JP2010154638A - Battery charge control device for motor vehicle - Google Patents

Battery charge control device for motor vehicle Download PDF

Info

Publication number
JP2010154638A
JP2010154638A JP2008329289A JP2008329289A JP2010154638A JP 2010154638 A JP2010154638 A JP 2010154638A JP 2008329289 A JP2008329289 A JP 2008329289A JP 2008329289 A JP2008329289 A JP 2008329289A JP 2010154638 A JP2010154638 A JP 2010154638A
Authority
JP
Japan
Prior art keywords
remaining capacity
battery
vehicle
charging base
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008329289A
Other languages
Japanese (ja)
Inventor
Hideo Nakamura
英夫 中村
Takeshi Ito
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008329289A priority Critical patent/JP2010154638A/en
Publication of JP2010154638A publication Critical patent/JP2010154638A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently use the power of a battery up to a predetermined lower limit remaining capacity, reaching the charging base point. <P>SOLUTION: The battery charge control device includes a generated power control unit controlling a power generation motor 2, a battery 4 to be charged through the power generated by the power generation motor 2, a remaining capacity detection unit for detecting the remaining capacity of the battery 4, a drive motor 3 connected to vehicle driving wheels 6a, 6b to be driven with the power of the battery 4, a target remaining capacity setting unit for setting the target remaining capacity of the battery 4, and a necessary energy estimation unit for estimating the energy necessary for the vehicle traveling from the present location to the charging base point. The target remaining capacity setting unit sets the target remaining capacity by adding the battery remaining capacity corresponding to the necessary energy estimated by the energy estimating unit necessary for the preset lower limit remaining capacity of the battery 4. The generated power control unit controls the power generation motor 2 so that the remaining capacity of the battery 4 detected by the remaining capacity detection unit becomes the target remaining capacity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、動力源としてモータ及び内燃機関を搭載した電動車両のバッテリ充電制御装置に関する。   The present invention relates to a battery charge control device for an electric vehicle equipped with a motor and an internal combustion engine as a power source.

従来から、動力源としてモータ及び内燃機関を搭載したハイブリッド車両において、車載バッテリを外部充電可能なプラグイン・ハイブリッド車両(HEV)が知られている(例えば、特許文献1及び2参照)。   Conventionally, a plug-in hybrid vehicle (HEV) capable of externally charging a vehicle-mounted battery is known in a hybrid vehicle equipped with a motor and an internal combustion engine as a power source (see, for example, Patent Documents 1 and 2).

特許文献1では、車載バッテリの充電が可能な目的地までの経路を検索して、予測された走行パターンに基づき経路上の各地点におけるバッテリ残容量の中間値を設定し、この中間値よりも実バッテリ残量が多い場合はモータ分担を大きく 、小さい場合はモータ分
担を小さくする。これにより、予め設定されたバッテリ残量まで電力を効率よく使用して目的地に到達できる、つまり、バッテリ残容量を次回の充電の際までに使い切り、経済性(エネルギ単価)、環境(水力・原子力発電など)に優れた外部充電を出来るだけ多用することができるとされている。
In Patent Document 1, a route to a destination where the in-vehicle battery can be charged is searched, and an intermediate value of the remaining battery capacity at each point on the route is set based on the predicted traveling pattern. When the actual battery level is large, the motor share is increased, and when it is small, the motor share is decreased. As a result, the power can be used efficiently to reach the preset remaining battery level, that is, the remaining battery capacity can be used up to the next charge, and the economy (unit price of energy), environment (hydropower / It is said that external charging excellent in nuclear power generation etc. can be used as much as possible.

特許文献2では、充電拠点を中心にモータのみによる走行(EV走行)が可能な地域を予め登録し、EV走行が可能な地域の外から充電拠点に向けて走行する場合に、EV走行が可能な地域に到達する手前のモータ及び内燃機関による走行(HEV走行)時にバッテリ残容量を予め高めておき、その地域に到達したらEV走行に切り替える。これにより、静粛性、無公害性の高いEV走行を充電拠点周辺で確実に実施することができるとされている。
特開平9−163506号公報 特開2003−32807号公報
In Patent Document 2, a region where EV traveling can be performed only by a motor centering on a charging site is registered in advance, and EV traveling is possible when traveling from outside the region where EV traveling is possible toward the charging site. When the vehicle and the internal combustion engine travel (HEV traveling) before reaching a certain area, the remaining battery capacity is increased in advance, and when reaching that area, switching to EV traveling is performed. Thereby, it is supposed that EV driving with high quietness and non-pollution can be reliably performed around the charging base.
JP-A-9-163506 JP 2003-32807 A

特許文献1において、検索された経路から一度でも外れると、充電可能な目的地に到着した際の目標バッテリ残容量を達成出来なくなる。つまり、検索された経路よりも近道で目的地に到達すると、目的地でのバッテリ残容量はかなり大きい値のままとなり、プラグイン充電が十分出来なくなり経済性や環境性が悪化する。一方、予定より遠回りで目的地に到着すると、走行途中でバッテリ残容量がゼロとなり加速性能が悪化する。つまり、シリーズ型ハイブリッド車両(SHEV)の場合は、発電用内燃機関と発電機の最大出力で駆動用モータ出力が制限され、パラレル型ハイブリッド車両(PHEV)の場合は、内燃機関及び駆動用モータによるモータアシスト走行が出来なくなり、どちらの場合もバッテリ残容量がゼロでない通常時に比べて加速性能が大きく悪化する。更に、ナビゲーションシステムなどで経路を予め設定し、設定経路どおりに走行する煩わしさもある。   In Patent Document 1, if the route is found even once, the target remaining battery capacity when arriving at a rechargeable destination cannot be achieved. In other words, when the destination is reached by a shorter route than the searched route, the remaining battery capacity at the destination remains a considerably large value, so that plug-in charging cannot be performed sufficiently, and the economy and environmental performance deteriorate. On the other hand, when the vehicle arrives at a destination farther than planned, the remaining battery capacity becomes zero during traveling and the acceleration performance deteriorates. That is, in the case of a series type hybrid vehicle (SHEV), the drive motor output is limited by the maximum output of the power generation internal combustion engine and the generator, and in the case of a parallel type hybrid vehicle (PHEV), it depends on the internal combustion engine and the drive motor. Motor-assisted running becomes impossible, and in either case, the acceleration performance is greatly deteriorated compared to the normal time when the remaining battery capacity is not zero. Furthermore, there is also the inconvenience of setting a route in advance with a navigation system or the like and traveling along the set route.

特許文献2では、充電拠点を中心とするEV走行が可能な地域の外から、充電拠点に向けてEV走行可能地域内に入った時には、EV走行で必要なバッテリ残容量に制御されている。しかし、充電拠点に向けてEV走行可能地域内を走行している途中で、発電拠点から遠くなるような走行を行ったときは、特許文献1の場合と同じく、充電拠点に到達する前にバッテリ残容量が目標値(ゼロ)に至る可能性があり、充電拠点周辺でEV走行が出来なくなり、静粛性・無公害性を十分発揮出来なくなる。   In Patent Document 2, when entering the EV travelable area toward the charging base from outside the area where EV travel centering on the charging base is entered, the remaining battery capacity required for EV travel is controlled. However, when traveling in a region where EV travel is possible toward the charging base and traveling away from the power generation base, the battery before reaching the charging base as in the case of Patent Document 1 is used. There is a possibility that the remaining capacity will reach the target value (zero), and EV driving cannot be performed around the charging base, and quietness and pollution-freeness cannot be fully exhibited.

