to such a level that there is no practical problem .

単位走行区間走行開始に先立ち、走行開始地点−目標停止点(次の停止点)間距離Dsの最適走行パターン(加速、定速、減速の各走行状態)を以下の如く特定する。
即ち、距離Dsを最小エネルギーで走行するための走行パターン(加速走行、惰性走行、制動走行)を、(数1)を満足する走行条件から特定する。
(数1)
Ds=Da+Di+Db
ここで加速走行による走行距離Daは、
(数2)
Da=vs/(2・αa )
上記加速走行によって車両に蓄積された運動エネルギーによる惰性走行距離Diは、
(数3)
Di=(vs−vb)/(2・αi )
より算出する。
また制動距離Dbは制動開始速度vbに依らず一定値とする。
ここで、Di》Db である。
Prior to the start of the unit travel section travel, the optimum travel pattern (acceleration, constant speed, and deceleration travel states) of the distance Ds between the travel start point and the target stop point (next stop point) is specified as follows.
That is, a travel pattern (acceleration travel, inertial travel, braking travel) for traveling the distance Ds with the minimum energy is specified from the travel conditions satisfying (Equation 1).
(Equation 1)
Ds = Da + Di + Db
Here, the travel distance Da by accelerated travel is
(Equation 2)
Da = vs 2 / (2 · αa)
The inertial travel distance Di due to the kinetic energy accumulated in the vehicle by the acceleration travel is
(Equation 3)
Di = (vs 2 −vb 2 ) / (2 · αi)
Calculate from
The braking distance Db is a constant value regardless of the braking start speed vb.
Here, Di >> Db.

走行開始点−目標停止点間距離Da 、制動開始速度vb、加速走行加速度αa、惰性走行減速度αi をあらかじめ特定しておくことによって、(数1)、(数2)、(数3)を満足する加速走行終了速度vsが特定できる。
上記特定結果の加速走行終了速度vsがvs≦vmの範囲内であれば、車両は単位走行区間走行開始点から加速度αaで速度vsまでの間加速し、その後惰性走行減速度αiでの惰性走行を距離Di 、制動減速度αbでの制動走行を距離Db各々行うことによって目標停止点に到着できることになる。
即ち車両は上記走行パターンで加速、惰性および制動の各走行状態走行をすることによって、最小限の加速走行と加速走行の結果得られた運動エネルギーを最大限有効に使った減速走行が可能、言い換えれば距離Dsを最小エネルギーで走行することが可能、となる。
By previously specifying the distance Da between the travel start point and the target stop point, the braking start speed vb, the acceleration travel acceleration αa, and the inertia travel deceleration αi, (Equation 1), (Equation 2), and (Equation 3) are The satisfied acceleration travel end speed vs can be specified.
If the acceleration travel end speed vs as the specific result is within the range of vs ≦ vm, the vehicle accelerates from the unit travel section travel start point to the speed vs at the acceleration αa, and then coasts at the inertia travel deceleration αi. Can be reached at the target stop point by performing the braking travel at the distance Di and the braking deceleration αb.
That vehicle acceleration in the running pattern, by the respective driving state running of inertia and damping, maximize resulting kinetic energy of the accelerated running and minimum acceleration running effectively using the deceleration, can, In other words, it is possible to travel the distance Ds with the minimum energy.