本発明は、このような従来の課題に鑑みてなされたものであり、その目的は、予め定め
られた下限残容量までバッテリの電力を効率よく使用して充電拠点に到達できる電動車両のバッテリ充電制御装置を提供することである。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to charge the battery of an electric vehicle that can reach the charging base by efficiently using the power of the battery up to a predetermined lower limit remaining capacity. It is to provide a control device.

本発明の特徴は、電力を発電する発電手段と、該発電手段の発電電力を制御する発電電力制御手段と、前記発電手段によって発電された電力、若しくは充電拠点に設けられた充電器から出力される電力で充電可能なバッテリと、当該バッテリの残容量を検出する残容量検出手段と、前記バッテリの電力を用いて駆動する車両の駆動輪に接続された電動機と、前記バッテリの残容量の目標値である目標残容量を設定する目標残容量設定手段と、車両が現在地から充電拠点まで走行する為に必要なエネルギを推定する必要エネルギ推定手段とを備える、電動車両のバッテリ充電制御装置であって、目標残容量設定手段が、予め定められた前記バッテリの下限残容量に、前記必要エネルギ推定手段によって推定された必要エネルギに相当するバッテリ残容量を加算して目標残容量を設定し、発電電力制御手段が、前記残容量検出手段によって検出された前記バッテリの残容量が前記目標残容量となるように前記発電手段を制御することである。   A feature of the present invention is that power is generated from power generation means for generating power, power generation control means for controlling power generated by the power generation means, power generated by the power generation means, or a charger provided at a charging base. A battery that can be charged with electric power, remaining capacity detecting means for detecting the remaining capacity of the battery, an electric motor connected to a driving wheel of a vehicle that is driven using the electric power of the battery, and a target for the remaining capacity of the battery A battery charge control device for an electric vehicle, comprising: target remaining capacity setting means for setting a target remaining capacity that is a value; and necessary energy estimating means for estimating energy required for the vehicle to travel from the current location to the charging base. The target remaining capacity setting means adds a battery corresponding to the required energy estimated by the required energy estimating means to the predetermined lower limit remaining capacity of the battery. A target remaining capacity is set by adding the remaining capacity, and the generated power control means controls the power generating means so that the remaining capacity of the battery detected by the remaining capacity detecting means becomes the target remaining capacity. is there.

GPSを用いたナビゲーションシステムなどと連携すれば、自宅などの充電拠点と車両間の地理的な関係を随時把握出来る。従って、必要エネルギ推定手段は、この情報に基づいて、自車が充電拠点まで到達するための必要エネルギを算出可能である。目標残容量設定手段は、この必要エネルギに相当するバッテリ残容量を求め、発電電力制御手段は、これを常に目標値として、車載の発電機でバッテリを常に充電する。これにより、自車が充電拠点に到達した際には、バッテリ残容量がゼロとなる。実際には、充電拠点で外部電源に接続・充電せずに再出発する場合も想定する必要があり、内燃機関を再始動可能な最低エネルギをバッテリに確保しておく必要がある。従って、上述の充電拠点まで到達するための必要エネルギにこの最低エネルギを加算しておく必要がある。   By coordinating with a navigation system using GPS, it is possible to grasp the geographical relationship between a charging base such as a home and a vehicle as needed. Therefore, the necessary energy estimating means can calculate the necessary energy for the own vehicle to reach the charging base based on this information. The target remaining capacity setting means obtains the remaining battery capacity corresponding to this necessary energy, and the generated power control means always uses this as a target value and always charges the battery with the on-vehicle generator. Thereby, when the own vehicle reaches the charging base, the remaining battery capacity becomes zero. Actually, it is necessary to assume a case of restarting without connecting / charging to an external power source at the charging base, and it is necessary to secure the minimum energy that can restart the internal combustion engine in the battery. Therefore, it is necessary to add this minimum energy to the necessary energy for reaching the charging base described above.

本発明の特徴によれば、必ずしも目的地を設定し検索設定された経路に沿って走行せずとも、つまり、自由な経路、自由な走行パターンで走行しても、充電拠点に戻った時に必ず、バッテリの残容量が、充電拠点到達時の目標値(内燃機関の再始動などに必要な最低値)になるので、経済性(エネルギ単価)や環境(水力・原子力発電など)に優れる例えば家庭用電源による外部充電を多用出来る。また走行中に、バッテリの残容量がゼロになることが無いので、シリーズ型ハイブリッド車両では、駆動用モータ出力が発電機の最大出力に制限されることが無く、パラレル型ハイブリッド車両では、モータアシスト走行が出来なくなることも無い。つまり、走行途中で加速性能が急に低下するようなことは生じない。   According to the features of the present invention, it is not always necessary to set a destination and travel along a searched route. That is, even if the vehicle travels according to a free route and a free driving pattern, the vehicle always returns to the charging base. Because the remaining battery capacity will be the target value (minimum value required for restarting the internal combustion engine, etc.) when reaching the charging site, it is excellent in economy (unit price of energy) and environment (hydropower, nuclear power generation, etc.) A lot of external charging can be used. In addition, since the remaining capacity of the battery does not become zero during traveling, the drive motor output is not limited to the maximum output of the generator in the series type hybrid vehicle, and the motor assist in the parallel type hybrid vehicle. You won't be able to run. That is, the acceleration performance does not suddenly decrease during traveling.

以上説明したように、本発明に関わる電動車両のバッテリ充電制御装置によれば、予め定められた下限残容量までバッテリの電力を効率よく使用して充電拠点に到達できる。   As described above, according to the battery charging control device for an electric vehicle according to the present invention, the battery power can be efficiently used up to a predetermined lower limit remaining capacity to reach the charging base.

以下図面を参照して、本発明の実施の形態を説明する。図面の記載において同一部分には同一符号を付している。
図1を参照して、本発明の実施の形態に関わるバッテリ充電制御装置を「プラグイン・シリーズ型ハイブリッド車両」に適用した場合の車両の全体構成を説明する。
Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals.
With reference to FIG. 1, an overall configuration of a vehicle when a battery charge control device according to an embodiment of the present invention is applied to a “plug-in series hybrid vehicle” will be described.

先ず、パワートレインについて説明する。シリーズ型ハイブリッド車両は、発電用内燃機関の一例としてのエンジン1と、エンジン1に直結されエンジン1のパワーを電力に変換したりエンジン始動を行う発電モータ2と、減速機構5を介して車両の駆動輪6a、6bに繋がれ車両を駆動したり減速時に回生発電を行う駆動モータ3と、発電モータ2で発
電された電力や駆動モータ3で回生発電された電力を蓄え、駆動モータ3やエンジンスタータとしての発電モータ2に蓄えた電力を供給するバッテリ4とを備える。
First, the power train will be described. The series type hybrid vehicle includes an engine 1 as an example of an internal combustion engine for power generation, a power generation motor 2 that is directly connected to the engine 1 and converts the power of the engine 1 into electric power and starts the engine, and a speed reduction mechanism 5. The drive motor 3 is connected to the drive wheels 6a and 6b and drives the vehicle or performs regenerative power generation when decelerating. The power generated by the power generation motor 2 or the power regenerated by the drive motor 3 is stored, and the drive motor 3 or engine And a battery 4 for supplying electric power stored in the generator motor 2 as a starter.

ここで、発電モータ2は電力を発電する発電手段の一例であり、駆動モータ3はバッテリ4の電力を用いて駆動する車両の駆動輪6a、6bに接続された電動機の一例である。   Here, the generator motor 2 is an example of power generation means for generating electric power, and the drive motor 3 is an example of an electric motor connected to drive wheels 6a and 6b of a vehicle driven using the electric power of the battery 4.

発電モータ2と駆動モータ3は、高圧の3相交流を用いて駆動及び発電を行う。バッテリ4は、高圧の直流で充放電を行う。従って、交流電源と直流電源を変換するためのインバータ7、8が、発電モータ2とバッテリ4の間及び駆動モータ3とバッテリ4の間にそれぞれ配置される。更にシリーズ型ハイブリッド車両においては、低圧の単相交流である家庭用電源を用いてもバッテリ4を充電できるようにするための充電器9及びコンセント15がバッテリ4に接続されている。   The generator motor 2 and the drive motor 3 drive and generate power using high-pressure three-phase alternating current. The battery 4 is charged and discharged with a high-voltage direct current. Therefore, inverters 7 and 8 for converting the AC power source and the DC power source are arranged between the generator motor 2 and the battery 4 and between the drive motor 3 and the battery 4, respectively. Further, in the series type hybrid vehicle, a battery charger 9 and an outlet 15 are connected to the battery 4 so that the battery 4 can be charged even by using a household power source that is a low-voltage single-phase alternating current.

次に、マイコンを搭載した車載コントローラを説明する。車載コントローラは、発電モータ2や駆動モータ3の各入出力トルクを制御するためにインバータ7、8を操作するモータ・ジェネレータコントローラ10と、エンジン1の吸入空気量・点火時期・燃料噴射量を操作することで出力トルクを制御するエンジンコントローラ11と、バッテリ4の残容量(S0C:State of Charge)を検出し、入出力可能パワーなどの内部状態量を推定
してバッテリ4の保護を行うバッテリコントローラ12と、衛星からのGPS信号を用いて自車位置を検出したり、DVD等に記憶された道路、標高、道路勾配、道路曲率などを含む地図データやインフラから送信される渋滞情報を含む通信データを基にして目的地までの経路探索や誘導を行うナビゲーションコントローラ13と、これら複数のコントローラを協調させながら、ドライバーの要求に沿ってモータ駆動出力を制御し、また、運転性と燃費(経済性)の両方を考慮しながら発電出力を制御するパワートレイン統合制御コントローラ14とを備える。各種コントローラ10〜14は、高速通信網で繋がれ各種データを共有化する。
Next, an in-vehicle controller equipped with a microcomputer will be described. The in-vehicle controller controls the motor / generator controller 10 that operates the inverters 7 and 8 to control the input / output torques of the generator motor 2 and the drive motor 3, and the intake air amount, ignition timing, and fuel injection amount of the engine 1. An engine controller 11 that controls the output torque, and a battery controller that detects the remaining capacity (SOC: State of Charge) of the battery 4 and estimates the internal state quantity such as power that can be input and output to protect the battery 4 12 and communication including traffic information transmitted from infrastructure and map data including road, altitude, road gradient, road curvature, etc. stored on DVD etc. The navigation controller 13 that searches and guides the route to the destination based on the data, and these multiple controllers cooperate. While, to control the motor drive output along the driver's request, also includes a power train integrated controller 14 for controlling the power output while considering both the drivability and fuel economy (economical efficiency). The various controllers 10 to 14 are connected by a high-speed communication network and share various data.

ここで、バッテリコントローラ12はバッテリ4の残容量を検出する残容量検出手段の一例である。バッテリ4の残容量はバッテリ4の充電率を含む概念である。   Here, the battery controller 12 is an example of a remaining capacity detection unit that detects the remaining capacity of the battery 4. The remaining capacity of the battery 4 is a concept including the charging rate of the battery 4.

パワートレイン統合制御コントローラ14は、発電モータ2の発電電力を制御する発電電力制御部(発電電力制御手段)、バッテリ4の残容量の目標値である目標残容量を設定する目標残容量設定部(目標残容量設定手段)、及び車両が現在地から自宅などの充電拠点まで走行する為に必要なエネルギを推定する必要エネルギ推定部(必要エネルギ推定手段)として機能する。   The powertrain integrated controller 14 includes a generated power control unit (generated power control means) that controls the generated power of the generator motor 2 and a target remaining capacity setting unit that sets a target remaining capacity that is a target value of the remaining capacity of the battery 4 ( Target remaining capacity setting means) and a required energy estimation unit (necessary energy estimation means) for estimating energy required for the vehicle to travel from the current location to a charging base such as home.

必要エネルギ推定部は、GPSを用いたナビゲーションシステムと連携して自宅などの充電拠点と車両間の地理的な関係を随時把握し、この地理的な関係に基づいて車両が充電拠点まで到達するための必要エネルギを算出する。目標残容量設定部は、この必要エネルギに相当するバッテリ残容量を求め、当該バッテリ残容量に予め定められたバッテリ4の下限残容量を加算して目標残容量を設定する。発電電力制御部は、残容量検出部によって検出されたバッテリ4の残容量が目標残容量となるように発電モータ2を制御して発電モータ2でバッテリ4を充電する。これにより、車両が充電拠点に到達した際には、バッテリ4の残容量がゼロとなる。実際には、充電拠点で外部電源に接続・充電せずに再出発する場合も想定する必要があり、エンジン1を再始動可能な最低エネルギをバッテリ4に確保しておく必要がある。従って、上述の充電拠点まで到達するための必要エネルギに相当するバッテリ残容量にこの最低エネルギに相当する下限残容量を加算しておく。なお、充電拠点に到達した時のバッテリ4の下限残容量は、予め設定もしくは推定された充電拠点での外部充電可能時間に応じて変更してもよい。   The required energy estimation unit grasps the geographical relationship between the charging base such as home and the vehicle at any time in cooperation with the navigation system using GPS, and the vehicle reaches the charging base based on this geographical relationship. The required energy is calculated. The target remaining capacity setting unit obtains a remaining battery capacity corresponding to the required energy, and sets a predetermined remaining capacity by adding a predetermined lower limit remaining capacity of the battery 4 to the remaining battery capacity. The generated power controller controls the generator motor 2 so that the remaining capacity of the battery 4 detected by the remaining capacity detector becomes the target remaining capacity, and charges the battery 4 with the generator motor 2. Thereby, when the vehicle reaches the charging base, the remaining capacity of the battery 4 becomes zero. Actually, it is necessary to assume a case of restarting without connecting / charging to an external power source at the charging base, and it is necessary to secure the minimum energy in the battery 4 that can restart the engine 1. Therefore, the lower limit remaining capacity corresponding to this minimum energy is added to the remaining battery capacity corresponding to the required energy for reaching the charging base described above. Note that the lower limit remaining capacity of the battery 4 when it reaches the charging base may be changed according to a preset or estimated external chargeable time at the charging base.