但し、加速走行終了速度vsがvs=vm(但しvm:最高速度)において、即ち加速走行距離Dam(但し、Dam=vm /(2・αa))、惰性走行距離Dim(但し、
Dim=(vm −vb )/(2・αi))、において、走行開始地点−目標停止点間距離Dsとの関係が、
(数4)
Ds>Dam+Dim+Db
なる場合は、当該単位走行区間においては単位走行区間開始点から速度vmになるまで加速走行し、速度vmに達した後速度vmの定速走行を距離ΔD行った後距離Dimの惰性走行およびその後の距離Dbの制動走行の結果目標停止点に到達する。
ここで定速走行距離ΔDは、
(数5)
ΔD=Ds−(Dam+Dim+Db)
である。
However, the acceleration travel end speed vs is vs = vm (where vm is the maximum speed), that is, the acceleration travel distance Dam (where Dam = vm 2 /(2.αa)), the inertia travel distance Dim (where
Dim = (vm 2 −vb 2 ) / (2 · αi)), the relationship between the travel start point and the target stop point distance Ds is
(Equation 4)
Ds> Dam + Dim + Db
In this case, in the unit travel section, acceleration travels from the start point of the unit travel section to the speed vm, and after reaching the speed vm, the constant speed travel of the speed vm is performed by the distance ΔD, and then the inertia travel of the distance Dim and thereafter As a result of the braking travel of the distance Db, the target stop point is reached.
Here, the constant speed travel distance ΔD is:
(Equation 5)
ΔD = Ds− (Dam + Dim + Db)
It is.

上記の如き最適走行パターンでの走行によって、車両は単位走行区間を最小のエネルギーで走行することができる。
即ち、車両は最小限の加速走行と、前記加速走行によって車両が獲得した運動エネルギーを最大限に利用した惰性走行および制動走行によって、単位走行区間を走行できることになる。
この結果モータの加速走行駆動に要する電力エネルギーは必要最小限に抑えられる、即ちモータ駆動電力蓄積用蓄電装置容量を極小化することができる
By traveling in the optimal traveling pattern as described above, the vehicle can travel in the unit traveling section with the minimum energy.
That is, the vehicle can travel in the unit travel section by the minimum acceleration travel and the inertia travel and the brake travel that make the best use of the kinetic energy acquired by the vehicle by the acceleration travel.
As a result, the power energy required for driving the motor for acceleration traveling can be minimized, that is, the capacity of the power storage device for storing motor driving power can be minimized.

一方、エンジンによる発電は、蓄電装置蓄電量が所定のレベル範囲内(過放電領域上限レベル〜過充電領域下限レベル)の間の充電可能領域間において、原則的には所定の(走行速度を含む)走行条件下での定速走行に必要・充分な電力量の発電を、継続的に行う。 On the other hand, in the power generation by the engine, in principle, the power storage device storage amount is within a predetermined level range (overdischarge region upper limit level to overcharge region lower limit level) between the chargeable regions, and in principle, includes a predetermined (including traveling speed). ) Continuously generate power that is necessary and sufficient for constant speed running under driving conditions.

上記本願発明によって、市街地走行用に用途を限定した、また極小化された蓄電容量の蓄電装置を有する、省エネルギー・低排出ガス・低価格のハイブリッド車両の実現が可能となる。
ここで上記蓄電装置への充電に際しては、基本的には惰性走行および制動走行の間の比較的長時間で行うことができるため、従来の大容量バッテリーを使用した場合でかつ回生制動による充電を行う場合に比べて、その充電効率は向上し、蓄電装置の小容量化、および高速充電によるバッテリー寿命低下問題の改善、にも貢献できる。
According to the present invention described above, it is possible to realize an energy-saving, low-emission gas, and low-priced hybrid vehicle that has a power storage device that has a limited storage use for urban driving and has a minimized power storage capacity.
Here, when charging the power storage device, basically, it can be performed in a relatively long time between coasting and braking, so that charging using regenerative braking is possible even when a conventional large-capacity battery is used. Compared to the case where the charging is performed, the charging efficiency is improved, and it is possible to contribute to the reduction of the capacity of the power storage device and the improvement of the battery life reduction problem due to the high speed charging.

本願発明によるシリーズハイブリッド車両の駆動源形態およびその制御系の説明図、Explanatory drawing of the drive source form of the series hybrid vehicle by this invention and its control system, 本願発明による、車両走行形態に対応した蓄電装置蓄電量、モータ駆動電力、およびエンジンによる発電制御の概念説明図である。It is a conceptual explanatory diagram of the power storage control amount corresponding to the vehicle running mode, motor drive power, and power generation control by the engine according to the present invention.