パワートレイン統合制御コントローラ14は、更に、図2及び図3に示すマップデータ、及び図4に示す補正データを記憶するデータ記憶部を備える。図2はアクセル操作量及び車速に応じて目標駆動力を予め定めたマップデータの一例であり、図3は充電拠点と車両間の距離に応じてバッテリ4の目標残容量を予め定めたマップデータの一例であり、そして、図4は充電拠点の標高から車両の標高を減じた標高差に応じて目標駆動力の補正量を予め定めた補正データの一例である。ここで、「充電拠点と車両間の距離」は道路地図情報に基づいて得られる実際にある道路に沿った走行最短距離である。   The powertrain integrated control controller 14 further includes a data storage unit that stores the map data shown in FIGS. 2 and 3 and the correction data shown in FIG. FIG. 2 is an example of map data in which the target driving force is predetermined according to the accelerator operation amount and the vehicle speed. FIG. 3 is map data in which the target remaining capacity of the battery 4 is predetermined according to the distance between the charging base and the vehicle. FIG. 4 is an example of correction data in which a correction amount of the target driving force is determined in advance according to an altitude difference obtained by subtracting the altitude of the vehicle from the altitude of the charging base. Here, the “distance between the charging base and the vehicle” is the shortest traveling distance along the road actually obtained based on the road map information.

なお、本発明の実施の形態では、ハイブリッド車の特徴である効率性や経済性、電動車両の特徴である運転性(ハイレスポンス等)を生かすために、エンジンや発電モータは比較的小型のもの、駆動用モータは比較的大型のものを想定している。   In the embodiment of the present invention, the engine and the generator motor are relatively small in order to take advantage of the efficiency and economy characteristic of the hybrid vehicle and the drivability (high response etc.) characteristic of the electric vehicle. The drive motor is assumed to be relatively large.

図5を参照して、パワートレイン統合制御コントローラ14が行なう制御動作例を説明する。図5に示す制御動作は特定の演算周期で実行される。   An example of a control operation performed by the powertrain integrated control controller 14 will be described with reference to FIG. The control operation shown in FIG. 5 is executed at a specific calculation cycle.

(イ)先ずS1段階において、ドライバーの加速意思としてのアクセル操作量をアクセルセンサ(ポテンショ)からの出力信号から計測する。S2段階に進み、車輪の回転速度に応じた周波数あるいは回転周期を示すパルス信号を発生する車輪速センサを用いて車速を計測する。実際には、別タイミングで計測された周波数または回転周期を本タイミングで車速に換算する。   (A) First, in step S1, an accelerator operation amount as an acceleration intention of the driver is measured from an output signal from an accelerator sensor (potentiometer). In step S2, the vehicle speed is measured using a wheel speed sensor that generates a pulse signal indicating a frequency or a rotation cycle corresponding to the rotation speed of the wheel. Actually, the frequency or rotation cycle measured at another timing is converted into the vehicle speed at this timing.

(ロ)S3段階に進み、パワートレイン統合制御コントローラ14を除く他のコントローラ10〜13から高速通信網を介して受信したデータを、受信バッファから読み取る。バッテリコントローラ12からは、バッテリ4の残容量(SOC)と入出力可能パワーを、エンジンコントローラ11からは、エンジン始動判定フラグとエンジン回転数を、モータ・ジェネレータコントローラ10からは、発電モータ2の回転数と駆動モータ3の回転数を、ナビゲーションコントローラ13からは、充電拠点と車両間の距離と標高差を受信する。   (B) Proceeding to step S3, the data received from the other controllers 10 to 13 excluding the power train integrated control controller 14 via the high-speed communication network is read from the reception buffer. From the battery controller 12, the remaining capacity (SOC) of the battery 4 and the power that can be inputted and outputted, from the engine controller 11, an engine start determination flag and the engine speed, and from the motor / generator controller 10, the rotation of the generator motor 2. The number and the number of rotations of the drive motor 3 are received from the navigation controller 13 from the charging base and the distance between the vehicle and the altitude difference.

(ハ)S4段階に進み、図2に示したマップデータを用いて、アクセル操作量と車速に見合った目標駆動力を算出する。更に、目標駆動力にタイヤ有効半径/減速比を含む定数を乗じて、駆動モータトルク指令値を算出する。なお、駆動軸の捻れに起因したガクガク振動を抑制するためのトルク補正は、公知技術をもって実施すればよい。   (C) Proceeding to step S4, the target driving force corresponding to the accelerator operation amount and the vehicle speed is calculated using the map data shown in FIG. Further, a drive motor torque command value is calculated by multiplying the target drive force by a constant including the tire effective radius / reduction ratio. In addition, what is necessary is just to implement the torque correction for suppressing the rattling vibration resulting from the twist of a drive shaft with a well-known technique.

(ニ)S5段階に進み、図3に示したマップデータを参照して、充電拠点と車両間の走行最短距離に応じて目標残容量(目標SOC)を決定する。具体的には、充電拠点までの走行パターンを仮想して、発電モータ2で発電せずにバッテリ4の残容量を用いて車両を走行させて充電拠点まで到達するために必要なエネルギを算出する。この必要エネルギに相当するバッテリ残容量にエンジン再始動を考慮したバッテリ4の下限残容量を加算して目標残容量を求める。当然、走行最短距離が遠いほど目標残容量は高くなり、走行最短距離が近いほど目標残容量は低くなる。また、充電拠点と車両間の標高差に応じて、充電拠点に到達するために必要なエネルギが変わる。そこで、データ記憶部に予め記憶してある図4に示す補正マップを用いて、充電拠点と車両間の標高差に応じて上述の目標残容量を増減補正する。   (D) Proceeding to step S5, the target remaining capacity (target SOC) is determined according to the shortest travel distance between the charging base and the vehicle with reference to the map data shown in FIG. Specifically, the travel pattern to the charging site is virtually calculated, and the energy required to reach the charging site by running the vehicle using the remaining capacity of the battery 4 without generating electricity with the generator motor 2 is calculated. . The target remaining capacity is obtained by adding the lower limit remaining capacity of the battery 4 considering engine restart to the remaining battery capacity corresponding to this required energy. Naturally, the target remaining capacity increases as the traveling shortest distance increases, and the target remaining capacity decreases as the traveling shortest distance decreases. Further, the energy required to reach the charging base changes according to the altitude difference between the charging base and the vehicle. Therefore, using the correction map shown in FIG. 4 stored in advance in the data storage unit, the above-described target remaining capacity is increased or decreased in accordance with the altitude difference between the charging base and the vehicle.

(ホ)S6段階に進み、バッテリ4の目標残容量と実際の残容量とを比較する。目標残容量が実際の残容量よりも大きい場合(S6にてYES)S8段階に進み、目標残容量が実際の残容量以下である場合(S6にてNO)、発電による充電は必要ないと判断してS7段階に進む。   (E) Proceeding to step S6, the target remaining capacity of the battery 4 is compared with the actual remaining capacity. If the target remaining capacity is larger than the actual remaining capacity (YES in S6), the process proceeds to step S8, and if the target remaining capacity is equal to or less than the actual remaining capacity (NO in S6), it is determined that charging by power generation is not necessary. And it progresses to S7 stage.

(ヘ)S7段階において、エンジン1と発電モータ2の停止を指示するフラグをセットする。一方、S8段階において、エンジン1から受信した情報により、エンジン1が始動済か否かを判断する。未だ始動前であればS9段階に進み、既に始動済みであればS11段階に進む。   (F) In step S7, a flag that instructs the engine 1 and the generator motor 2 to stop is set. On the other hand, in step S8, it is determined whether the engine 1 has been started based on information received from the engine 1. If it is not yet started, the process proceeds to step S9, and if already started, the process proceeds to step S11.

(ト)S9段階において、発電モータ2を用いて、エンジン1を始動するための最低回転数を保つように回転数フィードバック制御演算を行い、発電モータトルク指令値を算出する。発電モータトルク指令値が正値の場合、バッテリ4は放電を行う。S10段階に進み、エンジン1の始動を要求するフラグをセットして、エンジン1の始動に必要な吸入空気量・点火時期・燃料噴射量をエンジンコントローラ11に対して要求する。   (G) In step S9, the generator motor 2 is used to perform a rotation speed feedback control calculation so as to maintain the minimum rotation speed for starting the engine 1, and a generator motor torque command value is calculated. When the generator motor torque command value is a positive value, the battery 4 discharges. Proceeding to step S10, a flag for requesting start of the engine 1 is set, and the intake air amount, ignition timing, and fuel injection amount necessary for starting the engine 1 are requested to the engine controller 11.

(チ)一方、S11段階においては、発電モータ2を用いて効率良く発電できる回転数Nを目標値として回転数フィードバック制御演算を行い、発電モータトルク指令値を算出する。ここで、発電モータトルク指令値が負値である場合、バッテリ4は充電される。   (H) On the other hand, in step S11, the rotational speed feedback control calculation is performed with the rotational speed N that can be efficiently generated using the power generation motor 2 as a target value, and the power generation motor torque command value is calculated. Here, when the generator motor torque command value is a negative value, the battery 4 is charged.

(リ)S12段階に進み、バッテリ4の目標残容量と実際の残容量が一致するように、目標残容量と実際の残容量との偏差を用いた比例制御などのフィードバック制御演算を行い、エンジン1の出力(≒発電出力)を算出する。算出された発電出力を効率良く発電できる回転数Nを用いてエンジントルク指令値に換算する。   (I) Proceeding to step S12, feedback control calculation such as proportional control using a deviation between the target remaining capacity and the actual remaining capacity is performed so that the target remaining capacity of the battery 4 and the actual remaining capacity match, and the engine 1 output (≈ power generation output) is calculated. The calculated power generation output is converted into an engine torque command value using the rotational speed N that can generate power efficiently.

(ヌ)S13段階に進み、高速通信網を用いて、上述のエンジントルク指令値、発電モータトルク指令値、駆動モータトルク指令値、エンジン停止・始動要求フラグを対応する他のコントローラ10〜13へそれぞれ送信する。以上のようにして、パワートレイン統合制御コントローラ14(発電電力制御部)は、バッテリコントローラ12によって検出されたバッテリ4の残容量が常に目標残容量となるように発電モータ2を制御して発電モータ2でバッテリ4を充電することができる。
(比較例)
図7(a)に示すように、特許文献1に記載された制御方法において、ナビゲーションによる経路検索により家51を出発地及び目的地として家51と会社52間を往復する経路が設定され、設定された経路から外れることなく設定経路に沿って家51と会社52間を往復する場合、図7(b)に示すように、目的地(充電拠点)に到着した際に所定の下限残容量(ゼロなど)を達成することができる。
(N) Proceed to step S13 and use the high-speed communication network to transfer the above-described engine torque command value, power generation motor torque command value, drive motor torque command value, and engine stop / start request flag to the other controllers 10-13. Send each one. As described above, the powertrain integrated control controller 14 (generated power control unit) controls the power generation motor 2 so that the remaining capacity of the battery 4 detected by the battery controller 12 always becomes the target remaining capacity. 2 can charge the battery 4.
(Comparative example)
As shown in FIG. 7 (a), in the control method described in Patent Document 1, a route that reciprocates between the house 51 and the company 52 is set by setting a route search by navigation, using the house 51 as a starting point and a destination. In the case of reciprocating between the house 51 and the company 52 along the set route without deviating from the set route, as shown in FIG. 7B, when the vehicle arrives at the destination (charging base), a predetermined lower limit remaining capacity ( Zero).

しかし、設定された経路から車両が一度でも外れると、目的地に到着した際に所定の下限残容量を達成出来なくなる。つまり、図8(a)の二点鎖線で示す設定経路よりも近道である図8(a)の破線で示す経路を通って目的地に到達した場合、図8(b)の破線で示すように、目的地に到達したときのバッテリ残容量は所定の下限残容量よりも大きい値となり、プラグイン充電が十分出来なくなり経済性や環境性が悪化する。   However, if the vehicle deviates even once from the set route, the predetermined lower limit remaining capacity cannot be achieved when the vehicle arrives at the destination. That is, when the destination is reached via the route indicated by the broken line in FIG. 8A, which is a shortcut than the setting route indicated by the two-dot chain line in FIG. 8A, as indicated by the broken line in FIG. In addition, the battery remaining capacity when reaching the destination becomes a value larger than the predetermined lower limit remaining capacity, and the plug-in charging cannot be sufficiently performed, so that the economy and environmental performance are deteriorated.

一方、図8(a)の二点鎖線で示す設定経路よりも遠回りである図8(a)の一点鎖線で示す経路を通る場合、図8(b)の一点鎖線で示すように、走行途中でバッテリ4の残容量がゼロとなり加速性能が悪化する。   On the other hand, when passing the route indicated by the alternate long and short dash line in FIG. 8A, which is more detour than the setting route indicated by the alternate long and two short dashes line in FIG. 8A, as shown by the alternate long and short dash line in FIG. Thus, the remaining capacity of the battery 4 becomes zero and the acceleration performance deteriorates.

これに対して、本発明の実施の形態では、図6(a)の二点鎖線で示す家21と会社22間の設定経路に対して、近道である破線で示す経路を通った場合であっても、あるいは遠回りである一点鎖線で示す経路を通った場合であっても、充電拠点に到達したときのバッテリ4の残容量は必ず下限残容量(拠点到達時の目標値)となる。   On the other hand, in the embodiment of the present invention, the route between the house 21 and the company 22 indicated by the two-dot chain line in FIG. However, even when the route shown by the alternate long and short dash line is taken, the remaining capacity of the battery 4 when it reaches the charging base is always the lower limit remaining capacity (target value when the base arrives).