本願発明におけるハイブリッド形態は基本的にはシリーズハイブリッドである。
また本発明による走行実施に際しては、車両は上記単位走行区間走行開始時点で、車両の加速走行、定速走行、惰性走行、および制動走行の各走行の走行距離あるいは走行速度を特定しその特定結果に基づいて単位走行区間終点までの各走行を行なう
The hybrid form in the present invention is basically a series hybrid.
In traveling embodiment according to the invention also the vehicle in the unit travel distance travel start point, accelerated running of the vehicle, the constant-speed running, coasting, and to identify the travel distance or the traveling speed of each travel of the brake travel, the specific results perform each running to the unit travel distance endpoint based on.

図1に本願発明の駆動源形態を、また図2に図1に示す駆動源形態での車両走行状態に対応する蓄電装置の蓄電量の変移形態、モータの駆動形態、およびエンジンの発電形態を示す。
図1において、
11は、一定回転領域で駆動されるエンジン
12は、エンジン11によって駆動される発電機、
13は、発電機12出力を直流変換して蓄電器に蓄積すると同時に、蓄電器出力を交流変換してモータ駆動電力とする蓄電装置、
14は、蓄電装置出力で駆動されるモータ、
15は、モータによって駆動される駆動輪、
16は、車両のアクセル情報、速度情報、車両現位置情報(GPS情報)、車両が次に停止すべき目標停止点位置情報、および蓄電装置13からの蓄電器蓄電量情報を入力し、図2に示すエンジン駆動制御、モータ駆動制御、を行うための前記(数1)、(数2)、(数3)、(数4)、(数5)の演算を行いその結果に基づいて各種制御を行う、エンジン/モータ駆動制御部
である。
FIG. 1 shows the drive source form of the present invention, and FIG. 2 shows the state of change in the amount of charge of the power storage device, the drive form of the motor, and the power generation form of the engine in the drive source form shown in FIG. Show.
In FIG.
11 is an engine 12 driven in a constant rotation region, a generator driven by the engine 11,
13 is a power storage device in which the generator 12 output is converted into direct current and accumulated in the battery, and at the same time, the output of the power storage is converted into alternating current to obtain motor drive power;
14 is a motor driven by the output of the power storage device,
15 is a drive wheel driven by a motor;
16 inputs vehicle accelerator information, speed information, vehicle current position information (GPS information), target stop point position information that the vehicle should stop next, and battery storage amount information from power storage device 13. engine drive control shown, the motor drive control, said for performing (number 1), (Formula 2), (Equation 3), (Equation 4), various control based on the result performed each operation of (5) It is an engine / motor drive control part which performs.

即ち、図2に示す如く、加速走行は蓄電装置内の蓄電エネルギー、およびエンジン駆動による発電電力エネルギー、を消費してモータ駆動を行い加速度αa の加速走行を行う 。加速走行は車両速度が前記vsあるいはvmに到達した時点で終了し、その後惰性走行、あるいは距離ΔDの定速走行後惰性走行、に移行し、惰性走行速度が制動開始速度vbに達した後制動走行に移行し目標停止点で停止する。   That is, as shown in FIG. 2, the accelerated travel consumes the energy stored in the power storage device and the generated power energy generated by the engine drive to drive the motor and perform the accelerated travel at the acceleration αa. Accelerated travel ends when the vehicle speed reaches vs or vm, and then shifts to inertial travel, or inertial travel after constant speed travel of distance ΔD, and braking is performed after the inertial travel speed reaches the braking start speed vb. Move to driving and stop at the target stop point

上記本願発明は、市街地走行への利用に特化した省エネルギー・低地球温暖化ガス排出車両として、小型車両だけでなく大型のバス、トラック等にも有効である。
また本願発明による加速・減速走行制御方法は、乗員の安全・運転負荷軽減だけでなく、省エネルギー・低排出ガス化もその大きな目的の一つである自動運転車用の加減速走行制御方法としても有効である。
特に本願発明に自動運転機能を付加した小型車両は、通常の車両利用に支障のある交通弱者用の小型移動手段として、その有効性は高く、また産業としてもその市場発展性は高い。
The present invention is effective not only for small vehicles but also for large buses, trucks, etc., as an energy-saving and low global warming gas emission vehicle specialized for use in urban areas.
The acceleration / deceleration driving control method according to the present invention is not only a safety / reduction of driving occupants, but also an acceleration / deceleration driving control method for self-driving vehicles in which energy saving and low exhaust gas are one of its major purposes. It is valid.
In particular, a small vehicle to which an automatic driving function is added to the present invention is highly effective as a small moving means for a traffic weak person who interferes with normal vehicle use, and has high market development as an industry.

図1、図2、(数1)〜(数5)において、
11:エンジン
12:発電機
13:蓄電装置(インバータ含む)
14:モータ
15:駆動輪
16:エンジン/モータ コントローラ
Ds :走行開始点−目標停止点間距離
Da :加速走行距離
Dam :加速走行最大距離
Di :惰性走行距離
Dim :惰性走行最大距離
Db :制動走行距離
ΔD :定速走行距離
1 and 2, (Equation 1) to (Equation 5),
11: Engine 12: Generator 13: Power storage device (including inverter)
14: Motor 15: Drive wheel 16: Engine / motor Controller Ds: Distance between travel start point and target stop point Da: Acceleration travel distance Dam: Maximum acceleration travel distance Di: Inertia travel distance Dim: Maximum inertia travel distance Db: Braking travel Distance ΔD: Constant speed travel distance

vs:加速走行終了速度
vm:最高速度
αa :加速度
αi :惰性走行減速度
αb :制動走行減速度
Ef :満蓄電レベル
Ef’:過充電領域を除く満充電レベル
Ta、Te:加速開始時点
Tb:加速終了(惰性走行開始)時点
Tc、Ti:惰性走行終了(制動開始)時点
Td、Tj:制動終了(停止)時点
Tf:加速終了かつ定速走行開始時点
Tg:定速走行終了かつ惰性走行開始時点
Th:蓄電装置への蓄電停止(エンジン発電停止)時点
Tk:加速開始かつエンジン発電開始時点
vs: acceleration traveling end speed vm: maximum speed αa: acceleration αi: inertia traveling deceleration αb: braking traveling deceleration
Ef: full charge level Ef ′: full charge level Ta excluding overcharge region, Te: acceleration start time Tb: acceleration end (inertia running start) time Tc, Ti: inertial running end (braking start) time Td, Tj: braking End (stop) time Tf: End of acceleration and start of constant speed travel Tg: End of constant speed travel and start of inertial travel Th: Stop of power storage to the power storage device (engine power generation stop) Tk: Start of acceleration and start of engine power generation

Claims (1)

車両の停止状態から車両仕様による最高速度まで所定の加速度で加速駆動するに必要・充分な電気エネルギー量の蓄積・充放電能力を有するモータ駆動電力用蓄電装置を有し、
前記蓄電装置への蓄電は、車両の有する運動エネルギーを利用した惰性走行主体の減速走行の間に、エンジンによって定常的に駆動される発電機出力をもって、行うことを特徴とするモータ/エンジンハイブリッド車両。
From the stopped state of the vehicle to the maximum speed by the vehicle specifications have a power storage device for driving the motor power having a storage and discharge capacity required, sufficient electrical energy to accelerate driven at a predetermined acceleration,
The motor / engine hybrid vehicle is characterized in that the power storage to the power storage device is performed with a generator output that is steadily driven by the engine during the deceleration traveling of the inertia traveling body using the kinetic energy of the vehicle. .
JP2015224885A 2015-11-17 2015-11-17 Hybrid vehicle Expired - Fee Related JP6080234B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015224885A JP6080234B1 (en) 2015-11-17 2015-11-17 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015224885A JP6080234B1 (en) 2015-11-17 2015-11-17 Hybrid vehicle

Publications (2)

Publication Number Publication Date
JP6080234B1 true JP6080234B1 (en) 2017-02-15
JP2017056928A JP2017056928A (en) 2017-03-23