図6(b)において、実線は、充電拠点(家21)と車両間の距離に対して、EV走行で充電拠点に到達可能な必要エネルギに相当するバッテリ4の残容量と下限残容量とを加
算した目標残容量をバッテリ4の総容量で割った充電率で示したものである。二点破線は、設定経路に沿って走行した場合の充電率の変化を示し、破線は、設定経路よりも近道の経路を走行した場合の充電率の変化を示し、一点鎖線は、設定経路よりも遠回りの経路を走行した場合の充電率の変化を示す。
In FIG. 6B, the solid line shows the remaining capacity and the lower limit remaining capacity of the battery 4 corresponding to the required energy that can reach the charging base by EV traveling with respect to the distance between the charging base (house 21) and the vehicle. The added target remaining capacity is indicated by a charging rate divided by the total capacity of the battery 4. The two-dot dashed line shows the change in the charging rate when traveling along the set route, the broken line shows the change in the charging rate when traveling on the shortcut route rather than the set route, and the alternate long and short dash line is from the set route Also shows the change in the charging rate when traveling on a roundabout route.

家21を出発する時点では、家庭用電源によるプラグイン充電によりバッテリ4は満充電、すなわち充電率=100%の状態である。家21を出発してから実線上に充電率が到達するまでは、上記した3つのいずれの経路においてもエンジン1による発電はせずに走行する。バッテリ4の実際の残容量が目標残容量、即ち図6(b)の実線上に到達した後は、いずれの走行経路においても、実際の残容量が実線から大きく逸脱しないようにエンジン1による発電を行う。但し、経済性のより高い回生発電は例外であり積極的に優先して実施する。これにより、充電拠点(家21)に到達した際には、バッテリ4の残容量は必ず下限残容量(拠点到達時の目標値)となる。   At the time of leaving the house 21, the battery 4 is fully charged by plug-in charging by a household power source, that is, the charging rate is 100%. From the departure from the house 21 until the charging rate reaches the solid line, the vehicle travels without generating power by the engine 1 in any of the above three routes. After the actual remaining capacity of the battery 4 reaches the target remaining capacity, that is, the solid line in FIG. 6B, the power generation by the engine 1 is performed so that the actual remaining capacity does not deviate significantly from the solid line in any travel route. I do. However, regenerative power generation, which is more economical, is an exception and will be actively prioritized. Thus, when the battery reaches the charging base (house 21), the remaining capacity of the battery 4 is always the lower limit remaining capacity (target value when the base is reached).

以上説明したように、本発明の実施の形態によれば以下の作用効果が得られる。   As described above, according to the embodiment of the present invention, the following operational effects can be obtained.

バッテリコントローラ12によって検出されたバッテリ4の残容量が目標残容量となるように発電モータ2を制御することにより、必ずしも目的地を設定し検索設定された経路に沿って走行せずとも、つまり、自由な経路、自由な走行パターンで走行しても、充電拠点に戻った時に必ず、バッテリ4の残容量が、充電拠点到達時の目標値(エンジン1の再始動などに必要な最低値)になるので、経済性(エネルギ単価)や環境(水力・原子力発電など)に優れる例えば家庭用電源による外部充電を多用出来る。また走行中に、バッテリ4の残容量がゼロになることが無いので、シリーズ型ハイブリッド車両では、駆動用モータ出力が発電モータ2の最大出力に制限されることが無く、パラレル型ハイブリッド車両では、モータアシスト走行が出来なくなることも無い。つまり、走行途中で加速性能が急に低下するようなことは生じない。   By controlling the generator motor 2 so that the remaining capacity of the battery 4 detected by the battery controller 12 becomes the target remaining capacity, it is not always necessary to set the destination and travel along the searched route. Even if the vehicle travels in a free route and in a free driving pattern, the remaining capacity of the battery 4 is always set to the target value (minimum value required for restarting the engine 1) when the battery 4 arrives at the charging site. Therefore, it is possible to use external charging with a household power source that is excellent in economy (unit price of energy) and environment (hydropower, nuclear power generation, etc.). Further, since the remaining capacity of the battery 4 does not become zero during traveling, in the series type hybrid vehicle, the drive motor output is not limited to the maximum output of the generator motor 2, and in the parallel type hybrid vehicle, There is no possibility that motor-assisted running will not be possible. That is, the acceleration performance does not suddenly decrease during traveling.

充電拠点と車両間の距離が遠い場合には目標残容量を高く、充電拠点と車両間の距離が近い場合には目標残容量を低く設定する。地理的な尺度として、充電拠点と車両間の距離を利用することで、充電拠点まで走行するために必要なエネルギをおおよそ把握することが出来る。   When the distance between the charging base and the vehicle is long, the target remaining capacity is set high, and when the distance between the charging base and the vehicle is short, the target remaining capacity is set low. By using the distance between the charging base and the vehicle as a geographical measure, it is possible to roughly grasp the energy required to travel to the charging base.

充電拠点と車両間の距離は道路地図情報に基づいて得られる実際にある道路に沿った走行最短距離である。道路が縦横無尽に走る市街地と異なり、道路が少ない田舎や山岳地において充電拠点と車両間の直線距離を用いて充電拠点まで走行するために必要なエネルギを求めても、実際にある道路に沿った走行距離との誤差が大き過ぎて意味を持たない。そこで、実際にある道路に沿った走行距離で最短なものを利用することで、道路が少ない田舎や山岳地でも予め定められた下限残容量までバッテリ4の電力を効率よく使用して充電拠点に到達できる。勿論、充電拠点と車両間の距離が充電拠点と車両間の直線距離であっても構わない。   The distance between the charging base and the vehicle is the shortest traveling distance along the actual road obtained based on the road map information. Unlike urban areas where roads run endlessly and horizontally, even in the countryside and mountainous areas where there are few roads, even if the energy required to travel to the charging base using the straight distance between the charging base and the vehicle is calculated, the actual road along the road The error with the distance traveled is too large to make sense. Therefore, by using the shortest mileage along the actual road, it is possible to efficiently use the power of the battery 4 up to a predetermined lower limit remaining capacity even in the countryside or mountainous area where there are few roads, to the charging base Can reach. Of course, the distance between the charging base and the vehicle may be a linear distance between the charging base and the vehicle.

充電拠点に対する車両の標高が低い場合には目標残容量を増加方向に補正し、充電拠点に対する車両の標高が高い場合には目標残容量を減少方向に補正する。これにより、充電拠点と車両間に標高差があっても、予め定められた下限残容量までバッテリ4の電力を効率よく使用して充電拠点に到達できる。つまり、充電拠点に対する車両の標高が低い場合には、充電拠点に戻るためにより多くのエネルギ消費を必要とするため、目標残容量を増加方向に補正する。これにより、走行途中で残容量がゼロとなり走行性能が低下することを抑制できる。逆に充電拠点に対する車両の標高が高い場合には、車両が持つ位置エネルギによって充電拠点に戻るために必要なエネルギは少なくて済むため、目標充電率を減少方向に補正する。これにより、内燃機関が過剰な発電を行い、充電拠点に戻った際に残容
量が所定の下限残容量よりも多く成りすぎることを抑制できる。よって、経済性や環境性に優れる外部充電(プラグイン充電)を十分に使用することができる。
When the altitude of the vehicle relative to the charging base is low, the target remaining capacity is corrected in the increasing direction, and when the altitude of the vehicle relative to the charging base is high, the target remaining capacity is corrected in the decreasing direction. Thereby, even if there is an altitude difference between the charging base and the vehicle, the power of the battery 4 can be efficiently used to reach the charging base up to a predetermined lower limit remaining capacity. That is, when the altitude of the vehicle with respect to the charging base is low, more energy is required to return to the charging base, so the target remaining capacity is corrected in the increasing direction. As a result, it is possible to suppress the remaining capacity from becoming zero during traveling and reducing the traveling performance. On the contrary, when the altitude of the vehicle with respect to the charging base is high, the energy required for returning to the charging base is small due to the potential energy of the vehicle, so the target charging rate is corrected in the decreasing direction. Thereby, when the internal combustion engine performs excessive power generation and returns to the charging base, it is possible to prevent the remaining capacity from becoming more than a predetermined lower limit remaining capacity. Therefore, it is possible to sufficiently use external charging (plug-in charging) excellent in economic efficiency and environmental performance.

予め設定もしくは推定された充電拠点での外部充電可能時間に応じて、充電拠点に到達した時のバッテリの下限残容量を変更する。これにより、充電拠点で外部充電を行う時間が十分無い場合でも、車両は必ず満充電の最良な状態で充電拠点を発車することができる。   The lower limit remaining capacity of the battery when it reaches the charging base is changed according to the external chargeable time at the charging base set or estimated in advance. Thereby, even when there is not enough time for external charging at the charging base, the vehicle can always leave the charging base in the best state of full charge.

上記のように、本発明は、1つの実施形態及びその変形例によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。すなわち、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲に係る発明特定事項によってのみ限定されるものである。   As mentioned above, although this invention was described by one embodiment and its modification, it should not be understood that the statement and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters according to the scope of claims reasonable from this disclosure.

本発明の実施の形態に関わるバッテリ充電制御装置を「プラグイン・シリーズ型ハイブリッド車両」に適用した場合の車両の全体構成を示すブロック図である。1 is a block diagram showing an overall configuration of a vehicle when a battery charge control device according to an embodiment of the present invention is applied to a “plug-in series hybrid vehicle”. アクセル操作量及び車速に応じて目標駆動力を予め定めたマップデータの一例を示すグラフである。It is a graph which shows an example of the map data which predetermined the target driving force according to the accelerator operation amount and the vehicle speed. 充電拠点と車両間の走行最短距離に応じてバッテリ4の目標残容量を予め定めたマップデータの一例を示すグラフである。It is a graph which shows an example of the map data which predetermined the target remaining capacity of the battery 4 according to the shortest travel distance between a charging base and a vehicle. 充電拠点の標高から車両の標高を減じた標高差に応じて目標残容量の加減補正量を予め定めた補正データの一例を示すグラフである。It is a graph which shows an example of the correction data which predetermined | prescribed the correction amount of addition / subtraction of a target remaining capacity according to the altitude difference which subtracted the altitude of the vehicle from the altitude of the charging base. パワートレイン統合制御コントローラ14が行なう制御動作例を示したフローチャートである。4 is a flowchart showing an example of a control operation performed by a powertrain integrated control controller 14. 本発明の効果を説明する為の図であり、図6(a)は予め設定された家51と会社52間を往復する設定経路と近道及び遠回りの経路とを示す模式図であり、図6(b)は各経路に沿った車両位置と目標残容量との関係を示すグラフである。FIG. 6A is a schematic diagram illustrating a preset route that makes a round trip between the house 51 and the company 52, and a shortcut route and a detour route. (B) is a graph which shows the relationship between the vehicle position along each path | route, and target remaining capacity. 特許文献1に記載された技術に関わり、図7(a)は予め設定された家51と会社52間を往復する設定経路を示す模式図であり、図7(b)は設定経路に沿った車両位置と目標残容量との関係を示すグラフである。FIG. 7A is a schematic diagram showing a set route that reciprocates between a house 51 and a company 52 set in advance, and FIG. 7B is along the set route. It is a graph which shows the relationship between a vehicle position and target remaining capacity. 図8(a)及び図8(b)は図7に示した特許文献1に記載された技術の問題点を示す図である。FIG. 8A and FIG. 8B are diagrams showing problems of the technique described in Patent Document 1 shown in FIG.

符号の説明Explanation of symbols

1 エンジン
2 発電モータ(発電手段)
3 駆動モータ(電動機)
4 バッテリ
5 減速機構
6a、6b 駆動輪
7 インバータ
9 充電器
10 モータ・ジェネレータコントローラ
11 エンジンコントローラ
12 バッテリコントローラ
13 ナビゲーションコントローラ
14 パワートレイン統合制御コントローラ
15 コンセント
21 家
22 会社
1 engine 2 generator motor (power generation means)
3 Drive motor (electric motor)
4 Battery 5 Deceleration mechanism 6a, 6b Drive wheel 7 Inverter 9 Charger 10 Motor / generator controller 11 Engine controller 12 Battery controller 13 Navigation controller 14 Powertrain integrated control controller 15 Outlet 21 House 22 Company

Claims (5)

電力を発電する発電手段と、
該発電手段の発電電力を制御する発電電力制御手段と、
前記発電手段によって発電された電力、若しくは充電拠点に設けられた充電器から出力される電力で充電可能なバッテリと、
当該バッテリの残容量を検出する残容量検出手段と、
前記バッテリの電力を用いて駆動する車両の駆動輪に接続された電動機と、
前記バッテリの残容量の目標値である目標残容量を設定する目標残容量設定手段と、
車両が現在地から充電拠点まで走行する為に必要なエネルギを推定する必要エネルギ推定手段とを備え、
前記目標残容量設定手段は、予め定められた前記バッテリの下限残容量に、前記必要エネルギ推定手段によって推定された必要エネルギに相当するバッテリ残容量を加算して目標残容量を設定し、
前記発電電力制御手段は、前記残容量検出手段によって検出された前記バッテリの残容量が前記目標残容量となるように前記発電手段を制御する
ことを特徴とする電動車両のバッテリ充電制御装置。
Power generation means for generating electric power;
Generated power control means for controlling the power generated by the power generation means;
A battery that can be charged with the power generated by the power generation means or the power output from a charger provided at a charging base;
A remaining capacity detecting means for detecting the remaining capacity of the battery;
An electric motor connected to drive wheels of a vehicle driven using the electric power of the battery;
Target remaining capacity setting means for setting a target remaining capacity which is a target value of the remaining capacity of the battery;
With necessary energy estimating means for estimating energy required for the vehicle to travel from the current location to the charging base,
The target remaining capacity setting means sets a target remaining capacity by adding a battery remaining capacity corresponding to the required energy estimated by the required energy estimating means to a predetermined lower limit remaining capacity of the battery,
The power generation control means controls the power generation means so that the remaining capacity of the battery detected by the remaining capacity detection means becomes the target remaining capacity.
前記目標残容量設定手段は、充電拠点と車両間の距離が遠い場合には目標残容量を高く、充電拠点と車両間の距離が近い場合には目標残容量を低く設定することを特徴とする請求項1に記載の電動車両のバッテリ充電制御装置。   The target remaining capacity setting means sets the target remaining capacity high when the distance between the charging base and the vehicle is long, and sets the target residual capacity low when the distance between the charging base and the vehicle is short. The battery charging control device for an electric vehicle according to claim 1. 充電拠点と車両間の距離は道路地図情報に基づいて得られる実際にある道路に沿った走行最短距離であることを特徴とする請求項1又は2に記載の電動車両のバッテリ充電制御装置。   The battery charging control device for an electric vehicle according to claim 1 or 2, wherein the distance between the charging base and the vehicle is a traveling shortest distance along an actual road obtained based on road map information. 充電拠点に対する車両の標高が低い場合には目標残容量を増加方向に補正し、充電拠点に対する車両の標高が高い場合には目標残容量を減少方向に補正することを特徴とする請求項1乃至3のいずれか一項に記載の電動車両のバッテリ充電制御装置。   The target remaining capacity is corrected in the increasing direction when the altitude of the vehicle with respect to the charging base is low, and the target remaining capacity is corrected in the decreasing direction when the altitude of the vehicle with respect to the charging base is high. 4. The battery charge control device for an electric vehicle according to claim 3. 予め設定もしくは推定された充電拠点での外部充電可能時間に応じて、充電拠点に到達した時の前記バッテリの下限残容量を変更することを特徴とする請求項1乃至4のいずれか一項に記載の電動車両のバッテリ充電制御装置。   The lower limit remaining capacity of the battery when reaching the charging base is changed according to a preset or estimated external charging time at the charging base, according to any one of claims 1 to 4. The battery charge control apparatus of the electric vehicle as described.
JP2008329289A 2008-12-25 2008-12-25 Battery charge control device for motor vehicle Pending JP2010154638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329289A JP2010154638A (en) 2008-12-25 2008-12-25 Battery charge control device for motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329289A JP2010154638A (en) 2008-12-25 2008-12-25 Battery charge control device for motor vehicle

Publications (1)

Publication Number Publication Date
JP2010154638A true JP2010154638A (en) 2010-07-08

Family

ID=42573069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329289A Pending JP2010154638A (en) 2008-12-25 2008-12-25 Battery charge control device for motor vehicle

Country Status (1)

Country Link
JP (1) JP2010154638A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096130A1 (en) * 2011-01-11 2012-07-19 トヨタ自動車株式会社 Vehicle control apparatus
JP2013177091A (en) * 2012-02-29 2013-09-09 Nissan Motor Co Ltd Control apparatus of hybrid vehicle
WO2015111341A1 (en) * 2014-01-22 2015-07-30 カルソニックカンセイ株式会社 Driving force controller for electric vehicle
JP2017144801A (en) * 2016-02-15 2017-08-24 東京電力ホールディングス株式会社 Electric car
CN108698607A (en) * 2015-12-23 2018-10-23 罗伯特·博世有限公司 For running the method for motor vehicle, for the control unit and drive system of drive system
JP2019189085A (en) * 2018-04-26 2019-10-31 トヨタ自動車株式会社 Control device of hybrid vehicle
JP2020083026A (en) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 Hybrid vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007969A (en) * 1995-02-27 2004-01-08 Equos Research Co Ltd Hybrid vehicle
JP2008087719A (en) * 2006-10-04 2008-04-17 Nissan Motor Co Ltd Hybrid vehicle and control method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007969A (en) * 1995-02-27 2004-01-08 Equos Research Co Ltd Hybrid vehicle
JP2008087719A (en) * 2006-10-04 2008-04-17 Nissan Motor Co Ltd Hybrid vehicle and control method therefor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096130A1 (en) * 2011-01-11 2012-07-19 トヨタ自動車株式会社 Vehicle control apparatus
JP2012147554A (en) * 2011-01-11 2012-08-02 Toyota Motor Corp Vehicle controller
CN103298642A (en) * 2011-01-11 2013-09-11 丰田自动车株式会社 Vehicle control apparatus
JP2013177091A (en) * 2012-02-29 2013-09-09 Nissan Motor Co Ltd Control apparatus of hybrid vehicle
CN106414157A (en) * 2014-01-22 2017-02-15 康奈可关精株式会社 Driving force controller for electric vehicle
JP6033973B2 (en) * 2014-01-22 2016-11-30 カルソニックカンセイ株式会社 Driving force control device for electric vehicle
US9604548B2 (en) 2014-01-22 2017-03-28 Calsonic Kansei Corporation Driving force controller for electric vehicle
WO2015111341A1 (en) * 2014-01-22 2015-07-30 カルソニックカンセイ株式会社 Driving force controller for electric vehicle
CN106414157B (en) * 2014-01-22 2017-10-20 康奈可关精株式会社 The driving-force control apparatus of electric vehicle
US10737684B2 (en) 2015-12-23 2020-08-11 Robert Bosch Gmbh Method for operating a motor vehicle, control unit for a drive system, and drive system
CN108698607A (en) * 2015-12-23 2018-10-23 罗伯特·博世有限公司 For running the method for motor vehicle, for the control unit and drive system of drive system
JP2019507043A (en) * 2015-12-23 2019-03-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Driving method of vehicle, control unit for driving system and driving system
CN108698607B (en) * 2015-12-23 2022-03-15 罗伯特·博世有限公司 Method for operating a motor vehicle, control unit for a drive system, and drive system
JP2017144801A (en) * 2016-02-15 2017-08-24 東京電力ホールディングス株式会社 Electric car
JP7014035B2 (en) 2018-04-26 2022-02-01 トヨタ自動車株式会社 Hybrid vehicle control device
JP2019189085A (en) * 2018-04-26 2019-10-31 トヨタ自動車株式会社 Control device of hybrid vehicle
JP2020083026A (en) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 Hybrid vehicle
JP7024694B2 (en) 2018-11-26 2022-02-24 トヨタ自動車株式会社 Hybrid vehicle

Similar Documents

Publication Publication Date Title
JP5233713B2 (en) Battery charge control device and battery charge control method
JP4927016B2 (en) Navigation system and hybrid vehicle equipped with the same
JP5716779B2 (en) Hybrid car
JP4450087B2 (en) Hybrid vehicle and control method thereof
JP5195462B2 (en) Control device for hybrid vehicle
JP2010279108A (en) Battery charge control device for electric vehicles
KR101836250B1 (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
JP2010154638A (en) Battery charge control device for motor vehicle
JP2013159214A (en) Controller for hybrid vehicle
US11312360B2 (en) Control system for vehicle
US20190092185A1 (en) Hybrid vehicle and method of controlling hybrid vehicle
JP2010064499A (en) Hybrid vehicle
JP2011230642A (en) Hybrid vehicle
JP7010039B2 (en) Hybrid car
JP2007099030A (en) Automobile and control method thereof
KR20190056152A (en) Method and appratus for controlling power of mild hybrid electric vehicle
JP2015000685A (en) Control device and control method for hybrid vehicle
JP2013147233A (en) Control apparatus for electric vehicle
JP6512151B2 (en) Hybrid car
JP2012201325A (en) Plug-in hybrid vehicle
JP2013075562A (en) Electric driving vehicle
JP7010043B2 (en) Hybrid car
JP2013177091A (en) Control apparatus of hybrid vehicle
JP7207280B2 (en) vehicle controller
JP2023072925A (en) vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521