Family

ID=58043261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015224885A Expired - Fee Related JP6080234B1 (en) 2015-11-17 2015-11-17 Hybrid vehicle

Country Status (1)

Country Link
JP (1) JP6080234B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891043B2 (en) 2021-02-15 2024-02-06 Denso Corporation Control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6918261B2 (en) * 2021-02-18 2021-08-11 渡邉 雅弘 Plug-in hybrid vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074851A (en) * 2004-08-31 2006-03-16 Toyota Motor Corp Controller for vehicle driving unit
JP2008127005A (en) * 2006-11-21 2008-06-05 Dr Ing H C F Porsche Ag Method and device for connecting internal combustion engine in hybrid vehicle driving mechanism
JP2009154715A (en) * 2007-12-26 2009-07-16 Honda Motor Co Ltd Power generation control device
JP2010120503A (en) * 2008-11-19 2010-06-03 Masahiro Watanabe Method for controlling vehicle travel
JP2012091757A (en) * 2010-10-29 2012-05-17 Toyota Motor Corp Display unit
JP2013126806A (en) * 2011-12-18 2013-06-27 Masahiro Watanabe Energy-saving vehicle and traveling control method thereof
JP2013189192A (en) * 2013-03-23 2013-09-26 Masahiro Watanabe Hybrid vehicle
JP2014122010A (en) * 2012-12-24 2014-07-03 Masahiro Watanabe Energy-saving travel control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074851A (en) * 2004-08-31 2006-03-16 Toyota Motor Corp Controller for vehicle driving unit
JP2008127005A (en) * 2006-11-21 2008-06-05 Dr Ing H C F Porsche Ag Method and device for connecting internal combustion engine in hybrid vehicle driving mechanism
JP2009154715A (en) * 2007-12-26 2009-07-16 Honda Motor Co Ltd Power generation control device
JP2010120503A (en) * 2008-11-19 2010-06-03 Masahiro Watanabe Method for controlling vehicle travel
JP2012091757A (en) * 2010-10-29 2012-05-17 Toyota Motor Corp Display unit
JP2013126806A (en) * 2011-12-18 2013-06-27 Masahiro Watanabe Energy-saving vehicle and traveling control method thereof
JP2014122010A (en) * 2012-12-24 2014-07-03 Masahiro Watanabe Energy-saving travel control method
JP2013189192A (en) * 2013-03-23 2013-09-26 Masahiro Watanabe Hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891043B2 (en) 2021-02-15 2024-02-06 Denso Corporation Control system

Also Published As

Publication number Publication date
JP2017056928A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US9969271B2 (en) Hybrid vehicle control apparatus
JP5716693B2 (en) Hybrid vehicle
CN102381314B (en) Charge-discharge control method for hybrid electric vehicle
JP5765194B2 (en) Vehicle and vehicle control method
JP5804074B2 (en) Vehicle and vehicle control method
JP5747724B2 (en) Vehicle and vehicle control method
CN103906651A (en) Vehicle and vehicle control method
JPH10295045A (en) Control apparatus for power generation of hybrid electric vehicle
CN103717465A (en) Hybrid vehicle control device and control method
JP2002171603A (en) Control device for hybrid vehicle
CN103338999B (en) For the driving control device of motor vehicle driven by mixed power and drived control method and motor vehicle driven by mixed power
JP5445676B2 (en) Vehicle control device
JP5696790B2 (en) Vehicle and vehicle control method
JP6435789B2 (en) Output control device for hybrid drive vehicle
US20200164855A1 (en) Control system for vehicle
CN105263772A (en) Control device of vehicle
JP2004064840A (en) Controlling device for storage system
JP6080234B1 (en) Hybrid vehicle
JP2010154638A (en) Battery charge control device for motor vehicle
JP2015000685A (en) Control device and control method for hybrid vehicle
JP2012205476A (en) Control device of vehicle
JP6918261B2 (en) Plug-in hybrid vehicle
JP2012125051A (en) Power supply control device of electric automobile
JP6540582B2 (en) Control device for hybrid vehicle
JP2016120740A (en) Control unit of hybrid vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6080234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees